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QUASI-HODGE METRICS AND CANONICAL
SINGULARITIES

Chin-Lung Wang

1. Introduction and Statement

Throughout this paper we work over the base field C. The basic problem in
algebraic geometry treated here is the filling-in problem (or degeneration prob-
lem). Given a smooth projective family X× → ∆×, we would like to know
when we can fill in a reasonably nice special fiber X0 to form a projective family
X → ∆, perhaps up to a finite base change on ∆×. For example, when can X0

be smooth? When can it be irreducible? Or when can it be irreducible with at
most certain type of mild singularities? We would like to search for conditions
depending only on the punctured family.

In this paper, for any smooth projective family X → S over a smooth base
S such that Xs has semi-ample canonical bundle, we shall define for each large
m ∈ N a Kähler metric gm on S, called the m-th quasi-Hodge metric. When S =
∆×, we propose that the incompleteness of gm near 0 for suitable m’s provides
a necessary and sufficient condition for the existence of X0 to be irreducible and
with at most canonical singularities (c.f. Remark 2.5). Notice that the metric
incompleteness condition is insensitive to base changes.

More precisely, for a smooth projective family π : X → S with pg(Xs) �= 0,
the (possibly degenerate) quasi-Hodge metric gH = g1 on S is given by the
semi-positive first Chern form of the rank pg Hodge bundle Fn = π∗KX/S .
When S = ∆×, let T be the monodromy operator acting on Hn(Xs, C) where
n = dimXs, s �= 0.

Theorem 1.1. For any smooth projective family π : X → ∆×,
(1) The quasi-Hodge metric gH is incomplete if and only if that Hn,0(Xs) con-

sists of T r-invariant cycles for some r ∈ N.
(2) In terms of a semi-stable model with X0 =

⋃N
i=0 Xi, gH is incomplete if

and only if that pg(Xs) =
∑N

i=0 pg(Xi).
(3) In particular, degenerations with Gorenstein canonical singularities have

finite gH distance.

This generalizes an earlier result on Calabi-Yau families in [10] concerning
Weil-Petersson metrics (c.f. §7). In the Calabi-Yau case, since pg = 1, there is
exactly one component Xi with pg �= 0. Starting from this we may deduce
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Proposition 1.2. Let X → ∆ be a degeneration of Calabi-Yau n-folds such that
0 ∈ ∆ has finite gH distance. Then the minimal model conjecture (MMC) in
dimension n + 1 implies that, up to a finite base change, X → ∆ is birational
to X′ → ∆ such that Xs

∼= X′
s for s �= 0 and X′

0 is a Calabi-Yau variety with at
most canonical singularities.

This had been solved in the literature for abelian varieties and K3 surfaces
(type I degenerations in Kulikov’s work [5]). Indeed in both cases one ends
up with smooth families. Here we show that the relative minimal model is the
filling-in we seek for. The primary reason is that all other components in X0

are uni-ruled hence should be contractible. The MMC is known in dimensions
up to three by the Mori theory. Recently Shokurov announced the existence of
log-flips in dimension four. Its validity would imply the result for degenerations
of Calabi-Yau threefolds.

For the general cases when pg(Xs) > 1, there could be more than one essential
components with pg(Xi) �= 0, so gH is insufficient for our purpose. In order to
concentrate all the pluri-genera Pm in one component, we need a finer metric
on the punctured disk. The actual construction in §3 is to consider the case
that Xs has semi-ample canonical bundle and to take an m-cyclic cover Y → S
of X → S along a smooth divisor D ∈ |Km

X/S | for suitable m’s. We then define
the m-th quasi-Hodge metrics gm to be gH with respect to Y → S. The semi-
ample assumption is to guarantee the invariance of pluri-genera in projective
families, which is not needed in Theorem 1.1 by the well-known invariance of
Hodge numbers.

Proposition 1.3. Let π : X → ∆ be a degeneration of smooth projective mani-
folds Xs with semi-ample canonical bundle. If X0 is irreducible with only canon-
ical singularities then 0 ∈ ∆ is at finite gm distance for all m such that gm is
defined.

We conjecture that the converse statement holds true. To support some
evidence, we verify it in §4 for degenerations of curves.

Theorem 1.4. Let π : X× → ∆× be a projective family of smooth curves of
genus ≥ 2, then gm is defined for all m ∈ N and the incompleteness of gm for
any three values of m’s implies that up to a finite base change π can be completed
into a smooth family.

In §6 we discuss the notion of essential incomplete boundary points. Namely
a finite distance degeneration without any smooth filling-in up to any finite base
change. Notice that there is no such essential degenerations for curves (Theorem
1.4), abelian varieties and K3 surfaces (as mentioned above).

Theorem 1.5. There exist essential finite gm distance degenerations for three-
folds:

(1) Nodal degenerations of Calabi-Yau threefolds with h1(O) = 0: these provide
the simplest type of examples with nontrivial monodromy.
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(2) Terminal degenerations of smooth minimal threefolds: some of them have
trivial C∞ monodromy hence provide more subtle examples.

In §7 we make a few remarks on the Weil-Petersson metric on Calabi-Yau
moduli spaces and its relation to Viehweg’s theory on moduli spaces.

2. Quasi-Hodge Metrics gH

Let π : X → S be a family of polarized algebraic manifolds with Hn,0(Xs) =
H0(Xs, KXs) �= 0. It is well known that these spaces have constant rank pg (the
geometric genus) in s ∈ S and they form a holomorphic vector bundle Fn =
π∗KX/S . It is the last piece of the Hodge filtration F : F 0 ⊃ F 1 ⊃ · · · ⊃ Fn

with a natural Hermitian metric induced from the topological cup product on
each fiber:

Q(u, v)|Fs =
√−1

n
∫

Xs

u ∪ v.

Griffiths has shown that the first Chern form of (Fn, Q) (for a local frame
{ui}):

ω =
√−1

2
RicQ(Hn,0) = −

√−1
2

∂∂̄ log det
[
Q(ui, ūj)

]pg

i,j=1

is semi-positive, hence defines a (possibly degenerate) Kähler metric on S. We
call it the quasi-Hodge metric. For Calabi-Yau families this agrees with the
Weil-Petersson metric defined via the Ricci flat metric on each fiber, but not in
other cases (c.f. §7).

When π : X → ∆ is a degeneration, i.e. π is smooth outside the puncture,
we are interested in relating the differential-geometric properties of ∆ under
the quasi-Hodge metric and the singularities occur in X0. Applying Mumford’s
semi-stable reduction theorem we may and will first assume that X is smooth
and X0 is a simple normal crossing divisor in it. In this case the monodromy
T is unipotent. Let N = log T be the nilpotent monodromy associated to it.
We need Schmid’s theory of limiting mixed Hodge structure [7] to analyze this
situation.

Fix a reference fiber X = Xs with s �= 0 and let V to be the primitive
cohomology of Hn(X, C). Recall that π induces a variation of Hodge structures
(VHS) of weight n on V over ∆× and gives rise to the period map φ : ∆× →
〈T 〉\D, with D the period domain. The map φ lifts to the upper half plane
Φ : H → D with the coordinates s ∈ ∆× and z ∈ H related by s = e2π

√−1z. Set

A(z) = e−zNΦ(z) : H → Ď.

(Ď is the compact dual of D.) Since A(z + 1) = A(z), A descends to a func-
tion α(s) on ∆×. Schmid’s Nilpotent Orbit Theorem implies that α(s) extends
holomorphically over s = 0. The special value F∞ := α(0) is called the limiting
filtration.
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N uniquely determines the monodromy weight filtration on V : 0 ⊂ W0 ⊂
W1 ⊂ · · · ⊂ W2n−1 ⊂ W2n = V such that N(Wk) ⊂ Wk−2 and induces an
isomorphism

N � : GW
n+�

∼= GW
n−�,

on graded pieces. F p
∞ and Wk together define a polarized mixed Hodge structure

(MHS) on V : namely the induced Hodge filtration

F p
∞GW

k := F p
∞ ∩ Wk/F p

∞ ∩ Wk−1, p = 0, . . . , n

is a pure Hodge structure of weight k on GW
k . N acts on them as a morphism of

type (−1,−1) — N(F p
∞GW

k ) ⊂ F p−1
∞ GW

k−2. Moreover, for & ≥ 0, the primitive
part PW

n+� := kerN �+1 ⊂ GW
n+� is polarized by Q(·, N �̄·). By adding the non-

primitive part, the total cohomology Hn(X, C) admits non-polarized MHS.
In the rest of this section we prove Theorem 1.1 by dividing it into steps. We

start with the following theorem which generalizes the one in [10]:

Theorem 2.1. The center 0 ∈ ∆ is at finite geodesic distance from the generic
point s �= 0 under the quasi-Hodge metric if and only if NFn

∞ = 0.

Proof. Let Φ : H → D be the lifting of the period map. To start the computation,
we need to choose a good holomorphic frame Ωj , j = 1, . . . , pg of Fn. Let pn :
D → G(pg, V ) be the projection to the Fn part. we have Φn(z) = (ezNα(s))n =
ezNαn(s). Here ∗n := pn(∗) ∈ G(pg, V ) is the n-th flag. Near t = 0, we
can represent αn through local homogeneous coordinates as pg vectors aj , j =
1, . . . , pg in V . Then aj(s) = aj

0 + aj
1s + · · · is holomorphic in s. We have

correspondingly

Aj(z) = aj
0 + aj

1e
2π

√−1z + aj
2e

4π
√−1z + · · · .

As in [10], the function e2π
√−1z = e2π

√−1xe−2πy has the property that all the
partial derivatives in x and y decay to 0 exponentially as y → ∞, with rate of
decay independent of x. Let h be the class of functions with this property and
h the corresponding class of functions with value in V .

Let Ωj(z) = ezNAj(z) for j = 1, . . . , pg. This is the desired frame because
frame representations correspond to sections of the universal rank pg subbudle
of G(pg, V ) which pulls back to Fn by Φ. So the Kähler form ω of the induced
quasi-Hodge metric on H is given by

ω = −
√−1

2
∂∂̄ log det

[
Q

(
ezNAi(z), ez̄NAj(z)

)]n

i,j=1
.

Since the base is one dimensional, if we write the metric as G|dz|2 then
G = −(1/4)� log det Q. From Q(Tu, Tv) = Q(u, v), it follows easily that
Q(Nu, v) = −Q(u, Nv) and Q(ezNu, v) = Q(u, e−zNv). Since Aj = aj

0 + h,
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we have

det
[
Q(ezNAi, e

z̄NĀj)
]

= det
[
Q(ezNai

0, e
z̄N āj

0) + h
]

= det
[
Q(e2

√−1yNai
0, ā

j
0)

]
+ h

= p(y) + h,

where p(y) is a polynomial in y. Let d = deg p(y). It has the property that d = 0
if and only if NFn

∞ = 0. This is a consequence of the polarization condition for
the mixed Hodge structure.

To see this, we may choose the basis aj in such a way that for aj
0 ∈ Gn+�j

in the limiting MHS, i < j implies &i ≥ &j . Let & = &1 = · · · = &q > &q+1,
that is & = max { i ∈ N ∪ {0} |N iFn

∞ �= 0 }. Then the determinant of the q × q
matrix corresponds to those entries with index between 1 and q is a positive
polynomial in y of degree q& by the polarization condition on Gn+�. Inductively
we may find numbers qk and &(k) with

∑
k qk = pg and &(k) decreases such that

the determinant of the corresponding qk×qk matrix (as a block on the diagonal)
is a positive polynomial in y of degree qk&(k). Now we conclude that the original
determinant is a positive polynomial in y of degree d =

∑
k &(k) dominant by

the product of these diagonal blocks — because all other elements have smaller
degree in y. It is clear that d = 0 if and only if & = &1 = 0 if and only if
NFn

∞ = 0.
Then

4G =
(p′ + h)2 − (p + h)(p′′ + h)

(p + h)2
=

(p′2 − pp′′) + h

p2 + h

∼ p′2 − pp′′

p2
+ h ∼ d2 − d(d − 1)

y2
+ h =

d

y2
+ h.

Here we have used the fact that p−2h ∈ h. Obviously, if NFn
∞ = 0 then d = 0

and G = h, so
∫ ∞

z0

√
G |dz| < ∞ for some curve (e.g. x = c). When NFn

∞ �= 0
we have d ≥ 1 and for y large enough we can make h < 1/y3 uniformly in x,
then clearly

∫ ∞
z0

√
G |dz| ∼ 2 log y |∞y0

= ∞ for any path with y → ∞.

Remark 2.2. From the proof, we know that in the case of infinite distance,
the quasi-Hodge metric is exponentially asymptotic to a scaling of the Poincaré
metric.

So far it is purely Hodge-theoretic and makes perfect sense in the framework
of abstract variation of Hodge structures. Now we plug in the geometric data:

Theorem 2.3. For a semi-stable degeneration π : X → ∆ of varieties with
pg > 0, if X0 =

⋃N
i=0 Xi then the induced quasi-Hodge metric is incomplete at 0

if and only if for s �= 0, pg(Xs) =
∑N

i=0 pg(Xi).

Proof. The proof is essentially the same as in [10], so we only sketch it briefly.
Deligne has shown that the cohomologies of the normal crossing divisor X0

admit mixed Hodge structures. Let i : Xs → X be the inclusion map and
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i# : Hn(X0) ∼= Hn(X) → Hn(Xs) the induced map. The Clemens-Schmid exact
sequence

· · · → Hn(X0)
i#→Hn(Xs)

N→Hn(Xs) → · · ·
is an exact sequence of MHS’s. The is also known as the Invariant Cycle Theorem
which implies that pg := pg(Xs) ≥ ∑N

i=1 pg(Xi) with
∑N

i=1 pg(Xi) corresponds
to T -invariant cycles in Fn

s . Now the condition NFn
∞ = 0 says that all those pg

cycles are T -invariant.

Notice that in the statement of Theorem 1.1, part (1), r is the degree of the
base change t �→ tr performed on ∆ in obtaining the semi-stable model.

Corollary 2.4. Let π : X → ∆ be a degeneration of smooth projective manifolds
Xs, s ∈ ∆× with geometric genus pg > 0. If X0 is an irreducible variety with
only Gorenstein canonical singularities then 0 ∈ ∆ is at finite distance to s �= 0
with respect to the quasi-Hodge metric.

Proof. By elementary commutative algebra X0 is Gorenstein implies that X is
Gorenstein. Moreover KXs = (KX + Xs)|Xs = KX|Xs for all s ∈ ∆, hence the
theorem on semi-continuity implies that h0(X0, KX0) ≥ pg.

Now for X′ → X a resolution of singularities such that X′
0 =

⋃N
i=0 X ′

i is
a (not necessarily reduced) normal crossing divisor, there exists a component
X ′

0 such that φ : X ′
0 → X0 is a resolution of singularities. By definition of

canonical singularities we thus have KX′
0

= φ∗KX0 + E for E an effective ex-
ceptional divisor. By pulling back canonical sections via φ∗ we conclude that
h0(X ′

0, KX′
0
) ≥ h0(X0, KX0) ≥ pg.

Clearly this inequality holds true for X′ → ∆ a semi-stable reduction of X →
∆. So by the Invariant Cycle Theorem we must have that pg(Xs) =

∑N
i=0 pg(Xi).

The above theorem then implies that 0 ∈ ∆ is at finite quasi-Hodge distance.

Remark 2.5. A normal Q-Gorenstein variety X is said to have (at most) canon-
ical singularities if for a (hence for any) resolution of singularities φ : Y → X,
KY =Q KX +

∑
i eiEi with ei ≥ 0, where the sum is over all exceptional di-

visors. In dimension two, canonical singularities are precisely C2/G for a finite
sub-group G ⊂ SL(2, C), the so called ADE singularities. In dimension three
there is a classification theory due to Reid and Mori [6]. The generic hyperplane
section of a canonical singularities is again canonical, so the generic surface slices
of canonical singularities are ADE singularities.

3. The m-th Quasi-Hodge Metrics gm

Following Viehweg [9], we will assume that Xs has semi-ample canonical bun-
dle for the smooth family π : X → S. This implies that π∗Km

X/S is a locally free
sheaf for each m ∈ N (see Theorem 8.16 in [9], for this one needs only that Xs

has Gorenstein canonical singularities). Unlike the case m = 1, we do not have
an immediate natural hermitian metric on the underlying vector bundle. Let
m ∈ N be sufficiently large so that there exists a divisor D ∈ |Km

X/S | smooth
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over S. By taking an m-cyclic cover along D (c.f. [9] Lemma 2.3), we get a
family

Y
φ ��

τ
���

��
��

��
X

π
����

��
��

�

S

with eigenspace decomposition φ∗OY =
⊕m−1

k=0 (K−k
X/S) and Riφ∗ = 0 for i > 0

(since φ is finite). Also from the generalized Hurwitz formula KY/S = φ∗KX/S +
(m−1)H with mH = φ∗D = φ∗(mKX/S), we see that φ∗Km

X/S = KY/S . Simple
spectral sequence argument and projection formula then show that

τ∗KY/S = π∗φ∗KY/S = π∗φ∗(φ∗Km
X/S) = π∗

(
m−1⊕
k=0

Km−k
X/S

)
=

m⊕
k=1

π∗Kk
X/S .

Definition 3.1. The m-th quasi-Hodge metric gm on S is defined to be the
quasi-Hodge metric attached to τ∗KY/S as defined in §2.

Let S = ∆×. By Theorem 2.1 (or 2.3), the Kähler metric gm is incomplete at
0 if and only if all Hn,0(Ys) (s �= 0) are T r-invariant. In view of the above split-
ting, this should indicate certain extension properties of pluri-canonical forms
in H0(Xs, K

k
Xs

) (s �= 0) to the central fiber. Here is our proposal:

I. Take a semi-stable model X → ∆ with X0 =
⋃N

i=0 Xi. The incomplete-
ness of gm should be equivalent to certain twisted pluri-genera equalities
Pk(Xs) =

∑N
i=0 P̃k(Xi) for 1 ≤ k ≤ m (c.f. Lemma 4.1).

II. The twisted pluri-genera equalities for all m ∈ N should force that there is
only one component, say X0, to have non-zero pluri-genera. Mori theory
implies that all the other components are uni-ruled. It should be enough
to verify the equality up to a sufficiently large m which depends only on
dimXs.

III. Finally we expect to contract all Xi with i �= 0 using Mori’s extremal
contractions. If we apply directly the MMC, we should then arrive at a
model X′ → ∆ such that X′

0 has only canonical singularities.
To make sense of this, we first show that the incompleteness of gm is a nec-

essary condition for degenerations with canonical singularities.

Proof of Proposition 1.3. The only key point is that the m-th cyclic covering
construction along D ∈ |Km

X | can be carried over to families π : X → ∆ when X0

has canonical singularities of index dividing m, and the resulting covering fami-
lies Y → ∆ has the property that Y0 has only Gorenstein canonical singularities.
Hence by Theorem 1.1 (or rather Corollary 2.4) that gm is incomplete.

Remark 3.2. Indeed one has the constancy of Pm in s ∈ ∆ for canonical degen-
erations (with semi-ample K) and hence the Pm equalities for any semi-stable
model. It is thus natural to conjecture that the Pm equalities for a finite number
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of m’s are equivalent to the existence of canonical degenerations. Notice that
the Pk equality for all k ≤ m is a stronger assumption than the incompleteness
of gm.

It is long conjectured that for smooth projective families π : X → S the pluri-
genera is locally constant in s ∈ S. Recently Siu [8] proved this for smooth
varieties of general type. This has then been extended to families with canonical
singularities [4]. We have chosen to work on families with semi-ample K to avoid
the technicality involved in Siu’s theorem.

In the following two sections, we justify our proposal by verifying it for curves
and by showing that MMC implies the case of Calabi-Yau manifolds.

4. The Case of Curves

We will consider curves of genus ≥ 2. The case of elliptic curves is easier,
which is also a special case of Calabi-Yau manifolds to be discussed later.

The natural algebro-geometric way to treat this problem is to start with a
semistable degeneration X → ∆ with X0 =

⋃
i∈I Xi and then try to simplify

it through birational modifications. Since the total space X is a surface, the
modifications needed are simply contraction of (−1) curves. So we may assume
that X → S is relative minimal and semi-stable and g(Xs) ≥ 2. Let gi = g(Xi)
and di =

∑
j �=i Xj .Xi = (

∑
Xj − Xi).Xi = −X2

i . The famous stable reduction
theorem for curves states that we may further contract (−2) curves so that every
component Xi is stable in the sense that if gi = 0 then di ≥ 3 (and if gi = 1
then di ≥ 1, which is always true here since X0 is connected). The only subtle
point is that X may have An type singularities. Since this will not affect our
later discussion, for the sake of simplicity we will assume we are already in a
stable reduction.

For m ∈ N such that Km
X/S is S-very ample, let D ∈ |Km

X/S | be a smooth
member which does not contain any special point in any Xi∩Xj and the singular
points of X. We also assume that S is small enough so that S ∼= ∆ and KS

∼= OS .
By Theorem 1.1, the quasi-Hodge metric gm constructed from the m-th cyclic
cover Y → X along D is incomplete if and only if pg(Ys) =

∑
i∈I pg(Yi). This is

because Y → S is a stable degeneration by construction and the presence of An

singularities does not affect the result — further blowing-ups gives (−2) curves
which have no contribution to the geometric genus. By the generalized Hurwitz
formula, we have seen in §3 that pg(Ys) =

∑m
k=1 Pk(Xs). Moreover, we have

Lemma 4.1. pg(Yi) =
∑m

k=1 h0(Xi, K̃
k
Xi

) where K̃k
Xi

is the twisted (or logarith-
mic) pluri-canonical sheaf defined as Kk

Xi
⊗ OXi(

∑
j �=i Xj ∩ Xi)k−1.

Proof. Let τ : Y → S be the new families with Y0 =
⋃

i∈I Yi. By the construc-
tion, φi : Yi → Xi is an m-cyclic cover along

D|Xi = mKX|Xi = m(KXi − Xi|Xi) = m(KXi +
∑

j �=i
Xj ∩ Xi) =: mDi.
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Then we have eigenspace decomposition φi∗OYi
=

⊕m−1
k=0 O(Di)−k. The same

proof as in §3 gives φi∗KYi = KXi ⊗
⊕m−1

k=0 O(Di)k.

Proof of Theorem 1.4. We will show that if gm is incomplete for three m’s then
in a stable reduction there is only one component X0 in X0, which is then smooth
of genus g(X0) = g(Xs).

From the Riemann-Roch formula,

h0(K̃k
Xi

) − h1(K̃k
Xi

) = k(2gi − 2) + (k − 1)di + (1 − gi)
= (2k − 1)(gi − 1) + (k − 1)di

It is clear that h1(K̃k
Xi

) = 0 for k ≥ 2 by the stability condition. Also
h1(K̃Xi

) = h0(OXi
) = 1. So the equality∑m

k=1
h0(Kk

Xs
) =

∑
i∈I

∑m

k=1
h0(K̃k

Xi
)

becomes

1 +
∑m

k=1
(2k − 1)(g − 1) = |I| +

∑
i∈I

∑m

k=1

[
(2k − 1)(gi − 1) + (k − 1)di

]
which is

m2(g −
∑

i∈I
gi) = −(|I| − 1)m2 +

m(m − 1)
2

∑
i∈I

di + (|I| − 1).

If this is true for any three values of m’s then we get |I| = 1, say I = {0} and
g =

∑
i∈I gi = g(X0) as desired.

5. The Case of Calabi-Yau Manifolds

We start with the following corollary of Theorem 1.1.

Corollary 5.1. Let X → ∆ be a semi-stable degeneration of Calabi-Yau man-
ifolds. Then gH is incomplete at 0 ∈ ∆ if and only if there is an irreducible
component Xi ⊂ X0 such that hn,0 �= 0. This is equivalent to that there is exact
one component with hn,0 = 1.

Lemma 5.2. For any relative minimal model X → ∆ of a degeneration of
Calabi-Yau manifolds X′ → ∆, if X0 =

∑N
i=0 Xi has more than one compo-

nent then each Xi has −KXi,red a nontrivial effective divisor on Xi,red.

Proof. For divisors we use the notation “∼” to denote Q-linear equivalence.
Since π : X → ∆ is a holomorphic function, we have that Xs ∼ 0 for any s ∈ ∆.
Also if D ⊂ X is a divisor such that π(D) is not a point, then D|Xs

will be a
nontrivial divisor of Xs.

Since Xs is birational to X′
s, it is a terminal Calabi-Yau variety for s �= 0,

that is KXs = 0. By adjunction formula on such Xs, we conclude that KX is
supported on the central fiber and so is of the form KX =

∑
aiXi with ai ∈ Q.

Since
∑

Xi = X0 ∼ 0, we may adjust ai so that max ai = 0. Let I =
{i | ai = 0}. For i ∈ I and a curve & ⊂ Xi one has

KX.& =
∑

j �∈I
aj(Xj .&) ≤ 0.
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If I �= {0, . . . , N}, we may choose & such that Xj .& > 0 and aj < 0 by the
connectedness of

⋃
Xi. But then KX.& < 0, contradicts to the nefness of KX.

So we must have ai = 0 for all i. That is, KX = 0. Now take any component
Xi, one has

KXi
= (KX + Xi)

∣∣
Xi

= Xi|Xi
= −

∑
j �=i

Xj |Xi
,

which by the connectedness again is a nontrivial negative effective divisor if there
are more than one components. The case for Xi,red is entirely similar.

Proof of Proposition 1.2. We first take a semi-stable reduction X′ → ∆ of our
original degenerations. This may require a finite base change on the base, but
this will not change the finite distance condition on the metric. We want to
conclude that any relative minimal model (if there exists any) of it, denoted by
X → ∆ has only one component in the central fiber. Let X′

0 =
⋃N

i=0 X ′
i with X ′

0

the unique component with a canonical section Ω ∈ Γ(X ′
0, KX′

0
).

By the conjectural construction of relative minimal models, one uses only
divisorial contractions and flips of relative extremal rays, hence only the central
fiber will be modified since the general fibers are already smooth Calabi-Yau.
Notice that during the process the proper transform of X ′

0 is never contracted.
Indeed, if a component W in the central fiber is contracted in some step, then
W is covered by (extremal) rational curves [3]. This will continue to hold true
for any smooth model Y of W hence κ(Y ) = −∞ and so Y can not be X ′

0.
By Lemma 5.2, if there are more than one components in X0 then any com-

ponent Xi has KXi
= −D �= 0. If Xi is not normal, passing to normalization

ψ : W → Xi with conductor C ⊂ W can only make KW = ψ∗KXi
− C more

non-effective. Hence passing to any smooth model φ = φ′ ◦ ψ : Y → Xi with
φ′ : Y → W , KY = φ′∗KW + E shows that KY = −φ∗D − φ′∗C + E. This is
never an effective divisor because E is φ′-exceptional. By the birational invari-
ance of pg among smooth models, this contradicts to the existence of Ω on X ′

0.
Hence X0 has only one component and KX0 = (KX + X0)|X0 = X0|X0 = 0.

To see that X := X0 has at most canonical singularities, let φ : Y → X be a
resolution of singularities. Clearly Γ(Y, KY ) ∼= C since X has a smooth model
with pg = 1. In particular, KY is effective. Also Γ(X, KX) ∼= C since KX = 0.
If X is normal, since it is Gorenstein we have KY = φ∗KX + E = E which
shows that E is effective and so X has at most canonical singularities. If X
is not normal, let ψ : W → X be the normalization with non-zero conductor
divisor C ⊂ W and let φ factors through ψ as φ = φ′ ◦ ψ with φ′ : Y → W .
Then KW = ψ∗KX − C = −C and KY = φ′∗KW + E′ = −φ′∗C + E′, which is
never effective, a contradiction. Hence X is normal and is in fact a Calabi-Yau
variety with at most canonical singularities. The proof is thus completed.

6. Essential Incomplete Boundary Points

A degeneration over the unit disk is called non-essential if it admits a finite
base change so that the punctured family can be completed into a smooth family.
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Otherwise it is called essential. Clearly a necessary condition of a degeneration to
be non-essential is that the monodromy is of finite order, or N = 0. In particular
it is of finite distance. In fact for K3 surfaces any finite distance degeneration is
non-essential [5]. It is thus interesting to see whether there exists essential finite
distance degenerations in higher dimensions.

The classical Picard-Lefschetz theory states that for a Lefschetz pencil (i.e.
nodal degenerations) each node, or ODP, pi will correspond to a vanishing cycle
σi ∈ Hn(Xs, Z) and all these σi’s generate the space of vanishing cycles V which
is the kernel of the map Hn(Xs) → Hn(X0) = Hn(X). Moreover the monodromy
N �= 0 if and only if V �= 0. However, there is no general local criterion to test
whether σi �= 0 for a given ODP pi. The σi is always trivial for n even and must
be trivial even for n odd if Hn(Xs) = 0 — for example, nodal degenerations for
cubic or quartic threefolds.

Here we show that V �= 0 for any nodal degenerations of Calabi-Yau 3-folds.1

Proof of Theorem 1.5, part (1). First of all, a nodal threefold X0 always admits
(not necessarily projective) small resolutions X → X0 with smooth rational
curves X ⊃ Ci → pi ∈ X0 contracted to ODP’s. In the case of Calabi-Yau
threefolds (Gorenstein threefolds with trivial canonical bundle) with h1(O) = 0,
the existence of global smoothing X → ∆ of X0 forces that there are nontrivial
relations of [Ci] ∈ H2(X) by Friedman’s result [1], [2]. That is, the canonical
map e :

⊕
i Z[Ci] → H2(X, Z) has nontrivial kernel dimension ρ > 0. Consider

the resulting surgery diagram:

X

↓
X0 ⊂ X ⊃ Xs

It has the following local description: let Vi � pi be a contractible neighborhood
of an ODP, V ′

i ⊂ Xs be the smoothing of Vi and Ui ⊂ X be the inverse image
of Vi. Then

I. Ui is a deformation retract neighborhood of Ci and so has the homotopy
type of S2 ∼ D4 × S2.

II. V ′
i has the homotopy type of S3 ×D3. Where the sections σi ∼ S3 are the

vanishing cycles.
III. The surgery from X to Xs is induced from ∂(D4 × S2) = S3 × S2 =

∂(S3 × D3).

Let us assume that there are k ODP’s. An immediate consequence is the
Euler number formula:

χ(X) − kχ(P1) = χ(X0) − kχ(pt) = χ(Xs) − kχ(S3).

1The problem on essential finite distance boundaries is discussed in length in [10], §3-§4.
However, the argument in [10], §3 concerning nodal degenerations is not complete. The author
is grateful to M. Gross for discussions on this issue.



12 CHIN-LUNG WANG

Let W be the “common open set” of X, X0 and Xs away from all points pi’s
such that W and Vi’s cover Xs etc. A portion of the Mayer-Vietoris sequence of
the covering {W, V ′

i } of Xs gives

0 → H3(W ) → H3(Xs) →
⊕

i
Z[Ci] → H2(X) → H2(Xs) → 0.

Hence that b2(X) = b2(Xs) + (k − ρ).
Take into account of b2(X0) = b2(Xs) and b4(X0) = b4(X) (which also fol-

lows from suitable Mayer-Vietoris sequences), simple manipulations show that
b3(Xs) = b3(X0) + ρ. Comparing with the (Mayer-Vietoris) sequence defining
the vanishing cycles: ⊕

i
Z[σi] → H3(Xs) → H3(X0) → 0,

we conclude that ρ, which is non-zero, is the dimension of V .

It is possible for an essential degeneration to have trivial monodromy. In [2],
Friedman remarked that Clemens has constructed families of quintic hypersur-
faces in P4 acquiring an A2 singularity and have monodromy of finite order. He
then asked whether this family can be filled in smoothly up to a base change.
This has been answered negatively in [10]. We recall the statement here for the
reader’s convenience.

Theorem 6.1. Let X → ∆ be a projective smoothing of a nontrivial Gorenstein
terminal minimal threefold X0 over the unit disk. Then, up to any finite base
change, X → ∆ is not ∆-birational to a projective smooth family X′ → ∆ of
minimal threefolds.

In view of Proposition 1.3, this implies that terminal degenerations of smooth
minimal threefolds provide essential incomplete boundary points of the mod-
uli spaces with respect to the quasi-Hodge metrics gm for all m. This proves
Theorem 1.5, part (2).

7. Remarks on Moduli and Weil-Petersson Metrics

Canonical singularity naturally occurs in minimal and canonical models in
algebraic geometry. It also plays a significant role in string theory through the
connection with Calabi-Yau manifolds. On the other hand, in various situations
it behaves just like smooth points. A nice example is Viehweg’s program on con-
structing quasi-projective moduli spaces of polarized manifolds [9]. He showed
that it is essentially the same proof to include varieties with canonical singular-
ities as long as the deformation invariance can be verified. This was recently
proved by Kawamata [4] based on [8].

Along different lines, the author had attempted to understand the boundary
of moduli spaces of Calabi-Yau manifolds from the differential geometric point
of view [10]. It was found that the natural Weil-Petersson metric on the moduli
space is incomplete, therefore the metric completion of moduli spaces becomes an
important problem. It was proved that degenerations of Calabi-Yau manifolds



QUASI-HODGE METRICS AND CANONICAL SINGULARITIES 13

with at most canonical singularities are at finite Weil-Petersson distance. It
was also conjectured there that the converse holds. Its truth would imply that
Viehweg’s enlarged moduli spaces coincide with the metric completion of the
moduli spaces, hence a perfect match between viewpoints in algebraic geometry
and differential geometry. Now this follows from the minimal model conjectures
by Proposition 1.2.

The Weil-Petersson metric on the moduli space of Calabi-Yau manifolds is
defined as the variation of the underlying Ricci flat metrics. For a given polarized
Calabi-Yau family X → S with Ricci flat metrics g(s) on Xs, under the Kodaira-
Spencer map ρ : TS,s → H1(Xs, TXs

) ∼= H
0,1

∂̄
(TXs

) (harmonic forms with respect
to g(s)), we have for v, w ∈ Ts(S),

gWP (v, w) :=
∫

Xs

〈ρ(v), ρ(w)〉g(s).

It is a quite surprising fact that gWP admits a Hodge theoretic description.
Indeed gWP = gH . This follows from the fact that the holomorphic volume form
Ω(s) is parallel with respect to g(s), which again is equivalent to the Ricci flat
condition

Ω(s) ∧ Ω̄(s) = f(s) ωn
g(s)

for a constant f(s) depending only on s ∈ S. Indeed f(s) is the point-wise length
square of Ω(s) if we normalize the volume to be 1. This viewpoint provides an
alternative differential geometric way to look at the above canonical singularity
conjecture without using the minimal model theory.

With the Ω chosen as in §2, the incompleteness of gH = gWP of a punctured
Calabi-Yau family π : X → ∆× is equivalent to the continuity of f(s) over 0 ∈ ∆.
We attempt to show from this the uniform boundedness of diameter of Xs for all
s ∈ ∆×. With this done, we may then proceed by using the theory of Hausdorff
convergence. The details of this differential geometric approach will appear in a
separate work.
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