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ABSTRACT. We survey some recent progress on the invariance of quantum coho-
mology and Gromov-Witten theory under flop transitions up to analytic continu-
ations over the extended Kähler moduli. In particular we discuss in more details
the case of ordinary flops of splitting type among Calabi-Yau manifolds.

This is partly based on my lecture delivered at Harvard University on August
28th, 2008 in celebration of Professor Shing-Tung Yau’s 60th birthday. I would like
to dedicate this article to him for his encouragement during the past fifteen years.

1. INTRODUCTION

The content of this article is based on joint works with Yuan-Pin Lee and Hui-
Wen Lin [9, 10] in recent years. The origin of the problem, however, goes back to an
old question on the finite Weil-Petersson distance boundary points in the Calabi-
Yau moduli spaces. The necessity to study these boundary points was suggested
by string theory in order to study the space-time topology change under extremal
transitions. In fact this was suggested to me by Yau around 1994 as part of my
thesis project.

It is generally hoped, also known as Reid’s fantasy, that Calabi-Yau 3-folds (or
n-folds) can be connected through extremal transitions along these finite distance
boundaries. The exact study of the change of quantum effect under extremal tran-
sitions is still in a rather preliminary stage. An easier problem which compares
the quantum effect among various different extremal transitions had caught a lot
more attention in recent years. An extremal transition is a degeneration of Calabi-
Yau manifolds into canonical singularities then followed by a crepant resolution.
However, crepant resolutions are generally not unique. Two crepant resolutions
are related by a flop, and flops are believed to form the building blocks of bi-
rational maps between Calabi-Yau manifolds (recently confirmed in [6]) or more
general K equivalent manifolds. Thus it is a reasonable question to study the vari-
ation of quantum effect under a flop transition.

There are several reasons to study flops first. A major one is that flops preserve
cohomology groups (the number of fields). Thus the quantum effects split per-
fectly into A model and B model respectively and we are led to claim the invari-
ance of quantum cohomology for the A side and invariance of Kodaira-Spencer
theory for the B side in a certain sense. This is in contrast to another famous tran-
sition in Calabi-Yau moduli, namely the mirror symmetry where the two theories
are expected to switch roles after transition. Even in that context, historically the
construction of mirror manifolds relies on orbifold or toric constructions where
crepant resolutions are also needed as a final step. Thus the mirror family is only
determined up to birational equivalence and the study of flops is needed to com-
plete the story.
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be a smooth flop in the complex projective category. We had studied three types
of such flops including the ordinary flops [9, 10, 7], Mukai flops [9] and stratified
Mukai flops [3]. In all these cases the fiber product

[X ×X̄ X′] ∈ A∗(X × X′)

induces canonical isomorphism-correspondence F of Chow motives and hence
on the cohomology realization H(X) ∼= H(X′) which we denote by H. Here the
term canonical means that F preserves the Poincaré pairing.

The main problem is that F in general does not preserve the classical cup prod-
uct. Thus quantum corrections are expected! The natural candidate comes from the
quantum product in Gromov-Witten theory.

Let Mg,n(X, β) be the moduli space of stable maps to X from genus g nodal
curves with n marked points, and let ei : Mg,n(X, β) → X be the evaluation maps.
The Gromov-Witten potential

FX
g = ∑

n,β

qβ

n!
〈tn〉X

g,n,β

= ∑
n≥0,β∈NE(X)

qβ

n!

∫
[Mg,n(X,β)]vir

n

∏
i=1

e∗i t

and the partition function (total potential)

ZX = exp
∞

∑
g=0

h̄g−1FX
g (t),

are formal functions in t ∈ H and Novikov variables qβ, with β in the Mori cone
of effective classes of one cycles. Modulo convergence issue, they are functions on
the complexified Kähler cone ω ∈ KC

X := H1,1
R + iKX via

qβ = e2πi(β.ω).

To compare ZX and ZX′
, one notices that they share the same variable t ∈ H

but different variables in NE(X) and NE(X′). In the formal level

F qβ = qF β.

But for ` (resp. `′) being the ψ (resp. ψ′) extremal ray, it is easy to check that

F ` = −`′

which is not effective. By duality this implies that

KC
X ∩KC

X′ = ∅ in H2
C,

hence ZX and ZX′
have different domains of definition and the comparison can

make sense only after analytic continuations overKC
X ∪KC

X′ ⊂ H2
C. For this reason,
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the extended Kähler moduli K is defined to be the union of all KC
X′ ’s with X′ being

smooth projective and K equivalent to X.
Let {Ti} be a basis of H with {Ti} being the dual basis with respect to the

Poincaré pairing. Denote by t = ∑ tiTi. The big quantum ring (QH(X), ∗) uses
only the genus zero potential with n ≥ 3 marked points:

Ti ∗t Tj = ∑
k

∂3FX
0

∂ti∂tj∂tk (t)Tk

= ∑
n≥0,β∈NE(X)

qβ

n!
〈Ti, Tj, Tk, tn〉X

0,n,βTk.

The condition 2g + n ≥ 3 is known as the stable range, so that the point case
X = pt — the Deligne-Mumford space of stable curves Mg,n — is defined.

Conjecture 1.1. [16] Among K equivalent manifolds, there exists canonical correspon-
dences so that in the stable range the quantum invariance holds up to analytic continua-
tions over the extended Kähler moduli.

Quantum corrections attached to the extremal ray for Calabi-Yau 3-folds seems
to first appear in Witten’s article [17]. The first complete mathematical result in
this direction is due to Li and Ruan on the invariance of big quantum ring for P1

flop of three-folds [14], where they developed the degeneration/gluing formula
of Gromov-Witten invariants to reduce the problem to local models. A version of
Conjecture 1.1 had since then been raised by Ruan, known as the quantum minimal
model conjecture.

Subsequently the study had been extended to higher dimensional cases as well
as some higher genus case [9, 7, 10, 3]. The Gromov-Witten theory can be extended
to allow descendent insertions in general, as well as ancestor insertions in the stable
range. The quantum invariance is expected to hold for the ancestor potential [7].

Here is a summary of results we recently obtained:

Theorem 1.2. For flops under fiber product correspondence F , the quantum invariance
up to analytic continuations holds in the following cases.

(1) For simple ordinary flops the quantum invariance holds for all genera in the stable
range [9, 7], including the ancestor invariants.

(2) For ordinary flops over a general base, the big quantum ring restricted to the
extremal ray is invariant. In general the big quantum ring is invariant if the flop
is of splitting type [10].

(3) For Mukai flops the full Gromov-Witten theory is absolutely invariant without
the need of analytic continuation[9].

(4) For stratified Mukai flops of type An,2, D5 and E6,I , the big quantum ring re-
stricted to the extremal ray is invariant [3, 10].

The purpose of this article is however modest. It is limited to the genus zero
theory of ordinary flops. We start by reviewing the general framework initiated in
[9] for the case of simple ordinary flops, and then discuss the main ideas used in
the extension to the non-simple case [10].

In the second half we present in details a special case of (2), namely the quantum
invariance under ordinary flops of splitting type among Calabi-Yau manifolds —
as this is the most interesting case in connection with string theory.
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2. ORDINARY FLOPS: GENUS ZERO THEORY

2.1. The canonical correspondence.
The local geometry of ordinary Pr flops are based on two rank r + 1 vector bun-

dles F, F′ over a smooth base S. Let Z = PS(F) and Z′ = PS(F′). The exceptional
loci are identified with

E = Z ×S Z′

φ̄
yyttttttttttt

φ̄′ %%KKKKKKKKKK

Z
ψ̄

%%KKKKKKKKKKKK Z′
ψ̄′

yyrrrrrrrrrrrr

S

where ψ : X → X̄ is the extremal contraction with ψ̄ = ψ|Z and

N := NZ/X = ψ̄∗F′ ⊗OZ(−1).

The flop f : X 99K X′ is obtained by blowing up φ : Y = BlZX → X followed by
the contraction φ′ : Y → X′ of the exceptional divisor E in the φ̄′ fiber direction.
The existence of φ′ is deduced from the existence of ψ by the cone theorem.

Since dim Z ×S Z′ = dim X − 1, we have Y = X ×X̄ X′ = Γ̄ f ⊂ X × X′. As a
graph correspondence, we have

F := [Γ̄ f ]∗ = φ′∗ ◦ φ∗ : A(X) → A(X′).

One check directly [9] that for a ∈ A(X), φ∗a = φ′∗F a + e where e is both φ and
φ′ exceptional, hence it induces the Chow groups as well as Chow motives iso-
morphism h(X) ∼= h(X′) by considering X × T 99K X′ × T and using the identity
principle. Moreover, the Poincaré pairing

(a, b)X = (φ∗a, φ∗b)Y = (φ′∗F a, φ∗b)Y + (e, φ∗b)Y = (F a, F a)X′

is preserved by the projection formula.

2.2. The case of simple flops. [9]
A flop f is simple if S = pt. The study of analytic continuation of QH(X)

under simple ordinary flops is the starting point of the whole project. The general
framework developed there involves four major steps:

(1) Determination of the defect of cup product under F . Let ai ∈ Aki (X) with
1 ≤ ki ≤ r, k1 + k2 + k3 = dim X = 2r + 1. Then

(F a1.F a2.F a3)X′ − (a1.a2.a3)X

= (−1)r(a1.hr−k1)X(a2.hr−k2)X(a3.hr−k3)X .
(2.1)

This was done by a brute force calculation using standard intersection theory [4].
Since the cup product is determined by the triple product via the Poincaré pairing,
its defect under F is completely characterized by the above formula.

(2) Determination of g = 0, n ≥ 3 points GW invariants attached to β ∈ Z≥0`
and showing that it corrects the topological defect up to analytic continuation.

The virtual dimension Dg,n,β := dim[Mg,n(X, β)]vir is given by

Dg,n,β = c1(X).β + dim X(1− g) + n + 3g− 3.
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Extremal rays of flopping type are K-trivial. Let β = d`, d ≥ 1 and ai ∈ Aki (X),
i = 1, . . . , n with ∑n

i=1 ki = D0,n,d` = 2r + 1 + (n− 3), then

〈a1, . . . , an〉X
0,n,d`

= (−1)(r+1)(d−1)Nk1,...,kn dn−3(a1.hr−k1)X · · · (an.hr−kn)X ,
(2.2)

where the universal constants Nk1,...,kn = 1 for n = 2 or 3. This is the generaliza-
tion of the well-known multiple cover formula for O(−1) ⊕ O(−1) → P1. The
proof uses the reconstruction theorem (divisor relation) [8] to reduce to the n = 1
descendent invariants which can be calculated from [11, 2].

Consider the rational form of the geometric series

f(q) :=
q

1− (−1)r+1q
= ∑

d≥1
(−1)(r+1)(d−1)qd.

It satisfies the functional equation f(q) + f(q−1) = (−1)r which serves as the
source of analytic continuations: For extremal functions 〈A〉0 := ∑∞

d=0〈A〉d`qd`,

〈F a1, F a2, F a3〉X′
0 −F 〈a1, a2, a3〉X

0

= (a1.hr−k1)(a2.hr−k2)(a3.hr−k3)
(
(−1)r − f(q`′)− f(q−`′)

)
= 0.

(2.3)

And for n ≥ 4 points extremal functions,

〈F a1, · · · , F an〉X′
0 −F 〈a1, · · · , an〉X

0

= (−1)nNk1,...,kn

n

∏
i=1

(ai.hr−ki )δn−3(f(q`′) + f(q−`′)
)

= 0,
(2.4)

where δ = q∂/∂q is the power operator.
(3) Using degeneration analysis [14, 13] and deformation to the normal cone to

reduce the general case to projective local model

Xloc = PZ(N ⊕O).

(4) Determination of the g = 0 GW theory of local models using the toric mirror
theorem [5, 12]. A quasi-linearity for one point “ f -special” descendent invariant

F 〈τkξ.a〉Xloc =
〈
τkξ ′.F a

〉X′
loc

is established where ξ = E∞ ∼= PZ(N) being the infinity divisor of Xloc. For n-point
invariants an induction verifying the consistency between functional equations
and the reconstruction is used.

A nice expository survey with explicit examples can be found in [15].
This scheme of proof is recently generalized to the non-simple case [10]. With

the appearance of data (S, F, F′), called the type of the flop f , there are various
new difficulties in each of the four steps which we now describe. Only the main
ideas will be presented. The detailed proofs are referred to original paper.

2.3. The topological defect.
Explicit formula for e is determined to compare the triple products on X and X′.

Let {tk
i } be a basis of Ak(S) and {t̂k

i } ⊂ As−k(S) be its dual basis where s = dim S.
Let h = c1(OZ(1)), ci := ci(F) and Hk = ck(QF) = hk + c1hk−1 + · · ·+ ck where

0 → OZ(−1) → ψ̄∗F → QF → 0.
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Similarly we define h′, c′i and H′
k on the X′ side. The elements Hk’s are of funda-

mental importance since

(2.5) F Hk = (−1)r−k H′
k,

and the basis {tk−j
i hj}j≤min{k,r} of Ak(Z) has its dual in Ar+s−k(Z) to be

{t̂k−j
i Hr−j}j≤min{k,r}.

With this, then

(2.6) φ′∗F a = φ∗a + j∗ ∑
i

∑
1≤j≤min{k,r}

(a.t̂k−j
i Hr−j)tk−j

i
xj − (−y)j

x + y

where x = φ̄∗h, y = φ̄′∗h′ and j : E ↪→ Y. This leads to

Theorem 2.1. [10] Let ai ∈ Aki (X) with k1 + k2 + k3 = dim X = s + 2r + 1. Then

(F a1.F a2.F a3)X′ − (a1.a2.a3)X

= (−1)r ×∑(a1.t̂k1−j1
i1

Hr−j1)
X(a2.t̂k2−j2

i2
Hr−j2)

X(a3.t̂k3−j3
i3

Hr−j3)
X

× (s̃j1+j2+j3−2r−1tk1−j1
i1

tk2−j2
i2

tk3−j3
i3

)S,

where the sum is over all i1, i2, i3 and j1, j2, j3 subject to 1 ≤ jp ≤ min{r, kp} for p =
1, 2, 3 and j1 + j2 + j3 ≥ 2r + 1. Here

s̃i := si(F + F′∗)

is the i-th Segre class of F + F′∗.

2.4. The extremal functions.

It is a bit surprising how the Segre classes si(F + F′∗) may enter into the calcu-
lation of Gromov-Witten invariants. This is possible only if the stable map moduli
has related bundle structures over S, and it is indeed the case for extremal invari-
ants via

M0,n+1(Z, d`)
en+1

%%JJJJJJJJJJJ

f t
��

N

��
M0,n(Pr, d`) // M0,n(Z, d`)

ei //

Ψn

��

Z

ψ̄
yysssssssssssss

S

Let ai ∈ Aki (X), i = 1, . . . , n, with ∑n
i=1 ki = 2r + 1 + s + (n− 3). Since

ai|Z = ∑
si

∑
ji≤min{ki ,r}

(ai.t̂
ki−ji
si Hr−ji )tki−ji

si hji ,
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we compute

〈a1, . . . , an〉X
0,n,d`

= ∑
~s,~j

∫
M0,n(Z,d`)

n

∏
i=1

(
(ai.t̂

ki−ji
si Hr−ji ) e∗i (ψ̄∗tki−ji

si .hji )
)

.e(R1 f t∗e∗n+1N)

= ∑
~s,~j

n

∏
i=1

(ai.t̂
ki−ji
si Hr−ji )

[
n

∏
i=1

tki−ji
si .Ψn∗

( n

∏
i=1

e∗i hji .e(R1 f t∗e∗n+1N)
)]

S

,

with the sum over all ~s = (s1. . . . , sn) and admissible ~j = (j1, . . . , jn). Here we
make use of

[M0,n(X, d`)]virt = [M0,n(Z, d`)] ∩ e(R1 f t∗e∗n+1N)

and the fact that classes in S are constants among bundle morphisms.
We must have ∑(ki − ji) ≤ s to get nontrivial invariants. That is, ∑n

i=1 ji ≥
2r + 1 + n− 3. If the equality holds, then ∏n

i=1 tki−ji
si is a zero dimensional cycle in

S and the invariant reduces to the simple case:

(2.7) (tk1−j1
s1 · · · tkn−jn

sn )S〈hj1 , . . . , hjn〉simple
0,n,d` = (∏ tsi )

SN~j dn−3.

On the contrary, if the strict inequality holds, the fiber integral is represented by a
cycle S~j ⊂ S of codimension

µ := ∑ ji − (2r + 1 + n− 3).

The structure of S~j necessarily depends on the bundles F and F′.
Notice that the new phenomenon µ > 0 does not occur for n = 2. In that case,

k1 + k2 = 2r + s, j1 = j2 = r and we may assume that ts2 is running through the
dual basis of ts1 . Then

〈a1, a2〉X
0,2,d` = ∑

s
(a1.ts)(a2.t̂s)〈hr, hr〉simple

d

= (−1)(d−1)(r+1) 1
d ∑

s
(a1.ts)(a2.t̂s).

(2.8)

To deal with general µ, define the fiber integral〈 n

∏
i=1

hji
〉/S

d
:= Ψn∗

( n

∏
i=1

e∗i hji
)
∈ A∗(S)

as a ψ̄-relative invariant over S. The absolute invariant is obtained by

〈hj1 , · · · , thjn〉X
d = (〈hj1 , · · · , hjn〉/S

d .t)S

For 3-point extremal functions, let Wµ := 〈hj1 , hj2 , hj3〉/S
+ ∈ Aµ(S) with 1 ≤ ji ≤

r and µ ≤ r − 1. (Here + means sum over N`.) Using reconstruction (divisor
relation), this can be shown to be independent of the choices of ji’s. Moreover, the
reconstruction and exercises in Chern classes lead to a recursion

(2.9) Wµ = sµf +
µ

∑
j=1

Wµ−j
(
(−1)rcjf− (−1)r+jc′jf− cj

)
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starting with W0 = f. Together with the basic relation

(2.10) δf = f + (−1)r+1f2,

we may convert polynomials in f into polynomials in δf. This allows to show

Theorem 2.2. [10] The function W(F, F′) = ∑r−1
µ=0 Wµ is the action on f by a Chern

classes valued polynomial in the operator δ. It satisfies the functional equation

Wµ − (−1)µ+1W ′
µ = (−1)r s̃µ

for 0 ≤ µ ≤ r − 1. In particular the topological defect is corrected by the extremal
functions up to analytic continuation.

Once this is done, the case with n ≥ 4 points follows in much the same spirit as
the simple flop case by reconstruction.

2.5. Degeneration Analysis.
In order to compare GW invariants of non-extremal rays, the application of

degeneration formula in [9] based on [13] and deformation to the normal cone is
well suited for ordinary flops with base S. It reduces the problem to local models
Xloc = Ẽ = PZ(N ⊕O), X′

loc = Ẽ′ = PZ′(N′ ⊕O) with induced flop

f : Ẽ 99K Ẽ′.

The reduction has two steps, with relative GW invariants as medium.

Proposition 2.3. To prove F 〈α〉X ∼= 〈F α〉X′
for all α, it is enough to show that

F 〈A | ε, µ〉(Ẽ,E) ∼= 〈F A | ε, µ〉(Ẽ′ ,E)

for all A and contact data (ε, µ) (an H(E)-valued weighted partition).

The local model p̄ := ψ̄ ◦ p : Ẽ → Z → S and the flop f are over S, with fibers
being isomorphic to the simple case. Thus

p̄∗ : N1(Ẽ) → N1(S)

has kernel spanned by the p-fiber line class γ and ψ̄-fiber line class `.
The difficulties with S are that NE(Z) could be complicate and NE(Ẽ) is in

general larger than i∗NE(Z)⊕Z+γ. For β = βZ + d2(β)γ ∈ NE(Ẽ), while βZ =
p∗β is effective, d2(β) could possibly be negative if βZ 6= 0. Nevertheless, the
correspondence F is compatible with N1(S). Namely

N1(Ẽ) F //

p̄∗⊕d2 %%LLLLLLLLLL
N1(Ẽ′)

p̄′∗⊕d′2yyrrrrrrrrrr

N1(S)⊕Z

is commutative. This leads to the following observation:

Proposition 2.4. Functional equation of a generating series 〈A〉 over Mori cone on local
models f : Ẽ 99K Ẽ′ is equivalent to functional equations of its various subseries (fiber
series) 〈A〉βS ,d2 labelled by NE(S)⊕Z.

The fiber series is a sum over the affine ray β ∈ (d2γ + ψ̄∗βS.Hr + Z`)∩ NE(Ẽ).
Here ψ̄∗βS.Hr is called the canonical lift characterized by “βS.h = 0”. For relative
invariants, d2 is the total contact order which is fixed for a given (ε, µ).
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Proposition 2.5. For the ordinary flop Ẽ 99K Ẽ′, to prove

F 〈A | ε, µ〉βS
∼= 〈F A | ε, µ〉βS

for any A, βS ∈ NE(S) and (ε, µ), it is enough to show that

F 〈A, τk1 ε1, . . . , τkρ
ερ〉Ẽ

βS ,d2
∼= 〈F A, τk1 ε1, . . . , τkρ

ερ〉Ẽ′
βS ,d2

for any A ∈ H∗(Ẽ)⊕n, k j ∈ N∪ {0}, ε j ∈ H∗(E) and βS ∈ NE(S), d2 ≥ 0.

2.6. The local models.

For a flop f : X → X′, GW invariants such that all the descendent insertions are
coupled with cycles in the isomorphism loci are called of f -special type. It remains
to prove analytic continuations for such invariants on local models. For notational
convenience we assume now that X = Xloc.

Since X → S is a double projective bundle, H(X) is generated by H(S) and the
relative hyperplane classes h for Z → S and ξ for X → Z. Further applications of
the reconstruction as in [9] by moving all the divisor powers of h, ξ as well as ψ
classes into the last insertion reduces the problem to

(2.11) 〈t1, . . . , tn−1, τktnhjξ i〉X
βS ,d2

where ti ∈ H(S), d2 ∈ Z.
The one point descendent invariants are encoded by its generating function, the

so called J function or the Euler data Qβ’s. The precise definition will be given in
the next section. The actual determination of J = ∑ Jβ qβ can be carried out mainly
in cases when X admits torus group actions. Certain localization data Iβ or Pβ

(equivariant cohomology classes) coming from the stable map moduli (indeed the
graph space) are of hypergeometric type. In good cases, say X is a semi-Fano toric
manifold, these hypergeometric data are already enough to determine J through
the so called “mirror map” [5, 11, 12]. This is well known as the Mirror Theorem.

For simple flop, X is indeed semi-Fano toric and the classical Mirror Theorem is
sufficient for us to proceed, as is done in [9]. For general base S, even for projective
bundles the determination of GW theory is still an unsolved question. The first
main property we need can nevertheless be phrased as a conjecture:

Conjecture 2.6 (Quasi-linearity). [10]

(1) If d2 < 0 then

F JX
β = JX′

F β

term-wise. And for any α ∈ H∗(X), ti ∈ H∗(S),

〈t1, . . . , tn−1, τkα〉X
β = 〈t1, . . . , tn−1, τkF α〉X′

F β.

(2) If there is no restriction on d2 then

F (JX
β .ξ) = JX′

F β.ξ ′

term-wise. And thus for any α ∈ H∗(X), ti ∈ H∗(S),

〈t1, . . . , tn−1, τkα.ξ〉X
β = 〈t1, . . . , tn−1, τkF α.ξ ′〉X′

F β.
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For general S, the torus action on X can possibly exist only in the fiber direction.
This is the case if the flop is of splitting type, namely F =

⊕
Li and F′ =

⊕
L′i being

direct sum of line bundles. In the splitting case the quasi-linearity was proved in
[10] using a recent result on toric fibration in [1].

The only fiber series in (2.11) which are not covered by Conjecture 2.6, (2) are
the cases when i = 0 and thus k = 0 by our assumption on f -special type. If
d2 6= 0, then by the divisor axiom we have

〈t1, . . . , tnhj〉X
βS ,d2

=
1
d2
〈t1, . . . , tnhjξ〉X

βS ,d2

which then reduces to the known cases.
The final remaining cases are twisted extremal functions of the form

(2.12) 〈t1, . . . , tnhj〉X
βS ,d2=0

with βS 6= 0. Notice that the case βS = 0 is the extremal function which is solved
in Theorem 2.2 where the analytic continuation holds for (and only for) n ≥ 3.

The analytic continuations of them from X to X′ are solved in [10] by induction
on Mori cone βS ∈ NE(S), using Birkhoff factorizations and generalized mirror maps.
As this step is rather technical, it would be convenient to give explicit proofs in
some typical examples.

In the remaining of this article, a special case when X is a Calabi-Yau manifold
will be presented, where only the classical mirror map is needed. Nevertheless
some of the characteristic feature — the process of renormalization — already ap-
pears in the Calabi-Yau case.

3. CALABI-YAU FLOPS

3.1. The basic setup.
A local Pr flop f : X 99K X′ with data (S, F, F′) is called of Calabi-Yau type if

c1(X)|Z = c1 + c′1 + c1(S) = 0.

Projective local models of Pr flop among Calabi-Yau manifolds lead to such flops.
We only need to consider genus zero n-point fiber functions of the form

(3.1) 〈t1, . . . , tnhj〉X
βS ,d2=0

where ti ∈ A∗(S), j ≤ r and β = βS + d` + d2γ.
By the virtual dimension count,

(3.2) dv = c1(X).β + dim X + n− 3 = ∑ |ti|+ j.

Lemma 3.1. For Pr flop of CY type, if r ≥ 2 then there are no one-point invariants of the
form as in (3.1) with n = 1.

For r = 1, the only such one-point invariants are of the form 〈hp〉βS ,0 where p ∈
Adim S(S) is the point class.

Proof. Since dim X = dim S + 2r + 1 and c1(X).β = 0, we get dim S + (2r − 1) =
deg t + j. The only possibility is that deg t = dim S and j = r = 1. �

We will see in this section that for flops of CY type, the study of functional
equations for one-point invariants will involve at most classical mirror maps. We
will also carry out one explicit example to demonstrate how the mirror map gives
renormalization which leads to analytic continuations.
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To handle n-point invariants as in (3.1), this process needs to be extended to (a
very special type of) generalized mirror maps. We will not discuss this issue here.
Also it can be avoided if dim S = 1 by the divisor axiom.

3.2. I, P, J and their degrees.
We first recall the J function for n-point invariants

(3.3) Jβ(u1, . . . , un−1) = en∗
∏n−1

i=1 e∗i ui

z(z− ψn)
∈ H∗(X)

and

JX = ∑
β

Jβ qβ = 1 +
J2

z2 + o(z−2).

Defnition 3.2. We set deg qβ = c1(X).β and deg z = 1. All pure dimensional coho-
mology classes are given with their Chow degrees.

Lemma 3.3. We have deg J = ∑n−1
i=1 deg ui − (n − 1). In particular deg J = 0 for

n = 1 (one-point invariants).

Proof. The virtual relative dimension of en : M0,n(X, β) → X is given by c1(X).β +
n− 3, hence Jβ qβ has degree

n−1

∑
i=1

deg ui − 2− (c1(X).β + n− 3) + c1(X).β =
n−1

∑
i=1

deg ui − (n− 1).

�

To compute J, we assume that (S, F, F′) is of splitting type with F =
⊕r

i=0 Li,
F′ =

⊕
i=0r L′i and c(F) = ∏r

i=0(1 + λi), c(F′) = ∏r
i=1(1 + λ′i) be the Chern roots

decompositions. Then we have the hypergeometric modification

(3.4) Pβ = Iβψ̄∗ JβS ,

where the relative factor Iβ = IX/S
β = ∏ Ai ∏ BiC is given by

(3.5)
r

∏
i=1

1
β.(h+λi)

∏
0

(h + λi + mz)

r

∏
i=1

1
β.(ξ−h+λ′i)

∏
0

(ξ − h + λ′i + mz)

1
β.ξ
∏
0

(ξ + mz)
.

Also P = ∑β Pβ qβ.
The product is in m ∈ Z, which is directed in the sense that

s

∏
0
≡

s+

∏
m=0+

:=
s

∏
m=−∞

/
0

∏
m=−∞

.

Thus for each i with β.(h + λi) ≤ −1, the corresponding subfactor is understood
as in the numerator. The subfactor is 1 if β.(h + λi) = 0 since there is no such m.

Lemma 3.4. We have deg P = deg J for any given u1, . . . , un−1.

Proof. It is clear that

deg Iβ = −([(r + 1)h + c1] + [(r + 1)ξ − (r + 1)h + c′1] + ξ).β

= −c1(X).β + c1(S).β.
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The lemma follows from the observation that qβS has degree c1(S).βS in S while
it has degree c1(X).βS in X. That is, the hypergeometric modification also gives
rise to modification of degree from S to X. �

Under d2 = β.ξ = 0 and set si = βS.λi, s′i = βS.λ′i, then

(3.6) Pβ =
r

∏
i=1

0
∏

−d+s′i

(ξ − h + λ′i + mz)

d+si
∏
0

(h + λi + mz)
ψ̄∗ JβS .

The positions of the Ai, Bi factors are correct (polynomial) only for d large. The
subtle point is to study the starting range when going-up/down phenomenon
occurs as d varies.

3.3. The CY condition and the mirror map.
The CY condition c1(X)|Z = 0 has the consequence that c1(X).β = 0 for any

β ∈ NE(Z). That is deg qβ = 0. In the case of one-point invariants with d2 = 0,
this allows us to write

P = P0 +
P1

z
+

P2

z2 + o(z−2)

where Pk is a cohomology valued series in qβ, β ∈ NE(Z). Since deg P = 0, we
have (Chow degree)

deg Pk = k for all k ≥ 0.

By Lemma 3.1, we may assume that r = 1 with cohomology insertion hp.
The (generalized) mirror theorem says that J and P are related by a change of

variables. We need a generalized theorem since S is allowed to be arbitrary. In
good cases when P0 = 1, which will be the case for our later calculations, this
change of variables is particularly easy to describe.

Let Di’s be a cohomology basis of divisor classes with dual curve class basis
βi’s. Let also t = ∑i tiDi be a general divisor with coordinates ti’s. We use the
following formal identification

qβi = eti .

Then the mirror theorem says that

“et/z J” = et/zP

after the change of variables (mirror map)

(3.7) M : ti 7→ ti + (βi.P1)

on the J side. First of all this makes sense as P1 is a divisor valued power series in
qβi = eti . More importantly this equates the z−1 term on both sides. Indeed the
mirror map is equivalent to

t = ∑
i

tiDi 7→ ∑
i

tiDi + (βi.P1)Di = t + P1.

After the mirror map on et/z J and by removing the common et/z we get

(3.8) eP1/z JM = P.
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And then

1 +
JM
2
z2 +

JM
3
z3 + · · ·

=
(

1 +
P1

z
+

P2

z2 + · · ·
)(

1− P1

z
+

1
2

P2
1

z2 − · · ·
)

= 1 +
1
z2

(
P2 −

1
2

P2
1

)
+ · · · .

(3.9)

We may write (3.7) as
M : qβi 7→ qβi e(βi .P1).

Then the z−2 term in (3.9) takes the form

Lemma 3.5 (Recursive Relations).

∑
β

Jβ;2 qβe(β.P1) = ∑
β

Pβ;2 qβ − 1
2

P2
1 .

We will use this to compare J2.hp and J′2.F hp = J′2.(ξ ′ − h′)p.

3.4. Example: Flops of type (P1, O ⊕O(−7)), O(3)⊕O(2)).
We emphasize that everything so far, as well as the remaining argument in this

article, holds for general base S. But in order to keep things concrete and to avoid
notational complexity we will assume that S = P1 in the sequel. Moreover the
choice of bundles F = O⊕O(−7) and F′ = O(3)⊕O(2) is already general enough
to demonstrate the general cases.

Indeed the CY condition says that c1 + c′1 + 2 = 0. Since the flop is defined
up to a twist (F ⊗ L, F′ ⊗ L∗) ∼ (F, F′) [9], we may assume that F = O ⊕ O(−k)
and then F′ = O(a)⊕ O(b) with a + b = k − 2. The choice made here is indeed
the most complicate case among all the possibilities with k = 7. For the complete
treatment, as well as the two lemmas below, we refer to [10].

We start by describing the Mori cone of projective bundles.
Let V =

⊕r
i=0 O(ai) → S = P1 with a0 ≥ a1 ≥ · · · ≥ ar, ψ̄ : P(V) → P1 with

h = c1(OP(V)(1)) be the relative hyperplane class, b = ψ̄∗[S].Hr be the canonical
lift of the base curve and ` be the fiber curve class. Then

Lemma 3.6. NE(P(V)) is generated by ` and b− a0`.

By suitable applications to our flop with F =
⊕r

i=0 O(ai), F′ =
⊕r

i=0 O(a′i):

Lemma 3.7. A class β = sb + d` + d2γ is F -effective, that is β ∈ NE(X) and F β ∈
NE(X′), if and only if

d + a0s ≥ 0 and d2 − d + a′0s ≥ 0.

Let β = βS + d` with βS = sb. In the unstable (that is, F -effective) range
0 ≤ d ≤ 3s, we have for the initial part 0 ≤ d ≤ 2s:
(3.10)

Ps,d =
1

s
∏
0
(p + mz)2

0
∏

d−7s
(h− 7p + mz)

d
∏
0
(h + mz)

−d+3s
∏
0

(ξ − h + 3p + mz)
−d+2s

∏
0

(ξ − h + 2p + mz)
,



14 CHIN-LUNG WANG

(3.11)

P′s,−d =
1

s
∏
0
(p + mz)2

0
∏

d−7s
(ξ ′ − h′ − 7p + mz)

d
∏
0
(ξ ′ − h′ + mz)

−d+3s
∏
0

(h′ + 3p + mz)
−d+2s

∏
0

(h′ + 2p + mz)
,

while for the remaining part 2s + 1 ≤ d ≤ 3s:

(3.12) Ps,d =
1

s
∏
0
(p + mz)2

0
∏

d−7s
(h− 7p + mz)

0
∏

−d+2s
(ξ − h + 2p + mz)

d
∏
0
(h + mz)

−d+3s
∏
0

(ξ − h + 3p + mz)
,

(3.13) P′s,−d =
1

s
∏
0
(p + mz)2

0
∏

d−7s
(ξ ′ − h′ − 7p + mz)

0
∏

−d+2s
(h′ + 2p + mz)

d
∏
0
(ξ ′ − h′ + mz)

−d+3s
∏
0

(h′ + 3p + mz)
.

Lemma 3.8. Let s ≥ 1. In the initial unstable range 0 ≤ d ≤ 2s,

Ps,d = (−1)s+d+1 (7s− d− 1)!
(s!)2d!(3s− d)!(2s− d)!

h− 7p
z

×
(

1− 1
z
(
2pHs + hHd + (h− 7p)H7s−d−1

+ (ξ − h + 3p)H3s−d + (ξ − h− 2p)H2s−d
))

+ o(z−2),

P′s,−d = (−1)s+d+1 (7s− d− 1)!
(s!)2d!(3s− d)!(2s− d)!

ξ ′ − h′ − 7p
z

×
(

1− 1
z
(
2pHs + (ξ ′ − h′)Hd + (ξ ′ − h′ − 7p)H7s−d−1

+ (h′ + 3p)H3s−d + (h′ − 2p)H2s−d
))

+ o(z−2).

Here Hn = ∑n
j=1 1/j denotes the harmonic series with H0 := 0.

Lemma 3.9. Let s ≥ 1. In the remaining unstable range 2s + 1 ≤ d ≤ 3s,

Ps,d = (−1)s (7s− d− 1)!(d− 2s− 1)!
(s!)2d!(3s− d)!

(h− 7p)(ξ − h + 2p)
z2 + o(z−2),

P′s,−d = (−1)s (7s− d− 1)!(d− 2s− 1)!
(s!)2d!(3s− d)!

(ξ ′ − h′ − 7p)(h′ + 2p)
z2 + o(z−2).

In the stable range, β = sb + d` ∈ NE(X) with d ≥ 3s + 1 and

(3.14) Ps,d =
1

s
∏
0
(p + mz)2

0
∏

−d+3s
(ξ − h + 3p + mz)

0
∏

−d+2s
(ξ − h + 2p + mz)

d
∏
0
(h + mz)

d−7s
∏
0

(h− 7p + mz)
.
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For β′ = sb + d`′ ∈ NE(X′) in the stable range, that is s ≥ 0, d ≥ 0, then

(3.15) P′s,d =
1

s
∏
0
(p + mz)2

0
∏
−d

(ξ ′ − h′ + mz)
0

∏
−d−7s

(ξ ′ − h′ − 7p + mz)

d+3s
∏
0

(h′ + 3p + mz)
d+2s
∏
0

(h′ + 2p + mz)
.

Lemma 3.10. Let s ≥ 1. In the stable range,

Ps,d = (−1)s (d− 3s− 1)!(d− 2s− 1)!
(s!)2d!(d− 7s)!

(ξ − h + 3p)(ξ − h + 2p)
z2 + o(z−2)

P′s,d = (−1)s (d− 1)!(d + 7s− 1)!
(s!)2(d + 3s)!(d + 2s)!

(ξ ′ − h′)(ξ ′ − h′ − 7p)
z2 + o(z−2).

Notice that in the first formula it is understood that Ps,d;2 = 0 when 3s + 1 ≤
d ≤ 7s− 1. Moreover The two rational functions of degree 2(s− 1) in d:

(d− 3s− 1)!(d− 2s− 1)!
(s!)2d!(d− 7s)!

=
(d− (3s + 1))(d− (3s + 2)) · · · (d− (7s− 1))

(s!)2d(d− 1) · · · (d− 2s)
,

(d− 1)!(d + 7s− 1)!
(s!)2(d + 3s)!(d + 2s)!

=
(d + (3s + 1))(d + (3s + 2)) · · · (d + (7s− 1))

(s!)2d(d + 1) · · · (d + 2s)

coincide after a sign change d 7→ −d.

Defnition 3.11. Let W0(x) = 1/d2 and for s ≥ 1,

Ws(x) = (−1)s (x − (3s + 1))(x − (3s + 2)) · · · (x − (7s− 1))
(s!)2x(x − 1) · · · (x − 2s)

≡ (−1)s

(s!)2

7s−1

∏
j=3s+1

(x − j)
/ 2s

∏
j=0

(x − j)

be the fundamental rational function associated to P and W ′
s(x) be the correspond-

ing one for P′. Thus W ′
s(x) = Ws(−x).

The most important observation is the following proposition. It is used to show
that the mirror map regularize (re-normalize) the singularity caused by the hyper-
geometric data into the the regular J function:

Proposition 3.12. Let s ≥ 1.

(1) In the initial unstable range 0 ≤ d ≤ 2s, the coefficient of z−1 is given by the
residue at d,

Ps,d = Resx=d Ws(x)
h− 7p

z
+ (h− 7p)o(z−1).

(2) In the remaining unstable range 2s + 1 ≤ d ≤ 3s,

Ps,d = −Ws(d)
(h− 7p)(ξ − h + 2p)

z2 + o(z−2).

(3) And by its very definition, in the stable range d ≥ 3s + 1,

Ps,d = Ws(d)
(ξ − h + 3p)(ξ − h + 2p)

z2 + o(z−2).
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Proof. For (1), we calculate the residue at x = d by rewriting the products split by
d as

Resx=d Ws(x) = lim
x→d

(x − d)Ws(x)

=
(−1)s

(s!)2
(d− (3s + 1)) · · · (d− (7s− 1))

d · · · 1× (−1) · · · (d− 2s)

=
(−1)s+d+1

(s!)2
(7s− 1− d) · · · (3s + 1− d)

(d)!(2s− d)!

=
(−1)s+d+1

(s!)2
(7s− d− 1)!

(d)!(2s− d)(3s− d)!
.

The proof of (2) is in exactly the same way except that there is no pole of Ws(x)
in this range. �

Similar statements hold for P′s,d by using W ′
s(x). Notice that W ′

s(x) = Ws(−x)
implies −Res W ′

s(x) = Res Ws(−x).

Proposition 3.13. Let s ≥ 1.
(1) In the initial unstable range 0 ≥ d ≥ −2s, the coefficient of z−1 is given by the

residue at d,

P′s,d = −Resx=d W ′
s(x)

ξ ′ − h′ − 7p
z

+ (ξ ′ − h′ − 7p)o(z−1).

(2) In the remaining unstable range −(2s + 1) ≥ d ≥ −3s,

P′s,d = −W ′
s(d)

(ξ ′ − h′ − 7p)(h′ + 2p)
z2 + o(z−2).

(3) And by its very definition, in the stable range d ≥ 1,

P′s,d = W ′
s(d)

(ξ ′ − h′)(ξ ′ − h′ − 7p)
z2 + o(z−2).

In particular we have

P1 = (h− 7p)Res W

= (h− 7p) ∑
s≥0

2s

∑
d=0

Res Ws(d) qsb+d`,

P′1 = −(ξ ′ − h′ − 7p)Res W ′

= −(ξ ′ − h′ − 7p) ∑
s≥0

0

∑
d=−2s

Res W ′
s(d) qsb+d`′ .

3.5. Proof of the main result in the example.

Theorem 3.14. For s 6= 0, we have analytic continuations under F :

〈hp〉X
sb
∼= 〈(ξ ′ − h′)p〉X′

sb .

Proof. We define the numerical versions of P and J by adding a ˆ on it:

P̂ = (P.hp)X , Ĵ = (J.hp)X ,

P̂′ = (P′.(ξ ′ − h′)p)X′
, Ĵ′ = (J′.(ξ ′ − h′)p)X′

.
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Since (h − 7p)2 p = 0 and (ξ ′ − h′ − 7p)2(ξ ′ − h′)p = ξ ′3 p − 3ξ ′2h′p = −1, by
Lemma 3.5, Ĵ and P̂ are related by

∑
s≥0

∑
d≥0

Ĵs,d;2 qsb+d`e(d−7s)Res W = ∑
s≥0

∑
d≥0

P̂s,d;2 qsb+d`,

∑
s≥0

∑
d≥−3s

Ĵ′s,d;2 qsb+d`′ e(d+7s)Res W ′
= ∑

s≥0
∑

d≥−3s
P̂′s,d;2 qsb+d`′ +

1
2
(Res W ′)2.

(3.16)

For β = sb + d` in the unstable range (0 ≤ d ≤ 3s), by Lemma 3.8 and Lemma
3.9 we have P̂s,d;2 = 0. Since Res W provides only non-negative powers in q`, the
summation in d in the first equation may be written as in d ≥ 3s + 1. In this range
we formally set

Ĵ′s,−d;2 := − Ĵs,d;2.
On the other hand if β = sb + d` is in the stable range d ≥ 3s + 1 then by Lemma

3.10 and noticing that W ′
s(−d) = Ws(d) and

(ξ − h + 2p)(ξ − h + 3p)hp = ξ2hp = 1,

(ξ ′ − h′)(ξ ′ − h′ − 7p)(ξ ′ − h′)p = ξ ′3 p− 3ξ ′2h′p = −1,

we may formally define

P̂′s,−d;2 := −P̂s,d;2 = −Ws(d) = −W ′
s(−d),

Together with the identification q` 7→ F q` = q−`′ , the two recursive relations
in (3.16) can be merged into a single relation on the X′ side. Namely let

P̂′s;2 −F P̂s,2 = ∑
d∈Z

P̂′s,d;2 qd`′

be the combined series. The actual value of P̂′s,d;2 is given by

Lemma 3.15.
P̂′s,d;2 = −W ′

s(d), d ≤ −(2s + 1) or d ≥ 1,

P̂′s,d;2 = −Reg W ′
s(d), −2s ≤ d ≤ 0.

Here Reg W ′
s(d) denotes the constant term in the Laurent expansion of W ′

s(x) at x = d.

Proof. For the first statement, the only range not covered in the above discussion
is when −3s ≤ d ≤ −(2s + 1), which again follows from Proposition 3.13, (2).

For the second statement, by Lemma 3.8 and straightforward intersection cal-
culations we get for 0 ≤ d ≤ 2s,

(3.17) P̂′s,−d;2 =
(−1)s+d+1(7s− d− 1)!
(s!)2d!(3s− d)!(2s− d)!

(Hd + H7s−d−1 − H3s−d − H2s−d).

On the other hand, the Laurent expansion of Ws(x) at x = d is obtained from

(3.18)
(−1)s

(s!)2
1

x − d

7s−1

∏
j=3s+1

((x − d)− (j− d))
2s

∏
j 6=d; j=0

−1
j− d

(
1 +

x − d
j− d

+ · · ·
)

.

The residue term clearly gives rise to

(−1)s+1+d

(s!)2

7s−1

∏
j=3s+1

(j− d)
/

d!(2s− d)! =
(−1)s+d+1(7s− d− 1)!
(s!)2d!(3s− d)!(2s− d)!
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as we had seen in Proposition 3.12. And then it is also clear from (3.18) that the
constant term is given by −P̂′s,−d;2. �

Since Reg W ′
s(d) = W ′

s(d) if d is not a pole of W ′
s(x), the above Lemma may be

rephrased as
P̂′s,d;2 = −Reg W ′

s(d)

for any s, d. Then (3.16) can be combined into

(3.19) ∑
s≥0

∑
d∈Z

Ĵ′s,d;2 qsb+d`′ e(d+7s)Res W ′
= − ∑

s≥0
Reg W ′

s qsb +
1
2
(Res W ′)2.

(Recall that −Res Ws(−d) = −Res W ′
s(d).) Here we formally set ”W ′

0(0) = 0” to
include the case (s, d) = (0, 0) since Ĵ0,0;2 = 0 = P̂′0,0;2.

The remaining proof is based on the following idea: Consider the formal ex-
pression due to Euler:

E(q) :=
∞

∑
d=−∞

qd = · · ·+ q−2 + q−1 + 1 + q + q2 + · · · .

If we denote f(q) = q/(1− q), then the analytic continuation

f(q) + f(q−1) = −1

simply means the formal assignment E(q) = 0. For any polynomial w(d), we have

(3.20)
∞

∑
d=−∞

w(d) qd = w(δ)E(q)

where δ = qd/dq. Thus we may establish the analytic continuation result on Ĵs;2 if
we show that Ĵ′s,d;2 is polynomial in d for all d ∈ Z.

It would be instructive to look at the case s = 1 first. We compare the terms
with qsb in (3.19). For s = 0, this simply reduces to the case of extremal rays:

(3.21) Ĵ′0,d;2 = −W ′
0(d) = − 1

d2 for d 6= 0.

For s = 1, since

edRes W ′
= 1 + d

0

∑
d1=−2

Res W ′
1(d1) qb+d1`

′
+ o(qb),

by comparing qb+d`′ terms from both sides of (3.19) we have

Ĵ′1,d;2 qb+d`′ +
0

∑
d1=−2

Ĵ′0,d−d1;2(d− d1)Res W ′
1(d1) qb+d`′ = −Reg W ′

1(d)qb+d`′ .

In the sum it is assumed that d1 6= d. By (3.21), this leads to

Ĵ′1,d;2 = −Reg W ′
1(d) +

0

∑
d1=−2

Res W ′
1(d1)

d− d1
.

Again d1 = d is excluded if d ∈ [−2, 0].
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Lemma 3.16. Let F(x) be a rational function with simple poles at aj’s and with polyno-
mial part P(x). Then

P(a) = Reg F(a)− ∑
aj 6=a

Res F(aj)
a− aj

.

Proof. By division and taking partial fractions, we have

F(x) = P(x) +
R(x)

∏aj
(x − aj)

= P(x) + ∑
aj

Res F(aj)
x − aj

.

If a 6∈ {aj}, then Reg F(a) = F(a) and the lemma holds. If a = ai for some i, then

F(x) =
Res F(a)

x − a
+

(
P(x) + ∑

j 6=i

Res F(aj)
x − aj

)
and the lemma again holds. �

Thus Ĵ′1;2 is precisely the polynomial part of −P̂′1;2, hence is polynomial in d.

For s = 2, the relation becomes a bit more lengthy, though it inherits essentially
the same structure. Thus we shall treat the recursive relation in a slightly clever
way to make it works for all s ≥ 1.

We rewrite (3.19) by separating the terms with s = 0:

∑
d 6=0

Ĵ′s,0;2qd`′ edRes W ′
+ ∑

s≥1
∑

d∈Z

Ĵ′s,d;2 qsb+d`′ e(d+7s)Res W ′

= − ∑
d 6=0

1
d2 qd`′ − ∑

s≥1
Reg W ′

s qsb +
1
2
(Res W ′)2.

(3.22)

The first sum gives

− ∑
d 6=0

1
d2 qd`′

(
1 + dRes W ′ +

d2

2
(Res W ′)2 + ∑

k≥3

dk

k!
(Res W ′)k

)
.

The first summand cancels with the first sum in the right hand side. The third
summand combines with the third term of the right hand side give rise to

1
2
(Res W ′)2E(q).

Also the fourth summand leads to

∑
k≥3

1
k!

(Res W ′)kδk−2E(q).

These terms are well-behaved since they contain the Euler series.
Now the second summand combines with the second term in the right hand

side give rise to

∑
d 6=0

∑
s≥1

0

∑
d1=−2s

Res W ′
s(d1)

d
qsb+(d1+d)`′ − ∑

s≥1
Reg W ′

s(d) qsb+d`′

= −
(

∑
s≥1

Reg W ′
s(d) qsb+d`′ − ∑

s≥1

0

∑
d1=−2s

∑
d 6=d1

Res W ′
s(d1)

d− d1
qsb+d`′

)
.
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By Lemma 3.16, this is simply

− ∑
s≥1

Poly W ′
s qsb.

To summarize, the recursive relation (3.22) is reduced to

∑
s≥1

∑
d∈Z

Ĵ′s,d;2 qsb+d`′ e(d+7s)Res W ′

= − ∑
s≥1

Poly W ′
s qsb + ∑

k≥2

(Res W ′)kδk−2E(q)
k!

.

This allows to apply induction on s ≥ 1 to show that Ĵ′s,d;2 is polynomial in d.
Indeed by looking at terms with qsb, we get

Ĵ′s,d;2 qsb+d`′ = terms with lower s + polynomials in d.

By induction the proof of the theorem is thus complete. �
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