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ON THE INCOMPLETENESS OF THE

WEIL-PETERSSON METRIC ALONG

DEGENERATIONS OF CALABI-YAU MANIFOLDS

Chin-Lung Wang

Introduction

The classical Weil-Petersson metric on the Teichmüller space of compact Rie-
mann surfaces is a Kähler metric which is complete only in the case of elliptic
curves. It has a natural generalization to higher dimansional polarized Kähler-
Einstein manifolds (still Kähler). In the case of abelian varieties and K3 sur-
faces the Weil-Petersson metric is complete and in fact equals the Bergman
metric of the (Hermitian symmetric) period domain. The completeness of the
metric is important if one tries to study the moduli space via differential ge-
ometry. Naively one would guess that the completeness property will hold true
for general compact Kähler manifolds with trivial canonical bundle (Calabi-Yau
manifolds). However Candelas et. al. [Ca] found examples of nodal degenerations
of Calabi-Yau 3-folds with finite Weil-Petersson distance!

The aim of this note is to characterize such finite distance degenerations,
both Hodge theoretically and complex analytically, and to describe the possible
picture of the completion. However, the results obtained here are too weak to
answer the full question (although we do get a strong feeling that it is related
to the minimal model program). This note thus should be regarded as merely a
preliminary study of this completion program.

There are two parts. The first part, §1-§2, starts with Tian’s description of
the Weil-Petersson metric as the Chern form of the Hodge bundle Fn. This
fits naturally into the framework of variation of Hodge structures (VHS) and
we can extend the definition of the Weil-Petersson metric to this setting. By
applying Schmid’s theory of limiting mixed Hodge structure (MHS), we find in
(1.1) that the center of a degeneration of polarized Hodge structures of weight n
with Fn ∼= C has finite Weil-Petersson distance if and only if NFn

∞ = 0, where
N is the nilpotent monodromy and Fn the limiting filtration. From this we
see in (1.2) that the degeneration has finite distance if and only if the n-th flag
period map extends continuously over the puncture.

In §2 we return to the geometric situation, namely the semi-stable degenera-
tion of polarized Calabi-Yau manifolds. As a simple application of the “geometric
genus formula”, which is deduced from the Clemens-Schmid exact sequence, we
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show in (2.1) that the central fiber is at finite Weil-Petersson distance if and only
if exactly one component of it has Hn,0 �= 0, (we should remark here that Theo-
rem (2.1) is also claimed in a recent preprint of Hayakawa [H], however the proof
given there seems to be incomplete and too complicated). As a corollary we de-
duce in (2.3) that smoothable Calabi-Yau varieties with canonical singularities
are at finite distance.

In the second part, §3-§4, we deal with a more refined question: Is the finite
distance degeneration birationally trivial (up to a base change)? This is always
the case for K3 surfaces by (1.1) and Kulikov’s classification theorem [Ku]! The
completion program will be much easier if this is the only case we have. Un-
fortunately there are nontrivial examples. The simplest examples are given by
degenerations with nontrivial nilpotent monodromy. This is indeed the case for
nodal degenerations of Calabi-Yau 3-folds (see §3).

However, it is possible for a birationally nontrivial degeneration to have triv-
ial monodromy. In §4, using several results in 3-fold birational geometry, we
show in (4.1), (4.5) that smoothable Calabi-Yau 3-folds with nontrivial terminal
singularities all provide nontrivial finite distance examples. This result also gives
a negative answer to the so-called filling-in problem in dimension 3.

§0. Preliminaries

Here we collect briefly some basic definitions and well-known properties about
Hodge theory (0.1)-(0.5), see [C, G, GS, S] for more details.

0.1 Polarized VHS. The m-th complex primitive cohomology V = Pm
R ⊗C ⊂

Hm
C of a compact Kähler manifold (Xn, ω) admits a Hodge structure of weight m:

V =
⊕

p+q=m P p,q with P p,q = P q,p, (equivalently in terms of Hodge filtrations
F : V = F 0 ⊃ F 1 ⊃ · · · ⊃ Fm with F p =

⊕
i≥p P i,m−i). For m ≤ n, the

Hodge-Riemann bilinear form

Q(u, v) := (−1)
m(m−1)

2

∫
X

u ∧ v ∧ ωn−m,

polarizes V in the sense that (1) Q(F p, Fm+1−p) = 0 and (2) Q(Cv, v̄) > 0,
where C, the Weil operator, acts on P p,q by multiplying

√
−1

p−q
. Varying the

above data, a family of polarized ([ω] fixed) Kähler manifolds X/S then gives
rise to a polarized VHS over S. It satisfies the Griffiths transversality relation
∂F p

s /∂s ∈ F p−1
s in any holomorphic direction. It follows that ∂F p

s /∂s̄ ∈ F p
s and

F p
s (s ∈ S) form a holomorphic subbundle of the flat bundle V which is polarized

by the flat bilinear form Q.

0.2 The period map. The period domain D is the classifying space of all
Hodge filtrations F of V polarized by Q. D = G/K where G = Aut(PR, Q)
and K the stabilizer of a point. It comes naturally with the tautological ho-
mogeneous vector bundle Fp ⊂ V := V × D. The compact dual Ď is the
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set of all the F ’s which satisfy only (1). It contains D as an open subvari-
ety. The family X/S gives the period map φ : S → Γ\D with Γ the repre-
sentation of π1(S) in G and φ∗Fp gives the holomorphic vector bundle men-
tioned before. The Griffiths transversality translates into the horizontality of
φ: dφ(TS) ⊂

⊕
p+q=m Hom(P p,q, P p−1,q+1) := Th(D), the horizontal tangent

(sub)bundle of TD. Finally, we can formalize the above situation and define the
polarized VHS as a locally liftable horizontal holomorphic map φ : S → Γ\D
with Γ a representation of π1(S) in G ∩ Aut(HZ), HZ an integral lattice and
PR ⊂ HR. In the case Fn ∼= C, we will also consider the “n-th flag period map”
φn : S → Γ\P(V ) which in fact contains almost all the information we need.

0.3 Semi-stable degenerations, smoothings. We are interested in the case
of a degeneration X/∆ of polarized Kähler n-folds. By this we mean X is a
Kähler (n + 1)-fold and X → ∆ is a proper flat holomorphic map with the
general fiber Xt (t �= 0), a smooth Kähler n-fold. Notice that the resulting
family over the punctured disk has a polarization induced from the Kähler form
of X . X/∆ is called semi-stable if X0 is a reduced divisor with normal crossings
in X . By a theorem of Mumford (in [K]), every degeneration has a semi-stable
reduction by a sequence of blow-ups and base-changes (t → td on ∆).

A word about the terminology used in this note: X/∆ is called a ? degener-
ation if it is a degeneration in the above sense and X0 has only singularities of
type ?. Also by “X/∆ is a smoothing of X0” we will mean X → ∆ is a proper
flat family with smooth Xt but without assuming the complex space X to be
smooth.

0.4 Monodromy. Now π1(∆×) = Z induces the Picard-Lefschetz transforma-
tion (monodromy) T on Hm

Z , which is known to be quasi-unipotent. Under the
semi-stable asssumption, T will be unipotent and we may consider N := log T ,
the associated nilpotent operator acting on Hm

Q (and therefore on V ⊂ Hm
C since

the polarization class is invariant under T ). The corresponding quasi-unipotent
statement is still true for a polarized VHS. We will always assume that T is
unipotent by doing a base change implicitly.

0.5 Schmid’s limiting MHS. For a polarized VHS φ : ∆× → 〈T 〉\D; the map
φ lifts to the upper half plane Φ : H → D; the coordinates t ∈ ∆× and z ∈ H are
related by t = e2π

√
−1z. Set A(z) = e−zNΦ(z) : H → Ď (instead of D) so that

A(z + 1) = A(z), then A descends to a function α(t) on ∆×. The very first part
of Schmid’s “nilpotent orbit theorem” says that α(t) extends holomorphically
over t = 0. The special value F∞ := α(0) is called the limiting filtration and
is in general outside D. However, the nilpotent operator N uniquely defines a
monodromy weight filtration on V : 0 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ W2m−1 ⊂ W2m = V
such that N(Wk) ⊂ Wk−2 and induces an isomorphism N � : GrW

m+�
∼= GrW

m−�

where GrW
k := Wk/Wk−1. These two filtrations F p

∞ and Wk together define
a polarized mixed Hodge structure on V in the following sense: F p

∞GrW
k :=

F p
∞ ∩ Wk/F p

∞ ∩ Wk−1 for p = 0, . . . , m defines a (pure) Hodge structure of
weight k on GrW

k . The operator N acts on them as a morphism of MHS’s of
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type (−1,−1), that is, N(F p
∞GrW

k ) ⊂ F p−1
∞ GrW

k−2. Moreover for & ≥ 0, the
primitive part PW

m+� := kerN �+1 ⊂ GrW
m+� is polarized by Q(·, N �̄·).

When φ comes from geometric situations, by also putting together the non-
primitive part, the total cohomology Hm(Xt, C) still admits (non-polarized)
MHS.

Now we turn to the definition of the Weil-Petersson metric (0.6)-(0.7):

0.6 The Weil-Petersson metric. For a given family of polarized Kähler man-
ifolds X/S with Kähler metrics g(s) on Xs, one can define a hermitian metric
G on S (possibly degenerate) as follows: at s ∈ S with fiber X = Xs, Kodaira-
Spencer theory gives a map ρ : Ts(S) → H1(X, TX) ∼= H

0,1

∂̄
(TX) (harmonic

representatives). The Kähler metric g(s) induces a metric on Λ0,1(TX); so for v,
w ∈ Ts(S), we define

G(v, w) :=
∫

X

〈ρ(v), ρ(w)〉g(s).

When X/S is a polarized Kähler-Einstein family (g(s) is K-E) and ρ injective,
G is called the Weil-Petersson metric on S and is denoted by GWP .

0.7 The Calabi-Yau case. When X is Calabi-Yau there are two important
structure theorems: (1) Yau’s solution to Calabi’s conjecture [Y]: X has an
unique Ricci flat metric in each Kähler class and (2) the Bogomolov-Tian-
Todorov theorem: the Kuranishi space of X is unobstructed [T1, To].

Let X/S be a maximal subfamily of the Kuranishi family with a fixed po-
larization class [ω], then ρ is clearly injective. Let g(s) be the unique Ricci flat
metric in the given polarization. Using the fact that the global holomorphic
n-form Ω(s) is flat with respect to g(s), it is not hard to see ([T1, To]) that

(0.7.1) GWP (v, w) =
Q(C(i(v)Ω), i(w)Ω)

Q(CΩ, Ω̄)
,

where H1(X, TX) → Hom(Hn,0, Hn−1,1) ∼= Hn−1,1 via the interior product
v �→ i(v)Ω is the well-known isomorphism. The tangent space TS is mapped
to Pn−1,1 isomorphically (this leads to a proof that the n-th flag period map is
an local embedding), so the Weil-Petersson metric is induced from the Hodge
metric on the n-th piece of the horizontal tangent bundle. For convienence, let’s
write Q̃ =

√
−1

n
Q (= Q(C·, ·̄) on Hn,0 = Pn,0). Tian goes further to show that

Q̃ is a Kähler potential of GWP , that is,

(0.7.2) ωWP =
√
−1
2

RicQ̃(Hn,0) = −
√
−1
2

∂∂̄ log Q̃,

where ωWP denotes the fundamental real 2-form of GWP (this formula shows
in particular that ωWP is independent of the polarization). The proof of this
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observation is a straightforward differentiation and purely Hodge theoretic in
nature, so we can extend the definition of GWP to polarized VHS over S with
hn,0 = 1 by (0.7.2). Notice that by Griffiths’ calculation [G] we know it is semi-
positive (possibly degenerate). It still makes sense to talk about geodesics and
distances, so we will still call it the Weil-Petersson “metric”.

§1. Hodge theoretic criterion for finite distance points

We now give the basic criterion for finite Weil-Petersson distance in the case
of one parameter degenerations of polarized Hodge structures φ : ∆× → 〈T 〉\D
with hn,0 = 1:

Theorem 1.1. The center of a degeneration of polarized Hodge structures of
weight n with Fn ∼= C has finite Weil-Petersson distance if and only if NFn

∞ = 0.

Proof. Using the notation from §0 with Φ : H → D being the lifting. The
only crucial point of the computation is a good choice of a holomorphic section
Ω of Hn,0. By taking the projection to the Fn part pn : D → P(V ) we get
Φn(z) = (ezNα(t))n = ezNαn(t). Here ∗n := pn(∗) ∈ P(V ) means the n-th
flag. Near t = 0, we can consider a vector (local homogeneous coordinates)
representation a of αn in V . Then a(t) = a0 + a1t + · · · is holomorphic in t. So
correspondingly, A(z) = a0 + a1e

2π
√
−1z + a2e

4π
√
−1z + · · · . Now the point is,

e2π
√
−1z = e2π

√
−1xe−2πy has the property that all the partial derivatives in x

and y exponentially decay to 0 as y → ∞ with rate of decay independent of x.
For ease of notation, let h be the function class satisfying the above property and
h the corresponding function class with values in V. Now let Ω(z) = ezNA(z).
This is the desired section because vector representations correspond to sections
of the tautological line budle of Pn which pull back to Hn,0 by Φ. So the Kähler
form ωWP of the induced Weil-Petersson metric GWP on H is given by

ωWP = −
√
−1
2

∂∂̄ log Q̃(ezNA(z), ez̄NA(z)).

Since we are in one complex variable, write GWP = G|dz|2, then
G = −(1/4)� log Q̃. We have Q(Tu, Tv) = Q(u, v), it follows easily that
Q(Nu, v) = −Q(u, Nv) and Q(ezNu, v) = Q(u, e−zNv). Since A = a0 + h, we
have Q̃(ezNA, ez̄N Ā) = Q̃(ezNa0, e

z̄N ā0)+h = Q̃(e2
√
−1yNa0, ā0)+h = p(y)+h,

where p(y) is a polynomial in y with d = deg p(y) = max{&|N �α0 �= 0}. This
a consequence of the polarization condition for the mixed Hodge structure and
the fact that a0 ∈ Grn+d. So

4G =
(p′ + h)2 − (p + h)(p′′ + h)

(p + h)2
=

(p′2 − pp′′) + h

p2 + h

∼ p′2 − pp′′

p2
+ h ∼ d2 − d(d− 1)

y2
+ h =

d

y2
+ h.
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Here we have used the fact that p−2h ∈ h. Obviously, if NFn
∞ = 0 then d = 0

and G = h, so
∫ ∞

t

√
G|dz| < ∞ for some curve (e.g. x = c). When NFn

∞ �= 0
we have d ≥ 1 and for y large enough we can make h < 1/y3 uniformly in x,
then clearly

∫ ∞
t

√
G|dz| ∼ 2 log y|∞t = ∞ for any path with y →∞. Q.E.D.

In terms of the period map φn, (1.1) can be rephrased as

Corollary 1.2. The center is at finite distance if and only if the period map φn

extends continuously over it.

Proof. Using the notation from (1.1), we have Ω(z) = ezNA(z) = ezN (a0 +
a1e

2π
√
−1z + · · · ) = ezNa0 +ezNa1e

2π
√
−1z + · · · . All terms except ezNa0 go to 0

exponentially when y →∞, so Ω(z) has a limit if and only if Na0 = 0; this limit
value is a0 ∈ Fn

∞. Since Ω is nonzero when y is large, it determines Fn
z = Φn(z).

So limt→0 Fn
t = limt→0 φn(t) = limz→i∞ Φn(z) (mod T ) = Fn

∞. �

Remark 1.3. From the proof of (1.1) we know that in the case of infinite distance
the Weil-Petersson metric is exponentially asymptotic to a scaling of the Poincaré
metric. This is exactly the situation for the moduli space of elliptic curves.

§2. Geometric criterion for finite distance points

For a semi-stable degeneration, there is a well-known procedure to relate the
limiting MHS and Deligne’s canonical MHS on the singular cohomology of the
central fiber, namely the Clemens-Schmid exact sequence. Let’s briefly recall the
constructions (see [C, GS] for more details). Let X = ∪iXi be a simple normal
crossing variety, for I = {i0, · · · , ip}, XI := Xi0 ∩ · · · ∩ Xip . Also let X [p] be
the disjoint union of all XI with |I| = p + 1. There is a spectral sequence with
Ep,q

0 = Ωq(X [p]) having differentials d0 := d, the exterior differentiation of forms,
and d1 := δ, the restriction operator of forms defined by

(δφ)(Xi0···ip+1) :=
∑p+1

j=0
(−1)jφ(Xi0···îj ···ip+1

)
∣∣
Xi0···ip+1

.

This spectral sequence has Ep,q
1 = Hq(X [p]), the Ep,q

2 terms is computed from

Hq(X [p−1]) δ→Hq(X [p]) δ→Hq(X [p+1]),

where the δ’s are morphisms of Hodge structures. Moreover it degenerates at E2.
The weight filtration for the resulting MHS on Hm(X0) is W� :=

⊕
s≤� Em−s,s

2 ,
and the Hodge filtration is the usual Hodge filtration for each factor induced
from E1.

The Clemens-Schmid exact sequence for a semi-stable degeneration X ⊃ X0

is an exact sequence of MHS’s:

· · · → H2n+2−m(X0)
j→Hm(X0)

i→Hm N→Hm k→H2n−m(X0) → · · ·
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Notice that the inclusion X0 ⊂ X is a homotopy equivalence, j is induced by
inclusion and duality, i is induced by inclusion Xt ⊂ X ∼ X0, Hm denotes
the cohomology for the general fiber Xt, and N is the nilpotent monodromy
oprator. Moreover, this exact sequence is compatible with the MHS’s with types
of morphisms (n+1, n+1), (0, 0), (−1,−1) and (−n,−n) respectively, where type
(p, q) means F ∗Gr∗ → F ∗+pGr∗+2q. In addition, MHS for homology is defined
by duality: Gr−�(Hq) = Gr�(Hq)∗ and F−pGr−�(Hq) = Ann(F p+1Gr�(Hq)).

When the degeneration of Hodge structures in (1.1) comes from a semi-stable
degeneration of Calabi-Yau manifolds, we have:

Theorem 2.1. The central fiber X has finite Weil-Petersson distance if and
only if some irreducible component Xi of X has Hn,0(Xi) �= 0 (equivalently, has
exactly one component with hn,0 = 1.)

Proof. By Schmid, F∞ and N defines a MHS on V , and it follows that NFn
∞ = 0

if and only if Fn
∞ = GrW

n Fn
∞ (use N � : GrW

n+�
∼= GrW

n−�). The geometric genus
formula ([C]) says pg(Xt) ≥

∑
i pg(Xi) where pg(M) = h0(Ωn

M ) = hn,0(M) and
the right hand side corresponds exactly to all the invariant cycles (i.e. kerN)
in Fn

∞, so the theorem follows. Since pg(Xt) = 1, there exists at most one
component with hn,0 �= 0 (and in fact must be 1). �

For the reader’s convienence, we sketch the argument for the geometric genus
formula. Applying the Clemens-Schmid exact sequences to FnGrn(Hn),

· · · → F−1Gr−n−2Hn+2(X0) → FnGrnHn(X0) → Fn
∞GrW

n Hn N→ 0.

Since Grn+2(Hn+2) = E0,n+2
2 = Ker(δ) with δ : Hn+2(X [0]) → Hn+2(X [1])

and F 2Hn+2 = Hn+2, we have F 2 Ker(δ) ≡ Ker(δ). So F−1Gr−n−2(Hn+2) =
Ann(F 2Grn+2(Hn+2)) = 0 hence FnGrn(Hn(X0)) ∼= Fn

∞GrW
n (Hn).

Now FnGrn(Hn(X0)) = Fn E0,n
2 = Fn E0,n

1 = FnHn(X [0]) = Hn,0(X [0])
because E0,n

2 is computed from 0 → E0,n
1 → E1,n

1 = Hn(X [1]), whose Fn part is
zero. Writing out the meaning of both sides gives the result.

Remark 2.2. Both (1.1) and (2.1) are stated in the one parameter case, but
the Weil-Petersson metric distance should be evaluated in the corresponding
smoothing component of the central fiber, which is in general of many dimen-
sions. However, finite distance in a special direction implies finite distance in
the whole component, so (2.1) indeed provides a suifficient condition for the
existence of finite distance points. The converse is not obvious, it needs more
work to get the criterion for all finite distance points. This will be discussed in
a subsequent paper.

Now we apply (2.1) to smoothable singular Calabi-Yau varieties. A Calabi-
Yau variety is by definition a normal projective variety with trivial canonical
(cartier) divisor. A normal variety V is said to have canonical (resp. terminal)
singularities if KV is Q-Cartier and there is a (equivalently for any) resolution
f : W → V such that KW =Q f∗KV +

∑
eiEi with ei ≥ 0 (resp. ei > 0),
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where Ei’s are the exceptional divisors. Canonical singularities in dimension 2
are exactly RDP’s. Terminal singularities must be of codimension 3 and it is
easy to see that they include all Kleinian singularities in any dimension ≥ 3. In
dimension 3 they are completely classified (See Reid [R] for an introduction).
Canonical singularities play an important role in birational geometry. In the case
of Calabi-Yau 3-folds, birational log extremal contractions (also called primitive
contractions by Wilson [W]) will create at most canonical singularities. It is
conjectured that the moduli spaces of Calabi-Yau 3-folds with h1(O) = 0 and of
different topological types can be connected by performing primitive contractions
and smoothings. Our next result implies that this can happen only within finite
Weil-Petersson distance.

Proposition 2.3. Let X be a Calabi-Yau varieties which admits a smoothing
to Calabi-Yau manifolds. If X has only canonical singularities then X has finite
Weil-Petersson distance along any such smoothing.

Proof. For any resolution f : X̃ → X we have as in the above, Hn,0(X̃, C) =
Γ(X̃, KX̃) = Γ(X̃,

∑
eiEi) (notice ei’s are integers). Since Ei’s are exceptional

it follows easily that Hn,0(X̃, C) �= 0 precisely when V has at most canonical
singularities. Now let X/∆ be a smoothing of X. Take a semi-stable reduction
of it, then there is a component in the central fiber of the semi-stable reduction
which corresponds to the proper transform of X. Then it has hn,0 = 1. Now
apply Proposition (1.2) and notice that finite distance in a special smoothing
implies finite distance in the whole smoothing component. �

Question 2.4. Is the converse of (2.3) true in the sense that if a degeneration
of Calabi-Yau’s has finite Weil-Petersson distance, is that true this degeneration
is birational to another degeneration such that the central fiber is an irreducible
Calabi-Yau with only canonical singularities? This would be an important step
toward the completion program.

Remark 2.5. The problem of whether a singular Calabi-Yau X with canonical
singularities has a flat deformation into nonsingular Calabi-Yau’s Xt has been
studied extensively in dimension 3. The first step was taken by Friedman [F1] in
the case of ODP’s (see also Tian [T2] and [F2]). Recent preprints of Namikawa-
Steenbrink and Gross have provided quite satisfactory results in this direction.

Remark 2.6. In fact, all the statements in §1 and §2 are true in the following
much more general setting. Given a smooth polarized family of varieties X → S
parametrized by a smooth base S and with h0(Xs, KXs) ≥ 2, we may consider
the semi-definite “metric” ω on S given by the Chern form of the determinant
line bundle of the Hodge bundle Fn, that is, det f∗KX/S (KX/S is the relative
canonical bundle). Using this metric, the main results (1.1), (2.1) and (2.3)
generalize immediately. However even in the Kähler-Einstein case with KX

ample, this metric is not the Weil-Petersson metric defined in (0.6). There is a
complicated relation between the two in terms of certain “Quillen metric”. This
issue will also be discussed in a subsequent paper.
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§3. Incompleteness I: nontrivial monodromy

In §3 and §4, we work on the projective category and for Calabi-Yau varieties
it is always assumed that h1(O) = 0 (so we have excluded the case of abelian
varieties).

There exists smoothable Calabi-Yau 3-folds with canonical singularities such
that the smoothing comes from a birational contraction of a smooth family over
the disk which induces isomorphisms outside the puncture. The examples are
due to Wilson [W] in his deep study of the jumping phenomenon of Kähler cone
(the type III primitive contraction with the exceptional divisor a quasi-ruled
surface over an elliptic curve provides such an example. See his proposition
(4.1)).

In the surface case, these correspond to smoothings of K3 surfaces with RDP’s
(canonical singularities), which by Kulikov’s classification theorem [Ku] and the
fact that “NF 2

∞ = 0 implies N = 0”, are birational to smooth families (up to a
base change).

For our purpose, the above examples should not be considered as incomplete
points in the following sense: one can include these points by hand–just replace
the degeneration by the smooth family by allowing the polarization line bundle to
be only big and nef. In the case of K3 surfaces, an equivalent way is to add these
points by allowing Ricci-flat orbifold metrics (this leads to the completeness of
K3 moduli!). However we will see there are “nontrivial” examples. By this we
mean a degeneration such that the complement of the central fiber can not be
completed into a smooth family.

If the monodromy T is not of finite order (N �= 0) then the degeneration is
clearly nontrivial in the above sense. In this direction we have the following
classical result due to Lefschetz and Poincaré:

Theorem 3.1. The monodromy T of a nodal degeneration of smooth n-folds
is trivial except possibly in the middle dimensional cohomology. In the middle
dimension, N2 = 0 if n is odd, and T 2 = I (so N = 0) if n is even.

The standard proof of (3.1) is to write down the explicit formula of T in terms
of the “vanishing cycle”. However, in order to see whether N �= 0 in the odd case
one needs to know whether the vanishing cycle is a nontrivial homology class,
and this is usually not an easy problem. (The fact that the vanishing cycle can
be homologically trivial was kindly pointed out to me by J. de Jong.)

Here is a modern proof of (3.1) as a corollary of the Clemens-Schmid exact
sequence:

First of all, a semi-stable reduction can be obtained by first doing a degree 2
base change and then blowing up the ODP’s of the total space. So X [0] is the
union of n-quadrics and the proper transform X ′ of the original central fiber,
X [1] is the union of (n− 1)-quadrics and X [2] = ∅. For m < n, we claim that for
& ≤ m− 1 , Gr�H

m = 0. Suppose it has been proved up to &− 1, then

Gr�−2n−2H2n+2−m(X0) → Gr�H
m(X0) → GrW

� Hm N→ 0.
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Now G�H
m(X0) = Em−�,�

2 = 0 if m − & ≥ 2 since X [2] = ∅. If m − 1 = &,
E1,m−1

2 = Coker(δ) with δ : Hm−1(X [0]) → Hm−1(X [1]) which is surjective
by explicit cohomologies of quadrics (or use hyperplane section theorem) since
m < n. This proves G�H

m(X0) = 0 and so GW
� Hm = 0 up to & = m− 1. This

means the MHS is pure and so N = 0.
For Hn, the same argument shows that GW

� Hn = 0 up to & = n − 2, so
N2 = 0. Since & < n, Gr�−2n−2H2n+2−n(X0) = (Gr2(n+1)−�H

2(n+1)−n(X0))∗ =
0 . We have Grn−1H

n(X0) ∼= GrW
n−1H

n = Coker(δ) with δ : Hn−1(X [0]) →
Hn−1(X [1]). Now the middle cohomology of an (n − 1)-quadric is zero if n is
even, so N = 0 in this case. Q.E.D.

For the case n is odd, N �= 0 if and only if δ is not surjective. The middle
cohomology has rank 2 for an even dimensional quadric and the image of these
n-quadrics under δ consist of suitable powers of the hyperplane class, which is
also in the image of Hn−1(X ′) if n ≥ 5 (because for any of the (n− 1)-quadrics
E, E|E generates H2(E) which is only 1 dimensional). Therefore δ is surjective
if and only if the induced map δ′ : Hn−1(X ′) → Hn−1(X [1]) is surjective. There
are examples where δ′ is surjective and also examples where it is not surjective,
so we can not tell much about the monodromy without specifying the varieties
under consideration.

We do have the following:

Proposition 3.2. For a semi-stable degeneration of Calabi-Yau 3-folds with
finite Weil-Petersson distance, or more generally, 3-folds with h1(O) = h2(O) =
0 such that NF 3

∞ = 0, N �= 0 if b2(X [1]) + b2(Xt)− b2(X [0]) + (k − &− 1) > 0,
where k (resp. &) is the number of components of X [0] (resp. X [2]).

Lemma 3.3. For H2, both Deligne’s canonical MHS and Schmid’s limiting
MHS are pure with H1,1Gr1 the only nonzero term. They are related by b2(X0) =
b2(Xt) + (k − 1) and H2(X0) = Ker(δ0) with δ0 : H2(X [0]) → H2(X [1]).

Proof. For H2, h1(O) = 0 implies h2(O) = 0 in the Calabi-Yau case, so we
know the only nontrivial term for the limiting MHS is H1,1GrW

1 H2. To see
F 2Gr2(H2(X0)) = 0, apply the Clemens-Schmid exact sequence to F 2Gr2, we
get

F−2Gr−6H6(X0) → F 2Gr2H
2(X0) → 0.

The first term is equal to Ann(F 3Gr6H
6(X0)), which is zero because

Gr6H
6(X0) = E0,6

2 = H6(X [0]) and the F 3 piece equals the whole space. The
cases F 2Gr3(H2(X0)) = 0 and F 2Gr4(H2(X0)) = 0 are similiar and in fact
more trivial because the total space of the first term is actually 0. By Hodge
symmetry we only need to look at H1,1(H2(X0)).

Applying the Clemens-Schmid exact sequence to F 1Gr2, we obtain

0 → F 0GrW
0 H0 → F−3Gr−6H6(X0) → F 1Gr2H

2(X0) → F 1
∞GrW

2 H2 N→ 0.
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It is clear that F 0
∞GrW

0 H0∼=C and F 1
∞GrW

2 H2 =H2(Xt). Now F−3Gr−6H6(X0)
equals Ann(F 4Gr6H

6(X0)), which is Ck because Gr6H
6(X0) = H6(X [0]) ∼= Ck

whose F 4 is zero and Ann(0) is the whole space. A dimension counting gives
the desired result. �
Lemma 3.4. For H3, Deligne’s canonical MHS and Schmid’s limiting MHS
are isomorphic for all Gr� with & ≤ 2. In particular the only nonzero term is
F 1
∞GrW

2 = Ker(δ1)/ Im(δ0) in

H2(X [0]) δ0→H2(X [1]) δ1→H2(X [2]).

Proof. Since NF 3
∞ = 0 the limiting MHS has F 3

∞ �= 0 only in GrW
3 . By the

Hodge symmetry of the MHS, we know that the only nontrivial terms for GrW
� ,

& ≤ 3 are GrW
3 and H1,1GrW

2 . The remainder of the the proof is now similiar to
that of lemma (3.3), so we omit it. �
Proof of 3.2. Since N �= 0 if and only if GrW

2 H3 �= 0, (3.2) then follows directly
from lemma (3.3) and (3.4). �
Corollary 3.5. N �= 0 in the case of nodal degenerations.

Proof. If there are r ODP’s, using the semi-stable reduction discussed above,
we find & = 0, k = r + 1, b2(X [1]) = 2r and b2(X [0]) = (b2(Xt) + r) + r, so
b2(X [1]) + b2(Xt)− b2(X [0]) + (k − &− 1) = r > 0. �

In principal one should be able to apply (3.3) to more general singularities.
However the semi-stable reduction is usually much more complicated than that
of ODP’s.

§4. Incompleteness II: birational geometry

Now we go to the most technical part of this paper. Even in dimension 3,
it is possible for a nontrivial degeneration to have N = 0! In [F2], Friedman
remarks that a family of quintic hypersurfaces in P4 aquiring an A2 singularity
has N = 0 (due to Clemens), he also asks whether this family can be filled in
smoothly (up to a base change).

In this section, by using several results of Reid, Kawamata and Kollar in the
theory of 3-fold birational geometry along with Friedman’s result on the simul-
taneous resolution of 3-fold double points, a negative answer to this question is
given for any projective smoothing of a terminal Gorenstein 3-fold with numeri-
cal effective (nef) canonical bundle. As a consequence, any smoothable terminal
Calabi-Yau 3-fold provides nontrivial incomplete points of the Weil-Petersson
metric. Similiar statement is true for the general setting in remark (2.6). Here
is the main theorem:

Theorem 4.1. Let X/∆ be a projective smoothing of a terminal Gorenstein 3-
fold X0 with KX0 nef. Then X/∆ is not birational to a projective smooth family
X ′/∆ with Xt = X ′

t for t �= 0.

We start with the following important fact (true in any dimension):



168 CHIN-LUNG WANG

Proposition 4.2. Let X/∆ and X ′/∆ be two projective families with smooth
general fiber Xt = X ′

t for t �= 0. Assume that
(1) X and X ′ have at most terminal singularities and
(2) KX (resp. KX ′) is nef on the central fiber,

then the bimeromorphic map which identifies all fibers outside t = 0 extends to
a map which is an isomorphism in codimension one. In particular, X0 and X ′

0

are birational to each other.

Proof. This is essentially the same as in [K1, lemma (4.3)] except they deal with
the case where X and X ′ are both compact projective and ∆ is not involved.
The same proof applies to our relative situation basically because our families
are assumed to be projective, so we will just sketch the proof here:

Let φ be the given bimeromorphic map and Z be a desingularization of the
closure of the graph of φ with projection maps p : Z → X and p′ : Z → X ′ over
∆. (Notice that Zt = Xt = X ′

t for t �= 0.)
If p and p′ have the same exceptional divisors then the p-exceptional set and

p′-exceptional set differ only in codimension two or higher, let E be the union
of both set. Then we have the following isomorphisms

X − p(E) ∼= Z − E ∼= X ′ − p′(E),

which is the extension of φ we want.
To see p and p′ have the same exceptional divisors, consider the relation

between canonical divisors:

KZ = p∗KX + E1 + F = p′
∗
KX ′ + E2 + G,

where Ei (resp. F , resp. G) denotes the part which are p and p′ (resp. p but
not p′, resp. p′ but not p) exceptional. We can then write

p∗KX = p′
∗
KX ′ + G + (E2 − E1 − F ).

Because of the existence of relative hyperplane sections over ∆, the key reduction
lemma in [K3, (5.2.5.3)] can be adapted for our purpose. And it implies that
E2−E1−F ≥ 0, hence F = 0 and E2 ≥ E1. (The reduction lemma says that we
only need to prove the above statement for the surface case; the nef condition is
used here) Reversing the role of p and p′ gives G = 0 and E1 ≥ E2, so we have in
fact E1 = E2. Since both X and X ′ have terminal singularities, all exceptional
divisors must appear in Ei. So the proposition is proved. �
Proof of 4.1. Assume such a smooth family X ′/∆ exists. Now we check the
conditions needed in (4.2). (2) is clearly satisfied since KX |X0 = KX0 which
is nef. To see (1), first notice that by a simple fact in commutative algebra, a
small smoothing of Gorenstein singularities has Gorenstein total sapce. We then
need the following nontrivial theorem. (Although the statement is not explicitly
appeared in [K2], the proof is actually contained in [K2, (17.4), (17.6)], and so
will not be given here.) �
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Theorem 4.3. The total space of a small smoothing of terminal singularities
has at most terminal singularities.

Since both conditions in (4.2) are satisfied, we know X0 is birational to X ′
0.

We will show this is impossible.
If X0 is Q-factorial then X0 and X ′

0 are birationally equivalent minimal models
(minimal model is a variety which is Q-factorial, terminal and has nef canonical
class). By Kollar’s theorem on flops [K1], they are related by a sequence of flops.
But a flop does not change the singularities in the terminal case, so we get a
contradiction.

If X0 is not Q-factorial, a theorem of Reid-Kawamata (see e.g. [K2, (6.7.4)])
says that we still have a projective small morphism X → X0 from a (Q-factorial)
minimal model X. X is birational to X0 and so is birational to X ′

0. As before
this implies X is smooth and is related to X ′

0 by a sequence of flops. By [K1], X
and X ′

0 have the same integral homologies and hence have the same homologies
as the general fiber Xt in X . Now we have the following “small contraction-
smoothing” diagram

X

↓
X0 ⊂ X .

If X0 has ODP singularities, there is a well known explicit formula which relates
the homologies of X and Xt and shows they can not be the same. We will state
this formula in a slightly more general form which will be needed later, but the
proof is exactly the same as that given in [F2].

Lemma 4.4. Given a diagram as above in the C∞ category such that near
each singular point of X0 it is a “small contraction-smoothing” diagram of a
germ of ODP. Let Ci be the rational curves contracted to those ODP’s and
e :

⊕
i Z[Ci] → H2(X, Z) be the map which associates to each Ci its class in X,

then H2(Xt) = Coker(e).

So H2(Xt) ∼= H2(X) means the image of e is zero which is impossible because
X is projective. This is the desired contradiction in the case when X0 has only
ODP’s.

In the general case, since the singularities are of index one, by Reid’s classifi-
cation they are exactly isolated cDV singular points (one parameter deformation
of surface RDP’s). By Friedman’s result [F1], if p ∈ V is a germ of an isolated
cDV point and the curve C ⊂ U is the corresponding germ of the exceptional
set contracted to p, then Def(p, V ) and Def(C, U) are both smooth and there
is an inclusion map of complex spaces Def(C, U) → Def(p, V ). Moreover one
can deform the complex structure of a small neighborhood of C so that in this
new complex structure, C decomposes into several P1’s where the contraction
map becomes a (nontrivial) contraction of these P1’s down to ODP’s, while a
neighborhood of these ODP’s remains in the versal deformations of the germ
p. We can do this for all C’s and p’s simultaneously in the corresponding small
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neighborhoods analytically, then patch them together smoothly. As a result we
obtain a deformed diagram with conditions as in lemma (4.4):

X̃

↓
X̃0 ⊂ X̃ .

By construction, X̃ is diffeomorphic to X and X̃t is diffeomorphic to Xt for
t �= 0. The later is true because Def(p, V ) is smooth and the constructiuon is
local. Now we have again,

H2(X̃t) ∼= H2(Xt) ∼= H2(X) ∼= H2(X̃),

hence the image of e is zero. Since the original exceptional curve has nontrivial
homology class, at least one deformed rational curve C has nontrivial homology
class. This leads to the desired contradiction again and we are done. �

In the case of Calabi-Yau 3-folds with canonical singularities, h1(O) = 0
implies h2(O) = 0, hence any smoothing X/∆ (if it exists) is projective by
semi-continuity and Xt must still be Calabi-Yau. So we obtain the following:

Theorem 4.5. Let X/∆ be a smoothing of a terminal Calabi-Yau 3-fold. Then
X/∆ is not birational to a smooth family.
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