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ABSTRACT. We explain how algebraic geometry comes into play in the
study of non-linear mean field (singular Liouville) equations

4u + eu = 4π
N

∑
i=1

`iδpi

on a flat torus E = C/Λ, where N, `1, . . . , `N ∈ N, pi ∈ E are distinct
points, and δpi is the Dirac measure at pi.

The case with one singular source (N = 1) had been studied exten-
sively in recent years. We start with a survey of this case with emphasizes
on the constructions of Lamé curves Xn and pre-modular forms Zn(σ, τ)
which encodes the structure of solutions of the PDE.

We then discuss extensions to the case of general N. The basic tool is
the monodromy theory for generalized Lamé equations. Two aspects are
discussed: (1) For ` := ∑N

i=1 `i being odd, an exact counting formula of al-
gebraic degree is proved. (2) For ` being even, the existence of generalized
Lamé curves parametrizing logarithmic-free solutions is proposed.
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0. INTRODUCTION

0.1. Mean field equations and generalized Lamé equations. We study
mean field (singular Liouville) equations with multiple singular sources
on a flat torus E = C/Λ, Λ = Zω1 + Zω2:

(0.1) 4u + eu = 4π
N

∑
i=1

`iδpi on E,

1
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with local singular strength `i ∈ N at pi ∈ E, 1 ≤ i ≤ N, and pi 6= pj if
i 6= j. Denote by L := ∑N

i=1 `i pi the divisor of singular source, and ` :=
deg L = ∑N

i=1 `i the total singular strength.
We start by recalling some basic results on equation (0.1) (cf. [3, §1.1]). A

(local) developing map f of a solution u to equation (0.1) is a local mero-
morphic function away from L which is related to u by

(0.2) u = 8π + log
| f ′|2

(1 + | f |2)2 .

A classical theorem of Liouville says that any solution u is locally repre-
sented by (0.2) for some f . Moreover, the choice of f is unique up to the
obvious PSU(2) (Mobius) action

f 7→ M f :=
p f − q̄
q f + p̄

, M =

(
p −q̄
q p̄

)
∈ SU(2)/±1.

The integral condition `i ∈ N for all i implies that f extends to a global
meromorphic function on C. In particular

f (z + ω1) = S1 f (z), f (z + ω2) = S2 f (z),

for some Si ∈ PSU(2). Then f is called a type I developing map if

f (z + ω1) = − f (z),

f (z + ω2) =
1

f (z)
,

(0.3)

and a type II developing map if there are θi, θ2 ∈ R such that

f (z + ω1) = eiθ1 f (z),

f (z + ω2) = eiθ1 f (z).
(0.4)

From S1S2 = S2S1 in PSU(2), by choosing f suitably, one sees easily that
every solution u belongs to exactly one of these two types. We then call
such an f a normalized developing map of u.

This integrability structure of solutions is best explained by its associated
ODE of equation (0.1), which is a generalized Lamé equation:

(0.5) w′′ −
( N

∑
i=1

ηi(ηi + 1)℘(z− pi) +
N

∑
i=1

Aiζ(z− pi) + B
)

w = 0,

where the potential term is the Schwarzian derivative S( f ) (c.f. (3.1)) with

ηi =
1
2`i ∈ 1

2 N,
N

∑
i=1

Ai = 0, Ai, B ∈ C.

The PSU(2) action corresponds to the requirement that equation (0.5)
has projective unitary monodromy group. We will show that the type I case
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corresponds to the case with ` being odd and equation (0.5) has finite mon-
odromy M, or equivalently the projective monodromy group is the Klein-
four group PM ∼= K4. The type II case corresponds to the case with ` being
even and equation (0.5) has unitary monodromy. The ratio f = w1/w2 of
its two independent solutions then gives a developing map.

0.2. Known results for N = 1. Equation (0.1) for N = 1 (` = `1) had
received significant progresses in the last decade through a joint effort on
non-linear analysis and its corresponding classical Lamé equation

(0.6) w′′ = (η(η + 1)℘(z) + B)w

with η = `/2 [10, 3, 11]. The Lamé equation (0.6) (for all η ∈ R≥0) had
been studied extensively since the 19th century, though a full account on
its monodromy theory is still awaiting. As a byproduct, advances on it had
also been made through such interactions.

Let ℘′(z)2 = 4℘(z)3 − g2℘(z) − g3 be the Weierstrass equation of the
torus E = C/Λ, with g2 = 60E4(Λ) and g3 = 140E6(Λ) be the standard
modular functions (Eisenstein series).

For ` = 2n + 1 being odd, n ∈ Z≥0, the classical result due to Brioschi,
Halphen and Crawford says that there is a universal (weighted homoge-
neous) polynomial pn(B; g2, g3) of degree n+ 1 whose roots B’s correspond
to those equations in (0.6) which admit only log-free solutions (cf. the proof
in [3, Theorem 3.1] and the references in [17, §23.7]). Hence they have finite
monodromy PM ∼= K4. A new proof to this result, as well as the explicit
construction of the developing maps f were carried out in [3, §3.4]. It was
also announced in [3, Remark 3.2.1] that the idea of this new proof could
be generalized to study the case with multiple singularities (cited as refer-
ence [11] there). Due to the increasing diversities of techniques, the writing
of that paper was postponed. Nevertheless the promised generalization is
now presented in this paper (see §0.3 below).

For ` = 2n being even, on the contrary, there is a polynomial `n(B; g2, g3)
of degree 2n + 1 such that (0.6) admits only log-free solutions if and only
if `n(B; g2, g3) 6= 0. An eigenvalue problem Lw := w′′ − Iw = Bw of an
ODE with potential I satisfying such a property is known as a finite gap
potential. The integral Lamé equations with I = n(n + 1)℘(z) provides the
first non-trivial such examples. Since there is at least one log-free solution,
the set of log-free solutions are thus parametrized by the Lamé curve Yn :
C2 = `n(B; g2, g3) which is an hyperelliptic curve of arithmetic genus g = n
under the projection π : Yn → C, (C, B) 7→ B.

The finer structure of Yn had been analyzed in details in [3] through both
analytic and algebraic methods. It allows us to go on to characterize the
loci where (0.6) has unitary monodromy. It starts with the Hermite–Halphen
ansatz [8, p.495–498]: for a = (a1. . . . , an) ∈ Cn,

(0.7) wa := ez ∑ ζ(ai)
n

∏
i=1

σ(z− ai)

σ(z)
.



4 CHIN-LUNG WANG

Then wa, w−a provide independent solutions to (0.6) if and only if [a] := a
(mod Λ) ∈ SymnE satisfies the following system of algebraic equations

(0.8)
n

∑
i=1

yixk
i = 0, 0 ≤ k ≤ n− 2,

where (xi, yi) := (℘(ai),℘′(ai)). This defines the Liouville curve Xn ⊂ SymnE
which can be identified with the unramified loci of π : Yn → C. One crucial
result proved in [3, §7.6] says that Xn ⊂ SymnE coincides with the projec-
tive hyperelliptic model of Yn. In particular, 0n ∈ Xn is a non-singular
point. The unitary constraint, which is the type II constraint (0.4) in this
case, can be written as a Green function equation on Xn:

(0.9)
n

∑
i=1
∇G(ai) = 0, a ∈ Xn,

where G is the Green function on E centered at 0 ∈ E.
Then in [11, Theorem 3.2], it was shown that the addition map σn : Xn →

E defined by σn(a) = ∑n
i=1 ai is a branched cover of degree 1

2 n(n + 1).
Based on σn and the Hecke function (see §1), a pre-modular form Zn(σ, τ)
was constructed which has the property that every non-trivial zero (σ, τ)
(i.e σ 6∈ Eτ[2]) corresponds to a unique solution a to equations (0.8) and
(0.9) via σn(a) = σ. In particular, f := wa/w−a is a normalized developing
map of a type II solution u to the mean field equation (0.1) with N = 1.

I will review this procedure in more details in §2, with emphasizes on
the problem on explicit constructions of Zn(σ, τ).

0.3. Results and proposals for general N. The second aim of this paper is
to propose extensions of some results in N = 1 to the case N ≥ 2.

Theorem 0.1. When ` = deg L is odd, there is only a finite number of solu-
tions to equation (0.1). All the solutions are of type I and algebraically integrable.
Moreover, its algebraic degree dL is given by the formula:

(0.10) dL = 1
2

N

∏
i=1

(`i + 1) ∈N.

(The expression is an integer since some `i is odd).

That is, all the solutions can be effectively constructed by way of solving
certain explicit polynomial equations. This refines a previous result in [5]
which says that the topological Leray–Schauder degree of eqution (0.1) is
defined and given by (0.10). The proof of Theorem 0.1 is given in Theorem
3.5 and Corollary 4.2, whose basic idea is explained below.

For all ` ∈N, we first construct an explicit polynomial system on Ai and
B whose zeros correspond to equations (0.5) with only log-free solutions.

When ` is odd, the polynomial system has isolated zeros ({Ai}, B)’s and
each of them satisfies PM ∼= K4 automatically. Thus the correspondence
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between equations (0.1) and (0.5) is exact and the problem is completely
reduced to the study of the (affine) polynomial system.

Counting roots of affine polynomial equations is in general not easy due
to lacking of an affine Bezout theorem. We projectivize the system and sub-
tract the infinity contribution from the Bezout degree. It turns out that the
infinity point Q is isolated and we need only compute its multiplicity. Here
a trick using confluent hypergeometric equation and its Kummer solution
is employed to determine the top degree terms q`i of the polynomial equa-
tions in ({Ai}, B) (see Lemma 3.3):

(0.11) q`i =
(−1)`i
(`i!)2

`i

∏
j=0

(Ai − (`i − 2j)B1/2), i = 1, . . . , N.

This leads easily to a proof of Theorem 0.1.

When ` is even, the situation is more involved, and we restrict ourselves
to the primitive case `i = 1 for all 1 ≤ i ≤ N = 2n = `. Based on (0.11),
the zero set V of the polynomial system on ({Ai}, B) is shown to consist of
a finite number of points and complex algebraic curves.

At this point, I conjecture that, even for the non-primitive case, V does
contain non-trivial curve component V0 (cf. Conjecture 5.7). The conjecture
is clear if the set of singular sources {pi} is symmetric with respect to a
center point o ∈ E:

{pi − o} = {−(pi − o)}.
In such a case each irreducible curve component of V consists of symmetric
log-free parameter ({Ai}, B) in the sense that

An+i = −Ai, i = 1, . . . , n

such that the corresponding generalized Lamé equation descents to an ODE
on P1 under the elliptic projection map E→ P1 (cf. Example 5.3).

Proposition 0.2. In the primitive case, the conjecture on the existence of non-
trivial curve component holds for the cases ` = 2, 4, i.e. n = 1, 2.

The case n = 1 is trivially true. The case n = 2 is proved in Example 5.4
by observing a factorization formula of elliptic functions

℘24 − ℘13 = (ζ24 − ζ13 + ζ12 − ζ34)(ζ24 + ζ13 − ζ14 − ζ23),

where ℘ij := ℘(pi − pj) and ζij := ζ(pi − pj).
Based on the conjecture we further propose the existence of a two to one

ramified cover YL → V0 which parametrizes log-free solutions. We call YL
the generalized Lamé curve associated to the even degree divisor L. Also we
conjecture the existence of a correspondence between solutions of equation
(0.1) (i.e. ({Ai}, B) with unitary monodromy) and the non-trivial zeros of
certain pre-modular forms analogous to the case N = 1.
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0.4. Structure of the paper. This paper is an expanded version of the talk
I gave at the first ICCM Annual Meeting on December 28, 2017, where I
explained joint works with C.-L. Chai and C.-S. Lin on mean field equations,
hyperelliptic curves and modular forms [3, 11], as well as part of results in [4]
concerning with a complete understanding of the geometry of critical points of
Green’s function on tori which confirmed the conjecture posed in [10].

The first two sections (§1, §2) contains exactly the material presented in
my talk, where all the results are connected to the case of mean field equa-
tions or Lamé equations with one singular source (N = 1).
§1 is mainly for the case N = 1 and n = 1 where Green functions and

Hecke functions play the main role. §2 is on the hyperelliptic geometry of
Lamé curves and constructions of the pre-modular forms. These lay the
foundation of the general cases n ∈N (and N = 1).

The remaining three sections (§3 – §5) are attempts to extend the theory
to equations with multiple singular sources (N ∈N).

Specific results are (1) Theorem 3.5 on the algebraic degree counting for-
mula (for ` odd), (2) Proposition 4.1 and Theorem 4.8 on finite monodromy
groups (for ` odd), and (3) Example 5.3 and Example 5.4 on the existence of
generalized Lamé curves in the primitive case (when {pi} admits a center
or when ` = 4 and there is no restriction on {p1, p2, p3, p4}).

In the appendix I explain the subtlety of explicit constructions of the pre-
modular forms Zn and how classical approach fails when n ≥ 4.

1. GREEN FUNCTIONS AND HECKE FUNCTIONS

1.1. Green functions on tori [10]. The Green function G(z, w) on E = C/Λ,
Λ = Zω1 + Zω2 is the unique function on E× E which satisfies

−4zG(z, w) = δw(z)−
1
|E|

and
∫

E G(z, w) dA = 0. Translation invariance of 4z implies G(z, w) =
G(z− w, 0) and it is enough to consider G(z) := G(z, 0). Asymptotically

G(z) = − 1
2π

log |z|+ O(|z|2).

As expected, G can be explicitly solved in terms of elliptic functions. Let
z = x + iy, τ := ω2/ω1 = a + ib ∈H and q = eπiτ with |q| = e−πb < 1. We
have the odd theta function

ϑ1(z; τ) := −i
∞

∑
n=−∞

(−1)nq(n+
1
2 )

2
e(2n+1)πiz.

Then on Eτ (notice the τ dependence),

G(z; τ) = − 1
2π

log
∣∣∣∣ϑ1(z; τ)

ϑ′1(0; τ)

∣∣∣∣+ 1
2b

y2 + C(τ)
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for some constant C(τ) depending only on τ. Then

(1.1) ∇G(z) = 0⇐⇒ ∂G
∂z
≡ −1

4π

(
(log ϑ1)z + 2πi

y
b

)
= 0.

Now we translate equation (1.1) into Weierstrass theory. Recall the Weier-
strass elliptic and quasi-elliptic functions with periods Λ [17]:

℘(z) :=
1
z2 + ∑

ω∈Λ×

( 1
(z−ω)2 −

1
ω2

)
,

ζ(z) := −
∫ z

℘ =
1
z
+ ∑

ω∈Λ×

( 1
z−ω

+
1
ω

+
z

ω2

)
,

σ(z) := exp
∫ z

ζ(w) dw = z + · · · .

The function σ is entire, odd with a simple zero on lattice points and

σ(z + ωi) = −eηi(z+ 1
2 ωi)σ(z),

where ηi = ζ(z + ωi)− ζ(z) = 2ζ( 1
2 ωi) are the quasi-periods. Indeed, σ(z)

is related to the theta function by

σ(z) = eη1z2/2 ϑ1(z)
ϑ′1(0)

.

Hence the main term in the right-hand-side of (1.1) is

(log ϑ1(z))z = ζ(z)− η1z.

For simplicity we set ω1 = 1, ω2 = τ = a + bi, ω3 = ω1 + ω2, and

z = x + yi = rω1 + sω2 = (r + sa) + sbi.

By Legendre’s relation η1ω2 − η2ω1 = 2πi we compute

(log ϑ1)z + 2πi
y
b
= (ζ(z)− η1z) + 2πis

= ζ(z)− η1r− η1sω2 + (η1ω2 − η2)s

= ζ(z)− rη1 − sη2.

Hence ∇G(z) = 0 if and only if

(1.2) Z := −4πGz = ζ(rω1 + sω2)− (rη1 + sη2) = 0.

Question 1.1 (Structure of critical points). How many critical points can G
have in E? What is its dependence in τ ∈H?

The 3 half-periods are trivial critical points. Indeed,

G(z) = G(−z) =⇒ ∇G(z) = −∇G(−z).

Let p = 1
2 ωi then p = −p in E and so∇G(p) = −∇G(p) = 0. Other critical

points must appear in pair ±z ∈ E.

Example 1.2 (Maximal principle). For rectangular tori E: (ω1, ω2) = (1, τ =
bi), the half-periods 1

2 ωi, i = 1, 2, 3 are precisely all the critical points.
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Example 1.3 (Z3-symmetry). For the 60 degree torus E with τ = ρ := eπi/3,
it is easy to check that there are (at least) 2 more critical points

p = 1
3 ω3, −p = − 1

3 ω3 ≡ 2
3 ω3.

Question 1.1 is indeed the starting point of the whole project around
2003. In [10] we showed that there are at most 5 critical points and conjec-
tured the τ dependence in a precise manner. The conjecture was recently
solved in [4] and I will give a sketch on it in this section.

1.2. Periodic singular Liouville equations. Geometry of the Green func-
tion G plays a fundamental role in the non-linear mean field equations. On
a flat torus E it takes the form

(1.3) 4u + eu = ρδ0, ρ ∈ R+.

(The name comes from the fact that It is the mean field limit of Euler flow
in statistic physics.)

When ρ 6∈ 8πN, it was proved in [5] that the Leray-Schauder degree is

dρ = n + 1 if 8nπ < ρ < 8(n + 1)π.

The degree is independent of the shape (moduli) of E. The interesting cases
(critical values) are ρ = 8πn where the degree theory fails completely.

Theorem 1.4 (Existence criterion via ∇G for n = 1). [10, Theorem 1.1]
For ρ = 8π, the mean field equation on E = C/Λ in (1.3) has solutions if

and only if G has more than 3 critical points. Moreover, each extra pair of critical
points ±p corresponds to an one parameter family of solutions uλ, where

lim
λ→∞

uλ(z) and lim
λ→−∞

uλ(z)

blow up precisely at z ≡ ±p.

The purpose of this section is to explain the above correspondence in a
more general setting for all n ∈N obtained in [3].

1.2.1. Structure of solutions. Liouville’s theorem says that any solution u of
4u + eu = 0 in a simply connected domain D ⊂ C is of the form

u = log
8| f ′|2

(1 + | f |2)2 ,

where f , called a developing map of u, is meromorphic in D.
It is straightforward to show that for ρ = 8πη ∈ R,

(1.4) S( f ) ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

= uzz −
1
2

u2
z = −2η(η + 1)

1
z2 + O(1).

That is, any developing map f of u has the same Schwartz derivative S( f ),
which is elliptic on E. Hence there is a B ∈ C such that

S( f ) = −2(η(η + 1)℘(z) + B).
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By the theory of ODE, locally f = w1/w2 for two solutions wi of the
Lamé equation Lη,B y = 0:

(1.5) y′′ +
1
2

S( f )y = y′′ − (η(η + 1)℘(z) + B)y = 0.

Furthermore, for any two developing maps f and f̃ of u, there exists S =(
p −q̄
q p̄

)
∈ PSU(2) such that

f̃ = S f :=
p f − q̄
q f + p̄

.

So we conclude that solutions to the mean field equation correspond to
Lamé equations with unitary projective monodromy groups.

Geometrically the Liouville equation is simply the prescribing Gauss
curvature equation in the new metric g = ewg0 over D, where w = u/2−
log
√

2 and g0 is the Euclidean flat metric on C:

(1.6) Kg = −e−u4u = 1.

It is then clear the inverse stereographic projection C→ S2

(X, Y, Z) =
( 2x

1 + x2 + y2 ,
2y

1 + x2 + y2 ,
−1 + x2 + y2

1 + x2 + y2

)
provides solutions to (1.6) with conformal factor

ew = e
1
2 u− 1

2 log 2 =
2

1 + |z|2 .

Starting from this special solution for D = ∆, the unit disk, general solu-
tions on simply connected domain D can be obtained by using the Riemann
mapping theorem via a holomorphic map f : D → ∆. The conformal factor
is then the one as expected:

eu =
8| f ′|2

(1 + | f |2)2 .

The problem is to glue the local developing maps to a “global one”. This
is a monodromy problem on the once punctured torus E× = E\{0}. Since
it is homotopic to “8”, we have for x0 ∈ E×,

π1(E×, x0) = Z ∗Z

is a free group of rank two.

Lemma 1.5 (Developing map for η = 1
2` ∈ 1

2 Z). Given Λ, for ρ = 4π`,
` ∈N, by analytic continuation across Λ, f is glued into a meromorphic function
on C. (Instead of on E = C/Λ.)

Proof. The indicial equation of the Lamé equation (1.5) is λ(λ− 1) = η(η +
1), hence the two local solutions around a lattice point takes the form w1 =
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zη+1g1(z), w2 = z−η g2(z) with gi holomorphic and gi(0) 6= 0, and then
f = z2η+1g1(z)/g2(z) which is meromorphic at z = 0. �

Now there are two type of constraints on f : global and local.

• First constraint from the double periodicity:

f (z + ω1) = S1 f , f (z + ω2) = S2 f

with S1S2 = ±S2S1 (abelian projective monodromy).
• Second constraint from the Dirac singularity:

(1) If f (z) has a zero/pole at z0 6∈ Λ then order r = 1.

(2) f (z) = a0 + a`+1(z− z0)`+1 + · · · is regular at z0 ∈ Λ.

1.2.2. Type I (Topological) Solutions⇐⇒ ` = 2n + 1. This means that

f (z + ω1) = − f (z), f (z + ω2) =
1

f (z)
.

Then the loagarithmic derivative

g = (log f )′ = f ′/ f

is elliptic on the doubled torus E′ = C/Λ′ where Λ′ = Zω1 + Z2ω2, with
the only zeros at z0 ≡ 0 (mod Λ) of order ` = 2n + 1. Using Weierstrass
functions on E′, g(z) takes the form

g(z) =
`

∑
i=1

(ζ(z− pi)− ζ(z− pi −ω2)) + c.

The equations 0 = g(0) = g′′(0) = g(4)(0) = · · · implies that f is an
even function (by a non-trivial symmetric function argument [3, §2.1]). So
f has simple zeros at ±p1, . . . ,±pn and ω1/2.

The remaining equations 0 = g′(0) = g′′′(0) = g(5)(0) = · · · leads to the
polynomial system for ℘(pi)’s:

Theorem 1.6 (Type I integrability, ρ = 4π(2n + 1)). [3, Theorem 0.4]

(1) For ρ = 4π`, ` = 2n + 1. All solutions are of type I and even. f has
simple zeros at ω1/2 and ±pi for i = 1, . . . , n, and poles qi = pi + ω2.

(2) For xi := ℘(pi), x̃i := ℘(qi), and m = 1, . . . , n,

∑n
i=1 xm

i −∑n
i=1 x̃m

i = cm, (xm − e2)(x̃m − e2) = µ,

for some constants cm and µ = (e2 − e1)(e2 − e3).
(3) (Brioschi–Halphen–Crawford) There is a polynomial pn(B; g2, g3) of de-

gree n + 1 such that pn(B) = 0 if and only of the corresponding Lamé
equation Lη=n+1/2,B y = 0 provides a type I solution. This is also equiva-
lent to that it has finite monodromy group M (in fact PM ∼= K4).
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1.2.3. Type II (Scaling Family) Solutions⇐⇒ η = n (` = 2n). Namely,

(1.7) f (z + ω1) = e2iθ1 f (z), f (z + ω2) = e2iθ2 f (z)

for two real constants θ1, θ2. If f satisfies (1.7) then eλ f also satisfies (1.7)
for any λ ∈ R. Thus

uλ(z) = log
8e2λ| f ′(z)|2

(1 + e2λ| f (z)|2)2

is a scaling family of solutions with developing maps {eλ f }, and uλ is a
blow-up sequence. The blow-up points for λ → ∞ (resp. −∞) are precisely
zeros (resp. poles) of f (z).

Now the logarithmic derivative g = (log f )′ is elliptic on E = C/Λ, with
highest order zero at z = 0. Namely z = 0 is the only zero of g and

ordz=0 g(z) = ` = 2n.

Again, a symmetric function argument shows that the constraint on odd
derivatives 0 = g′(0) = g′′′(0) = · · · = g(2n−1)(0) implies that g is even [3,
Theorem 5.2]. Thus g(z) has zeros ±a1, · · · ,±an and we may write

g(z) =
℘′(a1)

℘(z)− ℘(a1)
+ · · ·+ ℘′(an)

℘(z)− ℘(an)

which is further constrained by 0 = g′′(0) = · · · = g(2n−2)(0) (g(0) =
0 is automatic). This gives rise to the first n − 1 (algebraic) equations on
a1, . . . , an (see §2 for the explicit equations). And then

f (z) = f (0) exp
∫ z

0
g(ξ) dξ

should satisfy the n-th “equation on monodromy”∫
Li

g ∈
√
−1R, i = 1, 2,

where L1, L2 are the fundamental 1-cycles.
To study these periods integrals, for a 6∈ 1

2 Λ we define

Fi(a) :=
∫

Li

℘′(a)
℘(ξ)− ℘(a)

dξ

=
∫

Li

(
2ζ(a)− ζ(a + ξ)− ζ(a− ξ)

)
dξ.

(1.8)

Lemma 1.7 (Periods integrals and critical points). [12, Proposition 2.3]
Let a = rω1 + sω2, then modulo 4πiN we have

F1(a) = 2(ω1ζ(a)− η1a)

= 2(ζ(a)− rη1 − sη2)ω1 − 4πis,

F2(a) = 2(ω2ζ(a)− η2a)

= 2(ζ(a)− rη1 − sη2)ω2 + 4πir.
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In particular, the “”monodromy equation” is equivalent to a non-holomorphic
equation in gradients of the Green function:∫

Li

g dξ =
n

∑
j=1

Fi(aj) ∈
√
−1R, i = 1, 2 ⇐⇒

n

∑
j=1
∇G(aj) = 0.

In the simplest case ρ = 8π (n = 1, ` = 2), a1 = p, a2 = −p,

f (z) = f (0) exp
∫ z

0

℘′(p)
℘(ξ)− ℘(p)

dξ

leads to a solution if and only if Fi(p) ∈
√
−1 R for i = 1, 2 which is then

equivalent to the critical point equation ∇G(p) = 0.

Theorem 1.8. [10, Theorem 1.2] For ρ = 8π, the mean field equation (1.3) on a
flat torus has at most one solution up to scaling.

Corollary 1.9. [10] The Green function has either 3 or 5 critical points.

The first known proof of Corollary 1.9 is by way of the uniqueness theo-
rem in Theorem 1.8 which uses techniques in non-linear analysis including
the Moser symmetrization and sharp isoperimetric inequalities. Recently,
two elementary proofs were found together with more precise understand-
ing on the distribution of critical points when the moduli point τ varies.

Our approach uses pre-modular forms [4], and another approach uses anti-
holomorphic dynamics [1]. The former will be presented in the next section.

1.3. Geometry of critical points overM1,1.

Theorem 1.10 (Moduli dependence). [4, Theorem 1.2]
(1) Let Ω3 ⊂ M1,1 ∪ {∞} ∼= S2 (resp. Ω5) be the set of tori with 3 (resp.

5) critical points, then Ω3 ∪ {∞} is closed containing
√
−1R, Ω5 is open

containing the vertical line [eπi/3,
√
−1∞).

(2) Both Ω3 and Ω5 are simply connected with C := ∂Ω3 = ∂Ω5 being
homeomorphic to S1 containing ∞.

(3) Moreover, the extra critical points are split out from some degenerate half
period point when the tori move from Ω3 to Ω5 across C.

(4) (Strong uniqueness) The map Ω5 → [0, 1]2 by τ 7→ (r, s) for p(τ) =
rω1 + sω2 is a bijection onto

4 = [( 1
3 , 1

3 ), (
1
2 , 1

2 ), (0, 1
2 )].

On the line Re τ = 1/2 which are equivalent to the rhombuses tori, the
proof was first achieved in [10, Theorem 1.6] by functional equations of ϑ1.
The general case uses the theory of pre-modular forms which is based on
Hecke’s modular forms of weight one [9]. I will start with a sketch of the idea.

Consider Hecke’s weight one modular function for Γ(N):

ZN,k1,k2(τ) := ζ
( k1ω1 + k2ω2

N
; τ
)
− k1η1 + k2η2

N
= −ZN,N−k1,N−k2(τ).
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M1
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2 1
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2 (1 + i)

1
2 + b1i

Figure: Ω5 contains a neighborhood of eπi/3.

• On the line Re τ = 1/2 which are equivalent to the rhombuses
tori, the proof relies on functional equations of ϑ1.

• The general case uses modular forms of weight one.

FIGURE 1. Ω5 contains a neighborhood of eπi/3.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

FIGURE 2. The triangle4 which is in bijection with Ω5.

Define the analogue of the Euler φ function by

Ψ(N) := #{ (k1, k2) | (N, k1, k2) = 1, 0 ≤ ki ≤ N − 1 },
and then we have the weight Ψ(N) version for the full modular group:

ZN(τ) := ∏
(N,k1,k2)=1

ZN,k1,k2(τ) ∈ MΨ(N)(SL(2, Z)).
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FIGURE 3. The fundamental domain for Γ0(2).

For each τ ∈ H with ZN(τ) = 0, it is a double zero (at least generically).
Also for odd N ≥ 5, it is clear that νi(ZN) = νρ(ZN) = 0. At τ = ∞, Hecke
calculated the asymptotic expansion of ZN and get

ν∞(ZN) = φ(N/2) = 0.

Then the degree formula for modular forms says that

(ZN)red =
1
2

deg ZN =
1
2 ∑

p
νp(ZN) =

Ψ(N)

24
.

Let N be a large prime number, then Ψ(N)/24 = (N2 − 1)/24 is close to
the area of the triangle (see Figure 2)

4 := [( 1
3 , 1

3 ), (
1
2 , 1

2 ), (0, 1
2 )].

This suggests strongly an 1-1 correspondence between Ω5 and4 under the
map τ 7→ (r, s) where p(τ) = rω1 + sω2.

The actual proof uses deformations in r, s 6∈ 1
2 Z to make the above idea

rigorous. Let F ⊂H be the fundamental domain for Γ0(2) defined by

F := {τ ∈H | 0 ≤ Re τ ≤ 1, |τ − 1
2 | ≥ 1

2}.

We analyze solutions τ ∈ F for Zr,s(τ) = 0 by varying (r, s).
For τ ∈ ∂F, E is a rectangular torus and the only critical points of G are

half periods (cf. Example 1.2). So Zr,s(τ) 6= 0 for τ ∈ ∂F.
Based on this, we use of the argument principle along the curve ∂F to an-

alyze the number of zeros of Zr,s in F. Using Jacobi’s triple product formula
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[17, §21.41] we may deduce that

Zr,s(τ) = 2πi(s− 1
2 )− πi

2e2πiz

1− e2πiz

− 2πi
∞

∑
n=1

(
e2πizqn

1− e2πizqn −
e−2πizqn

1− e−2πizqn

)
,

where z = r + sτ. From here, it follows easily that

Lemma 1.11 (Asymptotic behavior of Zr,s on cusps). [4, (5.6), (5.8)]
We have Zt,s(−1/τ) = τZ−s,t(τ), and for t ∈ (0, 1),

Zr,s(τ) =
−1
τ

Z−s,r(−1/τ) =
2πi
τ

( 1
2 − r + o(1)

)
as τ → 0. Similarly, Zr,s(τ + 1) = Zr+s,r(τ), and for r + s ∈ (0, 1),

Zr,s(τ) = Zr+s,s(τ − 1) =
2πi

τ − 1
( 1

2 − (r + s) + o(1)
)
.

Lemma 1.12 (Non-Vanishing). [4, Lemma 5.2]
For any τ ∈H,

(i) ζ( 3
4 ω1 +

1
4 ω2)) 6= 3

4 η1 +
1
4 η2.

(ii) ζ( 1
6 ω1 +

1
6 ω2)) 6= 1

6 η1 +
1
6 η2.

This follows from the addition law. For example, for (ii) we choose z =
1
6 (ω1 + ω2) =

1
6 ω3 and u = 1

3 ω3. Then

0 6= ℘′(z)
℘(z)− ℘(u)

= ζ( 1
2 ω3) + ζ(− 1

6 ω3)− 2ζ( 1
6 ω3)

= 1
2 η1 +

1
2 η2 − 3ζ( 1

6 ω3) = −3(ζ( 1
6 ω1 +

1
6 ω2)− 1

6 η1 − 1
6 η2).

It remains to show that if

(r, s) ∈ [0, 1]× [0, 1
2 ]\{(0, 0), ( 1

2 , 0), (0, 1
2 ), (

1
2 , 1

2 )}
then Zr,s(τ) = 0 has a solution τ ∈H if and only if that

(r, s) ∈ 4 := {(r, s) | 0 < r, s < 1
2 , r + s > 1

2}.
Moreover, the solution τ ∈ F is unique for any (r, s) ∈ 4.

For the proof, notice that the cases (t, s) 6∈ 4 are excluded by Lemma
1.11 and Lemma 1.12. From

ν∞(Z3) +
1
2

νi(Z3) +
1
3

νρ(Z3) + ∑
p 6=∞,i,ρ

νp(Z3) =
8
12

,

we see that Z 1
3 , 1

3
(ρ) = Z 2

3 , 2
3
(ρ) = 0 implies νρ(Z(3)) = 2 and all other terms

= 0. Thus τ = ρ is a simple root to Z 1
3 , 1

3
(τ) = 0 and such a property holds

for all (r, s) ∈ 4 by Lemma 1.11.
This completes the sketch of proof of Theorem 1.10.
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2. CORRESPONDENCE P1 ← Xn → E AND PRE-MODULAR FORMS Zn

We continue the discussion on type II solutions for general n ∈N:

Theorem 2.1 (Periods integrals and type II solutions). [3, Theorem 0.6]
Consider the mean field equation4u + eu = ρ δ0 on E = C/Λ.

(i) If solutions exist for ρ = 8nπ, then there is a unique even solution within
each type II scaling family. (` = 2n, an+i = −ai for i = 1, . . . , n.) The
solution u is determined by the zeros a1, . . . , an of f through the recipe

g(z) =
n

∑
i=1

℘′(ai)

℘(z)− ℘(ai)
,

f (z) = f (0) exp
∫ z

g(ξ) dξ.

(ii) The concentration of the zero of g at z ∈ Λ:

ordz=0 g(z) = 2n

leads to n− 1 algebraic equations for a = {a1, . . . , an}.
(iii) The n-th equation is given by

∫
Li

g ∈
√
−1R, which is equivalent to

n

∑
i=1
∇G(ai) = 0.

2.1. Liouville and Lamé curves. We start by describing the n− 1 algebraic
equations which defines an algebraic curve Xn ⊂ SymnE, called the Liou-
ville curve in [3]. It turns out to be the unramified loci of another hyper-
elliptc curve Yn → C, called the Lamé curve, which parametrizes log-free
solutions of Lame equations.

Under the notations (w, xj, yj) = (℘(z),℘(aj),℘′(aj)), we compute

g(z) =
n

∑
j=1

1
w

yj

1− xj/w

=
n

∑
j=1

yj

w
+

n

∑
j=1

yjxj

w2 + · · ·+
n

∑
j=1

yjxr
j

wr+1 + · · · .

Since g(z) has a zero at z = 0 of order 2n and 1/w has a zero at z = 0 of
order two, we get n− 1 vanishing conditions:

n

∑
j=1

yjxr
j =

n

∑
j=1

℘′(aj)℘(aj)
r = 0, 0 ≤ r ≤ n− 2.

Theorem 2.2 (Hyperelliptic geometry [7, 3]). For xi := ℘(ai), yi := ℘′(ai),
the n− 1 algebraic equations

∑ yixr
i = 0, r = 0, . . . , n− 2,

defines a 2 to 1 map a 7→ ∑℘(ai):

Xn ⊂ SymnE −→ P1, {(xi, yi)} 7→∑ xi.
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The proof relies on its relation to Lamé equations:

f = exp
∫

g dz = exp
∫ n

∑
i=1

(2ζ(ai)− ζ(ai − z)− ζ(ai + z)) dz

= e2 ∑n
i=1 ζ(ai)z

n

∏
i=1

σ(z− ai)

σ(z + ai)
= (−1)n wa

w−a
,

where wa(z) := ez ∑ ζ(ai)
n

∏
i=1

σ(z− ai)

σ(z)σ(ai)
is the Hermite–Halphen ansatz.

Lemma 2.3. [3, Theorem 6.5, Corollary 6.7] We have a ∈ Xn if and only if wa
and w−a are two independent solutions of the Lamé equation

d2w
dz2 −

(
n(n + 1)℘(z) + (2n− 1)∑n

i=1 ℘(ai)
)

w = 0.

Namely the map a 7→ Ba is given by Ba = (2n− 1)∑℘(ai) .

This is a long calculation which will not be repeated here. Instead, I will
review the classical argument leading to the explicit hyperelliptic model
C2 = `n(B; g2, g3) (cf. [17, §23.7], [3, §7.3.1]).

Let wa(z) and w−a(z) be the ansatz solutions to the Lamé equation

w′′ = (n(n + 1)℘(z) + B)w.

Let X(z) = wa(z)w−a(z). By the addition theorem,

X(z) = (−1)n
n

∏
i=1

σ(z + ai)σ(z− ai)

σ(z)2σ(ai)2 = (−1)n
n

∏
i=1

(℘(z)− ℘(ai)).

That is, X(x) = (−1)n ∏n
i=1(x − xi) is a polynomial in x. By construction,

X(z) satisfies the second symmetric power of the Lamé equation:

d3X
dz3 − 4(n(n + 1)℘+ B)

dX
dz
− 2n(n + 1)℘′X = 0.

Hence X(x) is a polynomial solution, in variable x, to

p(x)X′′′ + 3
2 p′(x)X′′ − 4((n2 + n− 3)x + B)X′ − 2n(n + 1)X = 0.

Thus X is determined by B and certain initial conditions.
Write X(x) = (−1)n(xn − s1xn−1 + · · · + (−1)nsn), this translates to a

linear recursive relation for µ = 0, . . . , n− 1:

0 = 2(n− µ)(2µ + 1)(n + µ + 1)sn−µ

−4(µ + 1)Bsn−µ−1

+ 1
2 g2(µ + 1)(µ + 2)(2µ + 3)sn−µ−2

−g3(µ + 1)(µ + 2)(µ + 3)sn−µ−3.

We set s0 = 1. For µ = n− 1 we get B = (2n− 1)s1 as expected. Thus
all s2, . . . , sn, X(z), are determined by s1, i.e. by B, alone. A slightly more
work shows that the set a = {ai} is also determined by B up to sign. Hence
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a 7→ Ba is 2 to 1. A complete description of the hyperelliptic geometry is
given in [3, Theorem 0.7]. We list only some of its properties:

(i) There natural projective compactification Xn ⊂ SymnE coincides
with the projective model of the hyperelliptic curve Yn defined by

C2 = `n(B, g2, g3) = 4Bs2
n + 4g3sn−2sn − g2sn−1sn − g3s2

n−1

in affine coordinates (B, C), where sk = sk(B, g2, g3) = rkBk + · · · ∈
Q[B, g2, g3] is an universal polynomial of homogeneous degree k
with deg g2 = 2, deg g3 = 3, and B = (2n− 1)s1.

(ii) In particular, Xn coincides with the unramified loci of Yn → C:
(B, C) 7→ B, and the added infinity point 0n ∈ Xn is a smooth point.

(iii) Thus deg `n = 2n + 1 and Xn has arithmetic genus g = n.
(iv) Xn is smooth except for a finite number of τ, namely the discrimi-

nant loci of `n(B, g2, g3) so that `n(B) has multiple roots. In particu-
lar Xn is smooth for rectangular tori.

2.2. Pre-modular forms. A closer look at the Hecke function Z leads to

Definition 2.4. [11, Definition 0.1] An analytic function h in (z, τ) ∈ C×H

is pre-modular of weight k ∈N if it satisfies
(1) For any fixed τ, h(z) is analytic in z and z̄ and it depends only on z

(mod Λτ) ∈ Eτ;
(2) For any fixed torsion type z (mod Λτ) ∈ Eτ[N], the function h(τ) is

modular of weight k with respect to Γ(N).

Now we are ready to study the last equation on Xn:

(2.1) 0 = −4π ∑n
i=1∇G(ai) = ∑n

i=1 Z(ai).

Consider the fundamental rational function on En:

zn(a1, . . . , an) := ζ(a1 + · · ·+ an)−∑n
i=1 ζ(ai).

Let ai = riω1 + siω2, then

−4π ∑∇G(ai) = ∑(ζ(ai)− riη1 − siη2)

= ζ(∑ ai)− (∑ ri)η1 − (∑ si)η2 − zn(a)

= Z(∑ ai)− zn(a).

Hence (2.1) is equivalent to

(2.2) zn(a) = Z(∑ ai).

It is thus crucial to study the branched covering (addition) map

(2.3) σn : Xn → E, a 7→ σn(a) :=
n

∑
i=1

ai.

Theorem 2.5. [11, Theorem 0.2, Theorem 0.3]
(1) deg σn = 1

2 n(n + 1).
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(2) There is a universal (weighted homogeneous) polynomial

Wn(z) ∈ C[g2, g3,℘(σ),℘′(σ)][z]

of degree 1
2 n(n + 1) with

Wn(zn) = 0.

Moreover, zn ∈ K(Xn) is a primitive generator for the field extension
K(X̄n) over K(E).

(3) The function
Zn(σ; τ) := Wn(Z)

is pre-modular of weight 1
2 n(n + 1). That is, it is Γ(N)-modular if σ ∈

Eτ[N].

Idea of proof for (1): apply Theorem of the Cube in the theory of abelian
varieties [16]: for any three morphisms

f , g, h : Vn −→ E

and L ∈ Pic E, there is an isomorphism

( f + g + h)∗L ∼= ( f + g)∗L⊗ (g + h)∗L⊗ (h + f )∗L

⊗ f ∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.

We apply it to the case Vn ⊂ En which is the ordered n-tuples so that
Vn/Sn = X̄n, and deg L = 1. We prove inductively that the map

fk(a) := a1 + · · ·+ ak

has degree 1
2 k(k + 1)n!.

This is non-trivial for k = 1, 2. It makes use that ∞ ∈ Xn is non-singular
and requires a detailed classification of Lamé functions in 4 species [17].

From k to k + 1 with k ≥ 2: let

f (a) = fk−1(a), g(a) = ak, h(a) = ak+1.

Then fk+1 has degree n! times
1
2 k(k + 1) + 3 + 1

2 k(k + 1)− 1
2 (k− 1)k− 1− 1

= 1
2 (k + 1)(k + 2)

as expected.
Idea of proof of (2): the major tool is the tensor product of two Lamé equa-

tions w′′ = I1w and w′ = I2w, where I = n(n + 1)℘(z),

I1 = I + Ba, I2 = I + Bb.

For X̄n(τ) smooth, and for a general point σ0 ∈ E, we need to show that
the 1

2 n(n + 1) points on the fiber of X̄n → E above σ0 has distinct zn values.
It is enough to show that for σn(a) = σn(b) = σ0,

∑ ζ(ai) = ∑ ζ(bi) =⇒ Ba = Bb

(and then a = b by the hyperelliptic property of Xn).
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If w′′1 = I1w1 and w′′2 = I2w2, then the product q = w1w2 satisfies

q′′′′ − 2(I1 + I2)q′′ − 6I′q′ + ((Ba − Bb)
2 − 2I′′)q = 0.

If a = b, a third ODE (the second symmetric power) is enough, as is
studied in §2.1 in deriving the hyperelliptic property..

If a 6= b, by addition law we find that

Q = waw−b + w−awb

is an even elliptic function solution. It is a polynomial in x = ℘(z). This leads
to strong constraints on the corresponding 4-th order ODE in variable x,
and eventually leads to a contradiction except for a finite choices of σ0. The
actual proof in [11] is lengthy and will not be repeated here.

Proof for (3) is immediate: since Z is pre-modular of weight one, it fol-
lows that Zn(σ; τ) := Wn(Z) is pre-modular of weight 1

2 n(n + 1).

Example 2.6 (n = 2). For z2(a1, a2) = ζ(a1 + a2)− ζ(a1)− ζ(a2), on X2:

z3
2(a)− 3℘(a1 + a2)z2(a)− ℘′(a1 + a2) = 0.

On E2 it has one more term − 1
2 (℘

′(a1) + ℘′(a2)). Thus,

Z2(σ; τ) = W2(Z) = Z3 − 3℘(σ)Z− ℘′(σ).

Example 2.7 (n = 3). For z = z3(a) = ζ(a1 + a2 + a3)− ζ(a1)− ζ(a2)− ζ(a3),
on X3:

z6 − 15℘z4 − 20℘′z3 + ( 27
4 g2 − 45℘2)z2 − 12℘′℘z− 5

4℘
′2 = 0.

Thus, Z3(σ; τ) = W3(Z).

Both Z2 and Z3 are known to [7] (cf. Appendix A). In principle, since the
addition map σn can be explicitly computed, the polynomial Wn(z) can be
calculated from certain resultant via the elimination theory. Unfortunately
the computation is necessarily demanding. A slight short cut was observed
in [11] based on relations with the finite gap integration theory and some
explicit formulas in [15] on the twisted Lamé polynomials. This allows to pro-
duce some new examples. A couple hours Mathematica calculation gives:

Example 2.8 (n = 4). [11, Example 5.10] The degree 10 polynomial W4(z) is

W4(z) = z10 − 45℘z8 − 120℘′z7 + ( 399
4 g2 − 630℘2)z6 − 504℘℘′z5

− 15
4 (280℘3 − 49g2℘− 115g3)z4 + 15(11g2 − 24℘2)℘′z3

− 9
4 (140℘4 − 245g2℘

2 + 190g3℘+ 21g2
2)z

2

− (40℘3 − 163g2℘+ 125g3)℘
′z + 3

4 (25g2 − 3℘2)(℘′)2.

(2.4)

The weight 10 pre-modular form Z4(σ; τ) is then obtained.

For n = 1, Z1 ≡ Z = −4π∇G is the Hecke modular function. The critical
point equation (⇐⇒ type II solutions of MFE) is transformed into zero of
pre-modular forms. This now generalizes to all n ≥ 1:



ALGEBRAIC METHODS IN PERIODIC SINGULAR LIOUVILLE EQUATIONS 21

Theorem 2.9. [11] The following are all equivalent:
(i) Solution u to the mean field equation for ρ = 8πn.

(ii) Periods integrals ∫
Lj

g ∈
√
−1R

for j = 1, 2. (The real coefficients give the ωj coordinates of ∑ ai.)
(iii) Green function equation on Xn:

n

∑
i=1
∇G(ai) = 0,

where Xn is the unramified loci of the hyperelliptic curve Yn.
(iv) Coincidence equation under the addition map σn : Xn → E:

zn(a) = Z(σn(a)).

(v) Non-trivial zero of the pre-modular form

Zn(σ; τ) := Wn(Z).

For the last one, we notice that the branch point a ∈ Yn\Xn (a = −a)
satisfies the Green equation trivially, which are excluded.

2.3. Chamber structure and wall crossing.

2.3.1. Deformations in ρ ∈ R+. In [10], the PDE technique used in ρ = 8π
is the method of continuity to connect to the unique solution for ρ = 4π by
establishing the non-degeneracy of linearized equations over [4π, 8π].

This requires Moser’s symmetrization and isoperimetric inequalities in
singular metrics. For general ρ, such a non-degeneracy statement is wrong.
Nevertheless, since solutions uη always exist for ρ = 8πη, η 6∈ N, it is
natural to study

lim
η→n

uη .

If the limit does not blow up, it converges to a solution u for ρ = 8πn.
For the blow-up case, we have the connection between the blow-up set

and the hyperelliptic geometry of Xn → P1:

Theorem 2.10. [3, Theorem 0.7.5] Suppose that S = {a1, · · · , an} is the blow-
up set of a sequence of solutions uk with ρk → 8πn as k→ ∞, then

S ∈ Yn = Xn \ {∞}.
Moreover,

(1) If ρk 6= 8πn then S is a branch point (a = −a) of Yn → C.
(2) If ρk = 8πn for all k, then S is not a branch point of Yn.
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FIGURE 4. n = 2: the degenerate curves of branch points
for ρ = 16π.
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FIGURE 5. n = 3: the degenerate curves of branch points
for ρ = 24π.
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2.3.2. Deformations in τ ∈ M1,1. For n = 1, the branch points are precisely
the half-periods. Their degenerate loci C (as degenerate critical points of
the Green function) form the common boundary

C := ∂Ω3 = ∂Ω5.

For n > 1, similar idea applies to analyze the number of solutions of
mean field equations when τ crosses the non-singular points of the degenerate
curves associated to a branch point a ∈ Yn \ Xn.

Recently it was proved in [6] that equation (1.3) on rectangular tori for
ρ = 8nπ has no solutions. Thus the chamber containing

√
−1R could be

taken as the initial chamber to start the deformation argument as in §1.

3. POLYNOMIAL SYSTEMS VIA SCHWARZIAN DERIVATIVES

We study equation (0.1) and its corresponding generalized Lamé equa-
tion (0.5). The parameter ({Ai}, B) is constrained so that the solutions to
(0.5) are all log-free. This is equivalent to that f := w1/w2 is log-free for
one (and then any) choice of independent solutions w1 and w2.

Throughout the paper we use the notations that

℘ij := ℘(pi − pj) and ζij := ζ(pi − pj)

whenever i 6= j.

3.1. Recursive relation for logarithmic-free solutions. The connection be-
tween equations (0.1) and (0.5) is established via the Schwarzian derivative

S( f ) :=
f ′′′

f ′
− 3

2

( f ′′

f ′
)2

of the developing map f . Indeed, let v = log f ′, then

S( f ) = v′′ − 1
2 (v
′)2 = uzz − 1

2 u2
z

= −2
( N

∑
i=1

ηi(ηi + 1)℘(z− pi) +
N

∑
i=1

Aiζ(z− pi) + B
)

,
(3.1)

for some constants Ai, B ∈ C and ηi =
1
2`i ∈ 1

2 N. (Since S( f ) is defined on
T and meromorphic with double poles on S.) The periodic constraint gives

(3.2) F0 :=
N

∑
i=1

Ai = 0.

The local expansion at pi reads as

f (z) = ci,0 + ci,`i+1(z− pi)
`i+1 + · · · ,

v(z) = log(`i + 1)ci,`i+1 + `i log(z− pi) + ∑
k≥1

di,k(z− pi)
k,

v′(z) =
`i

z− pi
+ ∑

k≥0
ei,k(z− pi)

k, ei,k := (k + 1)di,k+1.

(3.3)
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We compare the coefficients in (3.1) in this expansion. The (z − pi)
−2

terms match automatically since −`i − 1
2`

2
i = − 1

2`i(`i + 2) = −2ηi(ηi + 1).
For (z− pi)

−1, we get

`iei,0 = 2Ai =⇒ ei,0 =
2Ai

`i
.

For (z− pi)
0, i.e. constant terms,

ei,1 − 1
2 2`iei,1 − 1

2 e2
i,0 = −2 ∑

j 6=i
(ηj(ηj + 1)℘ij + ζij Aj)− 2B,

hence

(3.4) (`i − 1)ei,1 = −2
(A2

i
`2

i
− B−∑

j 6=i
(ζij Aj + ηj(ηj + 1)℘ij)

)
.

If `i = 1, this leads to a quadratic equation:

(3.5) A2
i = B + ∑

j 6=i
ζij Aj +

3
4℘ij.

Otherwise (3.4) detrmines ei,1.
Let k ≥ 1. In general for the (z− pi)

k terms,

(3.6) (k + 1− `i)ei,k+1 − 1
2

k

∑
t=0

ei,tei,k−t = −2 ∑
j
(ζ

(k)
ij Aj + ηj(ηj + 1)℘(k)

ij ).

The right hand side is a linear polynomial −2Lk in Aj’s, where h(k)ij denotes

the k-th Taylor coefficient of hj(z) at z = pi. Notice that ℘(k)
ii = 0 for k ≤ 1

and ζ
(k)
ii = 0 for k ≤ 2.

Lemma 3.1. All terms in the LHS and RHS are modular functions of weight k+ 2
if we formally assign weight one to Aj and ζ, and weight two to B and ℘.

Proof. This follows inductively from (3.6). �

To simplify notations, we denote

ẽi,s =
1
2 ei,s and Ãi =

Ai

`i
.

Then ẽi,0 = Ãi, and (3.6) becomes

(3.7) (`i − (k + 1))ẽi,k+1 = −
k

∑
t=0

ẽi,t ẽi,k−t + Lk.
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For example,

(`i − 1)ẽi,1 = −(Ã2
i − B− L0),

(`i − 2)ẽi,2 =
2

`i − 1
Ãi(Ã2

i − B− L0) + L1,

(`i − 3)ẽi,3 = − 2
`i − 2

2
`i − 1

Ã2
i (Ã2

i − B− L0)−
2

`i − 2
ÃiL1

− 1
(`i − 1)2 (Ã2

i − B− L0)
2 + L2.

This leads to a polynomial equation

Fi := ci A
`i+1
i + (lower degree) = 0.

3.2. Projective completion and analysis at infinity. For the projective com-
pletion in PN+1 3 [A0 : A1 : · · · : AN : B], the solution at infinity A0 = 0
again leads to Ai = 0 for all i and with B free. Thus there is only one such
point Q = [0 : · · · : 0 : 1]. The Bézout degree is

bL :=
N

∏
i=1

(`i + 1).

If we assume that ` = ∑ `i is odd, then some `i must also be odd and
hence b~̀ is even. We will show that Q is an isolated solution of the homog-
enized system with multiplicity bL/2.

To proceed, we notice that for the extreme case that there is only one
singular source at p = p1, N = 1 and ` = `1 = 2n + 1, we must have
A1 = 0 (the linear constraint) and hence F = F1 reduces to the Brioschi–
Halphen polynomial pn(B) which has degree n + 1 = 1

2 (`1 + 1).
Now comes the key point: to study the highest order terms by assigning

order 1 to Aj’s and order 2 to B, we may mod out the lower order terms
Lk’s in the recursive relation. For Fi, only Ai and B are left in the top order.

Example 3.2. For small values of `i ∈ N, the dominant term q`i({Ai}, B)
with order `i + 1 of the polynomial Fi is given by

q0 = A,

q1 = −(A2 − B),

q2 =
1

(2!)2 A(A2 − 22B),

q3 =
−1
(3!)2 (A2 − B)(A2 − 32B),

q4 =
1

(4!)2 A(A2 − 22B)(A2 − 42B),

· · ·

(3.8)

as can be checked by brute force calculations.
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Lemma 3.3. Let ` ∈N, ` ≥ 2, `ẽ0 = A, (`− 1)ẽ1 = −(A2/`2 − B), and

(3.9) (`− (k + 1))ẽk+1 = −
k

∑
t=0

ẽt ẽk−t, 1 ≤ k ≤ `− 1.

Then the critical case k = `− 1 gives

q` = −
`−1

∑
t=0

ẽt ẽ`−1−t =
(−1)l

(`!)2

`

∏
j=0

(A− (`− 2j)B1/2).

Our proof of this elementary looking lemma turns out to be technical and
is deferred to the next subsection. A purely combinatorial proof is highly
expected though we are unable to find one at this moment.

Corollary 3.4. If ` = ∑N
i=1 `i is odd, then Q is an isolated point at infinity. Hence

all the solutions ({Ai}, B)’s are discrete points.

Proof. Consider the chart B 6= 0 and let xi = Ai/B for i = 0, . . . , N. The
dominant polynomials at Q are given by

f̃0(x) =
N

∑
i=1

xi,

f̃i(x) =
`i

∏
j=0

(xi − (`i − 2j)x1/2
0 ), 1 ≤ i ≤ N.

(3.10)

This forces that xi ∼ µix1/2
0 with µi ≡ `i (mod 2). Then

N

∑
i=1

xi ∼∑
i

µix1/2
0 ≡∑ `ix1/2

0 = `x1/2
0 6≡ 0

since ` is odd. �

Theorem 3.5 (Algebraic degree counting formula). For ` = ∑N
i=1 `i being

odd, the log-free parameters ({Ai}, B) consist of a discrete set whose cardinality,
counted with multiplicity, is half of the projective Bézout degree. Namely,

aL = 1
2 bL = 1

2

N

∏
i=1

(`i + 1).

Proof. Since the projective Bézout degree is given by ∏N
i=1 deg Fi = ∏N

i=1(`i +
1), it remains to show that the isolated point Q has multiplicity given by
half of it.

To compute the multiplicity at Q in the case with ` = ∑ `i being odd,
without loss of generality we may assume that `N = 2nN + 1. The equation
f̃N = 0 leads to x2

N = µ2x0 for some odd integer 1 ≤ µ ≤ `N . There are
nN + 1 = 1

2 (`N + 1) such choices.
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For each choice, we substitute x0 = (xl/µ)2 throughout equations f̃i(x) =
0, which is indeed a function in x0 instead of in x1/2

0 , for i = 1, . . . , N − 1 to
get (up to a non-zero constant multiple)

Qi(xi, xN) =
`i

∏
ji=0

(
xi −

`i − 2ji
µ

xN

)
=:

`i

∏
ji=0

Li,ji(xi, xN).

It is clear that the intersection multiplicity at Q is given by the sum of
multiplicities of the intersection⋂N−1

i=1
(Li,ji = 0)

among all choices of linear factors Li,ji in Qi parametrized by the N − 1
vector ~j = (j1, . . . , jN−1). The linear intersection is necessarily transversal
since Q is isolated. Hence it contributes multiplicity 1.

Finally, the total number of choices is given by

1
2 (`N + 1)×

N−1

∏
i=1

(`i + 1) = 1
2

N

∏
i=1

(`i + 1).

This proves the theorem. �

3.3. Proof of Lemma 3.3. There are two ideas involved in the proof. The
first is to go back to the non-linear ODE (3.1) coming from the Schwarzian
derivative which leads to the recursive relation (3.6). The key point is that
now we only focus on one singular point, called it z = 0, and we throw
away all lower order terms Lk’s. Thus by “defining” ei = 2ẽi and

w(z) =
`

z
+ ∑

k≥0
ekzk,

the recursive relation (3.9) “should” corresponds to the ODE

w′ − 1
2 w2 = −2

( `(`+ 2)
4z2 +

A
z
+ B

)
.

The problem is that for any given ` ∈ N, ek is defined only up to k ≤
`− 1 and knowing the finite Laurent polynomial w(z) does not gives q` in
a direct manner.

Now comes the second idea. In order to read out q` from w(z), we re-
place ` by a complex variable s ∈ C and define ek(s) and êk(s) = −ei(s)/2
by the extended universal recursive relation (the reason to introduce the ad-
ditional minus sign will be clear soon)

(3.11) êk+1(s) =
1

s− (k + 1)

k

∑
t=0

êt(s)êk−t(s), k ≥ 1,

with initial conditions

ê0(s) = −
A
s

and ê1(s) =
1

s− 1

(A2

s2 − B
)

.
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In such a manner we see that êl(s) has a simple pole at s = ` and by its very
definition −q` is precisely the residue

q` = −ress=` ê`(s).

For example, we calculate

ê2(s) =
−1

(s− 2)(s− 1)
A2

s2

(A2

s2 − B
)

and

ê3(s) =
5s− 6

(s− 3)(s− 2)(s− 1)2s4 (A2 − s2B)
(

A2 − s− 2
5s− 6

B
)

.

However, it is unclear what the general formula for êk(s) should be.
As usual, we study its corresponding generating function

(3.12) ŵ(z, s) =
−s
2

z−1 + ∑
k≥0

êk(s)zk.

Then ŵ satisfies the following ODE in the z variable:

ŵ′ + ŵ2 =
s(s + 2)

4z2 +
A
z
+ B.

This takes the form of a standard Riccati equation and it can be transformed
into a linear equation in

g(z, s) = exp
∫ z

ŵ, i.e. ŵ = (log g)′ =
g′

g
.

Indeed,

ŵ′ =
g′′

g
− (g′)2

g2 =
g′′

g
− ŵ2,

hence we arrive at the following confluent hypergeometric equation (CHG):

(3.13) g′′ −Q(z)g = 0, where Q(z) :=
s(s + 2)

4z2 +
A
z
+ B.

The Whittaker standard form of CHG equation is (c.f. [17], Ch.XVI)

W ′′ −
(4m2 − 1

4z2 − k
z
+

1
4

)
W = 0.

The Kummer solutions Mk,±m(z) around z = 0 are given by

Mk,m(z) = e−
1
2 zz

1
2+m

∞

∑
n=0

(−1)n

n!
znF( 1

2 + m− k,−n, 2m + 1; 1),

where the value of the Gauss hypergeometric function at 1 is

F(a, b, c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− b)Γ(c− a)

.
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Now we set s = −(2m + 1), A = −k and B = 1
4 . Then

g(z, s) = e−
1
2 zz−

1
2 s

∞

∑
n=0

(−1)n

n!
zn Γ(−s)Γ(k− 1

2 s + n)
Γ(−s + n)Γ(k− 1

2 s)
.

Denote by g1 the power series part. Then

ŵ =
g′

g
= −1

2
− s

2
z−1 − 1

g1

∞

∑
n=0

(−1)n

n!
zn Γ(−s)Γ(k− 1

2 s + n + 1)

Γ(−s + n + 1)Γ(k− 1
2 s)

.

To read out the residue of the z` coefficient ê`(s), we only need to consider
those zj terms in g1 and g′1 with j ≤ `. Notice that

Γ(−s)
Γ(−s + j + 1)

=
1

(−s + j)(−s + j− 1) · · · (−s)
is regular at s = ` unless j = ` which gives rise to a simple pole. Hence the
residue is given by

− (−1)`

`!
(−1)`

`!
Γ(k + 1

2`+ 1)

Γ(k− 1
2`)

=
−1
(`!)2

`

∏
j=0

(k + 1
2 (`− 2j)) =

(−1)`

(`!)2

`

∏
j=0

(A− 1
2 (`− 2j)).

(3.14)

This is exactly the proposed formula for q` since now B = 1
4 . Also it is

clear that under scaling it is enough to prove Lemma 3.3 for any particular
non-zero value of B. Thus the proof is complete.

The statement that each solution ({Ai}, B) indeed gives a type I solution
to equation (0.1) will be proved in Corollary 4.2 after we develop some
basic monodromy theory of equation (0.5).

3.4. The primitive case ` = N. Now we consider the primitive case of
equation (0.1), namely `i = 1 for all i = 1, . . . , N, and so ` = N:

(3.15) 4u + eu = 4π
N

∑
i=1

δpi on T.

We first summarize the derivation of the precise polynomial system for
any ` ∈N and add a few remarks on it.

When ` = 2n + 1, we have seen that d` = 22n. The case ` = 2n will be
analyzed in more details in later sections.

Let f be the developing map of u and let v = log f ′. Then as an elliptic
function

S( f ) = v′′ − 1
2 (v
′)2 = uzz − 1

2 u2
z

= −2
( `

∑
i=1

3
4℘(z− pi) +

`

∑
i=1

Aiζ(z− pi) + B
)

,
(3.16)

for some constants Ai’s and B. (Now ηi =
1
2 and ηi(ηi + 1) = 3

4 for each i.)
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Recall that ζij = ζ(pi − pj), ℘ij = ℘(pi − pj), and let ℘i = ∑j 6=i ℘ij.
The periodic constraint gives rise to

(3.17)
`

∑
i=1

Ai = 0.

The local expansions at pi read as (now ni = 0)

f (z) = ci0 + ci2(z− pi)
2 + · · · ,

v(z) = log f ′(z) = log 2ci2 + log(z− pi) + ∑
j≥1

dij(z− pi)
j,

v′(z) =
1

z− pi
+ ∑

j≥0
eij(z− pi)

j, eij := (j + 1)di(j+1).

(3.18)

We compare the coefficients in (3.16) in this expansion. The (z − pi)
−2

terms match automatically. For (z− pi)
−1, we get

ei0 = 2Ai.

For (z− pi)
0, i.e. constant terms,

ei1 − 1
2 2ei1 − 1

2 e2
i0 = − 3

2℘i − 2 ∑
j 6=i

Ajζij − 2B.

The ei1 terms cancel out and we get ` quadratic equations

(3.19) A2
i = ∑

j 6=i
Ajζij + B + 3

4℘i.

Together with (3.17), there are `+ 1 equations on `+ 1 variables

A1, A2, . . . , A` and B.

It is natural to ask when should this system lead to a finite number of
solutions? The projective completion in P`+1 3 [A0 : · · · : A` : B] has
equations

A2
i = ∑

j 6=i
A0Ajζij + A0B + 3

4 A2
0℘i.

The additional solutions at infinity hyperplane A0 = 0 leads to A2
i = 0 for

all i = 1, . . . , ` which gives one point Q = [0 : · · · : 0 : 1].
We de-homogenize the equations on the chart B 6= 0 with coordinates

xi = Ai/B. The equations become fi(x) = 0, i = 0, . . . , `, where

f0(x) :=
`

∑
i=1

xi,

fi(x) := x2
i − x0 ∑

j 6=i
ζijxj − x0 − 3

4℘ix2
0 for i 6= 0.

(3.20)
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Question 3.6. It seems that a complete solution to the following simplest
non-linear algebra problem is not known.

Let fi(x) = Qi(x) + Li(x), i = 1, . . . , m be a system of equations in x =
(x1, . . . , xm) with Qi being quadratic and Li being linear. Let V( f ) be the
zero loci of fi(x) = 0 for all i. When is x = 0 an isolated point of V( f )? If it
is isolated, what is the multiplicity of 0 ∈ V( f )?

Here we are seeking for a precise answer to the very special system (3.20)
with many symmetries.

Remark 3.7. Let fp be the type I developing map of the unique solution u to

4u + eu = 4πδp on T.

The function fp is essentially unique up to fp 7→ 1/ fp. Then the product
ansatz

f =
2n+1

∏
i=1

f±1
pi

satisfies the type I relation but fails the prescribed constraints on pi’s, namely

f (z) 6= ci,0 + ci,2(z− pi)
2 + O(|z|2),

due to the effect caused by the other factors. It is still a developing map for a
solution to (3.15) with a different set of singular data p̃i’s where f ′( p̃i) = 0.

The product ansatz thus induces the map {pi} 7→ { p̃i}. It seems that
a further study on the associated dynamical system is an important step
towards a complete understanding of equation (0.1) for odd `.

4. MONODROMY FOR SPECIAL GENERALIZED LAMÉ EQUATIONS

4.1. Basic monodromy theory. Recall the generalized Lamé equation (0.5)
on a torus E:

(4.1) w′′ −
( N

∑
i=1

ηi(ηi + 1)℘(z− pi) +
N

∑
i=1

Aiζ(z− pi) + B
)

w = 0

with ∑ Ai = 0. We are interested in the case that ηi ∈ 1
2 N. Let `i = 2ηi.

At any pi, the indicial equation is given by λ(λ − 1) − ηi(ηi + 1) = 0
and the exponents are λ = −ηi and λ = ηi + 1. By our assumption, the
exponent difference 2η1 + 1 ∈ N, hence in principal the solutions might
have logarithmic terms. If the solutions are all free from logarithm, then
the two fundamental solutions are of the form

h1(z) = (z− pi)
−ηi g1(z), h2(z) = (z− pi)

ηi+1g2(z),

where g1(z), g2(z) are holomorphic near z = pi and g1(pi) = g2(pi) = 1.
Thus the local momodromy matrix, in this basis, is given by

(4.2) σpi = (−1)`i I2.

Clearly (4.2) then also holds in any other basis.
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Fix a point z0 ∈ E\{pi} and consider the monodromy representation

ρ = ρ({pi},{Ai},B) : π1(E\{p1, . . . , pN}, z0)→ GL(2, C)

of equation (4.1). Let Si = ρ(γi) for the standard homology basis γ1 and γ2.
It follows from the homotopy relation that

S−1
2 S−1

1 S2S1 =
N

∏
i=1

σpi = (−1)` I2

where ` := ∑N
i=1 `i = ∑l

i=1 2ηi. For ` even this reduces to S1S2 = S2S1:

ρ : π1(E) ∼= Zγ1 ⊕Zγ2 → GL(2, C).

For ` odd, this reduces to the almost abelian constraint S1S2 = −S2S1:

ρ : π1(E)→ GL(2, C)/{±1}.
A basic question in representation theory is to see if M, the image of ρ,

lies in the unitary subgroup. For mean field equations, we ask the simi-
lar question for the projective representation in PGL(2, C). Recall that the
Klein four-group is the non-cyclic group of order four: K4 = Z/2×Z/2.

Proposition 4.1. If ` is odd then PM ∼= K4.

Proof. Let v be an eigenvector of S1 with S1v = λv and λ 6= 0. Then

S1(S2v) = −S2S1v = −λ(S2v).

That is, −λ 6= λ is also an eigenvalue of S1 with eigenvector S2v. In partic-
ular, with respect to the basis v1 = v, v2 = S2v1, we have

S1 =

(
λ 0
0 −λ

)
, S2 =

(
0 b
1 0

)
.

The latter one follows from the explicit matrix computation on S1S2 =
−S2S1. Equivalently we may use S1(S2v2) = S1S2

2v = S2
2S1v = λS2

2v =
λ(S2v2) to conclude that S2v2 = bv1 for some b 6= 0.

Since S2
1 = λ2 I2 and S2

2 = bI2. It is clear that in PGL(2, C) they generate
the Klein four-group K4. �

Corollary 4.2. For ` being odd, each log-free parameter ({Ai}, B) gives rise to a
type I solution to the mean field equation (0.1).

Proof. By Proposition 4.1, each log-free parameter ({Ai}, B) leads to a gen-
eralized Lamé equation with PM ∼= K4, hence it leads to an unique type I
solution to the mean field equation. �

We know little about the full monodromy group M. In case of one singu-
larity it was shown in [3] that M is a finite group with |M| = 8. In the next
section, we will prove similar result on M for multiple singularities when
there are symmetries on pi’s. The following lemma is well-known:

Lemma 4.3. For an algebraic second order ODE w′′ = Iw, the monodromy group
M is finite if and only if its projective monodromy group PM is finite.
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Proof. Let w1, w2 be a basis of independent solutions and f = w1/w2. Then

f ′ =
w′1w2 − w1w′2

w2
2

=
c

w2
2

where c is a constant since (w′1w2 − w1w′2)
′ = 0. If PM is finite, i.e. f is

algebraic, then w2 is also algebraic, and then w1 = f w2 is also algebraic.
Hence M is finite. The converse is trivial. �

Remark 4.4. For ` being even, the relation S1S2 = S2S1 implies that they are
simultaneously diagonalizable if one of them is diagonalizable. However,
it can happen that none of them is diagonalizable. For example, they can
be upper triangular matrices so that

S1S2 =

(
1 a
0 1

)(
1 b
0 1

)
=

(
1 a + b
0 1

)
= S2S1.

This indicates that the existence of type II solutions are more subtle.

Proposition 4.5. If ` is even, there will be no corresponding type I solution to the
mean field equation, though it is still possible that PM ∼= K4.

Proof. The matrices S1 and S2 of the developing map f are necessarily di-
agonalizable. If S1S2 = S2S1 then they are simultaneously diagonalizable,
hence cannot generate a type I relation. �

4.2. The full monodromy in the primitive symmetric case. In this subsec-
tion we assume that ` = N = 2n + 1 and consider only the primitive case
(3.15). For any log-free parameter ({Ai}, B), we associate to it the primitive
generalized Lamé equation

(4.3) w′′ −
(

3
4

`

∑
i=1

℘(z− pi) +
`

∑
i=1

Aiζ(z− pi) + B
)

w = 0.

The condition that all solutions are free from logarithm (at all points pi’s)
is equivalent to that one nontrivial quotient f = w1/w2 has this property.
And this is equivalent to the polynomial system (3.17) and (3.19) for Ai’s
and B.

We have seen that PM ∼= K4 in Proposition 4.1 and we may choose f to
construct a type I solution to (3.15). It remains to determine M.

We will prove a monodromy theorem for equation (4.3), which is free
from logarithmic solutions, using the method of logarithmic-free deformations
to deform the equation to a symmetric one. Namely

d2w
dz2 − H(z)w = 0 with H(−z) = H(z),

which is still free from logarithmic solutions.

Lemma 4.6. Let ` = 2n + 1 with pi’s all distinct, pn+i = −pi for i = 1, . . . , n,
and p2n+1 = 0. Then there are 2n logarithmic free parameters ({Ai}, B)’s with
An+i = −Ai for i = 1, . . . , n and A2n+1 = 0. That is, H(−z) = H(z).



ALGEBRAIC METHODS IN PERIODIC SINGULAR LIOUVILLE EQUATIONS 35

Proof. Under the assumption An+i = −Ai, (3.17) becomes A2n+1 = 0 and
the system (3.19) reduces to a system of n quadratic equations in n + 1 vari-
ables A1, . . . , An, B, together with a linear equation:

−2
n

∑
i=1

Aiζ(pi) + B + 3
2

n

∑
i=1

℘(pi) = A2
2n+1 = 0.

The reduced system has no infinity solutions. Hence the number of solu-
tions counted with multiplicities coincide with its Bézout degree 2n. �

Remark 4.7. For symmetric singular source divisor L, there are log-free pa-
rameters ({Ai}, B)’s which do not satisfy An+i = −Ai in any reordering.

Theorem 4.8. Let ` = 2n + 1. There are 2n out of the 22n log-free values of
({Ai}, B), constructed from the system (3.17) and (3.19), such that the 2n type I
solutions to the mean field equation (3.15) are deformed from the symmetric (even)
type I solutions with respect to symmetric singular source L = ∑ pi.

For these 2n cases, the full monodromy group M is finite with |M| = 2n+3.

Proof. Consider the projective monodromy representations

ρ = ρ({pi}, {Ai}, B) : π1(E\{p1, . . . , p2n+1})→ PGL(2, C)

of equation (4.3). The first simple observation is that each local projective
monodromy around pi is trivial. Indeed, by (4.2), this holds at any dou-
ble pole p with coefficient η(η + 1), η ∈ 1

2 Z since we assume logarithmic
freeness. Thus the representation descents to

ρ = ρ({pi}, {Ai}, B) : π1(T)→ PGL(2, C).

By the continuous dependence of ODE in its parameters, we see that ρ is
continuous in pi’s as long as pi 6= pj for all i 6= j, and with the logarithmic-
freeness being preserved.

Lemma 4.9. Denote π1(T) = 〈a, b〉 ∼= Z⊕2. If there is a ({pi}, {Ai}, B) so that
Im ρ ∼= K4, namely ρ(a)2 = ρ(b)2 ≡ I2 with both ρ(a) and ρ(b) non-trivial,
then this holds true for any of its logarithmic free deformations as described above.
Namely, the Klein four-group representation in PGL(2, C) is rigid.

Proof. This follows from a straightforward matrix calculation.
Let A = ρ(a) and B = ρ(b) in PSL(2, C). We may assume that

A =

(
a b
0 a−1

)
, B =

(
p q
r s

)
.

Then AB = µBA, µ ∈ C× implies that

ap + br = µap

aq + bs = µbp + µa−1q

a−1r = µar

a−1s = µbr + µa−1s.
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Case (i) If r = 0 then µ = 1, s = p−1, and b(p− p−1) = q(a− a−1).
(i)-1: If a 6= a−1, i.e. a 6= ±1, then A can actually be diagonalized and

b = 0, hence q = 0. By symmetry the case with p 6= p−1 is handled similarly
and we are left with the case:

(i)-2: a = ±1 and p = ±1, b and q are arbitrary.
Case (ii) If r 6= 0 then µ = a−2.
(ii)-1: Again if a 6= a−1 then we may assume that b = 0. Then ap = µap

implies that p = 0. Hence a4 = 1 and then a = ±i. The last equation forces
s = 0 and so r = −q−1. If we rescale the bases e1, e2 to qe1, e2, then

A = ±i
(

1 0
0 −1

)
, B =

(
0 1
1 0

)
.

This gives K4 ⊂ PGL(2, C).
(ii)-2: If on the other hand a = ±1 and so µ = 1, we may assume a = 1

and then b = 0. Thus A = I2 and B is arbitrary.
Notice that under such classifications, the cases (i)-1, (i)-2 and (ii)-2 are all

contained in the upper triangular cone and the case (ii)-1 is the K4 represen-
tation of Z2 which appears to be an isolated point and can not be deformed
to the other cases. The proof is complete. �

By lemma 4.6, as far as the monodromy group is concerned, we may as-
sume that we are in the symmetric situation centtered at the origin: pn+i =
−pi for 1 ≤ i ≤ n and p` = p2n+1 = 0. We will investigate the monodromy
groups in more details by descending the equation to P1 ∼= S2 under the
double covering ℘ : T → P1. The argument proceeds as in [2] on Lamé
equation with only one singular point z = 0.

Let E be given by the Weierstrass equation under (x, y) = (℘(z),℘′(z)):

y2 = p(x) = 4x3 − g2x− g3 = 4
3

∏
i=1

(x− ei).

We write H(z) = h(x) with h being meromorphic (rational) on P1. Then

dw
dz

=
dw
dx

dx
dz

=
dw
dx

℘′(z),

d2w
dz2 =

d2w
dx2 ℘

′(z)2 +
dw
dx

℘′′(z) = p(x)D2w + 1
2 p′(x)Dw,

where D = d/dx. Thus the equation descends to

(4.4) p(x)D2w + 1
2 p′(x)Dw− h(x)w = 0 on P1,

or equivalently,

D2w +
1
2

3

∑
i=1

1
x− ei

Dw− 1
4

h(x)

∏3
i=1(x− ei)

w = 0.

By assumption and by (4.2), all poles of h(x) contribute only local mon-
odromy −I2 and in particular trivial projective monodromy (unless the
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pole is ei for some i which is excluded in our case). Hence all projec-
tive monodromy are generated by the local momodromy matrices at x =
e1, e2, e3 and x = ∞. Denote them by σ1, σ2, σ3, and σ∞ respectively. We
have σ1σ2σ3σ∞ ≡ I2 ∈ PGL(2, C).

Since h(x) has no poles at ei’s, the indicial equation at x = ei is then

λ(λ− 1) + 1
2 λ = λ(λ− 1

2 ).

This shows that σi has eigenvalues 1,−1. It is a reflection and σ2
i = I2.

Remark 4.10. The above geometric construction (double cover descent) cor-
responds to the algebraic decomposition ρ(a) = σ1σ−1

∞ and ρ(b) = σ2σ−1
∞ .

The abelian relation ab = ba leads to σ1σ2σ∞ = σ∞σ2σ1.

At x = ∞ = ℘(p`), using t = 1/x we get the indicial equation

λ2 − 1
2 λ− 1

4 µ(µ + 1) = (λ + 1
2 η)(λ− 1

2 (η + 1)),

where H(z) = η(η + 1)/z2 + · · · . For η = n` +
1
2 , the eigenvalues are both

−i for n` even (e.g. n` = 0 in the current case), and they are both i for n`

odd. In any case, σ∞ is a scalar multiplication of order 4 and σ∞ ≡ I2 in
PGL(2, C).

Thus σ1σ2 ≡ σ2σ1. Alternatively, σ1σ2σ3 ≡ I2 =⇒ σ1σ2 ≡ σ3. And then
σ3 = σ−1

3 = σ−1
2 σ−1

1 = σ2σ1. In particular, σ1σ2 ≡ σ2σ1. Hence PM ∼=
Z2 ×Z2 = K4 is the abelian group generated by σ1 and σ2 as expected.

It also follows that |M| = 16× 2n on P1 and |M| = 8× 2n on E. �

Remark 4.11. (1) Whenever η ∈ 1
2 N, the local projective monodromy at

z = 0 is trivial. By the uniqueness theorem for ODE, we see that the
solution quotient f = w1/w2 is symmetric under z 7→ −z.

(2) If η = n` ∈ N instead, then the eigenvalues are 1,−1 for n` even,
and −1, 1 for n` odd. In any case σ∞ is a reflection and σ2

∞ = I2.
(3) If ei is a pole of h(x) of order 2 with coefficient ηi(ηi + 1), then the

situation is analogous to the case x = ∞ since abstractly they are
just the branch points of ℘ : E → P1. If ηi = ni +

1
2 , we get σi ≡ I2.

If ηi = ni, then as in the previous remark σi is still a reflection. Thus,
in order to get PM ∼= K4, we should not allow any pi to be deformed
to 1

2 Λ if we keep pi 6= pj for all i 6= j.

5. TOWARDS GENERALIZED LAMÉ CURVES

The structure of the primitive mean field equation (3.15) depends on the
parity of ` ∈N in a crucial manner. Hence we separate the discussions into
two subsections according to the parity of `.

5.1. Algebraic degree for ` being odd. Recall the following special case of
Theorem 3.5 in the primitive case.

Theorem 5.1. For primitive singular source L with ` := deg L = 2n + 1 being
odd, the point Q is an isolated zero of (3.20) with multiplicity 2l−1 = 22n.
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Below we will give a more transparent proof of it to motivate our later
discussion on the case ` = 2n. We first give its corollary:

Corollary 5.2. If ` = 2n + 1 is odd then the number of solutions ({Ai}, B)
counted with multiplicities is finite and equals 2`−1 = 22n.

Proof of Corollary. The Bézout number of the projective system is 2`. Hence
the actual algebraic degree, namely the number of solutions of the original
affine system counted with multiplicities, is given by

2` − 2`−1 = 2`−1.

Notice that the affine solutions must form a discrete set. Indeed, if there
is a positive dimensional locus Z of solutions in the affine piece C`+1, it
will intersect the infinity hyperplane nontrivially, namely Q ∈ Z̄. But this
contradicts to the fact that Q is an isolated zero. �

The idea of the proof to the theorem is to use implicit function argument:
since the point Q has coordinates x = 0, we first eliminate x` from the
system by x` = −(x1 + · · ·+ x`−1), and then substitute x0 by higher order
terms using f`(x) = 0:

x0 = (x1 + · · ·+ x`−1)
2 − x0 ∑

j 6=l
ζl jxj − 3

4℘lx2
0.

If the resulting equations f̂i(x1, · · · , x`−1) = 0 for i = 1, . . . , `− 1 give in-
dependent equations, i.e. Q is isolated, the multiplicity at Q can then be
calculated in the complete local ring at x = 0 as

dim C[[x1, . . . , x`−1]]/(x2
1, . . . , x2

`−1) = 2`−1

since the representatives of the quotient ring are ∏`−1
i=1 xmi

i , mi = 0, 1.
More precisely, consider a neighborhood of Q so that |xi| < ε << 1 for

all i = 0, . . . , `. If fi(x) = 0 for i = 1, . . . , ` and x0 6= 0, then

(5.1) xi = x1/2
0

(
1 + ∑

j 6=i
ζijxj +

3
4℘ix0

)1/2
= x1/2

0 (1 + O(ε)).

But then the odd-numbered sum f0(x) = ∑2n+1
i=1 xi is close to a non-zero

integer multiple of x1/2
0 and is not zero. Thus Q is isolated.

We shall however analyze the local structure at Q more carefully so that
it can also be applied to the case when ` = 2n is even.

Proof of Theorem 5.1. We use the convention ζii = 0. Then f`(x) = 0 gives

(5.2) x0 = x2
` − x0 ∑ ζl jxj − 3

4℘`x2
0.

After substitution by this expression into fi(x) = 0 for i = 1, . . . , `− 1,

(5.3) f̃i = x2
i − x2

` − x0 ∑(ζij − ζl j)xj − 3
4 (℘i − ℘l)x2

0.

By iteration, the terms in (5.3) with x0 becomes of order three or more. More-
over the terms stabilized in finite powers only if it contain x2k

` for some
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k ≥ 1. At the beginning, f̃i is not a Morse function since its quadratic part
contains only two directions xi and x`. But in the above limit (or comple-
tion), we get f̃i = x2

i − x2
` + x2

`gi(x). In particular its behavior is controlled
by the degenerate quadric

Qi := x2
i − x2

` = (xi + x`)(xi − x`) =: L+
i L−i , i = 1, . . . , `− 1,

with the global constraint L` := x1 + · · ·+ x` = 0.
The intersections at Q is linearized to the union of 2`−1 intersections of `

hyperplanes
L±1 = 0, L±2 = 0, · · · , L±`−1 = 0, L` = 0.

For each fixed choice of the set of ` hyperplanes, it is clear that xi = ∓x`
and hence xi = 0 for all i when ` is odd. The intersection is transversal
since otherwise there will be non-trivial kernels. The proof is completed by
noting the additive property of intersection numbers. �

5.2. Integrability for ` being even. If ` = 2n is even, the system admits
non-trivial kernels (non-transversal) if and only if there are precisely n− 1
equations L−i ’s which are selected (so xi = x`). Moreover the kernel is one-
dimensional given by (after reordering)

x1 = · · · = xn = −xn+1 = · · · = −x2n,

i.e., the line t(1, · · · , 1,−1, · · · ,−1), t ∈ C.
This implies that the solutions variety V = {(A1, . . . , A2n, B)} is at most

a union of curves, all intersecting the infinity hyperplane at Q, and a finite
number of points.

There are special cases (primitive symmetric cases) where it is easy to
conclude that V contains curve components.

Example 5.3 (Center o of pi’s). Let ` = 2n be even.
For n = 1, we get A2 = −A1 and the two quadratic equations for A1 and

A2 coincide since ℘12 = ℘21. It is

A2
1 = ζ12A1 + B + 3

4℘12.

More generally, for n ∈ N, if there is a center o ∈ T such that {pi − o} =
{−(pi − o)}, or after reordering

pn+i − o = −(pi − o) for i = 1, . . . , n,

(such a center o always exists for n = 1) then there are special symmetric
solutions with An+i = −Ai for i = 1, . . . , n.

Indeed, equation (3.17) is satisfied trivially, and the system (3.19) reduces
to a system of n quadratic equations on n + 1 variables A1, . . . , An and B.
This defines a curve Vn ⊂ Cn which is compactified to V̄n ⊂ Pn by adding
the point Q at infinity.

Nevertheless, the curve components in V might exist in the general non-
symmetric cases. This requires a detailed study on the system in (3.20).
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Let C be the curve in C2n+1 defined by the 2n quadratic equations in
(3.20) and H be the hyperplane defined by the linear equation ∑2n

i=1 xi = 0
which will be called the global constraint. To see if there are curve compo-
nents in V we need to analyze whether the kernel lines integrate to analytic
curves near Q. Equivalently we ask if there are irreducible components of
C which lie in H completely. In doing so, by (5.1), we take a branch of
x1/2

0 as the parameter t, and try to solve a curve germ of C near Q by (after
another reordering by alternating signs for convenience):

(5.4) xi(t) = (−1)i
∞

∑
k=1

ai,ktk, ai,1 = 1, i = 1, . . . , 2n,

subject to the global constraints in all degrees

(5.5)
2n

∑
i=1

(−1)iai,k = 0 for all k ∈N.

Now (3.20) reads as, for i = 1, . . . , 2n,

(5.6)
( ∞

∑
k=1

ai,ktk
)2

= t2
2n

∑
j=1

ζij(−1)j
∞

∑
k=1

aj,ktk + t2 + 3
4℘it4,

which leads to a recursive relation that uniquely determines ai,k inductively
in k and for all i, hence it determines the germ (xi(t)).

The process works for any of the 22n/2 = 22n−1 curve germ of C near Q.
But there are only C2n

n /2 choices of such germs (xi(t)) starting at (xi(0)) =
Q = 02n ∈ C2n+1 whose tangent lines at Q lie in H. So the problem is on
the global constraints (5.5) for k ≥ 2.

To simplify the appearance of various signs, we define

(5.7) ζ̂ij = (−1)jζij, ζ̂i = ∑
j

ζ̂ij,

where we always set the meaningless terms to be zero: ζii = 0 = ℘ii.
The t2 terms correspond trivially as both are just t2. The t3 terms give

(5.8) 2ai,2 = ∑
j
(−1)jζijaj,1 = ζ̂i.

Then 2 ∑(−1)iai,2 = ∑(−1)i+jζij = 0 by the skew-symmetry of ζij.
The t4 terms give 2ai,3 + a2

i,2 = ∑j ζ̂ijaj,2 +
3
4℘i, i.e.

(5.9) ai,3 = 1
4 ∑

j,k
ζ̂ij ζ̂ jk − 1

8 ζ̂2
i +

3
8℘i.
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Then we require that

∑
i
(−1)iai,3

= 1
4 ∑

i,j,k
(−1)i ζ̂ij ζ̂ jk − 1

8 ∑
i,j,k

(−1)i ζ̂ij ζ̂ik +
3
8 ∑

i
(−1)i℘i

= 3
8

(
∑

i
(−1)i℘i −∑

i
(−1)i ζ̂2

i

)
= 0,

(5.10)

where we have used ∑(−1)i+j+kζijζ jk = −∑(−1)i+j+kζijζik.

Example 5.4. For ` = 4 (n = 2), equation (5.10) says that

2(℘24 − ℘13) = −(ζ12 − ζ13 + ζ14)
2 + (−ζ21 − ζ23 + ζ24)

2

− (−ζ31 + ζ32 + ζ34)
2 + (−ζ41 + ζ42 − ζ43)

2.
(5.11)

The latter is factorized into
(−2ζ21 − ζ23 + ζ24 − ζ13 + ζ14)(−ζ23 + ζ24 + ζ13 − ζ14)

+ (−ζ41 + ζ42 − 2ζ43 − ζ31 + ζ32)(−ζ41 + ζ42 + ζ31 − ζ32)

= (−2ζ21 + 2ζ24 − 2ζ13 + 2ζ43)(ζ13 + ζ24 − ζ14 − ζ23)

= 2(ζ24 − ζ13 + ζ12 − ζ34)(ζ24 + ζ13 − ζ14 − ζ23).

Hence we require that

(5.12) ℘24 − ℘13 = (ζ24 − ζ13 + ζ12 − ζ34)(ζ24 + ζ13 − ζ14 − ζ23).

It turn out that (5.12) is an identity. This can be seen by viewing both
sides as elliptic functions in z := p2. A Laurent/Taylor expansion shows
that the principal parts (including the constant terms) of the common pole
at z = a4 coincide. (Here we need the fact that (ζ(a) + ζ(b) + ζ(c))2 =
℘(a) + ℘(b) + ℘(c) if a + b + c = 0.) The extra poles at z = p1 and z = p3
are cancelled out by the corresponding vanishing of the other factor.

The compactified curve C̄ ⊂ P2n+1 has degree 24 = 16. It has 24/2 = 8
tangent lines at Q. Among them, there are C4

2/2 = 3 lines which lie in H
completely. By the identity (5.12), each of the corresponding curve germs
has intersection multiplicity with H at Q at least 4.

We conclude that some component of C lies in H. This follows from the
fact that the total intersection multiplicity of C at Q is at least

(8− 3)× 1 + 3× 4 = 5 + 12 = 17 > 16 = deg C.

We remark that a straightforward, though notationally more involved,
extension of the argument in Example 5.4 shows that (5.10) holds:

Lemma 5.5. The following elliptic function identity holds unconditionally:

(5.13) ∑
i
(−1)i℘i ≡ 2

(
∑

i<j, even
℘ij − ∑

i<j, odd
℘ij

)
= ∑

i
(−1)i ζ̂2

i .

Hence the multiplicity of (xi(t)) at Q along each of the C2n
n choices of tangent

directions is at least 4.
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However this is not enough to conclude that V contains non-trivial curve
components V0 ⊂ C for any n ≥ 3. Indeed, the conclusion will follow if

( 1
2 22n − 1

2 C2n
n ) + 1

2 C2n
n × 4 > 22n.

That is, if 3C2n
n > 22n. This fails for n ≥ 3 by a direct check.

For general t2+k terms with k ≥ 3, we have the recursive formula

(5.14) ai,k+1 = 1
2 ∑

j
ζ̂ijaj,k − 1

2

k

∑
p=2

ai,pai,k+2−p.

So the global constraint is

0 = ∑
i
(−1)iai,k+1 = 1

2 ∑
i,j
(−1)i ζ̂ijaj,k − 1

2

k

∑
p=2

∑
i
(−1)iai,pai,k+2−p.

For k = 3 both summands in the RHS are equal since by (5.8)

−∑
i
(−1)iai,2ai,3 = − 1

2 ∑
i,j
(−1)i ζ̂ijai,3 = 1

2 ∑
i,j
(−1)j ζ̂ jiai,3.

Hence the equation 0 = ∑(−1)iai,4 = ∑i,j(−1)i ζ̂ijaj,3 becomes

0 = 1
4 ∑

i,j,k,m
(−1)i ζ̂ij ζ̂ jk ζ̂km − 1

8 ∑
i,j
(−1)i ζ̂ij ζ̂

2
i +

3
8 ∑

i,j
(−1)i ζ̂ij℘i.

The first term equals 1
4 ∑i,j,k,m(−1)i+j+k+mζijζ jkζkm which vanishes by re-

versing the indices (i, j, k, m) 7→ (m, k, j, i). Hence the constraint becomes

(5.15) ∑
i
(−1)i ζ̂3

i = 3 ∑
i
(−1)i ζ̂i℘i.

Similarly, for k ≥ 4, the global constraint can be written as

∑
i
(−1)iai,k+1 = ∑

i,j
(−1)i ζ̂ijaj,k − 1

2

k−1

∑
p=3

∑
i
(−1)iai,pai,k+2−p = 0.

Question 5.6. What are the precise conditions on pi’s in solving these com-
patibilities equations ∑(−1)iai,k = 0 for all k? Is equation (5.15) (for t5) an
elliptic function identity?

We conclude this section by stating a conjecture on the variety V even
for the non-primitive case:

Conjecture 5.7. For any L = ∑N
i=1 `i pi with ` = deg L being even. The log-free

variety V consists of a finite number of curves and points. Moreover, there are
always non-trivial curve component V0 ⊂ V.

With the existence of the curve component V0, we may then defined the
generalized Lamé curve to be the branched double cover YL → V0 which
parametrizes the log-free solutions of the generalized Lamé equation (4.1).
The next question is then to seek for possible extensions of the theory of
pre-modular forms as in the N = 1 case.
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APPENDIX A. A REMARK ON THE CLASSICAL APPROACH TO Zn

A “two stpes” approach to the determination of Z2 and Z3 based on the
addition law (A.1) and a classical cubic identity (A.3) of elliptic functions
was developed in [7]. One might hope that a more sophisticated appli-
cation of the Frobenius–Stickelberger type identities (e.g. [17, p.458]) may
lead to a construction of Zn for n ≥ 4. The purpose of this appendix is to
show that this classical approach fails for all n ≥ 4 (see Proposition A.4).

A.1. Explicit constructions for n = 2, 3. We describe the first two cases
n = 2, 3 in this subsection using a “two steps” procedure.

Example A.1 (n = 2). For z = z2(a1, a2), we have on X2:

W2(z) = z3 − 3℘(a1 + a2)z− ℘′(a1 + a2) = 0.

This is essentially equivalent to the addition law:

(A.1) z2 = ℘(a1 + a2) + ℘(a1) + ℘(a2).

In particular, the weight 3 pre-modular form is

Z2(σ; τ) = W2(Z) = Z3(σ)− 3℘(σ)Z(σ)− ℘′(σ).

We start by applying the symmetrized operator δ := 1
2 (∂a1 + ∂a2) to z :=

ζ(σ)− ζ(a1)− ζ(a2) sucessively to get

δz = 1
2 (℘(a1) + ℘(a2))− ℘(σ),

δ2z = 1
4 (℘

′(a1) + ℘′(a2))− ℘′(σ).

We rewrite (A.1) in the following admissible form:

(A.2) z2 = A2(δz) := 3℘(σ) + 2δz.

Then 2zδz = 3℘′(σ) + 2δ2z = ℘′(σ) + 1
2 (℘

′(a1) + ℘′(a2)). Hence

z3 = 3℘(σ)z + 2zδz = 3℘(σ)z + ℘′(σ) + 1
2 (℘

′(a1) + ℘′(a2)).

On X2 this reduces to W2(z) = 0. We emphasize that only (A.2) is used.

Example A.2 (n = 3). For z = z3(a), we have on X3:

W3(z) = z6 − 15℘z4 − 20℘′z3 + ( 27
4 g2 − 45℘2)z2 − 12℘′℘z− 5

4℘
′2 = 0.

Here ℘ and ℘′ are evaluated at σ = ∑3
i=1 ai.

Hence, Z3(σ; τ) = W3(Z) is of weight 6.

The derivation of W3(z) is more involved. It consists of two steps. The
first step is the following classical identity. We supply a detailed proof of
it since a variant of the proof will be used for our later discussions on the
general cases n ≥ 4.

Lemma A.3 (c.f. [17, p.459]). For z = ζ(σ)−∑3
i=1 ζ(ai) with σ = ∑3

i=1 ai,

(A.3) z3 = 3(℘(σ) + ∑℘(ai))z + (℘′(σ)−∑℘′(ai)).



44 CHIN-LUNG WANG

Proof. We will prove it by viewing both sides as functions of s = a3 and
by comparing the principal parts on both sides. In doing so we emphasize
that the case n = 2 is used in an essential way.

For a better presentation on signs we work on f = −z3. Let σ2 = a1 +
a2 and f2 = −z2 = ζ(a1) + ζ(a2) − ζ(σ2). In the following, all elliptic
functions are evaluated at s = σ2 if not written explicitly. Then

f = ζ(a) + ζ(b) + ζ(s)− ζ(σ2 + s) =
1
s
+ f2 + ℘ s + 1

2℘
′s2 + O(s3),

by noting ζ(s) = 1/s + O(s3).
We want to compare

f3 =
1
s3 +

3f2

s2 +
3f2

2 + 3℘
s

+ f3
2 + 6f2℘+ 3

2℘
′ + O(s)

with (all summations are for i = 1, 2)

3
(

∑℘(ai) + ℘(s) + ℘(σ2 + s)
)

f +
(

∑℘′(ai) + ℘′(s)− ℘′(σ2 + s)
)

= 3
( 1

s2 + (∑℘(ai) + ℘) + ℘′s
)(1

s
+ f2 + ℘ s + 1

2℘
′s2
)

+
−2
s3 + (∑℘′(ai)− ℘′) + O(s)

=
1
s3 +

3f2

s2 +
3(∑℘(ai) + ℘) + 3℘

s
+ 3(∑℘(ai) + ℘)f2 +

9
2℘
′ + (∑℘′(ai)− ℘′) + O(s).

Now the case for n = 2 in (A.1) says that f2
2 = ∑℘(ai) + ℘. Thus the s−1

terms match and the equality for the constant terms is equivalent to

(A.4) f3
2 = 3℘ f2 − (℘′ + 1

2 ∑℘′(ai)).

By symmetric differentiation, the n = 2 case implies also

(A.5) ℘′ + 1
2 ∑℘′(ai) = δ(f2

2) = 2f2δf2 = 2f2(℘− 1
2 ∑℘(ai)).

Thus the right hand side of (A.4) equals

f2(℘+ ∑℘(ai)) = f3
2,

which is precisely the left hand side.
This identifies the principal parts at the pole s = 0. For the other pole

s = −(a1 + a2) the comparison follows from the case s = 0 under the
symmetry s 7→ −(a1 + a2)− s. This proves the lemma. �

The important thing we learn from the above proof is in the last step: The
formula (A.5) is a non-monic polynomial relation for f2 which has lower
degree than the monic one (whose minimal degree is 2). Though (A.5) is
merely a symmetric analogue of the addition law for ζ:

z2 = ζ(a1 + a2)− ζ(a1)− ζ(a2) =
1
2
℘′(a1)− ℘′(a2)

℘(a1)− ℘(a2)
,



ALGEBRAIC METHODS IN PERIODIC SINGULAR LIOUVILLE EQUATIONS 45

it allows us to deduce higher monic polynomial relations like (A.4).
In the same way, by applying δ := 1

3 ∑3
i=1 ∂ai to (A.3), we may compute

δz3 = 3z2δz in both ways to get a non-monic degree 2 relation

(℘− 1
3 ∑℘i)z2 = −(℘′ − 1

3 ∑℘′i)z− 1
3 (℘

′′ − 1
3 ∑℘′′i ) + (℘+ ∑℘i)(℘− 1

3 ∑℘i).

Here ℘i := ℘(ai) and the sum is from 1 to 3.
By multiplying z to (A.3) and replace z2 terms which involve ∑℘i by the

above relation, we get a degree 4 monic relation

z4 = 12℘z2 + (10℘′ − 2 ∑℘′i)z + 3(℘′′ − 1
3 ∑℘′′i )− 9(℘+ ∑℘i)(℘− 1

3 ∑℘i).

It is unclear if we may proceed in this way to eventually get an expression
involving σ only. Our second step towards the proof of Example A.2 is a
more systematic usage of the symmetrized derivatives.

Proof of Example A.2. Before we apply δ := 1
3 ∑3

i=1 ∂ai to (A.3) successively,
we need to first have a good sense about the expression δrz for r ∈ N. We
compute

δz = 1
3 ∑℘(ai)− ℘(σ),

δ2z = 1
9 ∑℘′(ai)− ℘′(σ),

δ3z = 2
9 ∑℘2(ai)− 1

18 g2 − ℘′′(σ),

δ4z = 4
27 ∑℘(ai)℘

′(ai)− ℘′′′(σ).

(A.6)

The key observation is that, δ2z and δ4z are good terms (which depend on
σ only) allowed in our calculations, while δz and δ3z are terms not allowed
in our final formula which need to be replaced by known terms.

Now, in terms of δrz in (A.6), we rewrite (A.3) as

(A.7) z3 = A3(δ
∗z) := 12℘z + 9zδz− 8℘′ − 9δ2z.

Here, and in the following, all ℘ and its derivatives are evaluated at σ. This
implies that zδz is indeed a sum of good terms.

By applying δ to (A.7) we get

3z2δz = 12℘′z + 12℘δz + 9(δz)2 + 9zδ2z− 8℘′′ − 9δ3z.(A.8)

By multiplying z2 to (A.8), it follows that z2δ3z is a sum of good terms.
By applying δ to (A.8) we get

6z(δz)2 + 3z2δ2z = 12℘′′z + 24℘′δz + 12℘δ2z

+ 27δzδ2z + 9zδ3z− 8℘′′′ − 9δ4z.
(A.9)

By multiplying z to (A.9) we find that all the terms appeared are now good
terms. Hence it give rise to the polynomial W3(z) by explicit substitution.
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In fact in this last step we have δ2z = −℘′ and δ4z = −℘′′′ on the curve
X3. Thus we have

9zδz = z3 − 12℘z− ℘′,

92z2δ3z = −2z6 + 24℘z4 + 28℘′z3 − 72℘′′z2 + 12℘℘′z + ℘′2.

Then we get W3(z) by a straightforward manipulation with (A.9). �

A.2. A remark on n ≥ 4. A closer look at the proof of Example A.2 shows
that the overall important equation to start with is not the classical polyno-
mial identity (A.3) in z. Instead, the polynomial equation (A.7) on z and δz
with admissible coefficients (depending only on σ) is what we really need for
the proof. (For simplicity we use the notation A(δ∗z) for it.)

To the authors’ knowledge, historically a reasonably clean polynomial
identity of degree n with symmetric coefficients in ai’s like (A.1) and (A.3)
was unknown for n ≥ 4. For n = 4, naive generalization of the proof
of Lemma A.3 to get a degree 4 polynomial fails immediately. Thus we
try to get an admissible equation in z and δiz’s instead. (These two type of
expressions are equivalent by (A.10) below.) As a result, we will be able to
prove that the degree 4 polynomial indeed does not exist.

Notice that while z = ζ(∑ ai)−∑ ζ(ai) is symmetric in the last variable
s = an under s 7→ −σn = −σn−1 − s,

δz =
1
n ∑n

i=1 ℘(ai)− ℘(σn)

breaks such a symmetry. It thus distinguishes the two poles s = 0 and
s = −σn−1 which is a key property we shall use.

As usual, we have wt(℘(j)) = j + 2, wt(z) = 1 and wt(δz) = 2. Since

(A.10) δr+1z =
1

nr+1 ∑n
i=1 ℘

(r)(ai)− ℘(r)(σn),

we see that ∑℘(r)(ai) = nr+1(δr+1z+℘(r)(σn)) is admissible of weight r+ 2
for all r ≥ 0. By the elementary properties of ℘ function, this is equivalent
to that ∑℘j(ai) (of weight 2j) and ∑℘j(ai)℘

′(ai) (of weight 2j + 1), j ≥ 0,
are all admissible. (We notice that admissible terms of odd weights are good
terms when we restrict to Xn.) As before, we denote by ℘ (without variable)
the admissible term ℘(σn), and similarly for other elliptic functions.

We have already shown in (A.2) and (A.7) that

z2
2 = 2δ2z2 + 3℘(σ2),

z3
3 = 9z3δ3z3 − 9δ2

3z3 + 12℘(σ3)z3 − 8℘′(σ3).

However, a naive generalization of this is not true for n ≥ 4:

Proposition A.4. For all n ∈N≥4, there is no admissible polynomial equation

zn = An(δ
∗z).

Here An is homogeneous of weight n with coefficients in Q[℘(j)]j=0,...,n−2.
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Proof. Let n ≥ 2, z = zn, σ = σn, δ = δn, and s = an+1. We omit the
argument in a function if it is evaluated at σ. Near the pole s = 0,

zn+1 = z− ζ(s) + ζ(σ + s)− ζ(σ)

= −1
s
+ z− ℘ s− 1

2℘
′s2 −

( 1
6℘
′′ − 1

60 g2
)
s3 + · · · .

Since δn+1 = n
n+1 δ + 1

n+1 ∂s, we have for k ≥ 1

δk
n+1zn+1 = nk

(n+1)k (δ
kz + ℘(k−1)) + 1

(n+1)k ℘
(k−1)(s)− ℘(k−1)(σ + s)

= (−1)k−1k!
(n+1)k

1
sk+1 +

(
nk

(n+1)k δkz +
( nk

(n+1)k − 1
)
℘(k−1) + (k−1)!

(n+1)k ck−1

)
−∑j≥1

(
1
j!℘

(k+j−1) − (k+j−1)!
(n+1)k j! ck+j−1

)
sj,

where ℘(z) = z−2 + ∑j≥2 cjzj, c2 = 1
20 g2, c4 = 1

28 g3, and c2i+1 = 0 for all i.
Notice that the principal part has only one term.

Now let n = 3, and we will prove the case for n + 1 = 4. We have

z2
4 =

1
s2 −

2z
s
+ (z2 + 2℘) + (℘′ − 2℘z)s

+ (℘2 − ℘′z + 1
3℘
′′ − 1

30 g2)s2 + O(s3),

δ4z4 = 1
4

1
s2 + ( 3

4 δz− 1
4℘)− ℘′s− ( 1

2℘
′′ − 1

80 g2)s2 + O(s3),

δ2
4z4 = − 1

8
1
s3 + ( 9

16 δ2z− 7
16℘

′)− (℘′′ − 1
160 g2)s + O(s2)

δ3
4z4 = 3

32
1
s4 + ( 27

64 δ3z− 37
64℘

′′ + 1
640 g2) + O(s).

Hence (we still denote δ4 by δ for simplicity)

z2
4δz4 =

1
4s4 −

z
2s3 + ( 3

4 δz + 1
4 z2 + 1

4℘)
1
s2 − ( 3

4℘
′ + 3

2 zδz)
1
s

+ 3
4 z2δz + 3

2℘ δz− 1
4℘ z2 + 7

4℘
′z− ( 5

12℘
′′ + 1

4℘
2 − 1

240 g2) + O(s),

z4δ2z4 =
1

8s4 −
z

8s3 +
℘

8s2 + ( 1
2℘
′ − 9

16 δ2z)
1
s

+ 9
16 zδ2z− 7

16℘
′z + ( 49

48℘
′′ − 1

120 g2) + O(s),

(δz4)
2 =

1
16s4 +

3δz− ℘

8s2 − ℘′

2s
+ ( 3

4 δz− 1
4℘)

2 − ( 1
4℘
′′ − 1

160 g2) + O(s).

We would like to represent

z4
4 =

1
s4 −

4z
s3 +

6z2 + 4℘
s2 − 4z3 + 12℘z− 2℘′

s
+ z4 + 12℘z2 + 6(℘2 − ℘′z) + ( 2

3℘
′′ − 1

15 g2) + O(s).

by A4(δ
∗z), whose general form is

az2
4δz4 + bz2

4δ2z4 + cδ3z4 + d(δz4)
2 + e℘ z2

4 + f℘δz4 + g℘′z4 + (h℘′′ + ig2).
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The equations for s−4, s−3, s−2 in z4
4 = A4(δ

∗z) read as

1 = 1
4 a + 1

8 b + 3
32 c + 1

16 d (for 1/s4),

4 = 1
2 a + 1

8 b (for z/s3),

6 = 1
4 a (for z2/s2),

0 = 3
4 a + 3

8 d (for δz/s2),

4 = 1
4 a + 1

8 b− 1
8 d + e + 1

4 f (for ℘/s2).

The middle 3 equations give a = 24, b = −64, d = −48. The first equation
then gives c = 64, an the last equation reduces to

e + 1
4 f = 0.

The equation for s−1 then reads as−4z3− 12℘z+ 2℘′ = (−18℘′− 36zδz)+
(−32℘′ + 36δ2z) + 24℘′ − 2e℘z− g℘′. By collecting terms we get

z3 = 9zδz− 9δ2z + ( 1
2 e− 3)℘z + (7 + 1

4 g)℘′.

Now we plug in the result for z3. By comparing with (A.7) we get e = 30,
g = −60. Hence f = −120.

The final equation for the constant term is given by

z4 + 12℘z2 + 6(℘2 − ℘′z) + ( 2
3℘
′′ − 1

15 g2)

= 24
( 3

4 z2δz + 3
2℘ δz− 1

4℘ z2 + 7
4℘
′z− ( 5

12℘
′′ + 1

4℘
2 − 1

240 g2)
)

− 64
( 9

16 zδ2z− 7
16℘

′z + ( 49
48℘

′′ − 1
120 g2)

)
+ 64( 27

64 δ3z− 37
64℘

′′ + 1
640 g2)

− 48
(
( 3

4 δz− 1
4℘)

2 − ( 1
4℘
′′ − 1

160 g2)
)

+ 30℘(z2 + 2℘)− 120℘( 3
4 δz− 1

4℘)− 60℘′ z + h℘′′ + ig2.

By collecting terms we get

z4 = 18z2δz− 36zδ2z + 27δ3z− 27(δz)2

+ 12℘z2 − 36℘δz + 16℘′z + 75℘2 + (h− 101)℘′′ + (i + 1
2 )g2.

(A.11)

From (A.7), by symmetric differentiation we compute

3z2δz = 9(δz)2 + 9zδ2z− 9δ3z + 12℘′z + 12℘δz− 8℘′′.(A.12)

Multiplying (A.7) by z and substituting z2δz by (A.12), we get

z4 = 9z2δz− 9zδ2z + 12℘z2 − 8℘′z

= 18zδ2z− 27δ3z + 27(δz)2 + 12℘z2 + 36℘δz + 28℘′z− 24℘′′.
(A.13)

On the other hand, by substituting z2δz in (A.11) by (A.12), we get

z4 = 18zδ2z− 27δ3z + 27(δz)2 + 12℘z2 + 36℘δz + 88℘′z

+ 75℘2 + (h− 149)℘′′ + (i + 1
2 )g2.

(A.14)
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Comparing (A.13) and (A.14) we must have

60℘′(σ)z = −99℘2(σ)− (h− 149)℘′′(σ)− (i + 1
2 )g2.

The function z = ζ(a1 + a2 + a3)− ζ(a1)− ζ(a2)− ζ(a3), viewed as a func-
tion in t = a3, has a pole at t = 0. But the right hand side is clearly regular
at t = 0. Hence a contradiction.

This shows that for n = 4 no monic admissible polynomial equations
of degree n for zn may exist. The proof shows also that if An(δ∗z) exists
for some n ∈ N, then An−1(δ

∗z) must also exist by looking at the residue
term in the Laurent expansion of zn

n = An(δ∗zn). By induction this implies
An(δ∗z) does not exists for all n ≥ 4. �

Thus in order to make Theorem 2.9 effective we have to construct the
degree 1

2 n(n + 1) polynomial Wn(z) directly without the intermediate step.
This issue is now resolved in [11] based on the method of resultant.

We conclude the appendix by

Remark A.5. The branched cover Xn → E is in general not a Galois cover.
Namely, Wn(z) does not split into product of linear factors in K(X̄n).

Indeed, for n = 2 we may factorize W2(z) by division to get

W2(z) = (z− z2)(z2 + z2z + (z2
2 − 3℘(σ))).

Thus the other two roots of W2(z) are given by

w± :=
1
2

(
− z2 ±

√
3(4℘(σ)− z2

2)
)

.

We will show that w± are not single valued on X2 for general tori.
The rational function h(a) := 4℘(σ(a))− z2

2(a) has poles of total order
six by [11, Theorem 3.13]. By [11, Example 3.11], if g2 6= 0, they consists
of 3 poles with each of order 2, and for g2 = 0, 02 ∈ X2 is of order 2 and
(q,−q) ∈ X2 with ℘(±q) = 0 is of order 4. In order for w± being single
valued, the zeros of h must also be of even order.

If h(a) = 0 but ℘(σ(a)) 6= 0 for some a ∈ X2, then it is easy to see
that there must be some zeros of h with odd order. Thus we only need to
consider the case that all zeros of h are also zeros of ℘(σ(a)). Since

h(a) = 3℘(a1 + a2)− (℘(a1) + ℘(a2)),

we have ℘(a1) + ℘(a2) = 0 too. The addition theorem then implies that
℘′(a1) = ℘′(a2). But the equation for X2 is given by ℘′(a1) + ℘′(a2) = 0,
hence ℘′(a1) = 0 = ℘′(a2). That is, a1 = 1

2 ωi, a2 = 1
2 ωj and a1 + a2 = 1

2 ωk
is the third half period. Then we get the non-trivial equation ek = 0. Thus
for general E = Eτ, W2(z) does not split into product of linear factors.
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