ON THE MINIMALITY OF EXTRA CRITICAL POINTS OF GREEN FUNCTIONS ON FLAT TORI

CHANG-SHOU LIN AND CHIN-LUNG WANG

ABSTRACT. This is a sequel to [8, 2] to study the geometry of flat tori. In [8], we showed that the solvability of the mean field equation (MFE)

\[\Delta u + e^u = \rho \delta_0 \]

on a flat torus \(E_\tau \) with \(\rho = 8\pi \) is equivalent to the existence of extra pair of critical points \(\pm p \) of the Green function \(G \). And such a pair, if exists, is unique. It was also announced there that \(G \) actually attains its minimum at \(\pm p \). Here our first main result is to confirm this statement by way of the variational form of the MFE. It implies that the solution \(u \) is a minimizer of the corresponding non-linear functional \(J_{8\pi}(u) \) (c.f. (1.1)), hence settles the existence problem of minimizers posed in [12].

We also prove the uniqueness of solution to the MFE when \(0 < \rho < 8\pi \) and get the exact counting result of the number of solutions in terms of the number of critical points of \(G \) when \(\rho \) is close to \(8\pi \). This allows us to analyze the bifurcation structure of the MFE when \(\rho \) crosses \(8\pi \).

CONTENTS

0. Introduction 1
1. On the minimality of extra critical points 3
2. Computations for \(D(\frac{1}{2}\omega_j) \) 7
3. Uniqueness of solutions 10
References 13

0. INTRODUCTION

Consider the flat torus \(E = E_\tau = \mathbb{C}/\Lambda_\tau, \tau = a + bi, b > 0 \) and \(\Lambda = \Lambda_\tau = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \) with \(\omega_1 = 1 \) and \(\omega_2 = \tau \). Let \(G \) be the Green function on \(E \):

\[
\begin{cases}
-\Delta G = \delta_0 - \frac{1}{|E|} & \text{on } E, \\
\int_E G = 0,
\end{cases}
\]

where \(\delta_0 \) is the Dirac measure at the lattice point \(0 \in E \). We continue our study, initiated in [8, 2, 6], on the critical points of \(G \):

\[\nabla G(z) = 0. \]
Since G is an even function on E, all the half-periods ω_k^2 are critical points of G. A critical point p is called a \textit{non-trivial critical point} of G if p is not one of the three half-periods. Clearly, non-trivial critical points appear in pair $\pm p$. It is natural to ask: how many pairs of non-trivial critical points might G have? This has been answered completely in our previous paper [8]:

\textbf{Theorem A.} For any $\tau \in \mathcal{H}$, the Green function $G(z; \tau)$ on the flat torus E_{τ} has at most one pair of non-trivial critical points.

Thus G has either 3 or 5 critical points. Following [8] we denote by Ω_3 (resp. Ω_5) the subset of the moduli $\mathcal{M}_1 = \mathbb{H}/\text{SL}(2, \mathbb{Z})$ where $G(z; \tau)$ on the flat torus E_{τ} has exactly 3 (resp. 5) critical points. See [8, 7] for the actual shape of the (simply connected) domain Ω_5.

What is the nature of those extra critical points? We answer it in the following theorem, which had been announced in [8, §1 Theorem A]:

\textbf{Theorem 0.1.} Suppose that the pair of non-trivial critical points $\{\pm p\}$ of G exists, then $\pm p$ are the minimal points of G.

We will present a proof of it in §1 based on the mean field equation

\begin{equation} \triangle u + e^u = 8\pi \delta_0 \quad \text{on E.} \end{equation}

In fact our proof shows that any solution to (0.3) must be a minimizer of the non-linear functional

$$J_{8\pi}(u) = \frac{1}{2} \int_E |\nabla u|^2 - 8\pi \log \int_E e^{-8\pi G + u}$$

on $u \in H^1(E) \cap \{ u \mid \int_E u = 0 \}$. This completely solves the existence problem on minimizers raised in [12] when the two vortex points collapse into one.

One important application of Theorem 0.1 is the following result:

\textbf{Corollary 0.2.} Suppose that the Green function G has non-trivial critical points, then all the three half periods are saddle points of G. That is, the Hessian of G is non-positive: $\det D^2 G(\omega_k^2) \leq 0$ for $k = 1, 2, 3$.

\textbf{Remark 0.3.} Based on Corollary 0.2, a stronger result is proved in [7]. Namely $\det D^2 G(\omega_k^2) < 0$ for $k = 1, 2, 3$ if G satisfies the hypothesis of Corollary 0.2.

From the Weierstrass elliptic curve model $y^2 = 4x^3 - g_2x - g_3$ of E_{τ}, we know that the half periods $E_{\tau}[2]$ are precisely the branch points of the map $x = \wp(z) : E_{\tau} \to \mathbb{P}^1$. A quantity $D(q)$ defined at any branch point is strongly related to the geometry of E_{τ} at q. In [1, 6] it was proved that if u_k is a bubbling sequence of solutions to (0.3) with $\rho = \rho_k \to 8\pi$ (as $k \to \infty$), $\rho_k \neq 8\pi$ for large k, and with q the blow-up point, then q must be a half period point. In fact, asymptotically

\begin{equation} \rho_k - 8\pi = (D(q) + o(1)) e^{-\lambda_k} \end{equation}
where \(\lambda_k = \max_{E_r} u_k \) and

\[
D(q) := \int_{E_r} \frac{h(z)e^{8\pi(\tilde{G}(z,q) - \phi(q))} - h(q)}{|z - q|^4} - \int_{E_r} \frac{h(q)}{|z - q|^4}.
\]

Here \(h(z) = e^{-8\pi G(z)} \), \(\tilde{G}(z,q) \) is the regular part of the Green function, and \(\phi(q) = \tilde{G}(q,q) \). See §2 for more details. \(D(q) \) plays an important role in the construction of bubbling solutions to (0.3), as well as in other non-linear PDEs, with \(\rho_k \rightarrow 8\pi \). The sign of \(D(q) \) determines the direction where the bubbling may take place, namely \(\rho_k < 8\pi \) or \(\rho_k > 8\pi \). If \(q \) is a not half-period critical point then \(D(q) \) is still defined. But then \(D(q) = 0 \) since \(\rho_k = 8\pi \) for all \(k \) (large).

In general it is difficult to compute \(D(q) \) for a given torus. Nevertheless we will prove the following result in §2:

Theorem 0.4. For any half period \(q \in E_r \), \(\tau = a + bi \), we have

\[
(0.5) \quad D(q) = -4\pi^2 b e^{-8\pi G(q)} \det D^2 G(q).
\]

By Remark 0.3, we have \(D(q) > 0 \) if \(q \) is a saddle point. In particular if \(\tau \in \Omega_5 \) then \(D(q) > 0 \) for all half-periods. For any \(\tau \in \mathbb{H} \), \(D(q) \leq 0 \) if and only if \(q \) is the minimal point.

Combining with a recent technique in analyzing uniqueness of blow-up solutions [11], we will be able to classify all solutions to (0.3) for \(\rho \) in the range \((0,8\pi + \varepsilon_0)\) for some \(\varepsilon_0 > 0 \):

Theorem 0.5. For any torus \(E_r \), there is a small number \(\varepsilon_0 > 0 \) such that

(i) If \(\tau \in \Omega_3 \) then (0.3) has only one solution for \(\rho < 8\pi \), no solution for \(\rho = 8\pi \), and two solutions for \(8\pi < \rho < 8\pi + \varepsilon_0 \).

(ii) If \(\tau \in \Omega_5 \) then (0.3) has only one solution for \(\rho < 8\pi \), infinitely many solutions for \(\rho = 8\pi \), and four solutions for \(8\pi < \rho < 8\pi + \varepsilon_0 \).

In particular, the topological Leray–Schauder degree \(d_\rho \), which is 2 for \(\rho \in (8\pi,16\pi) \) [3, 4, 5, 6], does not reflect the actual number of solutions. The proof is presented in §3, which relies also on the theory of Lamé equations in [2] accompanied with (0.3) as well as the blow-up analysis in [4, 11].

Remark 0.6. In [9] (see also [2]), we proved that (0.3) with \(\rho = 12\pi \) has exactly two solutions on \(E_r \) for \(\tau \neq e^{\pi i/3} \). By Theorem 0.5, we see that when \(\tau \in \Omega_5 \) the bifurcation diagram of (0.3) is complicate for \(\rho \) ranging from \(8\pi \) to \(12\pi \). It is a natural question to ask if (0.3) has exactly two solutions for \(\rho \in (8\pi,16\pi) \) when \(\tau \in \Omega_3 \). Theorem 0.5 also reflects the difficulty in the study the corresponding Lamé equations for the case \(n \notin \frac{1}{2} \mathbb{N} \).

1. ON THE MINIMALITY OF EXTRA CRITICAL POINTS

Theorem 1.1. Let \(p \) be a critical point of \(G \) which is not a half period point, then \(p \) is a minimal point of \(G \).
Proof. Consider the even, normalized, \(L^1 \) Sobolev space

\[
H^1_{ev}(E) = \{ u \in H^1(E) \mid u(-z) = u(z), \int_E u = 0 \}
\]

and the non-linear functional

\begin{equation}
J_\rho(u) = \frac{1}{2} \int_E |\nabla u|^2 - \rho \log \int_E e^{-\rho G + u}, \quad u \in H^1_{ev}(E).
\end{equation}

It is well known that, as a consequence of the Moser–Trudinger inequality, \(J_\rho \) attains its minimum for \(\rho < 8\pi \). Let \(v_\rho \) be a minimizer of \(J_\rho \). Then \(v_\rho \) is an even solution of

\[
\triangle v + \rho \left(\frac{e^{-\rho G + v}}{\int_E e^{-\rho G + v}} - \frac{1}{|E|} \right) = 0 \quad \text{in } E.
\]

By the result of [8], when \(\rho \to 8\pi \), \(v_\rho \) converges to a smooth function \(v \) which satisfies

\begin{equation}
\triangle v + 8\pi \left(\frac{e^{-8\pi G + v}}{\int_E e^{-8\pi G + v}} - \frac{1}{|E|} \right) = 0 \quad \text{in } E.
\end{equation}

It is then obvious that

\[
u(z) = -8\pi G(z) + v(z) - \log \int_E e^{-8\pi G + v}
\]

is an even solution to the Liouville equation

\[
\triangle u + 8\pi e^u = 8\pi \delta_0 \quad \text{in } E.
\]

Since

\[
J_\rho(v_\rho) = \inf_{\varphi \in H^1_{ev}} J_\rho(\varphi),
\]

we have

\[
J_{8\pi}(v) = \inf_{\varphi \in H^1_{ev}} J_{8\pi}(\varphi).
\]

Let \(f \) be the developing map of \(u \), that is,

\[
u(z) = \log \frac{8\pi |f'(z)|^2}{(1 + |f(z)|^2)^2} \quad \text{for } z \in E.
\]

As before, for \(\lambda \in \mathbb{R} \) we define \(u^\lambda \) and \(v^\lambda \) by

\begin{equation}
u^\lambda(z) := \log \frac{8\pi e^{2\lambda}|f'(z)|^2}{(1 + e^{2\lambda}|f(z)|^2)^2} =: 8\pi G(z) + v^\lambda(z) + c^\lambda,
\end{equation}

where the constant \(c^\lambda \) is chosen so that \(\int_E v^\lambda = 0 \). Thus \(v^\lambda \) is also a solution to (1.2) and \(v^\lambda(z) \) blows up at \(z = p \) as \(\lambda \to +\infty \) (i.e. \(p \) is a zero of \(f \)).
Next we would like to compute \(J_{8\pi}(v^\lambda) \). By differentiation with respect to \(\lambda \), we have by (1.2)

\[
\frac{d}{d\lambda} J_{8\pi}(v^\lambda) = \int_E \nabla v^\lambda \cdot \nabla \left(\frac{\partial v^\lambda}{\partial \lambda} \right) - 8\pi \int_E e^{-8\pi \tilde{G} + v^\lambda} \frac{\partial v^\lambda}{\partial \lambda}
\]

\[
= -\int_E (\Delta v^\lambda) \frac{\partial v^\lambda}{\partial \lambda} - 8\pi \int_E e^{-8\pi \tilde{G} + v^\lambda} \frac{\partial v^\lambda}{\partial \lambda}
\]

\[
= -8\pi \left| E \right| \int_E \frac{\partial v^\lambda}{\partial \lambda} = 0.
\]

That is, \(J_{8\pi}(v^\lambda) \) is independent of \(\lambda \). In particular,

\[
(1.4) \quad \lim_{\lambda \to +\infty} J_{8\pi}(v^\lambda) = \inf_{\varphi \in H^1_{ev}} J_{8\pi}(\varphi).
\]

Using (1.4), we shall obtain an upper bound of \(\lim J_{8\pi}(v^\lambda) \) by a choice of suitable test function \(\varphi_\epsilon \).

We fix a half period point \(q \in E \) and small \(\delta > 0 \). For any \(\epsilon > 0 \) we define

\[
\varphi_\epsilon(z) = \begin{cases}
2\log \frac{\epsilon^2/\delta^2 + 1}{\epsilon^2 + |z - q|^2} + 8\pi \tilde{G}(z, q), & \text{if } z \in B_\delta(q), \\
8\pi G(z, q), & \text{if } z \in E \setminus B_\delta(q),
\end{cases}
\]

where

\[
\tilde{G}(z, q) = G(z - q) + \frac{1}{2\pi} \log |z - q|
\]

is the regular part of \(G(z, q) \) which is defined on \(z \in T(0) \), the fundamental domain of \(E \) centered at \(q \). Notice that the above two expressions for \(\varphi_\epsilon(z) \) coincide when \(|z - q| = \delta \). Since \(\tilde{G}(z, q) \) depends only on \(w = z - q \), we also denote \(\tilde{G}(z, q) = \tilde{G}(z - q) = \tilde{G}(w) \), which is defined on the fundamental domain \(T(0) \) centered at 0.

Obviously \(\varphi_\epsilon \) is an even function. Since \(\int_E G = 0 \), direct integration gives

\[
(1.5) \quad c_\epsilon := \frac{1}{|E|} \int_E \varphi_\epsilon = \frac{2}{|E|} \int_{B_\delta(q)} \log \frac{(\epsilon^2/\delta^2 + 1) |z - q|^2}{\epsilon^2 + |z - q|^2} = O(\epsilon^2 \log \epsilon),
\]

where the notation \(O \) is with respect to the limit \(\epsilon \to 0 \). Thus \(\varphi_\epsilon - c_\epsilon \in H^1_{ev}(E) \) and

\[
J_{8\pi}(\varphi_\epsilon - c_\epsilon) = \frac{1}{2} \int_E |\nabla (\varphi_\epsilon - c_\epsilon)|^2 - 8\pi \log \int_E e^{-8\pi \tilde{G} + \varphi_\epsilon} + O(\epsilon^2 \log \epsilon).
\]

We will estimate the energy term and the non-linear term separately.
By Green’s theorem, we have for $w = z - q$,

$$
\int_E |\nabla \varphi_e|^2 = \int_{B_{\delta}(q)} |\nabla \varphi_e|^2 + (8\pi)^2 \int_{E \setminus B_{\delta}(q)} |\nabla G(z - q)|^2
- 32\pi \int_{B_{\delta}(0)} \log \frac{1}{e^2 + |w|^2} \Delta \tilde{G}(w) + 32\pi \int_{\partial B_{\delta}(0)} \log \frac{1}{e^2 + |w|^2} \frac{\partial \tilde{G}(w)}{\partial \nu}
- (8\pi)^2 \int_{B_{\delta}(0)} \tilde{G} \Delta \tilde{G} + (8\pi)^2 \int_{\partial B_{\delta}(0)} \tilde{G} \frac{\partial \tilde{G}}{\partial \nu}
- (8\pi)^2 \int_{E \setminus B_{\delta}(0)} G \Delta G - (8\pi)^2 \int_{\partial B_{\delta}(0)} G \frac{\partial G}{\partial \nu}.
$$

To estimate these terms, we first notice that (for $\delta > 0$ fixed)

$$
\int_{B_{\delta}(0)} \frac{16|w|^2}{(e^2 + |w|^2)^2} = 16\pi \log(1 + \delta^2/e^2) - 16\pi \delta^2/(e^2 + \delta^2)
= 16\pi (\log(1 + \delta^2/e^2) - 1) + O(\delta),
\int_{B_{\delta}(0)} \log \frac{1}{e^2 + |w|^2} = O(\delta).
$$

Since $\Delta G = \delta_0 - 1/|E|$, $\Delta \tilde{G} = -1/|E|$, and $\int_E G = 0$, it is easy to see that each of three integrals involving G or \tilde{G} is $O(\delta)$ and all boundary terms are $O(\delta)$ except

$$
\frac{32\pi}{\delta} \int_{\partial B_{\delta}(0)} G = 32\pi (- \log \delta + 2\pi \gamma) + O(\delta),
$$

where $\gamma = \tilde{G}(0) = \tilde{G}(q, q)$ is a constant independent of q.

Next we compute the non-linear term.

Since both $\nabla G(q) = 0$ and $\nabla \tilde{G}(z, q)|_{z=q} = \nabla \tilde{G}(0) = 0$, we have

$$
\tilde{G}(z, q) - G(z) = \gamma - G(q) + O(|z - q|^2)
$$

and

$$
\int_{B_{\delta}(q)} e^{-8\pi G(z) + \varphi_e(z)} = e^{8\pi(\gamma - G(q))} \int_{B_{\delta}(0)} \frac{(e^2/\delta^2 + 1)^2}{(e^2 + |w|^2)^2} + O(e^2 \log e)
= e^{8\pi(\gamma - G(q))} \left(\frac{\pi}{e^2} - \frac{\pi}{\delta^2 + e^2} \right) + O(e^2 \log e).
$$
On $E \setminus B_{\delta}(q)$, by (1.8) and direct estimate we have
\[
\int_{E \setminus B_{\delta}(q)} e^{-8\pi G + \varphi} = \int_{E \setminus B_{\delta}(q)} e^{8\pi(G(z,q) - G(z))} = \int_{T(q) \setminus B_{\delta}(q)} \frac{\pi e^{8\pi(\gamma - G(q))}}{|z - q|^4} + O(1),
\]
where $O(1)$ denotes a bounded number which is independent of δ and ϵ.

By taking into account of (1.6)–(1.10), we get for $0 < \epsilon < \delta$
\[
J_{8\pi}(\varphi - c_\epsilon) = 8\pi(\log(1 + \delta^2 / \epsilon^2) - 1) + 16\pi(-\log \delta + 2\pi \gamma) - 8\pi \log(\pi) - 2\pi \gamma + 8\pi(1 + \log \pi) + O(\delta) + O(\epsilon^2 \log \epsilon).
\]

Let $\epsilon \to 0$ and then let $\delta \to 0$. From (1.4) we conclude that
\[
J_{8\pi}(v^\lambda) \leq 64\pi^2 G(q) - 32\pi^2 \gamma - 8\pi(1 + \log \pi).
\]

From (1.3), u^λ blows up at p as $\lambda \to +\infty$. By using the explicit expression (1.3), a similar calculation as the above shows that
\[
\lim_{\lambda \to +\infty} J_{8\pi}(v^\lambda) = 64\pi^2 G(p) - 32\pi^2 \gamma - 8\pi(1 + \log \pi).
\]

Therefore (1.11) implies
\[
G(p) \leq G(q),
\]
which finishes the proof. \hfill \Box

Corollary 1.2. Suppose that G has five critical points. Then any half-period is a saddle point of G.

Proof. Since the extra critical point p (reps. $-p$) is a discrete minimal point, the index of ∇G at p (reps. $-p$) is 1. By the Hopf–Poincaré index theorem,
\[
-1 = \chi(E \setminus \{0\}) = 2 + \sum_{i=1}^{3} \text{ind}_{\frac{1}{2} \omega_i} \nabla G.
\]

Since $\frac{1}{2} \omega_i$ is non-degenerate, ∇G has index ± 1 at it. Hence the index must be -1 for all $i = 1, 2, 3$. This implies that $\frac{1}{2} \omega_i$ is a saddle point for all i. \hfill \Box

2. **Computations for $D(\frac{1}{2} \omega_j)$**

Let u_k be a sequence of blowup solutions to
\[
\triangle u_k + e^{u_k} = \rho_k \delta_0
\]
in E_r and $\rho_k \to 8\pi$. Suppose that $\rho_k \neq 8\pi$. In \cite[Theorem 0.7.5]{2}, it was proved that u_k blows up at a half period q. Let

$$\lambda_k := \max_{E_r} u_k.$$

We recall a result in \cite{6}:

Theorem 2.1. Let $\tilde{G}(z, q)$ be the regular part of $G(z, q)$, namely $\tilde{G}(z, q) = G(z - q) + \frac{1}{2\pi} \log |z - q|$. Let $\phi(q) := \tilde{G}(q, q)$ and $h(z) = e^{-8\pi \tilde{G}(z)}$. Then

$$\rho_k - 8\pi = (D(q) + o(1))e^{-\lambda_k},$$

where

$$D(q) := \int_{E_r} \frac{h(z)e^{8\pi(\tilde{G}(z, q) - \phi(q))} - h(q)}{|z - q|^4} - \int_{E_r} \frac{h(q)}{|z - q|^4}.$$

The quantity $D(q)$ is well defined for any critical point of $G(z, q)$. However, if q is not a half period then $D(q) = 0$ since such a blow-up can only occur for $\rho_k = 8\pi$. When q is a half period, $D(q)$ has a geometric interpretation. Indeed,

$$D(q) = \lim_{r \to 0} \left(\int_{E_r \setminus B_r(q)} \frac{e^{-8\pi G(z)}e^{8\pi(\tilde{G}(z, q) - \phi(q))}}{|z - q|^4} - \int_{\mathbb{R}^2 \setminus B_r(q)} \frac{e^{-8\pi G(q)}}{|z - q|^4} \right)$$

$$= \lim_{r \to 0} \left(\int_{E_r \setminus B_r(q)} e^{-8\pi \phi(q)}e^{8\pi(\tilde{G}(z - q) - G(z))} - \int_{\mathbb{R}^2 \setminus B_r(q)} e^{-8\pi G(q)} \right).$$

Note that $8\pi(G(z - q) - G(z))$ is a doubly periodic harmonic function in \mathbb{R}^2 with singularities $-4 \log |z - q|$ at $z = q$ and $4 \log |z|$ at $z = 0$. Thus

$$8\pi(G(z - q) - G(z)) = 2 \log |\varphi(z - q) - \varphi(q)| + C$$

for the constant $C = 8\pi(\phi(q) - G(q))$. (The identity does not hold if q is not a half period.) Therefore,

$$e^{8\pi(\tilde{G}(z - q) - G(z))} = e^{8\pi(\phi(q) - G(q))}|\varphi(z - q) - \varphi(q)|^2,$$

and

$$D(q) = e^{-8\pi G(q)} \lim_{r \to 0} \left(\int_{E_r \setminus B_r(0)} |\varphi(z) - \varphi(q)|^2 - \int_{\mathbb{R}^2 \setminus B_r(0)} \frac{1}{|z|^4} \right).$$

Let T be a fundamental domain of E_r with $0 \notin \partial T$. Let γ be the image of $\Gamma := \partial T$ under the map

$$\Sigma(z) := -\zeta(z) - \varphi(q)z.$$

Denote by $\Lambda_+(q)$ the union of components bounded by γ and covered by T under Σ, and by $\Lambda_-(q)$ the union of components bounded by γ but not covered by T under Σ. Then obviously

$$|\Lambda_+(q)| - |\Lambda_-(q)| = \lim_{r \to 0} \left(\int_{E_r \setminus B_r(0)} |\varphi(z) - \varphi(q)|^2 - \int_{\mathbb{R}^2 \setminus B_r(0)} \frac{1}{|z|^4} \right).$$

\begin{equation}
|\Lambda_+(q)| - |\Lambda_-(q)| = \lim_{r \to 0} \left(\int_{E_r \setminus B_r(0)} |\varphi(z) - \varphi(q)|^2 - \int_{\mathbb{R}^2 \setminus B_r(0)} \frac{1}{|z|^4} \right),
\end{equation}

\end{equation}
and so

\begin{equation}
D(q) = e^{-8\pi G(q)}(|\Lambda_+(q)| - |\Lambda_-(q)|).
\end{equation}

We will give another characterization of $D(q)$ in terms of the Hessian of G at q, hence establish a correspondence between the geometric interpretation and the degeneracy structure of the Green function. Recall [8, (7.7)]:

\begin{equation}
\det D^2 G = \frac{-1}{4\pi^2} \left(|(\log \vartheta)_{zz}|^2 + \frac{2\pi}{b} \text{Re} (\log \vartheta)_{zz} \right).
\end{equation}

To write it in the Weierstrass theory we use $(\log \vartheta)_z(z) = \zeta(z) - \eta_1 z$ and

\begin{equation}
(\log \vartheta)_{zz} \left(\frac{1}{2} \omega_i \right) = - \varphi \left(\frac{1}{2} \omega_i \right) - \eta_1 = -(\epsilon_i + \eta_1).
\end{equation}

Theorem 2.2. For any half period q,

$$|\Lambda_+(q)| - |\Lambda_-(q)| = -4\pi^2 b \det D^2 G(q).$$

Proof. Without loss of generality, we assume that $q = \frac{1}{2} \omega_1 = \frac{1}{2}$ and denote $\Lambda_+(q)$ and $\Lambda_-(q)$ by Λ_+ and Λ_- respectively. By (2.2), we have

$$|\Lambda_+| - |\Lambda_-| = \lim_{r \to 0} \left(\int_{E_+\setminus B_0} |\varphi(z)|^2 - \int_{\mathbb{R}^2 \setminus B_0} \frac{1}{|z|^4} \right)$$

$$- \lim_{r \to 0} \int_{E_+\setminus B_0} (\varphi(z)z_1 + \bar{\varphi}(z)e_1) + b|e_1|^2,$$

where $\tau = a + bi$.

To compute the first term, write the Weierstrass zeta function as $\zeta = u + iv$ and then $\varphi = -\zeta' = -u_x - iv_x = -u_x + iu_y$. Hence

$$|\varphi|^2 = u_x^2 + u_y^2 = \partial_x (uu_x) + \partial_y (uu_y).$$

Using integration by parts, and noticing that the singularity at $z = 0$ is cancelled out by the second integral, the first limit term then becomes

$$\int_{\Gamma} uu_x \, dy - uu_y \, dx = \int_{\Gamma} u(v_x \, dx + v_y \, dy) = \int_{\Gamma} u \, dv.$$

This can be calculated easily as

$$-\frac{1}{2} \text{Im} \int_{\Gamma} \bar{\zeta} d\bar{\zeta} = \frac{1}{2} \text{Im} (\eta_1 \eta_2 - \eta_1 \bar{\eta}_2).$$

Applying the Legendre relation $\eta_2 = \eta_1 \tau - 2\pi i$, we get

$$\bar{\eta}_1 \eta_2 - \eta_1 \bar{\eta}_2 = \bar{\eta}_1 (\eta_1 \tau - 2\pi i) / (\eta_1 \bar{\tau} + 2\pi i) = 2ib|\eta_1|^2 - 2\pi i(\eta_1 + \bar{\eta}_1).$$

Consequently,

\begin{equation}
\lim_{r \to 0} \left(\int_{E_+\setminus B_0} |\varphi(z)|^2 - \int_{\mathbb{R}^2 \setminus B_0} \frac{1}{|z|^4} \right) = b|\eta_1|^2 - \pi(\eta_1 + \bar{\eta}_1).
\end{equation}
For the second limit term, we first compute
\[
\int_{E \setminus B_r(0)} \varphi(z) = \frac{i}{2} \int_{T \setminus B_r(0)} \varphi \, dz \wedge d\bar{z} = -\frac{i}{2} \int_{T \setminus B_r(0)} d(\zeta \, d\bar{z})
\]
\[
= -\frac{i}{2} \left(\left. \int_{T \setminus B_r(0)} \zeta \, d\bar{z} \right|_{\partial B_r(0)} \right).
\]
This first integral gives \(\eta_1 \tau - \eta_2 = \eta_1 \tau - \eta_1 \tau + 2\pi i = -2b_1 + 2\pi i\). For the second integral, in the limit \(r \to 0\) it tends to \(\int_0^{2\pi} e^{-i\theta} e^{-i\theta} (-i) \, d\theta = 0\).
Hence
\[
\lim_{r \to 0} \int_{E \setminus B_r(0)} \varphi(z) = -\eta_1 b + \pi.
\]
Putting everything together we get (c.f. (2.4) and (2.5))
\[
|\Lambda_+| - |\Lambda_-|
= b|\eta_1|^2 - \pi(\eta_1 + \bar{\eta}_1) + (\eta_1 b - \pi)\bar{e}_1 + (\bar{\eta}_1 b - \pi)e_1 + b|e_1|^2
= b|e_1 + \eta_1|^2 - \pi((e_1 + \eta_1) + (\bar{e}_1 + \eta_1))
= -4\pi^2 b \det D^2 G(\frac{1}{2}; \tau).
\]
The proof is completed. \(\square\)

Corollary 2.3. Let \(u_k\) be a sequence of blow-up solutions to (2.1) with \(\rho_k \to 8\pi\) and \(q\) the blow-up point.

(1) \(q\) is a half period and a saddle point of \(G(z; \tau)\) if and only if \(\rho_k > 8\pi\).

(2) \(q\) is a half period and a minimal point of \(G(z; \tau)\) if and only if \(\rho_k < 8\pi\).

3. Uniqueness of solutions

In this section we classify all solutions to

(3.1) \[\triangle u + e^u = \rho \delta_0 \quad \text{on } E\]

for \(0 < \rho \leq 8\pi + \epsilon_0\) where \(\epsilon_0\) is a small positive number.

Recall in [8] we showed that equation (3.1) has a unique solution for \(\rho = 4\pi\), and a unique even solution for \(4\pi \leq \rho \leq 8\pi\). Here we prove the uniqueness result without the evenness assumption.

Lemma 3.1. Equation (3.1) has a unique solution for \(0 < \rho \leq 4\pi\).

Proof. We first show that for any solution \(u\) to (3.1) with \(\rho \leq 4\pi\), the linearized equation

(3.2) \[\triangle \varphi + e^u \varphi = 0 \quad \text{on } E\]

has only trivial solution \(\varphi = 0\).

Suppose that \(\varphi\) is a solution to (3.2). Then a straightforward computation shows that \((\varphi_{zz} - u_z \varphi_z)z = 0\). Since
\[
u(z) \sim \frac{\rho}{2\pi} \log |z|,
\]

\(\phi_{zz} - u_z \phi_z \) is an elliptic function on \(E \) whose only singularity is a pole of order one at 0. This forces that \(\phi_z(0) = 0 \) and

\[
\phi_{zz} - u_z \phi_z = c_1 \quad \text{on} \quad E
\]

for some constant \(c_1 \), or equivalently

\[
(e^{-u} \phi_z)_z = c_1 e^{-u}.
\]

Notice that

\[
|e^{-u} \phi_z(z)| \leq c_2 |z|^{1-\rho/2\pi}
\]

for some constant \(c_2 > 0 \). Thus if \(\rho < 4\pi \),

\[
\lim_{r \to 0} \int_{E \setminus B_r(0)} (e^{-u} \phi_z)_z = \frac{1}{2} \lim_{r \to 0} \int_{\partial B_r(0)} e^{-u} \phi_z \frac{z}{|z|} ds = 0,
\]

and if \(\rho = 4\pi \) the above limit is finite. If \(c_1 \neq 0 \), this implies that

\[
\int_{E} e^{-u} = \begin{cases} 0 & \text{if} \ \rho < 4\pi, \\ -\infty & \text{if} \ \rho = 4\pi, \end{cases}
\]

which leads to a contradiction. So we have \(c_1 = 0 \) and \(e^{-u} \phi_z \) is an elliptic function. By (3.3) this again implies that \(e^{-u} \phi_z = c_3 \) is a constant.

If \(\phi \neq 0 \) then \(\phi \) has a maximum point \(p \) and a minimum point \(q \) with \(p \neq q \). One of \(p, q \) is not a lattice point where \(\phi_z = 0 \). This implies that \(c_3 = 0 \) and hence \(\phi_z = 0 \). This leads to \(\phi \equiv 0 \) which is a contradiction to \(\phi \neq 0 \). Hence we must have \(\phi \equiv 0 \).

Now the uniqueness follows from the fact that (3.1) has only one solution at \(\rho = 4\pi \). \(\square \)

Remark 3.2. In [8] we showed that the unique even solution to (3.1) with \(\rho \in [4\pi, 8\pi] \) is non-degenerate in the class of \(H^1_{E_0} = \{ u \in H^1 \mid u(-z) = u(z) \} \).

Now the proof of Lemma 3.1 allows us to remove the evenness assumption: \(u \) is non-degenerate in the whole space \(H^1 \), provided that \(0 < \rho < 8\pi \).

To see this, we may assume that the solution \(\phi \) is odd. Therefore \(\phi_{zz} - u_z \phi_z \) is odd and by exactly the same calculation we have

\[
\phi_{zz} - u_z \phi_z = c_1 = 0.
\]

This implies that \(e^{-u} \phi_z \) is an elliptic function on \(E \), with 0 being its only pole. However, since \(\phi \) is odd, \(\phi_z \) is even and the estimate (3.3) can be improved to

\[
|e^{-u} \phi_z(z)| \leq c_2 |z|^{2-\rho/2\pi}.
\]

If \(\rho < 8\pi \), we find \(2 - \rho/2\pi > -2 \). This implies that \(e^{-u} \phi_z \) is a constant. If \(\phi \neq 0 \), by evaluating it at a maximum or minimum point, with one of it not a lattice point, we conclude that \(e^{-u} \phi_z \equiv 0 \), and then \(\phi \equiv 0 \) follows. (Notice that if \(\rho = 8\pi \) then \(e^{-u} \phi_z = c \phi(z) \) for some constant \(c \neq 0 \).)

Now we may conclude that the unique even solution \(u \) is always a minimum point of the non-linear functional \(J_\rho \) in (1.1) for \(0 < \rho \leq 8\pi \). In fact we can prove a stronger result, namely Theorem 0.5.
Lemma 3.3. Let u be a solution to (3.1) with $\rho \not\in 8\pi N$. Then u is even.

Proof. This was proved in [2] for $\rho = 4\pi l$ with l being a positive odd integer, so we assume that $\rho \not\in 4\pi N$.

Let $f(z)$ be a multi-valued developing map of u. The readers are referred to [2, §8] for the details to treat these multi-valued functions as global analytic functions $f(\zeta)$, which are defined on the universal cover $\overline{\zeta} \in \mathbb{H} \rightarrow E^\times$. In particular the cusp $\zeta = 0$ is mapped to the cusp $z = 0$ in E^\times.

As in [2], we have $S(f) = 2(\eta(\eta + 1)\varphi + B)$ for $\eta = \rho/8\pi$ for some $B \in \mathbb{C}$. Thus $f = w_1/w_2$ and $\tilde{f} = w_1/w_2$ for two linearly independent solutions w_1 and w_2 to the Lamé equation

$$(3.4) \quad w'' = (\eta(\eta + 1)\varphi + B)w.$$

Since $\tilde{w}_i(z) := w_i(-z)$ are also two linearly independent solutions to (3.4), $\tilde{f} := \tilde{w}_1/\tilde{w}_2$ also defines a global analytic function \tilde{f} and we have

$$\tilde{f} = Sf = \frac{af + b}{cf + d}, \text{ for some } S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{C}).$$

Consider the covering transformations on \mathbb{H}: $g_1, g_2 \in \text{SL}(2, \mathbb{R})$ determined by the two free generators of $\pi_1(E^\times) \cong \mathbb{Z} \ast \mathbb{Z}$. Let $\Gamma \subset \text{SL}(2, \mathbb{R})$ be the rank two free subgroup generated by g_1 and g_2, and $r : \Gamma \rightarrow \text{PSU}(2)$ be the unitary representation associated to the solution u. The mapping $(-1) : z \mapsto -z$ on E^\times lifts to a map i on \mathbb{H} which is not a covering map for $\mathbb{H} \rightarrow E^\times$. Nevertheless the composition $i \circ i$, namely we apply (-1) twice, does give a covering map for $\mathbb{H} \rightarrow E^\times$. That is, the matrix S^2 can be represented as an element generated by $S_1 := r(g_1)$ and $S_2 := r(g_2)$.

By considering the action of (-1) in a simply connected neighborhood U of $0 \in E$, we see that $S^2 f = f(e^{2\pi i}z) = \beta f(z)$ for some $\beta \in \text{PSU}(2, \mathbb{C})$. Indeed, $\beta = r(g_2^{-1}S_1^{-1}g_2g_1) = S_2^{-1}S_1^{-1}S_2S_1$. Under some normalization on f, the matrix β is calculated in [2, Lemma 8.3.4, p.262] (suppress all index k in the formula in the bottom of p.262) as

$$\beta = \begin{pmatrix} p|2\alpha + |q|^2\bar{\alpha} & -\bar{q}(\alpha - \bar{\alpha}) \\ \bar{p}q(\alpha - \bar{\alpha}) & |p|^2\alpha + |q|^2\bar{\alpha} \end{pmatrix},$$

where $f(0) := \lim_{z \rightarrow 0} f(\zeta) = q/p$ with $|p|^2 + |q|^2 = 1$, $p, q \neq 0$, and $\alpha = e^{2\pi i/\eta}$. Clearly $\alpha \neq \bar{\alpha}$ since $\eta \notin \frac{1}{2}\mathbb{Z}$. In particular $\beta \neq \pm I_2$.

We claim that $S \in \text{PSU}(2, \mathbb{C})$. To prove it, we choose a new unitary basis to diagonalize β to $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ for some $e^{i\theta} \neq \pm 1$. Since

$$S^2 = \beta = \begin{pmatrix} a^2 + bc & b(a + d) \\ c(a + d) & d^2 + bc \end{pmatrix},$$

$S^2 = \beta$ implies that either $a + d = 0$ or both $b = 0$ and $c = 0$. If $a + d = 0$ then $a^2 + bc = -ad + bc = -1$ and $d^2 + bc = -1$, which leads to $e^{i\theta} = -1$, a contradiction. Hence $b = c = 0$ and $ad = 1$, $a^2 = e^{i\theta}, d^2 = e^{-i\theta}$. Therefore,
$S \in \text{PSU}(2, \mathbb{C})$ and $\tilde{f}(z) = f(-z)$ gives rise to the same solution u. Hence $u(-z) = u(z)$ and the lemma follows.

Proof of Theorem 0.5. By Lemma 3.1 and 3.3, the uniqueness of solution holds for $0 < \rho < 8\pi$. The statements for $\rho = 8\pi$ was proved in [8].

For $\tau \in \Omega_3$, the unique solutions u_ρ blows up as $\rho \nearrow 8\pi$ (since equation (3.1) has no solutions at $\rho = 8\pi$). The blow-up point of u_ρ must be the minimum point which is one of the half periods. The other two half periods q_1 and q_2 are saddle critical point of G. By Theorem 0.4 and Remark 0.3, we have $\det D^2G(q_i) < 0$ and then $D(q_i) > 0$. Under these conditions, by the method in [4] we can construct a bubbling sequence of solutions $u_{\rho,i}$ to (3.1), for each $i = 1, 2$, with $\rho > 8\pi$ which blows up at q_i.

Remark 3.4. In [4] the non-degenerate condition $D(q_i) \neq 0$ was replaced by some other non-degenerate condition. Nevertheless the similar process as there still works in our current case (see e.g. the remark in [6] concerning with the degree counting formula).

Indeed, for the Chern–Simons–Higgs equation, the same non-degenerate conditions $D(q) < 0$ and $\det D^2G(q) \neq 0$ were recently used to construct such kind of bubbling solutions [10].

Now we need the following uniqueness theorem:

Theorem 3.5. Suppose that u_k and \tilde{u}_k are two sequences of solutions to (3.1) with $\rho_k \to 8\pi$, and both sequences have the same blow-up point q.

If $D(q) \neq 0$, i.e. q is a non-degenerate critical point of G by Theorem 0.4, then $u_k = \tilde{u}_k$ for large k.

This is recently proved in [11] for the Chern–Simons–Higgs equation

$$\triangle u + \frac{1}{\epsilon} e^u (1 - e^u) = 8\pi \delta_0,$$

but the proof given there also works for (3.1).

By Theorem 3.5, $u_{\rho,i}$ are exactly all the solutions to equation (3.1) for $8\pi < \rho < 8\pi + \epsilon_0$. This proves (i).

For $\tau \in \Omega_5$, all the three half periods are saddle points of G. By Theorem 3.5 again, we must have three bubbling solutions. On the other hand, (3.1) has a unique even solution u for $\rho = 8\pi$ whose linearized equation in the class of even functions is non-degenerate. Therefore for $8\pi < \rho < 8\pi + \epsilon_0$ there is a unique even solution u_ρ which converges to u as $\rho \searrow 8\pi$.

By Lemma 3.3, (3.1) has only even solutions for $8\pi < \rho < 8\pi + \epsilon_0$, we conclude that (3.1) has the only one even solution u_ρ which converges to u as $\rho \searrow 8\pi$. Hence there are four solutions in total. This proves (ii) and thus completes the proof Theorem 0.5. □

References

