ON THE MINIMALITY OF EXTRA CRITICAL POINTS OF GREEN FUNCTIONS ON FLAT TORI

CHANG-SHOU LIN AND CHIN-LUNG WANG

ABSTRACT. This is a sequel to [8, 2] to study the *geometry of flat tori*. In [8], we showed that the solvability of the mean field equation (MFE)

$$\Delta u + e^u = \rho \,\delta_0$$

on a flat torus E_{τ} with $\rho = 8\pi$ is equivalent to the existence of extra pair of critical points $\pm p$ of the Green function *G*. And such a pair, if exists, is unique. It was also announced there that *G* actually attains its minimum at $\pm p$. Here our first main result is to confirm this statement by way of the variational form of the MFE. It implies that the solution *u* is a minimizer of the corresponding non-linear functional $J_{8\pi}(u)$ (c.f. (1.1)), hence settles the existence problem of minimizers posed in [12].

We also prove the uniqueness of solution to the MFE when $0 < \rho < 8\pi$ and get the exact counting result of the number of solutions in terms of the number of critical points of *G* when ρ is close to 8π . This allows us to analyze the bifurcation structure of the MFE when ρ crosses 8π .

CONTENTS

0.	Introduction	1
1.	On the minimality of extra critical points	3
2.	Computations for $D(\frac{1}{2}\omega_i)$	7
3.	Uniqueness of solutions	10
References		13

0. INTRODUCTION

Consider the flat torus $E = E_{\tau} = \mathbb{C}/\Lambda_{\tau}$, $\tau = a + bi$, b > 0 and $\Lambda = \Lambda_{\tau} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ with $\omega_1 = 1$ and $\omega_2 = \tau$. Let *G* be the Green function on *E*:

(0.1)
$$\begin{cases} -\triangle G = \delta_0 - \frac{1}{|E|} & \text{on } E, \\ \int_E G = 0, \end{cases}$$

where δ_0 is the Dirac measure at the lattice point $0 \in E$. We continue our study, initiated in [8, 2, 6], on the critical points of *G*:

$$\nabla G(z) = 0.$$

Since *G* is an even function on *E*, all the half-periods $\frac{\omega_k}{2}$ are critical points of *G*. A critical point *p* is called a *non-trivial critical point of G if p is not one of the three half-periods*. Clearly, non-trivial critical points appear in pair $\pm p$. It is natural to ask: *how many pairs of non-trivial critical points might G have*? This has been answered completely in our previous paper [8]:

Theorem A. For any $\tau \in \mathbb{H}$, the Green function $G(z; \tau)$ on the flat torus E_{τ} has at most one pair of non-trivial critical points.

Thus *G* has either 3 or 5 critical points. Following [8] we denote by Ω_3 (resp. Ω_5) the subset of the moduli $\mathcal{M}_1 = \mathbb{H}/\mathrm{SL}(2,\mathbb{Z})$ where $G(z;\tau)$ on the flat torus E_{τ} has exactly 3 (resp. 5) critical points. See [8, 7] for the actual shape of the (simply connected) domain Ω_5 .

What is the nature of those extra critical points? We answer it in the following theorem, which had been announced in $[8, \S1$ Theorem A]:

Theorem 0.1. Suppose that the pair of non-trivial critical points $\{\pm p\}$ of *G* exists, then $\pm p$ are the minimal points of *G*.

We will present a proof of it in §1 based on the mean field equation

$$(0.3) \qquad \qquad \bigtriangleup u + e^u = 8\pi\,\delta_0 \quad \text{on } E_u$$

In fact our proof shows that any solution to (0.3) must be a minimizer of the non-linear functional

$$J_{8\pi}(u) = \frac{1}{2} \int_{E} |\nabla u|^2 - 8\pi \log \int_{E} e^{-8\pi G + u}$$

on $u \in H^1(E) \cap \{u \mid \int_E u = 0\}$. This completely solves the existence problem on minimizers raised in [12] when the two vortex points collapse into one.

One important application of Theorem 0.1 is the following result:

Corollary 0.2. Suppose that the Green function G has non-trivial critical points, then all the three half periods are saddle points of G. That is, the Hessian of G is non-positive: det $D^2G(\frac{\omega_k}{2}) \leq 0$ for k = 1, 2, 3.

Remark 0.3. Based on Corollary 0.2, a stronger result is proved in [7]. Namely det $D^2G(\frac{\omega_k}{2}) < 0$ for k = 1, 2, 3 if *G* satisfies the hypothesis of Corollary 0.2.

From the Weierstrass elliptic curve model $y^2 = 4x^3 - g_2x - g_3$ of E_{τ} , we know that the half periods $E_{\tau}[2]$ are precisely the branch points of the map $x = \wp(z) : E_{\tau} \to \mathbb{P}^1$. A quantity D(q) defined at any branch point is strongly related to the geometry of E_{τ} at q. In [1, 6] it was proved that if u_k is a bubbling sequence of solutions to (0.3) with $\rho = \rho_k \to 8\pi$ (as $k \to \infty$), $\rho_k \neq 8\pi$ for large k, and with q the blow-up point, then q must be a half period point. In fact, asymptotically

(0.4)
$$\rho_k - 8\pi = (D(q) + o(1))e^{-\lambda_k}$$

where $\lambda_k = \max_{E_{\tau}} u_k$ and

$$D(q) := \int_{E_{\tau}} \frac{h(z)e^{8\pi(G(z,q) - \phi(q))} - h(q)}{|z - q|^4} - \int_{E_{\tau}^c} \frac{h(q)}{|z - q|^4}$$

Here $h(z) = e^{-8\pi G(z)}$, $\tilde{G}(z,q)$ is the regular part of the Green function, and $\phi(q) = \tilde{G}(q,q)$. See §2 for more details. D(q) plays an important role in the construction of bubbling solutions to (0.3), as well as in other non-linear PDEs, with $\rho_k \to 8\pi$. The sign of D(q) determines the direction where the bubbling may take place, namely $\rho_k < 8\pi$ or $\rho_k > 8\pi$. If *q* is a not half-period critical point then D(q) is still defined. But then D(q) = 0 since $\rho_k = 8\pi$ for all *k* (large).

In general it is difficult to compute D(q) for a given torus. Nevertheless we will prove the following result in §2:

Theorem 0.4. For any half period $q \in E_{\tau}$, $\tau = a + bi$, we have

(0.5)
$$D(q) = -4\pi^2 b e^{-8\pi G(q)} \det D^2 G(q).$$

By Remark 0.3, we have D(q) > 0 if q is a saddle point. In particular if $\tau \in \Omega_5$ then D(q) > 0 for all half-periods. For any $\tau \in \mathbb{H}$, $D(q) \le 0$ if and only if q is the minimal point.

Combining with a recent technique in analyzing uniqueness of blow-up solutions [11], we will be able to classify all solutions to (0.3) for ρ in the range $(0,8\pi + \epsilon_0)$ for some $\epsilon_0 > 0$:

Theorem 0.5. For any torus E_{τ} , there is a small number $\epsilon_0 > 0$ such that

- (i) If $\tau \in \Omega_3$ then (0.3) has only one solution for $\rho < 8\pi$, no solution for $\rho = 8\pi$, and two solutions for $8\pi < \rho < 8\pi + \epsilon_0$.
- (ii) If $\tau \in \Omega_5$ then (0.3) has only one solution for $\rho < 8\pi$, infinitely many solutions for $\rho = 8\pi$, and four solutions for $8\pi < \rho < 8\pi + \epsilon_0$.

In particular, the topological Leray–Schauder degree d_{ρ} , which is 2 for $\rho \in (8\pi, 16\pi)$ [3, 4, 5, 6], does not reflect the actual number of solutions. The proof is presented in §3, which relies also on the theory of Lamé equations in [2] accompanied with (0.3) as well as the blow-up analysis in [4, 11].

Remark 0.6. In [9] (see also [2]), we proved that (0.3) with $\rho = 12\pi$ has exactly two solutions on E_{τ} for $\tau \neq e^{\pi i/3}$. By Theorem 0.5, we see that when $\tau \in \Omega_5$ the bifurcation diagram of (0.3) is complicate for ρ ranging from 8π to 12π . It is a natural question to ask if (0.3) has exactly two solutions for $\rho \in (8\pi, 16\pi)$ when $\tau \in \Omega_3$. Theorem 0.5 also reflects the difficulty in the study the corresponding Lamé equations for the case $n \notin \frac{1}{2}\mathbb{N}$.

1. ON THE MINIMALITY OF EXTRA CRITICAL POINTS

Theorem 1.1. *Let p be a critical point of G which is not a half period point, then p is a minimal point of G*.

Proof. Consider the even, normalized, L_2^1 Sobolev space

$$H^{1}_{ev}(E) = \{ u \in H^{1}(E) \mid u(-z) = u(z), \int_{E} u = 0 \}$$

and the non-linear functional

(1.1)
$$J_{\rho}(u) = \frac{1}{2} \int_{E} |\nabla u|^2 - \rho \log \int_{E} e^{-\rho G + u}, \quad u \in H^1_{ev}(E).$$

It is well known that, as a consequence of the Moser–Trudinger inequality, J_{ρ} attains its minimum for $\rho < 8\pi$. Let v_{ρ} be a minimizer of J_{ρ} . Then v_{ρ} is an even solution of

$$\Delta v + \rho \left(\frac{e^{-\rho G + v}}{\int_E e^{-\rho G + v}} - \frac{1}{|E|} \right) = 0 \quad \text{in } E.$$

By the result of [8], when $\rho \rightarrow 8\pi$, v_{ρ} converges to a smooth function v which satisfies

(1.2)
$$\Delta v + 8\pi \Big(\frac{e^{-8\pi G + v}}{\int_E e^{-8\pi G + v}} - \frac{1}{|E|} \Big) = 0 \quad \text{in } E.$$

It is then obvious that

$$u(z) = -8\pi G(z) + v(z) - \log \int_E e^{-8\pi G + v}$$

is an even solution to the Liouville equation

$$\triangle u + 8\pi e^u = 8\pi \delta_0 \quad \text{in } E_{\tau}$$

Since

$$J_{
ho}(v_{
ho}) = \inf_{arphi \in H^1_{
m ev}} J_{
ho}(arphi),$$

we have

$$J_{8\pi}(v) = \inf_{arphi \in H^1_{ev}} J_{8\pi}(arphi).$$

Let *f* be the developing map of *u*, that is,

$$u(z) = \log \frac{8\pi |f'(z)|^2}{(1+|f(z)|^2)^2}$$
 for $z \in E$.

As before, for $\lambda \in \mathbb{R}$ we define u^{λ} and v^{λ} by

(1.3)
$$u^{\lambda}(z) := \log \frac{8\pi e^{2\lambda} |f'(z)|^2}{(1+e^{2\lambda} |f(z)|^2)^2} =: 8\pi G(z) + v^{\lambda}(z) + c^{\lambda},$$

where the constant c^{λ} is chosen so that $\int_E v^{\lambda} = 0$. Thus v^{λ} is also a solution to (1.2) and $v^{\lambda}(z)$ blows up at z = p as $\lambda \to +\infty$ (i.e. p is a zero of f).

Next we would like to compute $J_{8\pi}(v^{\lambda})$. By differentiation with respect to λ , we have by (1.2)

$$\begin{split} \frac{d}{d\lambda} J_{8\pi}(v^{\lambda}) &= \int_{E} \nabla v^{\lambda} \cdot \nabla \left(\frac{\partial v^{\lambda}}{\partial \lambda}\right) - 8\pi \frac{\int_{E} e^{-8\pi G + v^{\lambda}} \frac{\partial v^{\lambda}}{\partial \lambda}}{\int_{E} e^{-8\pi G + v^{\lambda}}} \\ &= -\int_{E} (\triangle v^{\lambda}) \frac{\partial v^{\lambda}}{\partial \lambda} - 8\pi \frac{\int_{E} e^{-8\pi G + v^{\lambda}} \frac{\partial v^{\lambda}}{\partial \lambda}}{\int_{E} e^{-8\pi G + v^{\lambda}}} \\ &= -\frac{8\pi}{|E|} \int_{E} \frac{\partial v^{\lambda}}{\partial \lambda} = 0. \end{split}$$

That is, $J_{8\pi}(v^{\lambda})$ is independent of λ . In particular,

(1.4)
$$\lim_{\lambda \to +\infty} J_{8\pi}(v^{\lambda}) = \inf_{\varphi \in H^1_{ev}} J_{8\pi}(\varphi).$$

Using (1.4), we shall obtain an upper bound of $\lim J_{8\pi}(v^{\lambda})$ by a choice of suitable test function φ_{ϵ} .

We fix a half period point $q \in E$ and small $\delta > 0$. For any $\epsilon > 0$ we define

$$\varphi_{\epsilon}(z) = \begin{cases} 2\log \frac{\epsilon^2/\delta^2 + 1}{\epsilon^2 + |z - q|^2} + 8\pi \tilde{G}(z, q), & \text{if } z \in B_{\delta}(q), \\ 8\pi G(z, q), & \text{if } z \in E \setminus B_{\delta}(q), \end{cases}$$

where

$$\tilde{G}(z,q) = G(z-q) + \frac{1}{2\pi} \log|z-q|$$

is the regular part of G(z,q) which is defined on $z \in T(q)$, the fundamental domain of E centered at q. Notice that the above two expressions for $\varphi_{\epsilon}(z)$ coincide when $|z-q| = \delta$. Since $\tilde{G}(z,q)$ depends only on w = z - q, we also denote $\tilde{G}(z,q) = \tilde{G}(z-q) = \tilde{G}(w)$, which is defined on the fundamental domain T(0) centered at 0.

Obviously φ_{ϵ} is an even function. Since $\int_{E} G = 0$, direct integration gives

(1.5)
$$c_{\epsilon} := \frac{1}{|E|} \int_{E} \varphi_{\epsilon} = \frac{2}{|E|} \int_{B_{\delta}(q)} \log \frac{(\epsilon^2/\delta^2 + 1)|z-q|^2}{\epsilon^2 + |z-q|^2} = O(\epsilon^2 \log \epsilon),$$

where the notation *O* is with respect to the limit $\epsilon \to 0$. Thus $\varphi_{\epsilon} - c_{\epsilon} \in H^1_{ev}(E)$ and

$$J_{8\pi}(\varphi_{\epsilon}-c_{\epsilon})=\frac{1}{2}\int_{E}|\nabla\varphi_{\epsilon}|^{2}-8\pi\log\int_{E}e^{-8\pi G+\varphi_{\epsilon}}+O(\epsilon^{2}\log\epsilon).$$

We will estimate the energy term and the non-linear term separately.

By Green's theorem, we have for w = z - q,

$$\begin{split} &\int_{E} |\nabla \varphi_{\epsilon}|^{2} = \int_{B_{\delta}(q)} |\nabla \varphi_{\epsilon}|^{2} + (8\pi)^{2} \int_{E \setminus B_{\delta}(q)} |\nabla G(z-q)|^{2} \\ &= \int_{B_{\delta}(0)} \frac{16|w|^{2}}{(\epsilon^{2} + |w|^{2})^{2}} \\ &- 32\pi \int_{B_{\delta}(0)} \log \frac{1}{\epsilon^{2} + |w|^{2}} \triangle \tilde{G}(w) + 32\pi \int_{\partial B_{\delta}(0)} \log \frac{1}{\epsilon^{2} + |w|^{2}} \frac{\partial \tilde{G}(w)}{\partial \nu} \\ &- (8\pi)^{2} \int_{B_{\delta}(0)} \tilde{G} \triangle \tilde{G} + (8\pi)^{2} \int_{\partial B_{\delta}(0)} \tilde{G} \frac{\partial \tilde{G}}{\partial \nu} \\ &- (8\pi)^{2} \int_{E \setminus B_{\delta}(0)} G \triangle G - (8\pi)^{2} \int_{\partial B_{\delta}(0)} G \frac{\partial G}{\partial \nu}. \end{split}$$

To estimate these terms, we first notice that (for $\delta > 0$ fixed)

(1.6)

$$\int_{B_{\delta}(0)} \frac{16|w|^2}{(\epsilon^2 + |w|^2)^2} = 16\pi \log(1 + \delta^2/\epsilon^2) - 16\pi \delta^2/(\epsilon^2 + \delta^2)$$

$$= 16\pi (\log(1 + \delta^2/\epsilon^2) - 1) + O(\epsilon^2),$$

$$\int_{B_{\delta}(0)} \log \frac{1}{\epsilon^2 + |w|^2} = O(\epsilon^2 \log \epsilon) + O(\delta).$$

Since $\triangle G = \delta_0 - 1/|E|$, $\triangle \tilde{G} = -1/|E|$, and $\int_E G = 0$, it is easy to see that each of three integrals involving *G* or \tilde{G} is $O(\delta)$ and all boundary terms are $O(\delta)$ except

(1.7)
$$\frac{32\pi}{\delta} \int_{\partial B_{\delta}(0)} G = 32\pi \big(-\log \delta + 2\pi\gamma \big) + O(\delta),$$

where $\gamma = \tilde{G}(0) = \tilde{G}(q, q)$ is a constant independent of *q*.

Next we compute the non-linear term.

Since both $\nabla G(q) = 0$ and $\nabla G(z,q)|_{z=q} = \nabla G(0) = 0$, we have

(1.8)
$$\tilde{G}(z,q) - G(z) = \gamma - G(q) + O(|z-q|^2)$$

and

(1.9)
$$\int_{B_{\delta}(q)} e^{-8\pi G(z) + \varphi_{\epsilon}(z)} = e^{8\pi(\gamma - G(q))} \int_{B_{\delta}(0)} \frac{(\epsilon^2 / \delta^2 + 1)^2}{(\epsilon^2 + |w|^2)^2} + O(\epsilon^2 \log \epsilon)$$
$$= e^{8\pi(\gamma - G(q))} \left(\frac{\pi}{\epsilon^2} - \frac{\pi}{\delta^2 + \epsilon^2}\right) + O(\epsilon^2 \log \epsilon).$$

On $E \setminus B_{\delta}(q)$, by (1.8) and direct estimate we have

(1.10)
$$\int_{E \setminus B_{\delta}(q)} e^{-8\pi G + \varphi_{\epsilon}} = \int_{E \setminus B_{\delta}(q)} e^{8\pi (G(z,q) - G(z))}$$
$$= \int_{T(q) \setminus B_{\delta}(q)} \frac{e^{8\pi (\tilde{G}(z,q) - G(z))}}{|z - q|^4}$$
$$= \pi e^{8\pi (\gamma - G(q))} \frac{1}{\delta^2} + O(1),$$

where O(1) denotes a bounded number which is independent of δ and ϵ .

By taking into account of (1.6)–(1.10), we get for $0 < \epsilon \ll \delta$

$$\begin{split} J_{8\pi}(\varphi_{\epsilon} - c_{\epsilon}) \\ &= 8\pi (\log(1 + \delta^2/\epsilon^2) - 1) + 16\pi (-\log\delta + 2\pi\gamma) \\ &- 8\pi \log \pi e^{8\pi(\gamma - G(q))} \Big(\frac{1}{\epsilon^2} + \frac{1}{\delta^2} - \frac{1}{\epsilon^2 + \delta^2}\Big) + O(\delta) + O(\epsilon^2 \log \epsilon) \\ &= 64\pi^2 G(q) - 32\pi^2\gamma - 8\pi (1 + \log \pi) + O(\delta) + O(\epsilon^2 \log \epsilon). \end{split}$$

Let $\epsilon \to 0$ and then let $\delta \to 0$. From (1.4) we conclude that

(1.11)
$$J_{8\pi}(v^{\lambda}) \le 64\pi^2 G(q) - 32\pi^2 \gamma - 8\pi (1 + \log \pi).$$

From (1.3), u^{λ} blows up at p as $\lambda \to +\infty$. By using the explicit expression (1.3), a similar calculation as the above shows that

$$\lim_{\lambda \to +\infty} J_{8\pi}(v^{\lambda}) = 64\pi^2 G(p) - 32\pi^2 \gamma - 8\pi(1 + \log \pi).$$

Therefore (1.11) implies

 $G(p) \le G(q),$

which finishes the proof.

Corollary 1.2. *Suppose that G has five critical points. Then any half-period is a saddle point of G.*

Proof. Since the extra critical point p (reps. -p) is a discrete minimal point, the index of ∇G at p (reps. -p) is 1. By the Hopf–Poincaré index theorem,

$$-1 = \chi(E_{\tau} \setminus \{0\}) = 2 + \sum_{i=1}^{3} \operatorname{ind}_{\frac{1}{2}\omega_{i}} \nabla G.$$

Since $\frac{1}{2}\omega_i$ is non-degenerate, ∇G has index ± 1 at it. Hence the index must be -1 for all i = 1, 2, 3. This implies that $\frac{1}{2}\omega_i$ is a saddle point for all i. \Box

2. COMPUTATIONS FOR $D(\frac{1}{2}\omega_i)$

Let u_k be a sequence of blowup solutions to

$$(2.1) \qquad \qquad \bigtriangleup u_k + e^{u_k} = \rho_k \delta_0$$

in E_{τ} and $\rho_k \rightarrow 8\pi$. Suppose that $\rho_k \neq 8\pi$. In [2, Theorem 0.7.5], it was proved that u_k blows up at a half period q. Let

$$\lambda_k := \max_{E_\tau} u_k.$$

We recall a result in [6]:

Theorem 2.1. Let $\tilde{G}(z,q)$ be the regular part of G(z,q), namely $\tilde{G}(z,q) = G(z-q) + \frac{1}{2\pi} \log |z-q|$. Let $\phi(q) := \tilde{G}(q,q)$ and $h(z) = e^{-8\pi G(z)}$. Then

$$\rho_k - 8\pi = (D(q) + o(1))e^{-\lambda_k},$$

where

$$D(q) := \int_{E_{\tau}} \frac{h(z)e^{8\pi(\tilde{G}(z,q) - \phi(q))} - h(q)}{|z - q|^4} - \int_{E_{\tau}^c} \frac{h(q)}{|z - q|^4}$$

The quantity D(q) is well defined for any critical point of G(z, q). However, if q is not a half period then D(q) = 0 since such a blow-up can only occur for $\rho_k = 8\pi$. When q is a half period, D(q) has a geometric interpretation. Indeed,

$$D(q) = \lim_{r \to 0} \left(\int_{E_{\tau} \setminus B_{r}(q)} \frac{e^{-8\pi G(z)} e^{8\pi (\tilde{G}(z,q) - \phi(q))}}{|z - q|^{4}} - \int_{\mathbb{R}^{2} \setminus B_{r}(q)} \frac{e^{-8\pi G(q)}}{|z - q|^{4}} \right)$$
$$= \lim_{r \to 0} \left(\int_{E_{\tau} \setminus B_{r}(q)} e^{-8\pi \phi(q)} e^{8\pi (G(z-q) - G(z))} - \int_{\mathbb{R}^{2} \setminus B_{r}(q)} \frac{e^{-8\pi G(q)}}{|z - q|^{4}} \right).$$

Note that $8\pi(G(z-q) - G(z))$ is a doubly periodic harmonic function in \mathbb{R}^2 with singularities $-4 \log |z-q|$ at z = q and $4 \log |z|$ at z = 0. Thus

$$8\pi(G(z-q) - G(z)) = 2\log|\wp(z-q) - \wp(q)| + C$$

for the constant $C = 8\pi(\phi(q) - G(q))$. (The identity does not hold if *q* is not a half period.) Therefore,

$$e^{8\pi(G(z-q)-G(z))} = e^{8\pi(\phi(q)-G(q))} |\wp(z-q)-\wp(q)|^2,$$

and

$$D(q)=e^{-8\pi G(q)}\lim_{r
ightarrow 0}\left(\int_{E_{ au}\setminus B_r(0)}|\wp(z)-\wp(q)|^2-\int_{\mathbb{R}^2\setminus B_r(0)}rac{1}{|z|^4}
ight).$$

Let *T* be a fundamental domain of E_{τ} with $0 \notin \partial T$. Let γ be the image of $\Gamma := \partial T$ under the map

$$\Sigma(z) := -\zeta(z) - \wp(q)z.$$

Denote by $\Lambda_+(q)$ be the union of components bounded by γ and covered by T under Σ , and by $\Lambda_-(q)$ the union of components bounded by γ but not covered by T under Σ . Then obviously

$$(2.2) |\Lambda_{+}(q)| - |\Lambda_{-}(q)| = \lim_{r \to 0} \left(\int_{E_{\tau} \setminus B_{r}(0)} |\wp(z) - \wp(q)|^{2} - \int_{\mathbb{R}^{2} \setminus B_{r}(0)} \frac{1}{|z|^{4}} \right),$$

and so

(2.3)
$$D(q) = e^{-8\pi G(q)} (|\Lambda_+(q)| - |\Lambda_-(q)|).$$

We will give another characterization of D(q) in terms of the Hessian of *G* at *q*, hence establish a correspondence between the geometric interpretation and the degeneracy structure of the Green function. Recall [8, (7.7)]:

(2.4)
$$\det D^2 G = \frac{-1}{4\pi^2} \Big(|(\log \vartheta)_{zz}|^2 + \frac{2\pi}{b} \operatorname{Re} (\log \vartheta)_{zz} \Big).$$

To write it in the Weierstrass theory we use $(\log \vartheta)_z(z) = \zeta(z) - \eta_1 z$ and

(2.5)
$$(\log \vartheta)_{zz}(\frac{1}{2}\omega_i) = -\wp(\frac{1}{2}\omega_i) - \eta_1 = -(e_i + \eta_1).$$

Theorem 2.2. For any half period q,

$$|\Lambda_+(q)| - |\Lambda_-(q)| = -4\pi^2 b \det D^2 G(q).$$

Proof. Without loss of generality, we assume that $q = \frac{1}{2}\omega_1 = \frac{1}{2}$ and denote $\Lambda_+(q)$ and $\Lambda_-(q)$ by Λ_+ and Λ_- respectively. By (2.2), we have

$$\begin{split} |\Lambda_{+}| - |\Lambda_{-}| &= \lim_{r \to 0} \left(\int_{E_{\tau} \setminus B_{r}(0)} |\wp(z)|^{2} - \int_{\mathbb{R}^{2} \setminus B_{r}(0)} \frac{1}{|z|^{4}} \right) \\ &- \lim_{r \to 0} \int_{E_{\tau} \setminus B_{r}(0)} (\wp(z)\bar{e}_{1} + \bar{\wp}(z)e_{1}) + b|e_{1}|^{2}, \end{split}$$

where $\tau = a + bi$.

To compute the first term, write the Weierstrass zeta function as $\zeta = u + iv$ and then $\wp = -\zeta' = -u_x - iv_x = -u_x + iu_y$. Hence

$$|\wp|^2 = u_x^2 + u_y^2 = \partial_x(uu_x) + \partial_y(uu_y).$$

Using integration by parts, and noticing that the singularity at z = 0 is cancelled out by the second integral, the first limit term then becomes

$$\int_{\Gamma} uu_x \, dy - uu_y \, dx = \int_{\Gamma} u(v_x \, dx + v_y \, dy) = \int_{\Gamma} u \, dv$$

This can be calculated easily as

$$-\frac{1}{2}\mathrm{Im}\int_{\Gamma}\zeta\,d\bar{\zeta}=\frac{1}{2}\mathrm{Im}\,(\bar{\eta}_1\eta_2-\eta_1\bar{\eta}_2).$$

Applying the Legendre relation $\eta_2 = \eta_1 \tau - 2\pi i$, we get

$$\bar{\eta}_1\eta_2 - \eta_1\bar{\eta}_2 = \bar{\eta}_1(\eta_1\tau - 2\pi i) - \eta_1(\bar{\eta}_1\bar{\tau} + 2\pi i) = 2ib|\eta_1|^2 - 2\pi i(\eta_1 + \bar{\eta}_1).$$

Consequently,

(2.6)
$$\lim_{r\to 0} \left(\int_{E_{\tau}\setminus B_r(0)} |\wp(z)|^2 - \int_{\mathbb{R}^2\setminus B_r(0)} \frac{1}{|z|^4} \right) = b|\eta_1|^2 - \pi(\eta_1 + \bar{\eta}_1).$$

For the second limit term, we first compute

$$\int_{E_{\tau}\setminus B_{r}(0)}\wp(z) = \frac{i}{2}\int_{T\setminus B_{r}(0)}\wp dz \wedge d\bar{z} = -\frac{i}{2}\int_{T\setminus B_{r}(0)}d(\zeta d\bar{z})$$
$$= -\frac{i}{2}\Big(\int_{\Gamma}\zeta d\bar{z} - \int_{\partial B_{r}(0)}\zeta d\bar{z}\Big).$$

This first integral gives $\eta_1 \bar{\tau} - \eta_2 = \eta_1 \bar{\tau} - \eta_1 \tau + 2\pi i = -2bi\eta_1 + 2\pi i$. For the second integral, in the limit $r \to 0$ it tends to $\int_0^{2\pi} e^{-i\theta} e^{-i\theta} (-i) d\theta = 0$. Hence

$$\lim_{r\to 0}\int_{E_{\tau}\setminus B_r(0)}\wp(z)=-\eta_1b+\pi.$$

Putting everything together we get (c.f. (2.4) and (2.5))

$$\begin{split} &\Lambda_{+}|-|\Lambda_{-}|\\ &=b|\eta_{1}|^{2}-\pi(\eta_{1}+\bar{\eta}_{1})+(\eta_{1}b-\pi)\bar{e}_{1}+(\bar{\eta}_{1}b-\pi)e_{1}+b|e_{1}|^{2}\\ &=b|e_{1}+\eta_{1}|^{2}-\pi((e_{1}+\eta_{1})+(\overline{e_{1}+\eta_{1}}))\\ &=-4\pi^{2}b\det D^{2}G(\frac{1}{2};\tau). \end{split}$$

The proof is completed.

Corollary 2.3. Let u_k be a sequence of blow-up solutions to (2.1) with $\rho_k \rightarrow 8\pi$ and *q* the blow-up point.

 \square

- (1) *q* is a half period and a saddle point of $G(z; \tau)$ if and only if $\rho_k > 8\pi$.
- (2) *q* is a half period and a minimal point of $G(z; \tau)$ if and only if $\rho_k < 8\pi$.

3. UNIQUENESS OF SOLUTIONS

In this section we classify all solutions to

$$(3.1) \qquad \qquad \bigtriangleup u + e^u = \rho \,\delta_0 \quad \text{on } E$$

for $0 < \rho \leq 8\pi + \epsilon_0$ where ϵ_0 is a small positive number.

Recall in [8] we showed that equation (3.1) has a unique solution for $\rho = 4\pi$, and a unique *even* solution for $4\pi \le \rho \le 8\pi$. Here we prove the uniqueness result without the evenness assumption.

Lemma 3.1. Equation (3.1) has a unique solution for $0 < \rho \leq 4\pi$.

Proof. We first show that for any solution *u* to (3.1) with $\rho \leq 4\pi$, the linearized equation

$$(3.2) \qquad \qquad \triangle \phi + e^u \phi = 0 \quad \text{on } E$$

has only trivial solution $\phi = 0$.

Suppose that ϕ is a solution to (3.2). Then a straightforward computation shows that $(\phi_{zz} - u_z \phi_z)_{\bar{z}} = 0$. Since

$$u(z) \sim \frac{\rho}{2\pi} \log |z|,$$

 $\phi_{zz} - u_z \phi_z$ is an elliptic function on *E* whose only singularity is a pole of order one at 0. This forces that $\phi_z(0) = 0$ and

$$\phi_{zz} - u_z \phi_z = c_1$$
 on *E*

for some constant c_1 , or equivalenly

$$(e^{-u}\phi_z)_z = c_1 e^{-u}.$$

Notice that

(3.3)
$$|e^{-u}\phi_z(z)| \le c_2|z|^{1-\rho/2\pi}$$

for some constant $c_2 > 0$. Thus if $\rho < 4\pi$,

$$\lim_{r\to 0}\int_{E\setminus B_r(0)}(e^{-u}\phi_z)_z=\frac{1}{2}\lim_{r\to 0}\int_{\partial B_r(0)}e^{-u}\phi_z\frac{\bar{z}}{|z|}\,ds=0,$$

and if $\rho = 4\pi$ the above limit is finite. If $c_1 \neq 0$, this implies that

$$\int_E e^{-u} = \begin{cases} 0 & \text{if } \rho < 4\pi, \\ < \infty & \text{if } \rho = 4\pi, \end{cases}$$

which leads to a contradiction. So we have $c_1 = 0$ and $e^{-u}\phi_{\bar{z}}$ is an elliptic function. By (3.3) this again implies that $e^{-u}\phi_{\bar{z}} = c_3$ is a constant.

If $\phi \neq 0$ then ϕ has a maximum point p and a minimum point q with $p \neq q$. One of p, q is not a lattice point where $\phi_{\bar{z}} = 0$. This implies that $c_3 = 0$ and hence $\phi_{\bar{z}} \equiv 0$. This leads to $\phi \equiv 0$ which is a contradiction to $\phi \neq 0$. Hence we must have $\phi \equiv 0$.

Now the uniqueness follows from the fact that (3.1) has only one solution at $\rho = 4\pi$.

Remark 3.2. In [8] we showed that the unique even solution to (3.1) with $\rho \in [4\pi, 8\pi]$ is non-degenerate in the class of $H^1_{ev} = \{u \in H^1 \mid u(-z) = u(z)\}$. Now the proof of Lemma 3.1 allows us to remove the evenness assumption: u is non-degenerate in the whole space H^1 , provided that $0 < \rho < 8\pi$.

To see this, we may assume that the solution ϕ is odd. Therefore $\phi_{zz} - u_z \phi_z$ is odd and by exactly the same calculation we have

$$\phi_{zz} - u_z \phi_z = c_1 = 0.$$

This implies that $e^{-u}\phi_{\bar{z}}$ is an elliptic function on *E*, with 0 being its only pole. However, since ϕ is odd, $\phi_{\bar{z}}$ is even and the estimate (3.3) can be improved to

$$|e^{-u}\phi_z(z)| \le c_2|z|^{2-\rho/2\pi}.$$

If $\rho < 8\pi$, we find $2 - \rho/2\pi > -2$. This implies that $e^{-u}\phi_{\bar{z}}$ is a constant. If $\phi \neq 0$, by evaluating it at a maximum or minimum point, with one of it not a lattice point, we conclude that $e^{-u}\phi_{\bar{z}} \equiv 0$, and then $\phi \equiv 0$ follows. (Notice that if $\rho = 8\pi$ then $e^{-u}\phi_{\bar{z}} = c\wp(z)$ for some constant $c \neq 0$.)

Now we may conclude that the unique even solution *u* is always a minimum point of the non-linear functional J_{ρ} in (1.1) for $0 < \rho \leq 8\pi$. In fact we can prove a stronger result, namely Theorem 0.5.

Lemma 3.3. Let u be a solution to (3.1) with $\rho \notin 8\pi \mathbb{N}$. Then u is even.

Proof. This was proved in [2] for $\rho = 4\pi l$ with *l* being a positive odd integer, so we assume that $\rho \notin 4\pi \mathbb{N}$.

Let f(z) be a multi-valued developing map of u. The readers are referred to $[2, \S 8]$ for the details to treat these multi-valued functions as global analytic functions $\mathbf{f}(\xi)$, which are defined on the universal cover $\xi \in \mathbb{H} \to E^{\times}$. In particular the cusp $\xi = 0$ is mapped to the cusp z = 0 in E^{\times} .

As in [2], we have $S(f) = 2(\eta(\eta + 1)\wp + B)$ for $\eta = \rho/8\pi$ for some $B \in \mathbb{C}$. Thus $f = w_1/w_2$ and $\mathbf{f} = \mathbf{w}_1/\mathbf{w}_2$ for two linearly independent solutions w_1 and w_2 to the Lamé equation

(3.4)
$$w'' = (\eta(\eta + 1)\wp + B)w.$$

Since $\tilde{w}_i(z) := w_i(-z)$ are also two linearly independent solutions to (3.4), $\tilde{f} := \tilde{w}_1/\tilde{w}_2$ also defines a global analytic function \tilde{f} and we have

$$\tilde{\mathbf{f}} = S\mathbf{f} = \frac{a\mathbf{f} + b}{c\mathbf{f} + d}$$
, for some $S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{C}).$

Consider the covering transformations on \mathbb{H} : $g_1, g_2 \in SL(2, \mathbb{R})$ determined by the two free generators of $\pi_1(E^{\times}) \cong \mathbb{Z} * \mathbb{Z}$. Let $\Gamma < SL(2, \mathbb{R})$ be the rank two free subgroup generated by g_1 and g_2 , and $r : \Gamma \to \text{PSU}(2)$ be the unitary representation associated to the solution *u*. The mapping (-1) : $z \mapsto -z$ on E^{\times} lifts to a map ι on \mathbb{H} which is not a covering map for $\mathbb{H} \to E^{\times}$. Nevertheless the composition $\iota \circ \iota$, namely we apply (-1)twice, does give a covering map for $\mathbb{H} \to E^{\times}$. That is, the matrix S^2 can be represented as an element generated by $S_1 := r(g_1)$ and $S_2 := r(g_2)$.

By considering the action of (-1) in a simply connected neighborhood U of $0 \in E$, we see that $S^2 f = f(e^{2\pi i}z) = \beta f(z)$ for some $\beta \in PSU(2,\mathbb{C})$. Indeed, $\beta = r(g_2^{-1}g_1^{-1}g_2g_1) = S_2^{-1}S_1^{-1}S_2S_1$. Under some normalization on **f**, the matrix β is calculated in [2, Lemma 8.3.4, p.262] (suppress all index *k* in the formula in the bottom of p.262) as

$$eta = egin{pmatrix} |p|^2lpha + |q|^2ar{lpha} & -ar{p}q(lpha-ar{lpha}) \ par{q}(ar{lpha}-lpha) & |p|^2ar{lpha} + |q|^2lpha \end{pmatrix},$$

where $f(0) := \lim_{\xi \to 0} f(\xi) = q/p$ with $|p|^2 + |q|^2 = 1$, $p, q \neq 0$, and $\alpha =$

 $e^{2\pi i\eta}$. Clearly $\alpha \neq \bar{\alpha}$ since $\eta \notin \frac{1}{2}\mathbb{Z}$. In particular $\beta \neq \pm I_2$. We claim that $S \in PSU(2, \mathbb{C})$. To prove it, we choose a new unitary basis to diagonalize β to $\begin{pmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{pmatrix}$ for some $e^{i\theta} \neq \pm 1$. Since

$$S^{2} = \begin{pmatrix} a^{2} + bc & b(a+d) \\ c(a+d) & d^{2} + bc \end{pmatrix},$$

 $S^2 = \beta$ implies that either a + d = 0 or both b = 0 and c = 0. If a + d = 0then $a^2 + bc = -ad + bc = -1$ and $d^2 + bc = -1$, which leads to $e^{i\theta} = -1$, a contradiction. Hence b = c = 0 and ad = 1, $a^2 = e^{i\theta}$, $d^2 = e^{-i\theta}$. Therefore, $S \in \text{PSU}(2, \mathbb{C})$ and $\tilde{f}(z) = f(-z)$ gives rise to the same solution *u*. Hence u(-z) = u(z) and the lemma follows.

Proof of Theorem 0.5. By Lemma 3.1 and 3.3, the uniqueness of solution holds for $0 < \rho < 8\pi$. The statements for $\rho = 8\pi$ was proved in [8].

For $\tau \in \Omega_3$, the unique solutions u_ρ blows up as $\rho \nearrow 8\pi$ (since equation (3.1) has no solutions at $\rho = 8\pi$). The blow-up point of u_ρ must be the minimum point which is one of the half periods. The other two half periods q_1 and q_2 are saddle critical point of *G*. By Theorem 0.4 and Remark 0.3, we have det $D^2G(q_i) < 0$ and then $D(q_i) > 0$. Under these conditions, by the method in [4] we can construct a bubbling sequence of solutions $u_{\rho,i}$ to (3.1), for each i = 1, 2, with $\rho > 8\pi$ which blows up at q_i .

Remark 3.4. In [4] the non-degenerate condition $D(q_i) \neq 0$ was replaced by some other non-degenerate condition. Nevertheless the similar process as there still works in our current case (see e.g. the remark in [6] concerning with the degree counting formula).

Indeed, for the Chern–Simons–Higgs equation, the same non-degenerate conditions D(q) < 0 and det $D^2G(q) \neq 0$ were recently used to construct such kind of bubbling solutions [10].

Now we need the following uniqueness theorem:

Theorem 3.5. Suppose that u_k and \tilde{u}_k are two sequences of solutions to (3.1) with $\rho_k \rightarrow 8\pi$, and both sequences have the same blow-up point q.

If $D(q) \neq 0$, i.e. q is a non-degenerate critical point of G by Theorem 0.4, then $u_k = \tilde{u}_k$ for large k.

This is recently proved in [11] for the Chern–Simons-Higgs equation

$$\bigtriangleup u + \frac{1}{\epsilon} e^u (1 - e^u) = 8\pi \delta_0,$$

but the proof given there also works for (3.1).

By Theorem 3.5, $u_{\rho,i}$ are exactly all the solutions to equation (3.1) for $8\pi < \rho < 8\pi + \epsilon_0$. This proves (i).

For $\tau \in \Omega_5$, all the three half periods are saddle points of *G*. By Theorem 3.5 again, we must have three bubbling solutions. On the other hand, (3.1) has a unique even solution *u* for $\rho = 8\pi$ whose linearized equation in the class of even functions is non-degenerate. Therefore for $8\pi < \rho < 8\pi + \epsilon_0$ there is a unique even solution u_{ρ} which converges to to *u* as $\rho \searrow 8\pi$.

By Lemma 3.3, (3.1) has only even solutions for $8\pi < \rho < 8\pi + \epsilon_0$, we conclude that (3.1) has the only one even solution u_ρ which converges to u as $\rho \searrow 8\pi$. Hence there are four solutions in total. This proves (ii) and thus completes the proof Theorem 0.5.

REFERENCES

S.-Y. Chang, C.-C. Chen and C.-S. Lin; *Extremal functions for a mean field equation in two dimension*, Lectures on PDE, 61–93, New Stud. Adv. Math. 2, Int. Press, 2003.

- [2] C.-L. Chai, C.-S. Lin and C.-L. Wang; *Mean field equations, hyperelliptic curves, and modular forms: I*, Cambridge J. of Math. 3 (2015), no. 1–2, 127–274.
- [3] C.-C. Chen and C.-S. Lin; *Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces*, Comm. Pure Appl. Math. **55** (2002), 728–771.
- [4] ——; Topological degree for a mean field equation on a Riemann surface, Comm. Pure Appl. Math. 56 (2003), 1667–1727.
- [5] —; Topological degree for a mean field equation with singular sources, Comm. Pure Appl. Math. 68 (2015), 887–947.
- [6] C.-C. Chen, C.-S. Lin and G. Wang; Concentration phenomenon of two-vortex solutions in a Chern–Simons model, Ann. Scuola Norm. Sup. Pisa CI. Sci. (5) Vol. III (2004), 367–379.
- [7] Z. Chen, K.-J. Kuo, C.-S. Lin and C.-L. Wang; Green function, Painlevé VI equation, and Eisentein series of weight one, preprint 2015.
- [8] C.-S. Lin and C.-L. Wang; Elliptic functions, Green functions and the mean field equations on tori, Annals of Math. 172 (2010), no.2, 911–954.
- [9] —; A function theoretic view of the mean field equations on tori, in "Recent advances in geometric analysis", 173–193, Adv. Lect. Math. 11, Int. Press, Somerville MA, 2010.
- [10] C.-S. Lin and S.-S. Yan; Existence of bubbling solutions for Chern–Simons model on a torus, Arch. Ration. Mech. Anal. 207 (2013), no. 2, 352–392.
- [11] ——; On the self-dual condensate of the Chern–Simons–Higgs model, Part II: local uniqueness and applications, preprint 2014.
- [12] M. Nolasco and G. Tarantello; Double vortex condensation in the Chern–Simons–Higgs theory, Calc. Var. Partial Diff. Equ. 9 (1999), 31–94.

DEPARTMENT OF MATHEMATICS AND CENTER FOR ADVANCED STUDIES IN THEORETIC SCIENCES (CASTS), NATIONAL TAIWAN UNIVERSITY, TAIPEI

E-mail address: cslin@math.ntu.edu.tw

DEPARTMENT OF MATHEMATICS AND TAIDA INSTITUTE OF MATHEMATICAL SCIENCES (TIMS), NATIONAL TAIWAN UNIVERSITY, TAIPEI

E-mail address: dragon@math.ntu.edu.tw