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ABSTRACT. This is an expanded version of the third author’s lecture in String-
Math 2015 at Sanya. It summarizes some of our works in quantum cohomology.

After reviewing the quantum Lefschetz and quantum Leray–Hirsch, we dis-
cuss their applications to the functoriality properties under special smooth flops,
flips and blow-ups. Finally, for conifold transitions of Calabi–Yau 3-folds, formu-
lations for small resolutions (blow-ups along Weil divisors) are sketched.

0. Introduction

0.1. Classical aspects on algebraic geometry. In the study of algebraic geom-
etry, we usually encounter projective morphisms f : Y −→ X, e.g. blow-ups, bundle
morphisms etc., and it is a basic question to study relations of geometric quantities
under such morphisms.

By its very definition of being projective, there are factorizations of f into com-
positions of simpler morphisms in the following form. There are vector bundles
E → X and associated projective bundles π : P = PX(E )→ X such that f = π ◦ ι:

Y ι //

f ��

P

π
��

X

where ι : Y ↪→ P is an imbedding. The choice of P is by no means unique. In
fact E can be taken to be a trivial bundle, say of rank r, and then P = Pr−1 × X is
a product. However, a good choice of P is usually important so that the induced
imbedding ι has good structures.

If ι(Y) ⊂ P is a complete intersection, namely that there is a split vector bundle
V =

⊕
Li → P and a section σ ∈ Γ(P, V) such that ι(Y) = σ−1(0) is its zero loci,

then one develops
Lefschetz Hyperplane Theorem

to study relations between Y and P. In most cases one does not obtain complete
intersection imbedding automatically. Nevertheless sometimes one may employ
the technique of deformations to the normal cone to reduce the problem under study
to such a situation. The most famous one is the proof of Grothendieck–Riemann–
Roch theorem [5]. Historically it is the proof of GRR which lays the foundation of
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these techniques. Among many later applications, it is notable that deformations to
the normal cone is now a standard method to reduce a problem to its local models
(e.g., the proof of invariance of complex elliptic genera under K-equivalent birational
maps [23]).

For the (projective) bundle map π, one develops

Leray–Hirsch Theorem

to study relations between P and X. The techniques in this package include direct
images, spectral sequences etc., and usually can be applied to more general bundle
maps such that the fiber manifold is well understood. A combination of results for
ι and π then gives the desired result for f .

0.2. Quantum aspects. In this article, following the above flow-chart, we sur-
vey the related developments on the quantum cohomology ring QH(X), or equiv-
alently the genus zero Gromov–Witten theory. More precisely we consider the
Dubrovin (flat) connection ∇ on TH(X) and analyze its behavior under vari-
ous maps including complete intersection imbedding and projective bundle maps.
The essential mathematical tools are the corresponding Quantum Lefschetz Hyper-
plane Theorem and the Quantum Leray–Hirsch Theorem.

The first version of quantum Lefschetz was proved around 1996 by Lian, Liu,
and Yau [19] and by Givental [6] independently (cf. [3]). It is also known as the
mirror theorem since its major motivation and application is to prove the counting
formula of rational curves on quintic Calabi–Yau 3-folds predicted by Candelas
et. al.. In that setup P could be a semi-Fano toric manifold and V =

⊕
Li is a

sum of convex line bundles such that c1(Y) ≥ 0 (semi-Fano or sub Calabi–Yau).
There are several improvements of quantum Lefschetz afterwards (e.g. [8]). The
most general version which allows the background manifold P to be general and
without the condition on c1(Y) was obtained by Coates and Givental [2]. We will
review this latest theory in terms of Dubrovin connections and introduced the
notion of Birkhoff factorizations and generalized mirror transforms.

For quantum Leray–Hirsch, a version for P = PX(E ) with E = O ⊕ L a rank
two split bundle first appeared in the work of Maulik and Pandharipande [20].
A version on the more general case of toric bundle P → X build on a split vector
bundle E → X was proved by Brown [1]. It had been formulated in the framework
of Dubrovin connections and used to prove the invariance of quantum cohomology
rings under ordinary flops by us in 2011 [11, 12]. More recently, together with F. Qu,
we proved a quantum splitting principle and remove the splitting assumption in the
quantum Leray–Hirsch [9]. For the applications to be discussed here, we will only
focus on the Dubrovin connection in the split case. The ideas of näive quantization
basis and admissible lift of Mori cone are the essential ingredients to formulate the
quantum Leray–Hirsch.

By combining quantum Lefachetz and quantum Leray–Hirsch, we discuss
several applications on birational maps including

(i) the analytic continuations, i.e. invariance, of QH under ordinary flops,
(ii) smooth blow-ups along complete intersection centers, as well as

(iii) decomposition theorem of projective local models of simple ordinary flips.

The latter two applications are new, and both address the issue of the functoriality
of QH under non K-equivalent transformations.
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Indeed for simple (r, r′) flips f : X 99K X′ with r > r′, there is an orthogonal
decomposition

H(X) = T −1H(X′)⊕ K

where T = [Γ f ]∗ : H(X)→ H(X′) is the map induced from the graph correspon-
dence with kernel (vanishing cycles) K ∼= Cr−r′ , and T −1 := [Γt

f ] is the transpose
correspondence. Under a suitable choice of quantum frame {T̃i} which deforms
the classical cohomology basis {Ti}, we have a ring isomorphism (decomposition)

QH(X) ∼= 〈T̃1, . . . , T̃dim H(X′)〉 ×Cr−r′

such that 〈T̃1, . . . , T̃dim H(X′)〉 ∼= QH(X′) as D z-modules, but not as rings. In this
survey we illustrate this for the case of (2, 1) flips.

Comparing with the current developments on string-math related topics, the
subjects discussed here are more classical in flavor as there is essentially no higher
genus theory nor modern mirror symmetry involved. Mirror symmetry phenom-
enon happens in the large complex/Kähler structure limit while birational maps are
essentially located at finite distance Kähler degenerations. Also we treat only smooth
varieties. However, in higher dimensional birational geometry, namely the min-
imal model theory, it is indispensable to include singularities in the variety under
consideration.

It is clear that most of the subjects discussed here can be extended to orbifolds
since orbifold Gromov–Witten theory is now well developed. However MMP re-
quires more general singularities then orbifold ones and it is still a long way to-
wards a useful quantum minimal model program. Of course the smooth case is the
first step, and it is our hope that further progress in the general case can be made
in the near future.

0.3. Towards a QMMP. As the next step, we are led to consider birational maps
up to complex deformations, i.e. transitions. There are many technical issues from
classic algebraic geometry on this regard. Nevertheless it has become clear in re-
cent years that it is indispensable to allow certain transitions in the classification
of higher dimensional varieties.

For Calabi–Yau 3-folds the famous Ried’s fantasy [21] on connecting CY with
different topology through transitions is still one of the major research problems
in this area. We give a very brief sketch on our recent work [13] in understanding
the transition of quantum A model and B model in projective conifold transitions
X ↗ Y through a conifold degeneration X → ∆ from X = Xt, t 6= 0, to X̄ =
X0, followed by a small resolution Y → X̄. In particular the notion of linked
GW invariants with respect to a set of vanishing spheres Si ⊂ X is introduced
which corresponds to the non-exceptional GW invariants on Y. For GW invariants
supported on exceptional curves, a basic exact sequence shows that there is a local
transition between them and the Yukawa couplings of the vanishing periods.

This article ends with discussions on issues of effective computations on the
quantum transitions in terms of blow-up formula of GW invariants when the
blow-up is along certain non-complete intersection (Weil) divisors.
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1. Quantum cohomology

In this article, unless stated otherwise, all varieties X, Y, P, . . . under consider-
ations are assumed to be smooth and projective over C. The cone of effective one
cycles (Mori cone) in X is denoted by NE(X).

1.1. Dubrovin connection. A general reference is [3]. We fix a cohomology
basis Ti ∈ H = H(X) := H∗(X, C), with dual basis {Ti}. A general element in
cohomology is denoted by t = ∑ tiTi. The genus zero GW theory is encoded by its
generating function (pre-potential) F(t) = 〈〈〉〉, where for ai ∈ H(X),

〈〈a1, . . . , am〉〉 := ∑
β∈NE(X)

∞

∑
n=0

qβ

n!
〈a1, . . . , am, t, . . . , t〉g=0,m+n,β.

The (formal) Novikov variables qβ’s are inserted to avoid the issue of convergence.
It also keeps track on the natural grading arising from the virtual dimension (i.e.,
the conformal structure on the Frobenius manifold H(X), though we do not make
use of this language in this article). In general t is also treated as a formal variable
(cf. (1.2) below for t ∈ H0 ⊕ H2).

Denote by Fijk = ∂3
ijkF = 〈〈Ti, Tj, Tk〉〉 the 3-point generating functions, and set

Ak
ij := ∑l Fijl glk. Then the big quantum product at t is defined by

Ti ∗t Tj = ∑
k

Ak
ij(t) Tk.

The product is associative due to the WDVV equations. Equivalently it corre-
sponds to the flatness of the Dubrovin connection on TH ⊗C[[q•]]:

(1.1) ∇ := d− 1
z

A ≡ d− 1
z ∑

i
dti ⊗ Ai.

The special role played by the z parameter shows that∇ is flat if and only if dA =
0 = A ∧ A, which is equivalent to WDVV.

1.2. J function and cyclic D z-modules. Write t = t0 + t1 + t2 with t0 ∈ H0

and t1 ∈ H2. The generating function of all genus zero GW invariants with at most
one descendent insertion is organized as

J(t, z−1) := 1 +
t
z
+ ∑

β,n,i

qβ

n!
Ti

〈
Ti

z(z− ψ)
, (t)n

〉
β

= e
t
z + ∑

β 6=0,n,i

qβ

n!
e

t0+t1
z +(t1.β)Ti

〈
Ti

z(z− ψ)
, (t2)

n
〉

β

(1.2)

where the fundamental class axiom (string equation) and the divisor axiom are
applied to get the second equality. The important role played by the J function
comes from the following quantum differential equation (QDE)

(1.3) z∂i z∂j J = ∑
k

Ak
ij z∂k J,

which follows from the topological recursion relation (TRR). It implies that the
quantum cohomology QH(X) can be regarded as the cyclic D z-module D z J with
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base (frame) given by

z∂i J ≡ et/z Ti (mod q•) = Ti + . . . .

It is clear that for T1 = 1 being the fundamental class, z∂1 J = J.
The ring of differential operators D z = C[[t, q•]]{z, z∂•} is defined so that p =

∑β qβ pβ ∈ D z implies that pβ is a polynomial in z and z∂•.
In practice it is sometimes easier to study the GW theory or the J function on

the small parameter space H0 ⊕ H2. The expression of J with t2 = 0 is known as
the small J function. Using the divisorial reconstruction theorem in [16], the small
J function determines the sub-algebra of QH(X) generated by H2(X).

2. Review on quantum Lefschetz

2.1. Quantum Lefschetz for toric base and concavex bundle with c1 ≥ 0.
Let P be a projective manifold, Li → P, 1 ≤ i ≤ r be convex line bundles, and
σ ∈ Γ(P,

⊕r
i=1 Li) be a section such that Y = σ−1(0) ↪→ P is a smooth submanifold.

Given QH(P), the problem is to compute QH(Y).
The method of localizations on stable map moduli spaces leads to the so called

factorial trick or hypergeometric modifications. To state it, we start with the cohomol-
ogy valued factorial

(L)β :=
L.β

∏
m=1

(L + mz)

whenever the intersection number L.β ≥ 0. Then we set

(2.1) IY(t, z, z−1) := ∑
β∈NE(P)

qβ JP
β (t, z−1)×

r

∏
i=1

(Li)β

as an approximation of JY.
When the ambient space P is a semi-Fano toric manifold (i.e. c1(P) ≥ 0), Lian–

Liu–Yau and Givental used C× localizations to determine JP. (This in turn deter-
mines QH(P) since H(P) is generated by divisors.) Over such a semi-Fano toric
base, they further proved the

THEOREM 2.1 (Mirror Theorem). [19, 6] For c1(Y) ≥ 0, t ∈ H0 ⊕ H2, we have

(IY/IY
0 )(t, z−1) = JY(τ, z−1)

up to the mirror map t 7→ τ(t) which matches 1/z coefficients on both sides.

Here IY
0 is the component of z0 terms. Notice that the assumption c1(Y) ≥ 0

implies that IY is still an expression in z−1.
In [19], the line bundles Li’s are also allowed to be concave. In that case their

mirror principle determines a certain type of twisted GW invariants.

2.2. Quantum Lefachetz over general base and split bundles. Without the
condition that c1(Y) ≥ 0, the approximation IY might contain terms with positive
z powers. But JY, by definition, contains only terms in powers of z−1. Hence a
more sophisticated transformation is needed in order to relate IY to JY.

Coates and Givental considered the following situation. Let P be a general
projective manifold whose big quantum cohomology ring QH(P) is given. Let
Li → P, 1 ≤ i ≤ r, be line bundles. They defined twisted GW invariants in this
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setup. When Li’s are base-point free the twisted invariants are the GW invariants
of the complete intersection sub-manifold Y = σ−1(0) for a generic section σ ∈
Γ(P,

⊕r
i=1 Li). They proved

THEOREM 2.2. [2] Given JP(t) in t ∈ H(P), we have IY ∈ D z JY. More precisely,
there exists a linear differential operator b = b(τ, z, q•, z∂•) which is polynomial in z on
each finite truncation of the Novikov variables q• such that

IY(t, z, z−1) = b(τ, z, q•, z∂•) JY(τ, z−1).

Here t 7→ τ(t) ∈ H(P) is a transformation determined by this property.

To get a better understanding of the statement, we notice that b can be taken to
be linear in z∂i’s because of the QDE (1.3) on JY. In a similar fashion, the differenti-
ation z∂i IY can also be represented by ∑j Bij z∂j JY for some formal functions Bij’s
which are polynomials in z in any β ∈ NE(P). This leads to the so called Birkhoff
factorization

(2.2) (z~∂ I)(t, z, z−1) = (z~∂ J)(τ, z−1)B(τ, z)

of the square matrix (z~∂ I) = (z∂1 I, . . . , z∂dim H(P) I).
Since z∂i I ≡ et/zTi ≡ z∂i J (mod q•), we have B ≡ Id (mod q•) and this

implies the isomorphism on D z modules

D z I(t) ∼= D z J(τ)

up to a generalized mirror transform τ(t) on H(X). Now it is clear that

p(t, z, q•, z∂•) IY(t, z, z−1) = JY(τ, z−1)

for some linear operator p. In fact this operator plays the role to remove the z≥0

terms in IY and it can be effectively constructed by induction on NE(P) (cf. [12,
Theorem 1.10] for a related construction). The map t 7→ τ(t) is then determined
by matching the 1/z coefficients on both sides.

We also notice that from (2.2) the matrix B−1 is the gauge transformation to
bring the wrong frame z∂i I’s back to the preferred frame z∂i J so that the connec-
tion matrix takes the form expected in (1.1).

3. Quantum Leray–Hirsch

3.1. Factorial trick for split projective (toric) bundles. Let

π : P = PX(V)→ X

be a projective bundle. The classical Leray–Hirsch theorem computes the coho-
mology of the total space P in terms of the base X and the fibers. Let h = c1(OP(1)),
then

H(P) ∼= π∗H(X)[h]/( fV(h))
where fV(h) is the Chern polynomial of the vector bundle V → X.

It is natural to ask for a similar description on quantum cohomology. For this
purpose we assume that QH(X) is given, and V =

⊕r
i=1 Li is a sum of line bun-

dles. We seek for an analogous factorial trick as in the case of quantum Lefschetz.
However the formulation must be different since now QH(P) contains additional
variables.
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Let t̄ ∈ H(X) be a general element from the base, D = thh be the fiber divisor
class with coordinate th, and we consider the mixed variable

t̂ = t̄ + D.

Then a hypergeometric modification of JX is defined by

(3.1) IP(t̂, z, z−1) = ∑
β∈NE(P)

qβ JX
π∗β(t̄)× e

D
z +(D.β)

r

∏
i=1

1
(h + Li)β

.

Here the convention on factorial ∏s
1 := ∏s

∞ / ∏0
−∞ is used so that 1/(L)β makes

sense even if L.β < 0.
When X = pt, this is the I function of Pr−1 coming from localizations. In

general (3.1) arises from fiber localization of a C×-action, which exists by the split
assumption on V. The formulation works for other fiber bundles as long as the
fiber localization is well understood. In that case D = ∑

ρ
i=1 tiDi for D1, . . . , Dρ

being a basis of H2(P/X). The following is due to Brown:

THEOREM 3.1. [1] Given JX(t̄) in t̄ ∈ H(X), we have IP ∈ D z JP. More precisely,
there is a linear differential operator b = ∑β∈NE(P) qβbβ with degz bβ < ∞, and a graph
t̂ 7→ τ(t̂) : H(X)⊕Ch→ H(P), such that

IP(t̂, z, z−1) = b(τ, z, q•, z∂•) JP(τ, z−1).

REMARK 3.2. The result was proved in [1] for split toric bundles, and stated
in the language of Lagrangian cones. We have presented it in an equivalent form to
avoid introducing this machinery.

3.2. The Dubrovin connection. Based on Theorem 3.1, we had developed a
method to compute the Dubrovin connection on the bundle space P [12]. It is
roughly represented by following implication:

PFP/X +∇X =⇒ ∇P.

To be precise, we need to introduce a system of equations controlling both the fiber
directions and the base directions.

For the fibers, we introduce the Picard–Fuchs ideal. For the primitive fiber curve
class ` ∈ NE(P/X), it is easily checked that �` I = 0 where

(3.2) �` = ∏r
i=1 z∂h+Li

− q`eth

is the Picard–Fuchs operator. (Here ∂L is the directional derivative in direction
L.) The Picard–Fuchs ideal is the left ideal of D z generated by the Picard–Fuchs
operators.

For differentiations in the variables corresponding to the base, i.e. H(X), di-
rections, we introduce the lifting of QDE from X to P. For each β̄ ∈ NE(X), a lift of
β̄ is a curve class β ∈ NE(P) such that π∗β = β̄. Moreover, β is called admissible if

−(h + Li).β ≥ 0, for all i = 1, . . . , r.

Admissible lift exists. In fact a minimal lift in effective classes is admissible.
Let β̄∗ ∈ NE(P) be an admissible lift of β̄ ∈ NE(X). We define

Dβ̄∗(z) :=
r

∏
i=1

−(h+Li).β̄∗−1

∏
m=0

(z∂h+Li
−mz).
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Then it can be shown by direct computations that (cf. [12, Theorem 3.6])

(3.3) z∂i z∂j I = ∑k,β̄ qβ̄∗ eD.β̄∗ Āk
ij, β̄

(t̄) Dβ∗(z) z∂k I.

REMARK 3.3. For toric bundles with ρ(P/X) > 1, the admissible lift still ex-
ists, though not unique, and the lifting of QDE is independent of the choices of
β̄∗ modulo the Picard–Fuchs ideal. A case of double projective bundle (hence
ρ(P/X) = 2) will be discussed in Lemma 4.2.

Let t̄ = ∑ t̄i T̄i ∈ H(X), and e = hl T̄i ∈ H(P). The näive quantization of e is
defined to be the operator

ê = ∂ze := (z∂h)
l z∂T̄i

= (z∂th)l z∂t̄i .

The idea for doing so is clear: since we do not have a variable corresponding to
e, we simply use l-th derivatives in th to approximate the directional derivative in
hl . On the base direction we keep the first order derivative in direction T̄i since the
variable t̄i is available.

Using (3.2) and (3.3) we get the first order system on the frame ∂ze I (with e
runs through a basis of H(P)) over the variables ta = t̄i, th:

z∂a (∂
ze I) = (∂ze I)Ca(t̂, z).

As in §2.2, we have the Birkhoff factorization matrix B such that

(∂ze I)(t̂, z, z−1) = (z~∂ J)(τ, z−1)B(τ, z).

In fact B−1 is the gauge transformation to remove z≥0 in Ca(t̂, z). Furthermore, the
map t̂ 7→ τ(t̂) is uniquely determined by matching the 1/z coefficients of the first
column of (∂ze I)B−1 with J:

J(τ, z−1) = z∂1 J = p(t̂, z, ∂z•) I(t̂, z, z−1).

Set z = 0 in the gauge transformation we find −(z∂aB)B−1 7→ 0 and

(3.4) B0 Ca;0 B−1
0 (t̂) =

dim H(P)

∑
i=1

Ai(τ(t̂))
∂τi

∂ta (t̂),

where B0 = B(z = 0) and Ca;0 = Ca(z = 0).
Since τ ≡ t̂ (mod q•), by the Mori cone induction and divisorial reconstruc-

tion we may then determine all the Dubrovin connection matrices Ai(t) from (3.4).
Of course the computations involved are necessarily complicated and very de-
manding. In applying these results special attention is paid to maintain the struc-
tural information. We will demonstrate on this through a few applications.

4. Application I: Ordinary flops

4.1. The statement. Let f : X 99K X′ be a Pr flop. That is, there are two vector
bundles F, F′ → S of the same rank r + 1, such that the exceptional loci Z ⊂ X has
the following projective bundle structure:

Exc f = Z = PS(F)
ψ̄−→ S.

Moreover, the normal bundle of Z in X is given by

N = NZ/X
∼= ψ̄∗F′ ⊗OZ(−1).
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It was shown in [10] that the graph correspondence T = [Γ f ]∗ induces an
isomorphism on cohomology spaces H(X) ∼= H(X′), but it does not preserve the
effectivity of one cycles. Indeed if ` (resp. `′) is the class of primitive extremal
rational curve in X (resp. X′) then

T ` = −`′.
Moreover, T preserves the Poincaré pairing, but not the product structure. It turns
out that the topological defects are corrected by the extremal ray GW invariants
and the following is true:

THEOREM 4.1. [10, 11, 12, 9] The graph correspondence T induces isomorphism
of big quantum cohomology rings QH(X) ∼= QH(X′) under the analytic continuations
induced from qβ 7→ qT β.

Here is a brief history on this problem. For dim X = 3, the multiple cover for-
mula for OP1(−1)2 → P1 gives the quantum corrections of (T D)3−D3 (cf. Witten
[24]). The global case was treated by Li–Ruan [18] around 2000. They proved a de-
generation formula of GW invariants in the symplectic category, and used it to show
that in fact no degeneration might occur in the threefold case. The problem was
then reduced to the case of extremal rays which had already been solved.

In higher dimensions the statement was conjectured to hold for general bira-
tional K-equivalent manifolds by Ruan and Wang (cf. [22]). The case of simple ordi-
nary flops, namely S = pt, was solved in 2006 [10]. We worked in the algebraic
category and reduced the problem to local models by way of the deformations to
the normal cone and the degeneration formula of Li [17]. In this case non-trivial
degenerations do arise and the relations between relative GW invariants, descen-
dent invariants, and absolute GW invariants are carefully studied through degen-
erations (inspired by a method of Maulik and Pandharipande in [20]). For local
models, X = PPr (O(−1)r+1 ⊕ O) is a semi-Fano toric variety whose GW theory
is well studied (cf. Theorem 2.1). In fact IX = JX on small parameters, and the
analytic continuation can be solved. The result was further extended to the higher
genus GW theory in [7] by studying ancestor invariants and quantization.

For general base S with split bundles F, F′, the analytic continuation was later
solved in 2011. Indeed, the problem was reduced to the local models in [11], and
the case of local models was solved through the quantum Leary–Hirsch theorem
in [12]. More recently, a quantum splitting principle was proved in a joint work with
Qu in [9], which reduced the problem for general vector bundles F, F′ to the case
of split bundles, hence proved Theorem 4.1 completely.

4.2. A sketch of proof. Now we sketch how the Quantum Leray–Hirsch is
applied to solve the case of local split flops.

The flop is achieved by first blowing up Z ⊂ X to get Y = BlZX → X and
then contracting the exceptional divisor E = PS(F)×S PS(F′) ⊂ Y in another fiber
direction to get Z′ ⊂ X′. We have ψ̄′ : Z′ = PS(F′) → S being a projective bundle
and N′ = NZ′/X′ = ψ̄′∗F⊗OZ′(−1):

X = PZ(N ⊕O)
f //

p
&&

X′ = PZ′(N′ ⊕O)

p′
xxS

,
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where p = ψ̄ ◦ π in X π−→ Z
ψ̄−→ S and similarly p′ = ψ̄′ ◦ π′. As a double projec-

tive bundle, we have NE(X/S) = 〈`, γ〉, where ` (resp. γ) is the ψ̄ (resp. π) fiber
line classes. Let ξ = OX(1) and h = OZ(1), and D = thh + tξ ξ ∈ H2(X/S) a
general fiber divisor. Then

H(X) = p∗H(S)[h, ξ]/( fF, fN⊕O ),

where fV is the Chern polynomial of a bundle V.
When F =

⊕
Li, F′ =

⊕
L′i are split bundles, we have

fF(h) = ∏(h + Li),

fN⊕O (h, ξ) = ξ ∏(ξ − h + L′i).

By symmetry we have similar formulae on the X′ side. However, it is not com-
patible with that on X: since T h = ξ ′ − h′, T ξ = ξ ′, it is easy to see that the cup
product structure is not preserved under T . (See [11, Theorem 1.8] for the explicit
computations on the topological defects.)

Now comes the key point: to remedy the topological defects we replace the
cohomology class by its “quantized” version, namely we consider differential op-
erators instead. This gives rise to the Picard–Fuchs operators

�` = ∏ z ∂h+Li
− q`eth

∏ z ∂ξ−h+L′i
,

�γ = z ∂ξ ∏ z ∂ξ−h+L′i
− qγetξ

which are regarded as the “quantized version” of the Chern polynomials. Simi-
larly we have on the X′ side

�`′ = ∏ z ∂h′+L′i
− q`

′
eth′

∏ z ∂ξ ′−h′+Li
,

�γ′ = z ∂ξ ′ ∏ z ∂ξ ′−h′+Li
− qγ′ etξ′

.

The coordinates are related by requiring th′h′ + tξ ′ξ ′ = T (thh + tξξ) = th(ξ ′ −
h′) + tξ ξ ′. That is, th′ = −th and tξ ′ = tξ + th.

Now it is a simple exercise to check that

LEMMA 4.2. T induces an isomorphism on Picard–Fuchs ideals

T 〈�`,�γ〉 ∼= 〈�`′ ,�γ′〉.

REMARK 4.3. Lemma 4.2 can be extended to split toric bundle flops.

For the base directions, the lift of QDE in (3.3) is independent of the choice of
admissible lift β̄∗ modulo the Picard–Fuchs ideal. The admissible condition for β
in this case is given by −β.(h + Li) ≥ 0, −β.(ξ − h + L′i) ≥ 0 and −β.ξ ≥ 0. It is
readily seen that β is admissible in X if and only if T β is admissible in X′. This
implies that the lifting of QDE from S to X and the one from S to X′ are indeed
equivalent under T modulo the Picard–Fuchs ideal. Thus, the quantum Leray–
Hirsch theorem implies that X and X′ have compatible first order PDE systems up
to analytic continuations.

To achieve T : QH(X) ∼= QH(X′), we still need to show that the Birkhoff
factorization B and the generalized mirror map τ(t̂), as appeared in (3.4), are com-
patible on both sides. We refer the details to [12, §3.3].



QUANTUM COHOMOLOGY UNDER BIRATIONAL MAPS AND TRANSITIONS 11

5. Application II: Blow-ups along complete intersection centers

Let Li = OX(Di), 1 ≤ i ≤ r, and Z = D1 ∩ · · · ∩ Dr be a smooth complete
intersection subvariety of X with codimenison r. Let E =

⊕r
i=1 Li with a given

section s = (si) such that Di = (si), Z = s−1(0). Consider the blow-up φ : Y → X
along Z:

E

��

� � // Y = BlZX

φ

��
Z �
� // X

.

Given QH(X) and (E , s), the problem is to determine QH(Y).
By construction, we have a surjective morphism E ∗ � IZ. This leads to the

imbedding

ι : Y := ProjX
∞⊕

d=0

I d
Z ↪→ ProjX Sym E ∗ = PX(E ).

Let π : P := PX(E ) → X be the bundle map with associated Euler sequence
0 → S → π∗E → Q → 0 over P. It is shown in [14] that there is a canonical
section σ ∈ Γ(P, Q) of the universal quotient bundle such that Y = σ−1(0) ⊂ P.
We emphasize that this is not true if Z is not a complete intersection. The situation
is summarized in the following diagram:

(5.1) 0 // S

!!

// π∗E

��

// Q

}}

// 0

Y

φ !!

� � ι // P

π
��

σ

EE

X

.

Let η = c1(OP(1)). It follows that S = OP(−η) and −η|Y = E (cf. [5]).
Notice that the quotient bundle Q is in general not a split bundle over P and

the quantum Lefschetz can not be applied directly. However, a suitable extension
of it to short exact sequences allows us to apply it to the Euler sequence (5.1) where
both S and π∗E are split bundles.

With the above understood, the (extended) quantum Lefschetz together with
the quantum Leray–Hirsch lead to the following factorial trick on the β component
of IY:

IY
β = JP

β

∏r
i=1(Di)β

(−η)β

∼ JX
π∗β e

tη η
z +tη(η.β) ∏r

i=1(Di)β

(−η)β ∏r
i=1(η + Di)β

.
(5.2)

Here tη denotes a suitable dual coordinate of η.

THEOREM 5.1. [14] For the smooth blow-up φ : Y → X along a complete intersec-
tion center Z =

⋂r
i=1 Di, the relative I factor is given by

IY/X
β = es( E

z +E.β)

(
r

∏
i=1

(Di)β

(Di − E)β(E)β

)
(E)r−1

β ,
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where E ⊂ Y is the exceptional divisor and s is a suitable dual coordinate.

REMARK 5.2. The formula suggests nice structures of the relative factor. In-
deed, KY = φ∗KX + (r − 1)E and (E)r−1

β is responsible for the Jacobian of φ. For
each i, (Di)β/((Di − E)β(E)β) is a K-trivial factor which describes the decomposi-
tion of the linear system |Di − Z| into moving part and the fixed part (on Y). We
expect that this intrinsic formulation will be useful for general blow-ups.

As in quantum Leray–Hirsch described in §3.2, to get the Dubrovin connection
on Y (or QH(Y)) we proceed by (1) choosing the corresponding näive quantization
basis (2) determining the Picard–Fuchs ideal on fibers (3) finding the lifting of QDE
on the base X to Y. Then (1) + (2) + (3) determines D z JY, and hence QH(Y). The
details will appear in [14].

6. Application III: Simple flips

Let r, r′ ∈ N and r > r′. In the definition of ordinary flops, if the underlying
vector bundles F and F′ have different rank r + 1 and r′ + 1 respectively then in
exactly the same construction as §4.2 we get ordinary (r, r′) flips. The effect on
quantum cohomology under flips are discussed in [15]. In contrast to analytic
continuations in the flops case, the situation for flips is more subtle and complex
and new phenomena appear. We give a sketch in the simplest case of local models
of simple (2, 1) flips.

6.1. H(X) vs H(X′) and the Picard–Fuchs systems. The local model of (2, 1)
flips has the following data: Z = P2, Z′ = P1, and

f : X = PP2(O(−1)2 ⊕O) 99K X′ = PP1(O(−1)3 ⊕O).

The cohomology rings are given by

H(X) = C[h, ξ]/(h3, ξ(ξ − h)2),

H(X′) = C[h′, ξ ′]/(h′2, ξ ′(ξ ′ − h′)3),

where dim H(X) = 9 and dim H(X′) = 8.
The graph correspondence T = [Γ f ]∗ induces a short exact sequence

0 −→ K −→ H(X)
T−→H(X′) −→ 0

where K = ker T = Ck1 with k1 = (ξ − h)2 = [Z].
The transpose correspondence T −1 := [Γt

f ]∗ preserves the Poincaré pairing

and induces an imbedding T −1 : H(X′) ↪→ H(X) (indeed, of motives) which
leads to an orthogonal decomposition (cf. [10, §2.3])

H(X) = T −1H(X′)
⊥
⊕K.

However, T −1 does not preserves the cup product. In fact K⊥ is not closed under
cup product. As in the case of flops we have curve classes `, γ in X and `′, γ′ in X′.
They are related by T ` = −`′ and T γ = `′ + γ′. Also T h = ξ ′ − h′ and T ξ = ξ ′.

The divisor variable takes the form D = thh + tξ ξ. To simplify notations in
our discussion, we will use variables

q1 = q`eth
, q2 = qγetξ

; q′1 = q`
′
e−th

, q′2 = qγ′ eth+tξ
.
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From the computational point of view of quantum cohomology, X′ is bad since
c1(X′) = −h′ + 4ξ ′ which contains both K-positive and K-negative directions. In
other words, the expression IX is complicated and contains positive z powers. Its
Picard–Fuchs equations are given by

�`′ = (z∂h′)
2 − q′1(z∂ξ ′−h′)

3, �γ′ = z∂ξ ′(z∂ξ ′−h′)
3 − q′2.

The first equation �`′ IX′ = 0 shows that in order to reduce (z∂2
h′)IX′ we will re-

ceive derivatives of even higher power. It does give the correct reduction algo-
rithm in the Mori cone topology since there is also a q′1 multiplied. It is difficult to
compute ∇X′ or to get any structure of it from this approach.

On the other hand, X is toric Fano with c1(X) = h + 3ξ. The computation of
QH(X) is in principle easy since IX = JX along small parameters. Assume that
this has been done, then a natural question is

Can we get QH(X′) from QH(X) in a canonical manner?

Now we restrict ourselves to the small parameters t ∈ H0 ⊕ H2 so that we
can work with variables q1, q2 and q′1, q′2 directly. The Picard–Fuchs equations on
J = JX can be easily determined to be

�` = (z∂h)
3 − q1(z∂ξ−h)

2, �γ = z∂ξ(z∂ξ−h)
2 − q2.

It is closely related to the one for X′:

LEMMA 6.1. Along the partially compactified two dimensional Kähler moduli K :=
{(q1, q2)}

⋃{(q′1 = 1/q1, q′2 = q1q2)} ∼= OP1(1), the Hopf–Mobius stripe, we have

T : 〈�`,�γ〉 ∼= 〈�`′ ,�γ′〉

outside the divisors D0 = {q1 = 0} and D∞ = {q′1 = 0}.

6.2. Exact formula for ∇X [15]. The following frame (recall that I = J)

v1 = 1̂J = J,

v2 = ĥJ, v3 = (ξ̂ − ĥ)J,

v4 = ĥ2 J − (ξ̂ − ĥ)2 J, v5 = ĥ(ξ̂ − ĥ)J + (ξ̂ − ĥ)2 J,

v6 = ĥ3 J − ĥ(ξ̂ − ĥ)2 J, v7 = ĥ2(ξ̂ − ĥ)J + ĥ(ξ̂ − ĥ)2 J,

v8 = ĥ3(ξ̂ − ĥ)J + ĥ2(ξ̂ − ĥ)2 J,

v9 = k̂1 J = (ξ̂ − ĥ)2 J,

respects H(X) = T −1H(X′)⊕⊥ K when modulo q1, q2. They are precisely

z∂i J at t ∈ H0 ⊕ H2, 1 ≤ i ≤ 9,



14 Y.-P. LEE, H.-W. LIN, AND C.-L. WANG

and we get the Dubrovin connection matrices

A1 = h∗small =



q1q2
1

q1q2
1

1
1 −1

1
−1 1

1 −1 q1


,

A2 = ξ∗small =



−q2 q2 q1q2 q2
1 −q2 q2
1 q1q2

1 q2
1 1

1
1 1

1
q2


.

The crucial observation is that there is a single appearance of q1 in A9
1,9. This

shows that the system has irregular singularity along D∞ = (q1 = ∞) in the K
direction. Let x = q′1, y = q′2. After a constant change of basis from vi’s to wi’s
such that the Poincaré pairing

(wi, wj) = δ9,i+j, 1 ≤ i, j ≤ 8

and w9 := v9 with (w9, wi) = δ9,i, the fundamental solution matrix S satisfies

z(x ∂x)S =



− 1
2 xy xy xy

− 1
2 xy xy

1 1
4 xy − 1

2 xy
xy

1 − 1
2 xy

1
1 − 1

2
1

− 1
2 1 xy −1/x


S,

which is irregular in the K-block, i.e. the (9, 9) entry, of Poincaré rank one.

6.3. Block diagonalization. The classical theory of ODE and the flatness of
∇X imply that there exists a unique formal gauge transformation S = PZ:

(6.1) P(x, y, z) =


1 g1

. . .
...

1 g8
f1 · · · f8 1

 ,

such that
z(x ∂x)Z = B1 Z, z(y ∂y)Z = B2 Z,
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with B1, B2 being block-diagonalized. Moreover, each fi(x, y, z) = −g9−i(x, y,−z)
is a formal series expansion of certain special function. The claim is that we may
relate the first 8× 8 blocks of B1(x, y, z) and B2(x, y, z) with the Dubrovin connec-
tion ∇X′ .

Under the new z-dependent frame w̃1, . . . , w̃8, k̃1 J from (6.1), namely

(6.2) w̃i = wi + fi k̂1 J, k̃1 J = k̂1 J +
8

∑
i=1

gi wi,

we have (a special case of [15] for (r, r′) = (2, 1)):

THEOREM 6.2. For a simple (2, 1) flip f : X 99K X′, under the frame (6.2) at z = 0,
we have a ring isomorphism

QH(X) ∼= 〈w̃1(0), . . . , w̃8(0)〉 ×C.

Moreover, 〈w̃1(0), . . . , w̃8(0)〉 ∼= QH(X′) as D z-modules, but not as rings.

The proof is based on Lemma 6.1 and we refer to [15] for the details.

7. Conifold transiitons of CY 3-folds

7.1. Relations on vanishing A and B cycles. A Calabi–Yau variety is a Q-
Gorenstein variety with K ∼ 0 and h1(O) = 0.

Let X ↗ Y be a projective conifold transition of Calabi–Yau 3-folds X, Y through
a singular Calabi–Yau variety X̄ with k ordinary double points (ODPs) p1, . . . , pk ∈
X̄. During the complex degeneration π : X → ∆ with X0 = X̄, there are k van-
ishing 3-spheres S1, . . . , Sk with NSi/X = T∗S3. During the Kähler degeneration
(small contraction) ψ : Y → X̄, there are k vanishing 2-spheres (exceptional curves)
C1, . . . , Ck with NCi/Y = OP1(−1)⊕2:

Ci ⊂ Y

ψ

��
Si ⊂ X π // pi ∈ X̄ .

Let µ := h2,1(X) − h2,1(Y) > 0 be the lose of complex moduli and ρ :=
h1,1(Y)− h1,1(X) > 0 be the gain of Kähler moduli. From

χ(X)− kχ(S3) = χ(Y)− kχ(S2),

we get the following well-known elementary relation

µ + ρ = k.

This implies that the ψ-exceptional curve classes [Ci] ∈ NE(Y/X̄) admit µ inde-
pendent relations, and the π vanishing cycles [Si] ∈ V ↪→ H3(X) → H3(X̄) admit
ρ independent relations. (The vanishing cycle space V has dim V = µ.) Let A, B
be the corresponding relation matrices:

A = (aij) ∈ Mk×µ, ∑k
i=1 aij[Ci] = 0,

B = (bij) ∈ Mk×ρ, ∑k
i=1 bij[Si] = 0.
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THEOREM 7.1 (Basic exact sequence). [13, Theorem 1.14] The Hodge realization
of µ + ρ = k is represented by an exact sequence

0→ H2(Y)/H2(X)
B−→Ck At

−→V → 0

of weight two Hodge structures.

Indeed V ∼= H1,1
∞ H3(X) in the limiting Hodge diamond for π:

H2,2
∞ H3

N∼

��

C ∼= H3,0
∞ H3 H2,1

∞ H3 H1,2
∞ H3 H0,3

∞ H3

H1,1
∞ H3

and the invariant subsystem is GrW
3 H3(X) ∼= H3(Y).

7.2. Local quantum transition. By the Bogomolov–Tian–Todorov theorem and
its extension to Calabi–Yau conifolds by Ran and Kawamata, the moduli spaces
MY and MX̄ are smooth of dimension h2,1(Y) and h2,1(X) respectively. Also the
contraction ψ : Y → X̄ deforms in projective families. This then identifies MY
as a codimenison µ boundary strata in MX̄ and locally near [X̄] ∈ MX̄ we have
MX̄
∼= ∆µ ×MY.
We represent V = C〈Γ1, . . . , Γµ〉 in terms of a basis Γj’s. It was shown in [13,

Proposition 3.15] that the α-periods

rj =
∫

Γj

Ω, 1 ≤ j ≤ µ

form the degeneration coordinates around [X̄] ∈MX̄
∼= ∆µ ×MY.

In order to describe the discriminant loci of MX̄ near [X̄], we recall Friedman’s
result on (partial) smoothing of ODPs:

PROPOSITION 7.2. [4] Let wi = ai1r1 + . . . + aiµrµ, then the divisor Di := {wi =
0} ⊂MX̄ is the loci where the sphere Si shrinks to an ODP pi.

It is clear that the discriminant loci DB =
⋃k

i=1 Di is not a normal crossing
divisor. Rather it is a central hyperplane arrangement.

Under a suitable choice of homology symplectic basis, the β-periods in the
transversal directions are given by

up = ∂pu =
∫

βp
Ω

for some function u. The Bryant–Griffiths–Yukawa couplings are then extended
over the boundary DB and satisfy

upmn := ∂3
pmnu = O(1) +

k

∑
i=1

1
2π
√
−1

aipaimain

wi

for 1 ≤ p, m, n ≤ µ. It is holomorphic if one of the indices is outside this range.
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The collection {upmn} is the essential part of the Gauss–Manin connection
∇GM on MX which has regular singular extension over DB.

Similarly, let u = ∑
ρ
p=1 upTp ∈ H2(Y)/H2(X), Di := {∑ρ

p=1 bipup = 0}, i =
1, . . . , k. By the multiple cover formula of GW invariants we know that QH(Y), or
its Dubrovin connection, is regular singular along DA =

⋃
Di.

Let y = ∑k
i=1 yiei ∈ Ck, with e1, . . . , ek being the dual basis on (Ck)∨. The

trivial logarithmic connection on Ck ⊕ (Ck)∨ −→ Ck is defined by

∇k = d +
1
z

k

∑
i=1

dyi
yi
⊗ (ei ⊗ e∗i ).

The statement AtB = 0 in Theorem 7.1 leads to an orthogonal sum

(7.1) Ck = image A
⊥
⊕ image B ∼= V∗ ⊕ H2(Y)/H2(X).

THEOREM 7.3. [13, Theorem 4.1] Under the identification (7.1),
(1) when restricted to V∗, ∇k is naturally identified with the logarithmic (regular

singular) part of ∇GM;
(2) when restricted to H2(Y)/H2(X), ∇k is naturally identified with to the loga-

rithmic part of ∇Dubrovin.

7.3. Global aspects. Denote by A (−) the GW theory and B(−) the varia-
tions of Hodge structure. Theorem 7.3 provides evidence to

“excess A theory” + “excess B theory” = “trivial”

through the partial exchange of quantum information attached to vanishing cycles
on both the A and B theories. For the full information on quantum A , B theories,
we proved the following result:

THEOREM 7.4. [13, Theorem 0.3] Let [X] be a nearby point of [X̄] in MX̄ .
(1) The theory A (X) is a sub-theory of A (Y) (e.g. quantum sub-ring in genus 0).
(2) The theory B(Y) is a sub-theory of B(X) (invariant sub-VHS).
(3) The theory A (Y) can be reconstructed from a “refined A theory” on

X◦ := X \
⋃k

i=1
Si

“linked” by the vanishing spheres in B(X).
(4) The theory B(X) can be reconstructed from the VMHS on H3(Y◦),

Y◦ := Y \
⋃k

i=1
Ci,

“linked” by the exceptional curves in A (Y).

The definition of the linked GW invariant in (3) is really a reformulation of the
discreteness of components appearing in the virtual cycle form of the degeneration
formula for conifold transitions of Calab–Yau 3-folds:

〈−〉Xg,β = ∑γ 7→β
〈−〉Yg,γ.

The sum is a finite sum. However, no method is known to single out the individ-
ual term in it. To get QH(Y) from QH(X), it requires a blow-up formula of GW
invariants where the blow-up center is a Weil divisor.
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Weil divisors on X̄ can be constructed from the relation matrix B on Xt. Indeed,
∑k

i=1 bij[Si] = 0 implies that there are real 4-chains Wj,t such that

∑k
i=1 bijSi = ∂Wj,t.

When t → 0, we get homology cycles Wj := Wj,0, j = 1, . . . , ρ, since now ∂Wj
is supported at the ODPs. From our definition of Calabi–Yau varieties it can be
shown that Wj’s are represented by algebraic cycles, hence they give rise to Weil
divisors on X̄.

The projective small resolution ψ : Y → X̄ transforms all these Wj’s into
Cartier divisors. Indeed, let W be the sum of supports of all Wj’s. Then Y = BlW X̄,
i.e. the blow-up of the ideal sheaf IW ⊂ OX̄ . A non-Cartier Weil divisor is simply
a non-complete intersection divisor. Thus the problem is essentially a problem on
finding a blow-up formula of GW theory with non-complete intersection center. Notice
that the GW theory on X̄ is so far undefined in the literature. However from the
deformation invariance of (log) GW theory one may in practice identify it with the
GW theory on X.

EXAMPLE 7.5 (Determinantal transitions [14]). Let Y ⊂ S× Pn be the zero loci
of sections si ∈ Γ(S × Pn, Li) where Li → S × Pn are line bundles of the form
Li = Li �OPn(1) with Li being semi-ample on S.

Let [x0 : · · · : xn] be the homogeneous coordinates on Pn. We write

(7.2) si = ∑n
j=0 sij xj, i = 0, . . . , n,

where sij ∈ Γ(S, Li). We are interested in studying the restriction of the projection
map π : S× Pn → S to Y. Define X̄ = π(Y) ⊂ S and

ψ = π|Y : Y → X̄.

The variety X̄ has defining equation

∆ := det sij = 0.

For p ∈ X̄, since sij(p)’s are fixed, ψ−1(p) is not unique if and only if equation (7.2)
has more than one dimensional solutions in Pn, i.e. p is a singular point of X̄. The
contraction ψ : Y → X̄ is called a determinantal contraction. Notice that

∆ ∈ Γ(S,
⊗n

i=0
Li).

If for general sections τ ∈ Γ(S,
⊗n

i=0 Li) the variety Xτ defined by τ = 0 is smooth,
then it gives rise to a transition Y ↘ X. If furthermore X̄ has only ODPs, then we
get a conifold transition. These properties hold for CICY 3-folds transitions which
have been studied extensively in the literature.

Given a determinantal transition, we proceed to determine the GW theory on
Y in terms of the one on X and the data Li’s. Our goal is to replace the extrinsic data
Li’s by the intrinsic data associated to ψ, namely the Weil divisor W which gives
Y = BlW X̄. Here we consider the g = 0 case:

Let h = c1(OPn(1)). As in (5.2), the quantum Lefschetz gives

IY = JS ∏n
i=0(Li + h)
(h)n+1 ,

IX = JS(∑n
i=0 Li),
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where we omit the curve class β in the subscript. Then

(7.3) IY/X =
∏n

i=0(Li + h)
(h)n+1(∑n

i=0 Li)
.

We note that the divisor h on S× Pn coming from OPn(1) restricts to a divisor,
still called h, on Y. If p ∈ X̄ is a point with positive dimensional fiber ψ−1(p) ⊂
{p} × Pn then h intersects ψ−1(p) non-trivially since h comes from a hyperplane
in Pn. When ψ is a small contraction, this effective divisor W = ψ∗(h) ⊂ X̄ is thus
the Weil divisor we are seeking for, and then Y is the blow-up of X̄ along W.

It remains to interpret the K-trivial factor (7.3) in term of the linear system |W|.
As in the case of smooth blow-ups along complete intersection centers (cf. Remark
5.2), we will give intrinsic meaning of IY/X in terms of decompositions of linear
systems. The details will appear in [14].
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