
K-EQUIVALENCE IN BIRATIONAL GEOMETRY

CHIN-LUNG WANG

In this article we survey the background and recent development on the K-
equivalence relation among birational manifolds. The content is based on the au-
thor’s talk at ICCM-2001 at Taipei. I would like to dedicate this article to Professor
Chern, Shiing-shen to celebrate his 90th birthday. For manifolds, K-equivalence is
the same as c1-equivalence. In this sense, a major part of birational geometry is
really to understand the geometry of the first Chern class.

After a brief historical sketch of birational geometry in §1, we define in §2 the
K-partial ordering and K-equivalence in a birational class and discuss geometric
situations that will lead to these notions. One application to the filling-in problem
for threefolds is given. In §3 we discuss motivic aspect of K-equivalence relation.
We believe that K-equivalent manifolds have the same Chow motive though we are
unable to prove it at this moment. Instead we discuss various approaches toward
the corresponding statements in different cohomological realizations. §4 is devoted
to the Main Conjectures and the proof of a weak version of it. Namely, up to
complex cobordism, K-equivalence can be decomposed into composite of classical
flops. Finally in §5 we review some other current researches that are related to the
study of K-equivalence relation.

1. A Brief History of Birational Geometry

If not specifically stated, the ground field is assumed to be the complex numbers
C. Two algebraic varieties are called birational if they have an isomorphic Zariski
open subset. This is equivalent to say that they have isomorphic rational function
fields over the ground field. One of the main goals in birational geometry is to
find a good geometric model that is convenient for the study of the given algebraic
variety or its function field.

1.1. Minimal Models for Surfaces. (c.f. [5]) Already at the beginning of the
20th century, Italian algebraic geometers had adapted the above point of view and
successfully applied it to the classification theory of algebraic surfaces. This led
to the famous Enrique classification. It started with the Castelnuovo’s contraction
theorem: if a smooth surface X contains at least one (−1) rational curve C, that
is C ∼= P1 with C2 = −1, then C can be contracted to a smooth point under a
projective birational morphism φC : X → X ′ and one obtains a simplified smooth
surface X ′. By repeating this process in finite steps, one ends up with a smooth
surface called a minimal model.

When κ(X) = −∞, that is Γ(X,Km
X ) = 0 for all m ∈ N, Enrique’s theorem says

that X is birational to a ruled surface C × P1.
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When κ(X) ≥ 0, that is Γ(X,Km
X ) 6= 0 for some m ∈ N, the minimal model is

unique and it admits semi-ample canonical bundle. Namely, the minimality of X
implies the abundance theorem: the pluri-canonical system Γ(X,Km

X ) : X → PN is
a morphism for m large. Based on this, a detailed classification of algebraic surfaces
according to the Kodaira dimension is then achieved.

Later on, Enrique’s classification was extended to compact complex surfaces by
Kodaira and to algebraic surfaces over fields of characteristic p > 0 by Bombierie
and Mumford.

1.2. Minimal Models for Threefolds. (c.f. [31] [34]) In 1982, Mori proved the
three dimensional generalization of Castelnuovo’s contraction theorem [36]. Mori’s
theorem opened the way to continue the minimal model program (MMP for short).
He showed that if a three dimensional projective manifold X admits a curve C̃
such that KX .C̃ < 0 (KX is not nef), then by degenerating C̃ inside X if necessary,
one is able to find a rational curve C and a projective morphism φR : X → X ′

associated to the extremal ray R = R[C] such that a curve C ′ is contracted to a
point by φR if and only if [C ′] ∈ R. He also classified all the possible types of
contractions φR : X → X ′. The situation that differs from the surface case is,
the resulting threefold X ′ is usually mildly singular, with the so called terminal
singularities.

A priori this seems to be an obstacle to continue the process. Fortunately the
corresponding contraction theorem for terminal threefolds, as well as its higher
dimensional generalization, was soon proved by Kawamata and Shokurov. However,
worse singularities may sometimes occur so that KX′ is not even rationally defined
as a line bundle (X is not Q-Gorenstein). This is the case precisely when the
contraction φR is small, that is, the exceptional loci of φR has codimension at least
two in X. In dimension three, this means that the extremal curve C is isolated. The
most striking idea, which is also the most difficult step in the three dimensional
MMP, is to develop a special type of algebraic surgeries called flips. A flip will
correct such a pair C ⊂ X in codimension two along C into another pair C ′ ⊂ X ′

so that KX′ .C ′ > 0, hence it will avoid small extremal contractions that leads to
uncontrollable singularities.

The existence of flips in dimension three was proved by Mori in 1988 [38] and
the three dimensional MMP was thus established. It states that, starting with a
smooth threefold X, after a finite number of divisorial extremal contractions and/or
flips, one ends up with a Q-factorial terminal model X ′ which is either (in case
κ(X) = −∞) a Mori fiber space φ : X ′ → S under a further extremal contraction
of fiber type (with each fiber X ′

s a Q-Fano variety of Picard number 1) or (in case
κ(X) ≥ 0) a minimal model in Mori’s sense, namely KX′ is nef. In the later case,
the abundance conjecture that KX′ is indeed semi-ample was subsequently proved
by Miyaoka and Kawamata [28]. Detailed classifications of threefolds based on the
MMP is now of current research interest.

1.3. Birational Minimal Threefolds and Flops. In higher dimensions, there
are some recent approaches toward the existence of flips (e.g. Shokurov’s work for
fourfold log-flips), but these have not yet been completely justified at the time of this
writing. Besides the existence problem, even in the three dimensional case, minimal
models are in general not unique. Based on Reid and Mori’s classification theory of
three dimensional singularities [37], Kollár and Mori in 1989 [32] and then in 1992
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[33] completely understood the precise relation between two (Q-factorial terminal)
birational minimal models. The birational map can always be decomposed into
a finite sequence of algebraic surgeries called flops. Roughly speaking, each flop
is obtained by removing one chain of rational curves C (corresponding to certain
Dynkin diagram) in X with KX |C = 0 then gluing back C into the open space
X\C in a different manner.

This statement was first shown by Kawamata in 1986 [27]. Kollár and Mori’s
method has the advantage to complete the classification of three dimensional flops
(and also flips in 1992), and hence showed that although three dimensional bira-
tional minimal models are in general not homotopically equivalent, they do have
naturally isomorphic ordinary (resp. intersection) cohomology groups, mixed (resp.
intersection pure) Hodge structures, set of germs of isolated singularities and local
moduli spaces (they actually showed that flops can be performed simultaneously in
flat families). These results have put the three dimensional minimal model theory
into a solid and useful stage.

2. K-partial Ordering in a Birational Class

2.1. K-partial Ordering. (c.f. [48]) We start with a simple observation of the
MMP from the point of view of canonical divisors. For a birational map f : X 99K
X ′ between two Q-Gorenstein varieties, we say that X ≤K X ′ (resp. X <K X ′)
if there is a birational correspondence (φ, φ′) : X ← Y → X ′ extending f with
Y smooth, such that φ∗KX ≤Q φ′

∗
KX′ (resp. <Q) as divisors. These relations

are easily seen to be independent of the choice of Y . Notice that X ≤K X ′ and
X ≥K X ′ imply X =K X ′, that is φ∗KX =Q φ′

∗
KX′ . In this case, we say that

X and X ′ are K-equivalent. In this K-partial ordering, divisorial contractions and
flips will decrease its K-level while flops inducing K-equivalence. It is easy to see
that K-equivalent terminal varieties are isomorphic in codimension one. In fact,
more is true in general (Theorem 1.4 in [48]):

Let f : X 99K X ′ be a birational map between two varieties with canonical
singularities. Suppose that the exceptional locus Z ⊂ X is proper and that KX is
nef along Z, then X ≤K X ′. Moreover, If X ′ is terminal then codimXZ ≥ 2.

Let us recall the proof briefly. Let (φ, φ′) : Y → X ×X ′ be a resolution of f so
that the union of the exceptional set of φ and φ′ is a normal crossing divisor of Y .
Let KY =Q φ∗KX + E =Q φ′

∗
KX′ + E′. So

φ′
∗
KX′ =Q φ∗KX + F, with F := E − E′.

It suffices to show that F ≥ 0. Let F =
∑n−1

j=0 Fj with dimφ′(SuppFj) = j. We will
show that Fj ≥ 0 for j = n− 1, n− 2, · · · , 1, 0 inductively. As E′ is φ′-exceptional,
Fn−1 ≥ 0 is clear. Suppose that we have already shown that Fj ≥ 0 for j ≥ k + 1.

Consider the surface Sk := Hn−2−k.φ′
∗
Lk on Y where H is very ample on Y

and L is very ample on X ′. We get a relations of divisors on Sk:

φ′
∗
KX′ |Sk

=Q φ∗KX |Sk
+ a− b,

where Hn−2−k.φ′
∗
Lk.F = a− b with both a and b effective. Notice that b can only

come from Fk since
∑

j≥k+1 Fj ≥ 0 and Lk ∩ φ′(Fj) = ∅ for j < k. Now we look at

b.φ′
∗
KX′ =Q b.φ∗KX + b.a− b2.
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The left hand side is always zero since φ′(b) ⊂ Lk ∩ φ′(Fk) is zero dimensional.
Moreover, since φ′∗KX′ =Q φ∗KX on φ−1(X\Z), we must have that φ(SuppF ) ⊂
Z. In particular, b.φ∗KX ≥ 0. It is also clear that b.a ≥ 0. However, if b 6= 0
then it is a nontrivial combination of φ′ exceptional curves in Sk. By the Hodge
index theorem for surfaces we then have that b2 < 0, a contradiction. So b = 0 and
Fk ≥ 0. The codimension statement is easy and we omit its proof.

As a corollary, birational minimal models, if they exist, are K-equivalent and
reach the lowest K-level among terminal (or even canonical) varieties within their
birational class. It is suggestive to make use of thisK-equivalence (quasi-uniqueness)
and the minimum property to study minimal models.

2.2. Filling-in Problem in Dimension Three. (c.f. [47]) Among applications
of the Mori theory, we mention only one example which also makes use of K-
equivalence relation for fourfolds and an extra technique called symplectic defor-
mations that will be important in 4.3 in formulating the Main Conjectures.

Let X→ ∆ be a projective smoothing of a nontrivial Gorenstein minimal threefold
X0 over the unit disk. Then, up to any finite base change, X→ ∆ is not ∆-birational
to a projective smooth family X′ → ∆ of minimal threefolds.

Proof. By an application of the Shokurov-Kollár connectedness theorem one may
show that X has at most terminal singularities. Then by 2.1, any ∆-birational map
f will induce K-equivalence of X and X′. Hence they are isomorphic in codimension
one and f induces a birational map f0 : X0 99K X′0 between minimal models. By
Kollár’s result on birational minimal threefolds in 1.3, X0 can not be Q-factorial
since X′0 is smooth. Now by a result of Kawamata [27] (or by the three dimensional
MMP), there is a Q-factorialization φ : Y → X0 with φ a small morphism. Again
this implies that Y is smooth and there is a birational map of smooth minimal
threefolds f0 ◦ φ : Y 99K X′0. In particular,

Hk(Y ) ∼= Hk(X′0) ∼= Hk(X′t) ∼= Hk(Xt) for all k ≥ 0 and t 6= 0.

Now we are in a small contraction/smoothing diagram:

Y

φ

��
X0

� � // X oo ? _ Xt

In case that X0 has only ODP’s, a simple Mayer-Vietoris argument shows that
this is impossible. In fact, consider a diagram as above in the C∞ category such
that near each singular point of X0 it is a small contraction/smoothing diagram
of a germ of ODP. Let Ci’s be the rational curves contracted to those ODP’s
and let e :

⊕
i Z[Ci] → H2(Y,Z) be the class map, then H2(Xt) = coker e. So,

H2(Xt) ∼= H2(Y )⇒ Image e = 0, which is impossible since Y is projective.
In general, by Reid’s classification [43], three dimensional Gorenstein terminal

singularities are exactly isolated cDV points (one parameter deformations of surface
ADE singularities). By Friedman’s result [19], if p ∈ V is a germ of an isolated cDV
point and C ⊂ U is the corresponding germ of the (possibly reducible) exceptional
curve contracted to p, then the versal deformation spaces Def(p, V ) and Def(C,U)
are both smooth and there is an inclusion map of complex spaces Def(C,U) ↪→
Def(p, V ). Moreover, one can deform the complex structure of a small neighborhood
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of C so that in this new complex structure C deforms into several P1’s and the
contraction map deforms to a nontrivial contraction of these P1’s down to ODP’s,
while keeping a neighborhood of these ODP’s to remain in the versal deformations
of the germ p ∈ V .

We can preform this analytic process for all C’s and p’s simultaneously in each
corresponding small neighborhoods and then patch them together smoothly. (In
fact, one may keep the overlapped region admitting nearby almost complex struc-
ture which is tamed by the original symplectic form [53]. We call this locally holo-
morphic symplectic deformations.) As a result, we obtain a deformed C∞ diagram
which satisfies the conditions stated above, which again leads to a contradiction to
the equality of H2. �

This allows us to construct counterexamples to the so called three dimensional
filling-in problem. In fact, Clemens had constructed A2 degenerations of (simply
connected) quintic Calabi-Yau hypersurfaces in P4 over ∆ such that the algebraic
sub-family over the punctured disk is C∞ trivial (so that one may replace the
special fiber, which is a singular Calabi-Yau with an A2 singularity, by a real six
dimensional smooth manifold to obtain a smooth family over ∆). However, we just
show that this smooth replacement can not be achieved in the algebraic category.

One of the key points in the above proof is that birational smooth minimal
threefolds have the same Betti numbers. This motivated the author to consider
the validity of equivalence of Betti numbers in higher dimensions. It is clear that
one should find methods independent of the MMP to study relations between K-
equivalent varieties or manifolds.

2.3. Integration Formalism/A Meta Theorem. (c.f. [48]) Starting with a bi-
rational correspondence with smooth Y :

Y
φ

~~~~
~~

~~
~~ φ′

  A
AA

AA
AA

A

X X ′

From KY = φ∗KX +E and KY = φ′
∗
KX′+E′, we see that X =K X ′ is the same as

saying that φ and φ′ have the same holomorphic Jacobian factor E = E′. If for some
geometric/topological invariant I(X) that can be computed from certain integration
theory whose change of variable formula respects the holomorphic Jacobian factor,
then one may conclude that X =K X ′ =⇒ I(X) = I(X ′) via

I(X) =
∫

X

dµX =
∫

Y

J(E)dµY =
∫

X′
dµX′ = I(X ′).

We are going to discuss several examples of this Meta Theorem in the following
sections.

3. K-equivalence Relation and Motives

Grothendieck’s theory of motives is in principle the universal cohomology theory
which admits various realizations as usual cohomologies (Betti, de Rham, Hodge,
`-adic étale and others). The category of motives is supposed to be a homomorphic
image of the category of varieties and should have many expected linear structures
(like Hodge filtration and Galois actions). Unfortunately such a category has not
yet been constructed. The closest one seems to be the Chow motives, or classical
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motives. Roughly, this category has all varieties as its objects and the morphisms
Hommotive(X,X ′) are given by correspondences (cycles) Γ ∈ A∗(X × X ′) modulo
an adequate equivalence relation (e.g. rational equivalence, homological equivalence
or numerical equivalence). See e.g. [20] for some basic properties.

We would like to convince the reader that for K-equivalent manifolds under
birational map f : X 99K X ′, there is a naturally attached correspondence T ∈
Adim X(X × X ′) of the form T = Γ̄f +

∑
i Ti with Γ̄f ⊂ X × X ′ the cycle of

graph closure of f and with Ti’s being certain degenerate correspondences (i.e. Ti

has positive dimensional fibers when projecting to X or X ′) such that T is an
isomorphism of Chow motives. Currently we do not know how to prove it but some
statements in various realizations do admit proofs along the line of our integration
formalism.

3.1. Classical Integration and L2 Cohomology. The first clue for the author to
believe in a close relationship between K-equivalent manifolds is a somewhat näive
yet exciting idea which involves degenerate Kähler metrics and L2 cohomology.

Let X and X be smooth projective (be Kähler is enough) and let (φ, φ′) : Y →
X ×X ′ be the birational correspondence which leads to X =K X ′. We may select
arbitrary Kähler metrics ω and ω′ with volume 1 on X and X ′ respectively. Then
we pull backs them to Y to get two degenerate Kähler metrics φ∗ω and φ′∗ω′. From
c1-equivalence we see that (let dimX = n)

(−φ∗∂∂̄ logωn)− (−φ′∗∂∂̄ logω′n) = ∂∂̄f

for some C∞ function f up to a constant. This simplifies to (φ′∗ω′)n = ef (φ∗ω)n.
That is, the two degenerate metrics φ∗ω and φ′

∗
ω′ have quasi-equivalent volume

forms (both volume forms have the same rate of degeneracy along the common
degenerate loci E ⊂ Y ).

By using cohomology of L2 smooth differential forms with respect to a possibly
degenerate smooth Kähler metric, Hk(X) ∼= Lk

2(X,ω) = Lk
2(Y, φ∗ω). If we may

rotate φ∗ω to φ′∗ω′ through (not necessarily Kähler) degenerate metrics gt, t ∈ [0, 1]
while keeping the volume degeneracy unchanged, then the theory of L2 cohomology
will lead to a proof of the equivalence of cohomology groups.

One candidate for this rotation is to solve a family of complex Monge-Amperè
equations via Yau’s solution to the Calabi conjecture [55]:

(ω̃ + ∂∂̄ϕt)n = et(f+c(t))(φ∗ω)n,

where ω̃ is an arbitrary Kähler metric with volume 1 on Y and c(t) is a normalizing
constant at time t to make the right hand side has total integral 1 over Y . At this
moment there are still analytical difficulties of this differential geometric approach
that need to be overcome.

3.2. p-adic Integration and Étale Cohomology. In [48], the author applied
the idea of quasi-equivalent volume elements in the theory of p-adic integrals. This
extended an earlier result of Batyrev [2] on the equivalence of Betti numbers for
birational Calabi-Yau manifolds to general K-equivalent manifolds. In particular
this applies to birational smooth minimal models (c.f. §2.1).

We will assume that X and X ′ are smooth projective. Take an integral model
of the K-equivalence diagram, e.g. X → SpecS etc. with S a finitely generated
Z-algebra. For almost all maximal ideals P in S, in fact Zariski open dense in the
maximal spectrum of S, we have good reductions of X, X ′, Y , φ and φ′. In such
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cases, let R = ŜP , the completion of S at P with residue field R/P ∼= Fq, q = pr for
some r. For ease of notation, we use the same symbol to denote the corresponding
object over SpecR. Let Ui’s be a Zariski open cover of X such that KX |Ui

is trivial
for each i. Then for a compact open subset S ⊂ Ui(R) ⊂ X(R), we define its p-adic
measure by

mX(S) ≡
∫

S

|Ωi|p.

This is independent of the choice of Ω. The p-adic measure of X(R) and X ′(R) are
the same by the change of variable formula and X =K X ′. By a direct extension
of Weil’s formula [51], we see that (let dimX = n and X̄ be the special fiber)

mX(X(R)) =
|X̄(Fq)|
qn

.

By applying this to finite extensions of Fq, we conclude that X and X ′ have the
same local zeta functions for almost all maximal ideals P .

Knowing this for one P already allows us to apply Grothendieck-Deligne’s solu-
tion to the celebrated Weil conjecture [13] to conclude that K-equivalent manifolds
have the same Betti numbers.

In fact more is true [50]. For simplicity let us assume that X, X ′ and X =K X ′

are defined over a Z-algebra S such that the quotient field F of S is a number field.
The general case can be reduced to the number field case by standard tricks, e.g.
by taking an F -valued point η : SpecF → SpecS and considering the fiber diagram
over η. We then know that X and X ′ have the same local zeta functions for almost
all, hence all but finite, P ∈ SpecS.

By the Cěbotarev density theorem [44], this implies that, for suitable prime p, the
two rational Galois representations Hk

et(XF̄ ,Qp) and Hk
et(X

′
F̄
,Qp) have isomorphic

semi-simplifications as Gal(F̄ /F ) modules. In other words, X and X ′ have the
same “motives” in the sense of L functions.

By the Hodge-Tate decomposition theorem proved by Fontaine and Messing [18]
under certain restrictions or by Faltings’ complete version of p-adic Hodge theory
[17], this then implies the equivalence of Qp (and hence Q) Hodge numbers.

More precisely, select a prime P so that X and X ′ have good reductions (this
is in fact unnecessary) and let K = FP be the completion with residue field k of
characteristic p. Let G = Gal(K̄/K) and Cp be the completion of K̄. Then there
exists a natural G-equivariant isomorphism [17]:⊕

i

(
Cp ⊗K Hm−i(XK ,Ωi)(−i)

) ∼= Cp ⊗Qp
Hm

et (XK̄ ,Qp),

where G acts on Hm−i(XK ,Ωi) trivially and on the right hand side diagonally, and
(j) is the Tate twist by j-th power of cyclotomic character. Since CG

p = K and
Cp(i)G = 0 for i 6= 0, elementary manipulation shows that

hi,m−i = dimK

(
Cp ⊗Qp

Hm
et (XK̄ ,Qp)ss(i)

)G
.

Finally we plug in Hm
et (XK̄ ,Qp)ss ∼= Hm

et (X
′
K̄
,Qp)ss, which holds by base change

theorem, to conclude the non-canonical equivalence of Qp-Hodge structures. 1

1I am grateful to C.-L. Chai and J.-K. Yu for discussions on the sufficiency for determining

Hodge numbers from semi-simplifications.
In the Algebraic Geometry Conference for Iitaka’s 60 at Tokyo, February 2002, T. Ito informed

the author that he also obtained the same proof independently [26].
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3.3. Grothendieck Group of Varieties and the Hodge Realization. Let
K0(VarC) be the Grothendieck ring of complex varieties with reduced structures.
That is, we modulo out the motivic relation [X\Z] = [X]− [Z] whenever Z ⊂ X is
a closed subvariety. (For X a variety, we use [X] to denote its class in K0(VarC).)
To see that K0(VarC) contains enough information, notice that the Hodge realiza-
tion functor hp,q defined on smooth projective varieties has an unique extension
to χp,q

c :=
∑

i(−1)ihp,qHi
c, the (p, q)-th Euler functor of Deligne’s mixed Hodge

structures for compactly supported cohomology [14], such that it factors through
the ring K0(VarC):

VarC
χp,q

c //

��

K0(Hodge)

K0(VarC)

55kkkkkkk

Let L := [A1
C] be the Lefschetz class. Notice that χp,q

c extends to K0(VarC)[L−1]
since L corresponds to degree shifting operator of Hodge structures.

Now assume that X is smooth and let φ : Y → X be the blowing-up of X along
a smooth center Z ⊂ X of codimension r, with exceptional divisor E ⊂ Y . Then we
have the well-known motivic equation for projective bundles E = PZ(NZ/X)→ Z:

[E] = [Z](1 + L + · · ·Lr−1) = [Z][Pr−1].

Since [X]− [Z] = [Y ]− [E], by formally localizing at [Pr−1] one gets

[X] = [Y ]− [E] + [Z] = ([Y ]− [E]) + [E][Pr−1]−1.

We call this a nice change of variable formula since the Jacobian factor here depends
only on the class [E] instead of the precise structure of the normal bundle NZ/X .

The above computation can be performed inductively to show that, for φ : Y →
X a composite of blowing-ups along smooth centers with KY = φ∗KX +

∑n
i=1 eiEi

and E :=
⋃

iEi a normal crossing divisor, the change of variable from X to Y reads

[X] =
∑

I⊂{1,...,n}
[E◦I ]

∏
i∈I

[Pei+1]−1,

where [E◦I ] :=
⋂

i∈I Ei\
⋃

j 6∈I Ej .
According to the Meta Theorem, if we can prove such a change of variable formula

for any birational morphism φ : Y → X, we will then be able to deduce that two K-
equivalent smooth varieties X, X ′ have [X] = [X ′] in S−1K0(VarC), where S is the
multiplicative set generated by the classes of projective spaces. 2 Or equivalently,
[P ][X] = [P ][X ′] for P a product of projective spaces. Since χc(V ) :=

∑
p,q χ

p,q
c (V )

is not a zero divisor for smooth projective V , by applying the functor χc we conclude
that X and X ′ have (non-canonically) isomorphic Q-Hodge structures.

The first proof of a weak form of this in certain completion of K0(VarC)[L−1] is
due to Kontsevich and Denef-Loeser by constructing motivic integration (see §3.4
below). A numerical form of this was also proved by Batyrev [3] using his version
of motivic integration. A full proof now is a consequence of the Weak Factorization
Theorem of Wlodarsczyk [54] and Abramovich, Karu, Matsuki and Wlodarsczyk [1].
It states that any birational map can be factorized into sequences of blowing-ups
and blowing-downs along smooth centers.

2I am grateful to W. Veys for suggesting the formulation of localizations on projective spaces.
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3.4. Nash’s Arc Spaces and the Motivic Integration. During the same time
the p-adic proof appeared, based on Kontsevich’s idea, Denef and Loeser [15] had
constructed the motivic integration over Nash’s formal arc spaces [41]. In a cor-
respondence with Loeser (c.f. [48]), we realized that instead of using p-adic in-
tegral, if we use motivic integral then their change of variable formula (together
with Deligne’s theory of mixed Hodge structures on arbitrary complex varieties as
above) will also lead to a proof of the above formula for arbitrary proper birational
morphism φ hence a proof of the strengthened result that the Hodge numbers are
the same. (See also [3] for an alternative version of motivic integration.)

We give a brief sketch of their construction here. It starts with a measure theory
on the semi-algebraic subsets in Nash’s arc spaces:

µX : B(L(X)) −→ ̂K0(VarC)[L−1].

Here L(X) as a set is simply the power series points of X which also has the struc-
ture as a pro-variety ind.limLm(X) with Lm(X) = Hom (Spec C[t]/(tm+1), X).
There are obvious natural morphisms πm : L(X) → Lm(X) and θm : Lm+1(X) →
Lm(X). When X is smooth of dimension n, πm is surjective and θm defines a
piecewise affine An

C bundle structure on Lm(X). In general, when X is singular,
πm, θm are not even surjective. But we will restrict to the smooth case here.

A set S ⊂ L(X) is stable (or cylindrical) if it is semi-algebraic and is of the
form S = π−1

m (A) for some (necessarily constructible) set A ⊂ Lm(X). In this case
we define its K0(VarC)[L−1]-valued measure by µX(S) = [πm(A)]L−mn. This has
an unique extension to all semi-algebraic sets B(L(X)) by partitioning them into
certain countable union of stable sets modulo some measure zero sets. The measure
then takes value in the completion of K0(VarC)[L−1] with respect to the filtration
F p := {[S]L−i | dimS − i ≤ −p}. In particular µX(L(X)) = [X] for smooth X.
(Notice that the motivic measure defined here differs from the one in [15] by a
factor L−n.)

Given a semi-algebraic set S and a simple function f : S → Z ∪ {∞} such that
f−1(k) is semi-algebraic all k, the motivic integration is defined by∫

S

L−fdµX =
∑
k∈Z

L−kµX(f−1(k)).

Now for a birational morphism φ : Y → X with Y smooth, φ naturally induces
a map φ∗ : L(Y ) → L(X). If KY = φ∗KX + E with E a normal crossing divisor,
the change of variable formula of Denef and Loeser states that∫

S

L−fdµX =
∫

φ−1(S)

L−f◦φ∗−ordtJφdµY .

Here Jφ := OY (−E) is the ideal sheaf generated by the holomorphic Jacobian
factor, ordt I : L(X) → N ∪ {0} for any ideal sheaf I is the function of minimal
degree in t. Namely for γ ∈ L(X), ordt I(γ) := ming∈I degt g ◦ γ(t).

The proof for general X is technical. However for smooth X the main idea of
the proof is not hard to explain. Indeed it is an application of the inverse function
theorem over power series rings which traces carefully the orders in t. Since we
only need the smooth case here, we will give an outline of the proof in this case.
Let φ : Y → X be the birational morphism with Ered ⊂ Y and Z ⊂ X be the
exceptional loci in Y and X respectively.
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For each k ∈ N ∪ {0} let Sk ⊂ L(Y ) be the subset γ ∈ L(Y ) such that
ordt Jφ(γ) = k. By the inverse function theorem (see below), the map φ∗ : L(Y )→
L(X) is a bijection between L(Y )× := L(Y )\L(Ered) and L(X)× := L(X)\L(Z),
thus there is no interesting geometry on the map φ∗|Sk

: Sk → L(X)×. How-
ever, the important observation by Denef and Loeser is that when one takes finite
truncations in

L(Y )

φ

��

πm // Lm(Y )

φm

��
L(X)

πm

// Lm(X)

for all large enough m the induced map φm|πm(Sk) : πm(Sk)→ Lm(X) is indeed a
piece-wise trivial Ck fibration over its image. Together with the fact that L(Z) is
measure zero in L(X), this will imply the change of variable formula.

To investigate the fibration structure near one arc γ ∈ L(Y ), it is enough to
restrict the map to formal neighborhoods φ : Ĉn

(0) → Ĉn
(0). Or equivalently to

represent φ by an algebraic map (still called φ) on power series φ : C[[t]]n → C[[t]]n

with φ(0) = 0. Let φ(y(t)) = x(t) with y(t) ∈ Sk and let ` ≥ 2k+1. We first notice
that for each v ∈ C[[t]]n, there is a unique solution u ∈ C[[t]]n of the equation

φ(y(t) + t`−ku) = x(t) + t`v.

Indeed by Taylor’s expansion

φ(y(t) + t`−ku) = φ(y(t)) +Dφ(y(t))t`−ku+ t2(`−k)R(t, u).

Let A = Dφ(y(t)). The equation becomes Au+R(t, u)t`−k = tkv. That is,

u = (detA)−1tkA∗(v −R(t, u)t`−2k).

Here A∗ is the adjoint matrix of A. Since ordt detA = ordtJφ(y(t)) = k, the term
(detA)−1tk has order zero. Also since ` − 2k ≥ 1, by repeated substitutions this
relation solves u as a vector in formal power series.

Now let m ≥ 2k and let ` = m + 1. The above discussion shows that in order
to find all solutions of φ(ỹ(t) mod tm+1) = x(t) mod tm+1, we may assume that
ỹ(t) = y(t) + tm+1−ku. Notice that the residue classes ū = u mod tk form a linear
space isomorphic to Cnk. By Hensel’s lemma, in order to count the solutions we
may simply consider the equation Atm+1−kū = 0 mod tm+1. That is, Aū = 0
mod tk. Since ordt det(A∗) = (n − 1)k, the solution space of ū has dimension
nk − (n− 1)k = k as expected.

This verifies that φ−1
m x̄(t) ∼= Ck. The piece-wise triviality needs other tools to

prove it, which will not be reported here. For the complete details the readers are
referred to the original paper [15].

We remark that for S = L(X) and E =
∑n

i=1 eiEi a normal crossing, the change
of variable formula gives

[X] =
∫
L(X)

L0dµX =
∑

I⊂{1,...,n}
[E◦I ]

∏
i∈I

L− 1
Lei+1 − 1

.

Since Le+1 − 1 = (L− 1)[Pe], this coincides with the formula in §3.3.
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4. K-equivalence Relation and Complex Elliptic Genera: Weak
Deformation/Decomposition Theorem

4.1. Some Background. There is a build-in problem in all integration-theoretic
approaches to the K-equivalence relation. Namely we arrive at only K-theoretic
or in practice simply numerical conclusions. It is usually hard to get results of
geometric nature just from numerical data. In dimension three, the result of Kollár
and Mori [32] on the flop decomposition of birational minimal models can be easily
generalized to any two K-equivalent threefolds. So the results mentioned in §1:
naturally isomorphic cohomology groups, equivalent Hodge structures and local
moduli spaces are all still true. Moreover, these canonical isomorphisms are all
induced from the graph closure cycle of the given birational map. It is clear that
we can not achieve these statements from integration theory only.

In the higher dimensional cases, due to the fact that it is (at least currently)
impossible to classify (terminal) singularities, the existence problem of flops seems
to be completely out of reach. This suggests that we should not restrict the study
of K-equivalence relation inside the category of algebraic geometry only. We should
allow (locally holomorphic) symplectic deformations. That is, small deformations
of almost complex structures which are (integrable in a neighborhood of the ex-
ceptional loci and are) tamed by the original symplectic form. In dimension three,
with the help of classification theory of singularities we may show that: if allow-
ing symplectic deformations, then any birational map between three dimensional
K-equivalent manifolds can be decomposed into composite of classical flops (see
4.2 below). All the natural isomorphisms that we are interested in are then just
simple corollaries. The unsatisfactory fact is that we DO NOT know how to prove
this deformation/decomposition theorem directly without using the classification
theory. Such a proof should shed important light toward the higher dimensional
cases.

In fact, this symplectic deformation/decomposition theorem is even more useful
than the original flop decomposition theorem for certain problems. For example, Li
and Ruan [35] had shown in 1998 that it can be used to prove that birational smooth
minimal threefolds have equivalent quantum cohomology rings. Notice that the ring
structure of ordinary cohomology groups are not preserved under flops X 99K X ′,
in general X and X ′ are not even homotopically equivalent.

4.2. Some Well Known Flops. For the reader’s convenience, we recall the defi-
nition of certain known flops. The simplest type of flops are called ordinary flops.
An ordinary Pr-flop (or simply Pr-flop) f : X 99K X ′ is a birational map such that
the exceptional set Z ⊂ X has a Pr-bundle structure ψ : Z → S over some smooth
variety S and the normal bundle NZ/X is isomorphic to O(−1)r+1 when restricting
to any fiber of ψ. The map f and the space X ′ are then obtained by first blowing
up X along Z to get Y , with exceptional divisor E a Pr × Pr-bundle over S, then
blowing down E along another fiber direction. Ordinary P1-flops are also called
classical flops. Three dimensional classical flops are the most well-known Atiyah
flops over (−1,−1) rational curves.

Another important example is the Mukai flops f : X 99K X ′. In this case it is
required that the exceptional set Z ⊂ X is of codimension r and has a Pr-bundle
structure ψ : Z = PS(F )→ S (for some rank r+1 vector bundle F ) over a smooth
base S, moreover the normal bundle NZ/X

∼= T ∗Z/S , the relative cotangent bundle
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of ψ. To get f , one first blows up X along Z to get φ : Y → X with exceptional
divisor E = PZ(T ∗Z/S) ⊂ PS(F ) ×S PS(F ∗) as the incidence variety. The first
projection corresponds to φ and one may contract E through the second projection
to get φ′ : Y → X ′. Mukai flops naturally occur in hyperkähler manifolds [24].

4.3. Main Conjectures. In 2000, the author made a series of conjectures on K-
equivalent manifolds X and X ′ under birational map f : X 99K X ′:

I. The morphism T : Hk(X,Q) → Hk(X ′,Q) induced from the graph clo-
sure Γ̄f ⊂ X × X ′ is an isomorphism which preserves the rational Hodge
structures. There also exists a canonical correspondence Γ̄f +

∑
i Ti ⊂

An(X ×X ′), with Ti being certain degenerate correspondences, which de-
fines an isomorphism on integral cohomology groups modulo torsion. 3

II. The local deformation spaces Def(X) and Def(X ′) are canonically isomor-
phic in the sense that the local universal families are K-equivalent over the
base. Moreover, suitable compactifications of their polarized moduli spaces
should also be K-equivalent.

III. X and X ′ have canonically isomorphic quantum cohomology rings over the
extended Kähler moduli spaces. In other words, their quantum cohomology
rings can be analytically continued to each other.

IV. Deformation/Decomposition Theorem: under generic symplectic perturba-
tions which respect f , the deformed f can be decomposed into finite copies
of ordinary Pr-flops for various r’s.

It is also expected that IV would be the key step toward resolving conjectures I, II
and III.

The main progress made in [49] is to prove a weak form of conjecture IV: if we
further modulo complex cobordism, then any birational map between K-equivalent
manifolds can be decomposed into the composite of finite number of ordinary P1-
flops. Notice that since in a flat family of algebraic cycles the dimension can not
go down under specialization, the r’s appear in conjecture IV can not take the
value 1 only. This explains that the weak form we proved is still far away from the
original conjecture. Another important remark is related to the Mukai flops. These
flops are not included in conjecture IV since Huybrechts [24] had shown in 1996
that Mukai flops in hyperkähler manifolds will disappear (become isomorphisms)
under generic deformations. Recently he completed the discussion by showing that
birational hyperkähler manifolds become isomorphic under generic deformations of
complex structures [25]. Huybrechts’ results can be regarded as one of the most
important evidences of the above conjectures (c.f. 5.3).

Also it should be remarked that for Calabi-Yau manifolds, the equivalence of
Hodge numbers gives numerical evidence for Main Conjecture II since the relevant
groups in the Kodaira-Spencer theory are all Hodge groups:

Hi(X,TX) ∼= Hi(X,Ωn−1
X ) ∼= Hn−1,i(X).

However, in order to proceed, we really need the validity of Conjecture I.

4.4. Complex Elliptic Genera under P1-flops. As for the proof of the weak
deformation/decomposition theorem, we notice that according to a result of Milnor
[39] and Novikov [42], the complex cobordism class of a compact stably almost

3I am grateful to D. Huybrechts and Y. Namikawa for pointing out the necessity to modify

the graph closure in order to get the conjectural isomorphisms on integral cohomologies.
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complex manifold (X such that TX ⊕ ξ has a complex vector bundle structure
for some trivial bundle ξ) is determined precisely by all its Chern numbers. The
complex cobordism ring ΩU is defined to be the ring of compact stably almost
complex manifolds modulo cobordism by such manifolds with boundaries.

Recently Totaro [45] showed that the most general Chern numbers that are in-
variant under ordinary P1-flops consists of the so-called complex elliptic genera. Re-
call that anR-genus is nothing but a ring homomorphism ϕ : ΩU → R. Equivalently
it can be defined through Hirzebruch’s power series recipe [21]. Let Q(x) ∈ R[[x]]
and X be an almost complex manifold with formal Chern roots decomposition
c(TX) =

∏n
i=1(1 + xi), then

ϕQ(X) :=
∏n

i=1
Q(xi)[X] =:

∫
X

KQ(c(TX))

defines an R-genus. As usual write Q(x) = x/f(x) then the complex elliptic genera
is defined by the three parameter (k ∈ C, τ and a marked point z) power series

f(x) = e(k+ζ(z))x σ(x)σ(z)
σ(x+ z)

.

Hirzebruch [22] has reproved Totaro’s theorem using Atiyah-Bott localization
theorem. He showed that ϕQ is invariant under P1-flops if and only if F (x) :=
1/f(x) satisfies the functional equation

F (x+ y)(F (x)F (−x)− F (y)F (−y)) = F ′(x)F (y)− F ′(y)F (x).

Moreover, the solutions is given by the above f exactly.

4.5. Complex Elliptic Genera under K-equivalence. The main contribution
in [49] is to show that complex elliptic genera are also invariant among general
K-equivalent manifolds. Hence in ΩU , the ideal I1 generated by [X]− [X ′] with X
and X ′ related by a P1-flop is equal to the seemingly much lager ideal IK generated
by K-equivalent pairs [X]− [X ′].

Following the meta theorem, the most important step in the proof is to develop
a change of variable formula for genera (or Chern numbers) under blowing-ups.
First, using standard intersection theory and Hirzebruch’s theory of virtual genus
[23], we proved a residue formula for a single blowing-up φ : Y → X along smooth
center Z of codimension r. Namely, for any power series A(t) ∈ R[[t]]:∫

Y

A(E)KQ(c(TY )) =
∫

X

A(0)KQ(c(TX))

+
∫

Z

Res t=0

( A(t)
f(t)

∏r
i=1 f(ni − t)

)
KQ(c(TZ)).

Here ni’s denote the formal Chern roots of the normal bundle NZ/X and the residue
stands for the coefficient of the degree −1 term of a Laurent power series with
coefficients in the cohomology ring or the Chow ring of X. In order to have a
change of variable formula, we need the residue term to vanish. If we already know
the expression of f as above, than for z not an r-torsion point it is not hard to find

A(t, r) = e−(r−1)(k+ζ(z))t σ(t+ rz)σ(z)
σ(t+ z)σ(rz)

.
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In fact the r = 2 case corresponds to a functional equation

1
f(x)f(y)

=
A(x)

f(x)f(y − x)
+

A(y)
f(y)f(x− y)

which also has solutions given by f (and A is determined by f), but with z not a 2-
torsion points. 4 Notice that a classical theorem of Weierstrass states that solutions
of functional equations involving only f(x), f(y) and f(x+y) are constructed from
the Weierstrass elliptic functions. However, the functional equations appeared here
(and also the one considered by Hirzebruch in §4.4) are not of this type.

The general change of variable reads: let ϕ = ϕk,τ,z be the complex elliptic
genera. Then for any algebraic cycle D in X and birational morphism φ : Y → X
with KY = φ∗KX +

∑
eiEi, we have (write KQ = Kϕ)∫

D

Kϕ(c(TX)) =
∫

φ∗D

∏
i
A(Ei, ei + 1)Kϕ(c(TY )).

Or equivalently, φ∗
∏

iA(Ei, ei + 1)Kϕ(c(TY )) = Kϕ(c(TX)). This is first proved
by induction for φ a composite of blowing-ups. The general cases can be reduced to
the blowing-up case by applying the weak factorization theorem [54] [1]. (A similar
result for the case k = 0 (elliptic genera) was also obtained recently by Borisov and
Libgober [7].)

The formula implies that X =K X ′ ⇒ ϕk,τ,z(X) = ϕk,τ,z(X ′) with z not a
torsion point. But then we also get ϕ(X) = ϕ(X ′) in all cases by continuity.

Notice that it is symbolically convenient to denote Kϕ(c(TX)) by dµX and regard
it as an elliptic measure, though we do not really construct a measure theory as
in §3. When we specialize to Todd genus (rational measure), the Jacobian factor
reduces to A = 1 and the change of variable formula is a simple corollary of the
Grothendieck Riemann-Roch theorem.

It is worth mentioning that except for the last step, the proof works both in
the category of (stably almost) complex manifolds and in the category of algebraic
manifolds in arbitrary characteristic. While the weak factorization theorem has
been proved for both the complex analytic category 5 and also the algebraic cate-
gory, the later is proved under the restriction over fields of characteristic zero. It
is expected that one should find a Grothendieck Riemann-Roch type argument to
replace the weak factorization theorem to get a more satisfactory conclusion.

4.6. Chern Numbers versus Hodge Numbers. Hodge numbers and Hodge
structures determine a substantial part of the complex elliptic genera and also give
information to the complex moduli. Recall that [45]:

ϕ(X) = χ
(
X,K

⊗(−k)
X ⊗

∏
m≥1

(Λ−y−1qmT ⊗ Λ−y−1qm−1T ∗ ⊗ SqmT ⊗ SqmT ∗)
)

for q = e2πiτ , y = e2πiz and T = TX −n the rank zero virtual tangent bundle. The
twisted χy-genus corresponds to the two parameter genera

χy(X) := χ
(
X,K

⊗(−k)
X ⊗ ΛyT

∗
X

)
,

4It is expected that complex genera which admit the change of variable formula for codimension

r blowing-ups consists of precisely the complex elliptic genera with z not an r-torsion point.
5I am grateful to B. Totaro for pointing out this to me.
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which is equivalent to knowing all χ(X,K⊗(−k)
X ⊗Ωp

X) for p ≥ 0. If n = dimX ≤ 11,
the twisted χy genus contains the same Chern numbers as the complex elliptic
genera. So in this range, twisted χy genus contains precisely all Chern numbers
that are invariant under the K-equivalence relation. If n ≤ 4, the twisted χy genus
contains all Chern numbers, so all Chern numbers are invariant underK-equivalence
for dimensions up to 4.

It is clear that if KX is trivial, that is, X is a Calabi-Yau manifold, then the
twisted χy genus becomes Hirzebruch’s χy genus

∑
p≥0 χ(X,Ωp

X) yp. In particular,
it is determined by the Hodge numbers. So the equivalence of elliptic genera (that
is, k = 0) follows from the equivalence of Hodge numbers when n ≤ 11. But when
n ≥ 12, the elliptic genera and Hodge numbers contain quite a different type of
information.

5. Other Aspects of K-equivalence Relation

For completeness, we add a few topics that are closely related to the study of
K-equivalence relation but not directly related to the author’s current approaches.
The interested reader should consult the original papers for more details.

5.1. K-equivalence for Singular Varieties. The notion of K-partial ordering
makes sense for general Q-Gorenstein varieties. For log-terminal varieties, the in-
tegration formalism works well as in the smooth case (the measure is finite ⇔ X is
log-terminal) and K-equivalence still implies measure-equivalence, both the p-adic
and motivic ones. The major problem here is to understand the geometric mean-
ing of the total measure. For p-adic measure, it is a weighted counting of rational
points over finite fields, but we do not know how to make it precise.

In [3] Batyrev defined the stringy E function for log-terminal varieties and also
the stringy Hodge numbers when this E function is a polynomial. In terms of motivic
measure, it can be defined by taking hp.q

st (X) = χp,q(µX(L(X)). It is clear that
K-equivalent varieties have the same stringy Hodge numbers, but its meaning still
needs to be further clarified. Does there exist corresponding cohomology theories
(spaces)? Noticed that hp,q

st (X) is in general only a rational number and may as
well be negative. Veys has recently investigated the situation for normal surface
singularities [46].

A more manageable case is the crepant resolutions of Gorenstein quotient sin-
gularities φ : Y → X := Cn/G with G ⊂ SL(n,C) a finite subgroup such that
KY = φ∗KX . The McKay correspondence asserts that, among other things, a nat-
ural basis of H∗(Y ) is in one to one correspondence with conjugacy classes of G.
The numerical version of it has been proved by Batyrev [4] and also by Denef and
Loeser [16] using motivic integration. The geometric correspondence has not been
treated except in dimensions ≤ 3 [9]. Moreover, it is not known in general when
does X admit crepant resolutions. A possible approach is to look at the p-adic
measure of X. As it must be the measure of Y when Y exists, the correspond-
ing counting function must behave like counting points on smooth varieties. This
should put certain restrictions on G.

A recent attempt toward constructing the expected cohomology theory was given
by Chen and Ruan’s orbifold cohomology for Gorenstein orbifolds [12]. But the
naturality problem has not been solved yet. It seems to be a difficult problem for
the construction for general Q-Gorenstein varieties. The author do not know even
conceptually how to extend the Main Conjectures to the singular case.
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5.2. Derived Categories and Fourier-Mukai Transform. In 1995, Bondal and
Orlov [6] showed that for special cases of Pr-flops (namely S is a point in the no-
tation of 4.2), The natural transform Φ := Rφ′∗ ◦ Lφ∗ gives an equivalence of tri-
angulated categories Db(X) ∼= Db(X ′) (here Db(X) denotes the bounded derived
category of coherent sheaves). Later on Bridgeland [8] had made significant progress
on this approach by extending their result to all smooth threefold flops. The im-
portant issue here is that the flopped variety X+ may be constructed as certain
fine moduli spaces. More precisely, he showed that, for ψ : X → X̄ a flopping con-
traction (that is, KX is ψ-trivial) from a smooth threefold X, let X+ := Per(X/X̄)
be the distinguished component of the moduli space of perverse point sheaves, then
X+ is smooth and f : X 99K X+ is the flop. Also the Fourier-Mukai transform

Rp2∗(E
L
⊗Lp∗1(−)) : Db(X)→ Db(X+)

(here p1, p2 are the projections from X×X+ to X and X+ respectively) induced by
the universal perverse point sheave E ∈ Db(X×X+) is an equivalence of categories.

Bridgeland’s theorem is recently generalized by Chen [11] to 3-folds with Goren-
stein terminal singularities and by Kawamata [29] to three dimensional orbifolds.
By combining with Chen’s result, Kawamata also proved the equivalence of derived
categories for all three dimensional terminal flops [30]. There seems to be of some
hope to deal with certain higher dimensional flopping contractions ψ : X → X̄ with
relative dimension ≤ 1 through their methods.

In [30], Kawamata conjectured that for birational projective manifolds, the no-
tion of K-equivalence should be equivalent to D-equivalence, namely varieties with
equivalent derived categories of coherent sheaves. This is clearly closely related to
our main conjectures, but a precise relation between derived categories and coho-
mologies does not seem to be well studied yet.

5.3. Flop Decomposition for Hyperkähler Manifolds. Hyperkähler mani-
folds (or holomorphically symplectic manifolds) have been extensively studied lately.
All our Main Conjectures follow from Huybrechts’ fundamental works [24] [25] men-
tioned in §4.3. For Conjecture I the correspondence cycle Γ ⊂ X ×X ′ used by him
is the limiting cycle limt→0 Γ̄ft induced from nearby isomorphisms ft : Xt

∼= X′t with
t 6= 0. This cycle in general contains more than one irreducible components. In fact
for a Mukai flop, the map T induced from the graph closure will in general preserve
only the rational cohomologies. The statement in Conjecture I is still unknown for
birational hyperkähler manifolds under the map T .

On the other direction, Burns, Hu and Luo [10] had shown that birational maps
between hyperkähler fourfolds can be decomposed into composite of Mukai flops,
if all the irreducible components of the exceptional loci are normal. Very recently
this normality assumption was justified by Wierzba and Wísniewski [52], hence the
four dimensional case was settled completely. Notice that in this case the Mukai
flop is of a particularly simple type (in the notation of §4.2, Z ∼= P2 and S is a
single point). Since the equivalence of derived categories for Mukai flops with S
being a point is proved by Namikawa [40] and Kawamata [30], we see that birational
hyperkähler fourfolds are indeed D-equivalent.

As a final question, can one prove the above results on D-equivalence without
making use of the explicit flops decomposition? Notice that this is the main theme
of our approach toward cohomologies and complex genera in higher dimensions.
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