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Abstract. In this work, we continue our study initiated in [11]. We show that the
generating functions of Gromov–Witten invariants with ancestors are invariant under a
simple flop, for all genera, after an analytic continuation in the extended Kähler moduli
space.

The results presented here give the first evidence, and the only one not in the toric
category, of the invariance of full Gromov–Witten theory under the K-equivalence
(crepant transformation).

0. Introduction

0.1. Statement of the main results. Let X be a smooth complex projective mani-
fold and c : X ! X a flopping contraction in the sense of minimal model theory,
with c : Z GPr ! pt the restriction map to the extremal contraction. Assume that

NZ=X GOP rð�1Þlðrþ1Þ. It was shown in [11] that a simple Pr flop f : X dX 0 exists and
the graph closure ½Gf � A A�ðX � X 0Þ induces a correspondence F which identifies the
Chow motives X̂X of X and X̂X 0 of X 0. Furthermore, the big quantum cohomology rings,
or equivalently genus zero Gromov–Witten invariants with 3 or more insertions, are invari-
ant under a simple flop, after an analytic continuation in the extended Kähler moduli
space.

The goal of the current paper is to extend the results of [11] to all genera. In the pro-
cess we discovered the natural framework in the ancestor potential

AX ðt; sÞ :¼ exp
Py
g¼0

�hg�1F X
g ðt; sÞ;

which is a formal series in the Novikov variables fqbgb ANEðXÞ defined in the stable range
2g þ nf 3. See Section 1 for the definitions.

The main results of this paper are the following theorems.
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Theorem 0.1. The total ancestor potential AX (resp. AX 0) is analytic in the extremal

ray variable ql (resp. ql 0
). They are identified via F under a simple flop, after an analytic

continuation in the extended Kähler cone o A H
1;1
R ðX Þ þ iðKX WF�1KX 0 Þ via

ql ¼ e2piðo:lÞ;

where KX (resp. KX 0) is the Kähler cone of X (resp. X 0).

There are extensive discussions of analytic continuation and the Kähler moduli in
Section 3. We note that the descendent potential is in general not invariant under F (cf.
[11], §3). The descendents and ancestors are related via a simple transformation ([7], [5],
cf. Proposition 1.1), but the transformation is in general not compatible with F. Neverthe-
less we do have

Theorem 0.2. For a simple flop f , any generating function of mixed invariants of

f-special type

ht
k1; l1

a1; . . . ; tkn; ln
anig;

with 2g þ nf 3, is invariant under F up to analytic continuation under the identification of

Novikov variables Fqb ¼ qFb.

Here a mixed insertion t
kj ; lj

aj consists of descendents ck
j and ancestors c l

j . Given

f : X dX 0 with exceptional loci Z HX and Z 0 HX 0, a mixed invariant is of f-special
type if for every insertion t

kj ; lj
aj with kj f 1 we have aj:Z ¼ 0. Theorem 0.1 follows from

an application of Theorem 0.2 when no descendent is present.

0.2. Outline of the contents. Section 1 contains some basic definitions as well as
special terminologies in Gromov–Witten theory used in the article. One of the main ingre-
dients of our proof of invariance of the higher genus Gromov–Witten theory is Givental’s
quantization formalism [5] for semisimple Frobenius manifolds. This is reviewed in Section 2.

Another main ingredient, in comparing Gromov–Witten theory of X and X 0, is the
degeneration analysis. We generalize the genus zero results of the degeneration analysis
in [11] to ancestor potentials in all genera. The analysis allows us to reduce the proofs of
Theorem 0.1 (and 0.2) from flops of X to flops of the local model PZðNZ=X lOÞ.

To keep the main idea clear, we choose to work on local models first in Section 4 and
postpone the degeneration analysis till Section 5. The local models are semi-Fano toric
varieties and localizations had been e¤ectively used to solve the genus zero case. The idea
is to utilize Givental’s quantization formalism on the local models to derive the invariance
in higher genus, up to analytic continuation, from our results [11] in genus zero.

In doing so, the key point is that local models have semisimple quantum cohomology,
and we trace the e¤ect of analytic continuation carefully during the process of quantization.
The issues of the analyticity of the Frobenius manifolds and the precise meaning of the an-
alytic continuation involved in this study is discussed in Section 3 before we discuss local
models.
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The proofs of our main results Theorem 0.1 and 0.2, as well as the degeneration analy-
sis, are presented in Section 5.

0.3. Some remarks on the crepant transformation conjecture. A morphism
c : X ! X is called a crepant resolution, if X is smooth and X is Q-Gorenstein such that
c�KX ¼ KX . When X admits a resolution by a smooth Deligne–Mumford stack (orbifold)
X, there is a well-defined orbifold Gromov–Witten theory due to Chen–Ruan. The crepant

transformation conjecture asserts a close relationship between the Gromov–Witten theory
of X and that of X.

Crepant resolution conjecture, as formulated in [2], still uses descendent potentials
rather than the ancestor potentials, as proposed in [8]. Yet ancestors often enjoy better
properties than the corresponding descendents, as exploited by E. Getzler [4].

Since di¤erent crepant resolutions are related by a crepant (K-equivalent) transforma-
tion, e.g. a flop, the conjecture must be consistent with a transformation under a flop (cf.
[16]). Although the descendent potentials can be obtained from the ancestor potentials via
a simple transformation, this very transformation actually spoils the invariance under F.
The insistence in the descendents may introduce unnecessary complication in the formula-
tion of the conjecture. This is especially relevant in the stronger form of the conjecture
when the orbifolds satisfy the Hard Lefschetz conditions.

Our result suggests that a more natural framework to study crepant transformation
conjecture is to use ancestors rather than descendents. We leave the interested reader to
consult [2] and references therein.

0.4. Acknowledgements. Part of this work was done during the second author’s visit
to the NCU Center for Mathematics and Theoretic Physics (CMTP), Jhongli, Taiwan in
November 2007. He is grateful to the Mathematics Department of National Central Uni-
versity for the hospitality during his stay. The authors are also grateful to the anonymous
referee for providing valuable suggestions which greatly improve the exposition of this
article.

1. Descendent and ancestor potentials

1.1. The ancestor potential. For the stable range 2g þ nf 3, let

s :¼ ft � st : Mg;nþlðX ; bÞ ! Mg;n

be the composition of the stabilization morphism st : Mg;nþlðX ; bÞ ! Mg;nþl defined by for-
getting the map and the forgetful morphism ft : Mg;nþl ! Mg;n defined by forgetting the
last l points. The ancestors are defined to be

cj :¼ s�cjð1:1Þ

for j ¼ 1; . . . ; n. The class cj depends on l and n. For simplicity we suppress l and n from
the notation when no confusion is likely to arise.
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Let fTmg be a basis of H �ðX ;QÞ. Denote t ¼
P
m;k

t
m
kc

kTm, s ¼
P
m

smTm, and let

F X
g ðt; sÞ ¼

P
n; l;b

qb

n!l!
htn; slig;nþl;b

¼
P

n; l;b

qb

n!l!

Ð
½Mg; nþlðX ;bÞ�vir

Qn
j¼1

P
k;m

t
m
kc

k
j ev�

j Tm

Qnþl

j¼nþ1

P
m

sm ev�
j Tm

be the generating function of genus g ancestor invariants.

The ancestor potential is defined to be the formal expression

AX ðt; sÞ :¼ exp
Py
g¼0

�hg�1F X
g ðt; sÞ:

Note that A depends on s (variables on the Frobenius manifold), in addition to
t ¼

P
t
m
k Tmzk (variables on the ‘‘Fock space’’). It is analogous to the formal descendent

potential

DX ðtÞ ¼ exp
Py
g¼0

�hg�1F X
g ðtÞ;

where t ¼
P
m;k

t
m
kc

kTm and F X
g ðtÞ ¼

P
n;b

htnig;n;bqb=n! is the genus g generating function of the

descendent invariants.

Let j be one of the first n marked points such that cj is defined. Let Dj be the (virtual)
divisor on Mg;nþlðX ; bÞ defined by the image of the gluing morphism

P
b 0þb 00¼b

P
l 0þl 00¼l

M0;f jgþl 0þ�ðX ; b 0Þ �X Mg; ðn�1Þþl 00þ�ðX ; b 00Þ ! Mg;nþlðX ; bÞ;

where � represents the gluing point; Mg; ðn�1Þþl 00þ�ðX ; b 00Þ carries all first n marked points
except the j-th one, which is carried by M0;f jgþl 0þ�ðX ; b 0Þ. Ancestor and descendent invari-
ants are related by the simple geometric equation

ðcj � cjÞX ½Mg;nþlðX ; bÞ�vir ¼ ½Dj�vir:ð1:2Þ

This can be easily seen from the definitions of c and c. The morphism p in (1.1) contracts
only rational curves during the processes of forgetful and stabilization morphisms. The (vir-
tual) di¤erence of c and c is exactly Dj.

1.2. The mixed invariants. We will consider more general mixed invariants with
mixed ancestor and descendent insertions. Denote by

ht
k1; l1

a1; . . . ; tkn; ln
anig;n;b
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the invariants with mixed descendent and ancestor insertion c
kj

j c
lj
j ev�

j aj at the j-th marked
point and let

ht
k1; l1

a1; . . . ; tkn; ln
anigðsÞ :¼

P
l;b

qb

l!
ht

k1; l1
a1; . . . ; tkn; ln

an; s
lig;nþl;b;

ht
k1; l1

a1; . . . ; tkn; ln
anigðt; sÞ :¼

P
m; l;b

qb

m!l!
ht

k1; l1
a1; . . . ; tkn; ln

an; tm; slig; ðnþmÞþl;b;

to be the generating functions.

Equation (1.2) can be rephrased in terms of these generating functions.

Proposition 1.1. In the stable range 2g þ nf 3, for ðk1; l1Þ ¼ ðk þ 1; lÞ,

ht
kþ1; l

a1; . . . ; tkn; ln
anigðt; sÞ ¼ ht

k; lþ1
a1; . . . ; tkn; ln

anigðt; sÞð1:3Þ

þ
P
n

htka1;Tni0ðsÞhtl
T n; . . . ; t

kn; ln
anigðt; sÞ

where . . . denotes the same list of mixed insertions.

In fact, only one special type of the mixed invariants will be needed. Let ðX ;EÞ be a
smooth pair with j : E ,! X a smooth divisor, which we call the divisor at infinity. At the
i-th marked point, if ki 3 0, then we require that ai ¼ ei A j�H

�ðEÞHH �ðX Þ. This type of
invariants will be called mixed invariants of special type and the marked points with ki 3 0
will be called marked points at infinity.

For a birational map f : X dX 0 with exceptional locus Z HX , a mixed invariant is
said to be of f-special type if a:Z ¼ 0 for every insertion t

k; l
a with k 3 0. When ðXloc;EÞ

comes from the local model of ðX ;ZÞ, namely Xloc :¼ ~EE ¼ PZðNZ=X lOÞ with E being the
infinity divisor, these two notions of special type agree.

Proposition 1.1 will later be used (cf. Theorem 4.5) in the following setting. Suppose
that under a flop f : X dX 0 we have invariance of ancestor generating functions. To ex-
tend the invariance to allow also descendents we may reduce the problem to the g ¼ 0 case
and with at most one descendent insertion tka. For local models, it is important that the
invariants are of special type to ensure the invariance.

2. Review of Givental’s quantization formalism

In this section we recall Givental’s axiomatic Gromov–Witten theory. As it is impos-
sible to include all background material, this is mainly to fix the notations. The reader may
consult [8], [9], [13] for the details.

2.1. Formal ingredients in the geometric Gromov–Witten theory. For a projective
smooth variety X , Gromov–Witten theory of X consists of the following ingredients:
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(i) H :¼ H �ðX ;CÞ is a C-vector space, assumed of rank N. Let fTmgN
m¼1 be a basis

of H and fsmgN
m¼1 be the dual coordinates with q=qsm ¼ Tm. Set T1 ¼ 1 A H 0ðXÞ, the (dual

of) fundamental class. H carries a symmetric bilinear form, the Poincaré pairing,

ð� ; �Þ : H nH ! C:

Define gmn :¼ ðTm;TnÞ and gmn to be the inverse matrix.

(ii) Let Ht :¼
Ly
k¼0

H be the infinite dimensional complex vector space with basis

fTmc
kg. Ht has a natural C-algebra structure:

Tmc
k1 nTnc

k2 7! ðTmWTnÞck1þk2 :

Let ft
m
kg, m ¼ 1; . . . ;N, k ¼ 0; . . . ;y, be the dual coordinates of the basis fTmc

kg. We note
that at each marked point, the descendent insertion is Ht-valued. Let

t :¼
P
k;m

t
m
k Tmc

k

denote a general element in the vector space Ht.

(iii) The generating function of descendents

F X
g ðtÞ :¼

P
n;b

qb

n!
ht; . . . ; tig;n;b

is a formal function on Ht with coe‰cient in the Novikov ring. (The convergence holds
for local models, cf. Section 3, which is the only case we need in the quantization pro-
cess.)

(iv) H carries a (big quantum cohomology) ring structure. Let sm ¼ t
m
0 and

F0ðsÞ ¼ F0ðtÞjtk¼0;Ek>0. The ring structure is defined by

Tm1
�s Tm2

:¼
P
n; n 0

q3F0ðsÞ
qsm1qsm2qsn

gnn 0Tn 0 :

1 is the identity element of the ring. In the subsequent discussions, the subscript s of �s will
be dropped when the context is clear.

(v) The Dubrovin connection ‘z on the tangent bundle TH is defined by

‘z :¼ d � z�1 P
m

dsmðTm�Þ:

The quantum cohomology di¤erential equation

‘zS ¼ 0ð2:1Þ
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has a fundamental solution S ¼
�
Sm; nðs; z�1Þ

�
, an N � N matrix-valued function, in (for-

mal) power series of z�1 satisfying the conditions

Sðs; z�1Þ ¼ Id þ Oðz�1Þ and S �ðs;�z�1ÞSðs; z�1Þ ¼ Id;ð2:2Þ

where � denotes the adjoint with respect to ð� ; �Þ.

(vi) The non-equivariant genus zero Gromov–Witten theory is graded, i.e. with a
conformal structure. The grading is determined by an Euler field E A GðTHÞ,

E ¼
P
m

1 � 1

2
deg Tm

� �
sm

q

qsm
þ c1ðTX Þ:ð2:3Þ

2.2. Semisimple Frobenius manifolds. The concept of Frobenius manifolds was orig-
inally introduced by B. Dubrovin. We assume that the readers are familiar with the defini-
tions of the Frobenius manifolds. See [10], Part I, for an introduction. The quantum prod-
uct �, together with Poincaré pairing, and the special element 1, defines on H a Frobenius
manifold structure ðQH; �Þ.

A point s A H is called a semisimple point if the quantum product on the tangent al-

gebra ðTsH; �sÞ at s A H is isomorphic to
LN

1

C as an algebra. ðQH; �Þ is called semisimple if

the semisimple points are (Zariski) dense in H. If ðQH; �Þ is semisimple, it has idempotents
f�igN

1 ,

�i � �j ¼ dij�i;

defined up to SN permutations. The canonical coordinates fuigN
1 is a local coordinate sys-

tem on H near s defined by q=qui ¼ �i. When the Euler field is present, the canonical co-
ordinates are also uniquely defined up to signs and permutations. We will often use the
normalized form ~��i ¼ �i=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�i; �iÞ

p
.

Lemma 2.1. f�ig and f~��ig form orthogonal bases.

Proof. ð�i; �jÞ ¼ ð�i � �i; �jÞ ¼ ð�i; �i � �jÞ ¼ ð�i; dij�iÞ ¼ dijð�i; �iÞ. r

When the quantum cohomology is semisimple, the quantum di¤erential equation (2.1)
has a fundamental solution of the following type

Rðs; zÞ :¼ CðsÞ�1
Rðs; zÞeu=z;

where ðCmiÞ :¼ ðTm; ~��iÞ is the transition matrix from f~��ig to fTmg; u is the diagonal matrix
ðuijÞ ¼ diju

i. The main information of R is carried by Rðs; zÞ, which is a (formal) power
series in z. One notable di¤erence between Sðs; z�1Þ and Rðs; zÞ is that the former is a
(formal) power series in z�1 while the latter is a (formal) power series in z. See [5], and
[10], Theorem 1 in Chapter 1.

2.3. Preliminaries on quantization. Let Hq :¼ H½z�. Let fTmzkgyk¼0 be a basis of Hq,
and fqm

kg the dual coordinates. We define an isomorphism of Hq to Ht as an a‰ne vector
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space via a dilaton shift ‘‘t ¼ qþ z1’’:

t
m
k ¼ qm

k þ dm1dk1:ð2:4Þ

The cotangent bundle H :¼ T �Hq is naturally isomorphic to the H-valued Laurent series
in z�1, H½z�Jz�1K. It has a natural symplectic structure

W ¼
P

k;m; n

gmn dpm
k5dqn

k

where fpm
kg are the dual coordinates in the fiber direction of H in the natural basis

fTmð�zÞ�k�1gyk¼0. In this way,

Wð f ; gÞ ¼ Resz¼0

�
f ð�zÞ; gðzÞ

�
:

To quantize an infinitesimal symplectic transformation on ðH;WÞ, or its correspond-
ing quadratic hamiltonians, we recall the standard Weyl quantization. An identification
H ¼ T �Hq of the symplectic vector space H (the phase space) as a cotangent bundle of
Hq (the configuration space) is called a polarization. The ‘‘Fock space’’ will be a certain
class of functions f ð�h; qÞ on Hq (containing at least polynomial functions), with additional
formal variable �h (‘‘Planck’s constant’’). The classical observables are certain functions of
p, q. The quantization process is to find for the phase space of the ‘‘classical mechanical
system’’ on ðH;WÞ a ‘‘quantum system’’ on the Fock space such that the classical observ-
ables, like the hamiltonians hðq; pÞ on H, are quantized to become operators ĥhðq; q=qqÞ on
the Fock space.

Let AðzÞ be an EndðHÞ-valued Laurent formal series in z satisfying

WðAf ; gÞ þWð f ;AgÞ ¼ 0;

for all f ; g A H. That is, AðzÞ defines an infinitesimal symplectic transformation. AðzÞ cor-
responds to a quadratic ‘‘polynomial’’ hamiltonian1) PðAÞ in p, q,

PðAÞð f Þ :¼ 1

2
WðAf ; f Þ:

Choose a Darboux coordinate system fq i
k; p

i
kg so that W ¼

P
dp i

k5dq i
k. The quanti-

zation P 7! P̂P assigns

1̂1 ¼ 1; bp i
kp
i
k ¼

ffiffiffi
�h

p q

qq i
k

; bq i
kq
i
k ¼ q i

k=
ffiffiffi
�h

p
;

d
p i

kp
j
lp i

kp
j
l ¼ bp i

kp
i
k

b
p j

lp
j
l ¼ �h

q

qq i
k

q

qq j
l

;ð2:5Þ

d
p i

kq
j
lp i

kq
j
l ¼ q j

l
q

qq i
k

;
d
q i

kq
j
lq i

kq
j
l ¼ q i

kq
j
l =�h:

1) Due to the nature of the infinite dimensional vector spaces involved, the ‘‘polynomials’’ here might have

infinite many terms, but the degrees in p and q are at most 2.
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In summary, the quantization is the process

A 7! PðAÞ 7! dPðAÞPðAÞ;

inf : sympl: transf : 7! quadr: hamilt: 7! operator on Fock sp:

It can be readily checked that the first map is a Lie algebra isomorphism: The Lie bracket
on the left is defined by ½A1;A2� ¼ A1A2 � A2A1 and the Lie bracket in the middle is de-
fined by Poisson bracket

fP1ðp; qÞ;P2ðp; qÞg ¼
P
k; i

qP1

qp i
k

qP2

qq i
k

� qP2

qp i
k

qP1

qq i
k

:

The second map is close to be a Lie algebra homomorphism. Indeed

½ bP1P1; bP2P2� ¼ dfP1;P2gfP1;P2g þ CðP1;P2Þ;

where the cocycle C, in orthonormal coordinates, vanishes except

Cðp i
kp

j
l ; q

i
kq

j
l Þ ¼ �Cðq i

kq
j
l ; p

i
kp

j
l Þ ¼ 1 þ d ijdkl :

Example 2.2. Let dim H ¼ 1 and AðzÞ be multiplication by z�1. It is easy to see that
AðzÞ is infinitesimally symplectic.

Pðz�1Þ ¼ � q2
0

2
�

Py
m¼0

qmþ1pm;

dPðz�1ÞPðz�1Þ ¼ � q2
0

2
�

Py
m¼0

qmþ1

q

qqm

:

ð2:6Þ

Note that one often has to quantize symplectic transformations. Following the com-
mon practice in physics, define

deAðzÞeAðzÞ :¼ e cAðzÞ;ð2:7Þ

for AðzÞ an infinitesimal symplectic transformation.

2.4. Ancestor potentials via quantization. Let N be the rank of H ¼ H �ðX Þ and

DNðtÞ ¼
QN
i¼1

DptðtiÞ be the descendent potential of N points, where

DptðtiÞ1AptðtiÞ :¼ exp
Py
g¼0

�hg�1F pt
g ðtiÞ

is the total descendent potential of a point and ti ¼
P
k

ti
kzk.

Suppose that ðQH; �Þ is semisimple, then the ancestor potential can be reconstructed
from the DNðtÞ via the quantization formalism.
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Since f~��ig defines an orthonormal basis for TsH GH (for s a semisimple point),
the dual coordinates ðp i

k; q
i
kÞ of the basis f~��iz

kgk AZ for H form a Darboux coordinate
system. The coordinate system fti

kg is related to fq i
kg by the dilaton shift (2.4). Note that

q=qq i
k ¼ q=qti

k.

The following beautiful formula was first formulated by Givental [5]. Many special
cases have since been solved in [1], [9], [6]. It was completely established by C. Teleman in
a recent preprint [15]. In this paper, we will only need Givental’s conjecture for smooth
semi-Fano toric varieties (cf. [6]).

Theorem 2.3. For X a smooth variety with semisimple
�
QHðXÞ; �

�
,

AX ðt; sÞ ¼ ecðsÞĈC�1ðsÞR̂RX ðs; zÞecu=zðsÞDNðtÞ;ð2:8Þ

where cðsÞ ¼ 1

48
log detð�i; �jÞ.

Note that it is not very di‰cult to check that log RX ðs; zÞ defines an infinitesimal sym-
plectic transformation. See e.g. [5], [10]. R̂RX ðs; zÞ is then defined via (2.7). By Example 2.2,
ecu=z is also well-defined. Since the quantization involves only the z variable, ĈC�1ðsÞ really is
the transformation from the coordinates with respect to the normalized canonical frame to
flat coordinates. No quantization is needed.

Remark 2.4. The operator ecu=z can be removed from the above expression. It is
shown in [5] that the string equation implies that ecu=zDN ¼ DN .

3. Analytic continuations

We discuss the issues of analyticity of the Frobenius manifolds and analytic continu-
ations involved in the study of the flop f : X dX 0.

3.1. Review of the genus zero theory. Let f : X dX 0 be a simple Pr flop with F
being the graph correspondence. This subsection rephrases the analytic continuation of big
quantum rings proved in [11] in more algebraic terms.

Let NEf be the cone of curve classes b A NEðXÞ with Fb A NEðX 0Þ, i.e. the classes
which are e¤ective on both sides. Let

fðqÞ ¼ q

1 � ð�1Þrþ1
q

be the rational function coming from the generating function of three points Gromov–
Witten invariants attached to the extremal ray lHZ GPr with positive degrees. Namely
for any i; j; k A N with i þ j þ k ¼ 2r þ 1,

fðqlÞ ¼
P

df1

hhi; h j; hki0;3;dlq
dl;

where h denotes a class in X which restricts to the hyperplane class of Z.
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Gromov–Witten invariants take value in the Novikov ring

NðXÞ ¼ dC½NEðXÞ�C½NEðXÞ�

(formal series in qb, b A NEðXÞ), which is the I -adic completion with I being the maximal
ideal generated by NEðXÞnf0g.2)

Define the ring

R ¼ dC½NEf �C½NEf �½fðqlÞ�;ð3:1Þ

which can be regarded as certain algebraization of NðXÞ in the ql variable. Notice that R

is canonically identified with its counterpart R 0 ¼ dC½NE 0
f �C½NE 0
f �½fðql 0 Þ� for X 0 under F since

FNEf ¼ NE 0
f and

FfðqlÞ ¼ ð�1Þr � fðql 0 Þð3:2Þ

(via fðqÞ þ fðq�1Þ ¼ ð�1Þr).

Theorem 3.1. The genus zero n-point functions with nf 3 lie in R:

haiX A R

for all a A H �ðXÞln
. Moreover FhaiX ¼ hFaiX 0

in R 0.

Proof. This is the main result of [11] except the statement that haiX A R. This in
turn will follow from a closer look at the proof of FhaiX ¼ hFaiX 0

given there. The ar-
gument below assumes familiarity with [11].

The degeneration analysis in [11], §4, implies that

hai�X ¼
P
m

mðmÞ
P

I

ha1 j eI ; mi
�ðY ;EÞha2 j eI ; mi�ð

~EE;EÞ;

which decomposes absolute invariants into relative ones on the blow-up

Y ¼ BlZ X ¼ Gf HX � X 0

and on the local model ~EE ¼ PZðNZ=X lOÞ; here h�i� denotes invariants with possibly dis-
connected domain curves. This formula, which involves deformation to the normal cone,
will be reviewed in Section 5 where a generalization to all genera is presented.

Under the projections f : Y ! X and f 0 : Y ! X 0, the graph correspondence is given
by F ¼ f 0

� � f�. The variable qb1 for b1 A NEðYÞ is identified with qf�b1 A NEðX Þ. If qb1

appears in a summand with contact type m, then ðE:b1Þ ¼ jmjf 0 (the contact order). Also

2) The notation ^ in this section always means completion in the I -adic topology and should not be con-

fused with quantization used in the previous section.
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if l 0
Y is the ruling on E GPr � Pr HY which projects to l 0HX 0, then

f�f�b1 ¼ b1 þ ðE:b1Þl 0
Y

(since NE=Y GOð�1;�1Þ and ðE:f�f�b1Þ ¼ 0). This implies that

Ff�b1 ¼ f 0
�b1 þ jmjl 0 A NEðX 0Þ:

Hence b1 A NEf and ha1 j eI ; mi
�ðY ;EÞ A dC½NEf �C½NEf �.

To compare Fhai�X and hFai�X 0
, by [11], Proposition 4.4, we may assume that

a1 ¼ a 0
1 and a 0

2 ¼ Fa2. Thus the problem is reduced to the local model ~EE which has
NEð ~EEÞ ¼ Zþlþ Zþg with g being the fiber line class of ~EE ! Z. Denote

b ¼ dlþ d2g A NEðXÞ.

The relative invariants ha2 j eI ; mi�ð
~EE;EÞ are converted to the absolute descendent

invariants of f-special type on ~EE by solving triangular linear systems arising from the de-
generation formula inductively (cf. Proposition 5.3 where this is generalized to the case
allowing also ancestors in a2).

Now H �ð ~EEÞ ¼ Z½h; x�=hhrþ1; ðx� hÞrþ1xi is generated by divisors where h is the
hyperplane class of Z and x is the class of E. By a virtual dimension count, for each
a A t�H

�ð ~EEÞln, hai
~EE
b 3 0 for at most one d2. Then the process ([11], §5, Theorem 5.6) via

the reconstruction theorem and induction on d2 f 0 shows that there are indeed only
two basic relations which together generate all the analytic continuations and lead to the
F-invariance theorem.

The first relation is (3.2), which is the origin of analytic continuation: For d2 ¼ 0, the
3-point functions for extremal rays is given by f. The constant ð�1Þr is responsible for the
topological defect. Another relation comes from the quasi-linearity

FhtkxaiX ¼ htkx
0FaiX 0

for one point f-special invariants ([11], Lemma 5.4). This is an identity of small J functions

in C½NE 0
f �:

FJ
~EE :xa ¼ J

~EE 0
:x 0Fa

where no analytic continuation is needed.

For D A Picð ~EEÞ, the power operator dD is defined by dDqb ¼ ðD:bÞqb. Then under the
basis fh; xg of H 2ð ~EEÞ we have the dual basis fl; gg of H2ð ~EEÞ and

d :¼ dh ¼ ql d

dql
:ð3:3Þ

The reconstruction shows that the desired analytic continuations arise from finite
C½NEf �-linear combinations of dmf’s with mf 0.
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It remains to show that dmf is a polynomial in f. This follows easily from

df ¼ f þ ð�1Þrþ1
f 2

and dðf1f2Þ ¼ ðdf1Þf2 þ f1df2 by induction on m. r

3.2. Integral structure on local models. For X ¼ ~EE, the second half of the above
proof shows that

hai A C½NEf �½f� ¼: Rlocð3:4Þ

without the need of taking completion, where NEf ¼ Zþgþ Zþðgþ lÞ.

In fact for a given set of insertions a and genus g, the virtual dimension count shows
that the contact weight d2 :¼ ðE:bÞ is fixed among all b ¼ d1lþ d2g in the series haiX

g .
Hence for g ¼ 0 we must have

haiX ¼ qd2g
�

p0ðfÞ þ qlp1ðfÞ þ � � � þ qd2lpd2
ðfÞ

�
for certain polynomials piðfÞ A Q½f�.

In particular hai is an analytic function over the extended Kähler cone

o A KC
X WF�1KC

X 0 (where KC
X :¼ H

1;1
R ðXÞ þ iKX is the complexified Kähler cone) via the

identification3)

qb ¼ e2piðo:bÞ:ð3:5Þ

Thus analytic continuation can be taken in the traditional complex analytic sense or as iso-
morphisms in the ring Rloc GR 0

loc.

3.3. Analytic structure on the Frobenius manifolds. The Frobenius manifold corre-
sponding to X is a priori a formal scheme, given by the formal completing ĤHX of H �ðX ;CÞ
at the origin, with values in the Novikov ring. The divisor axiom implies that one may
combine the H 1;1ðXÞ directions of the Frobenius manifold and the Novikov variables
into a formal completion at the boundary point q ¼ 0 of

H 1;1ðXÞ
H 1;1ðXÞX

�
2pi:H 2ðX ;ZÞ

� H
H 2ðX ;CÞ

2piH 2ðX ;ZÞ G ðC�Þh2

:ð3:6Þ

Indeed, let s ¼ s 0 þ s1 be a point in the Frobenius manifold with s1 A H 2ðX ;CÞ. The
divisor axiom says that

haibðs 0 þ s1Þqb ¼ haibðs 0Þqbeðs1:bÞ:ð3:7Þ

3) In string theory, the identification of weights qb ¼ e2piðo:bÞ is essential in matching the A model and B

model moduli spaces in mirror symmetry (cf. [3]). It is generally believed that the GW theory converges in the

‘‘large radius limit’’, i.e. when Imo is large.
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Compared with (3.5), this suggests an identification of qb with eðs1:bÞ which leads to (3.6).
This identification can be done at the analytic level when the convergence of big quantum
ring is known. In practice when the convergence is known only in some variables qb’s, par-
tial identification can still be made in certain H 1;1 directions.

Let f : X dX 0 be a simple Pr flop and h be a divisor class dual to the extremal
ray l, i.e. ðh:lÞ ¼ 1. Then H 2ðX ;CÞ ¼ ChlH 2ðX ;CÞ?l . Theorem 3.1 gives an analytic
structure on ĤHX in the h-direction:

Corollary 3.2. (i) The Frobenius manifold structure on ĤHX can be extended to

HX :¼ ĤH?l

X �
�
P1

qlnð�1Þrþ1�:
(ii) HX GHX 0 .

(iii) If X is the local model, HX is an analytic manifold.

Proof. Theorem 3.1 says that, as polynomial functions of f, all invariants are
defined on f A C. Equivalently, as rational functions of ql, all invariants are defined on
P1nð�1Þrþ1. For s1 A H 2ðX ;CÞ, s1 ¼ th þ h 0 with ðh 0:lÞ ¼ 0. Then the identification
ql ¼ eðs1:lÞ ¼ eðth;lÞ ¼ et in (3.1) is used to replace Ch. This proves (i). (ii) follows from (i),
and (iii) from Section 3.2. r

Corollary 3.2 and results of the previous subsections show that the Frobenius mani-
fold structures on the quantum cohomology of X and X 0 are isomorphic. The former is a
series expansion of analytic functions at ql ¼ 0, and the latter at ql ¼ y. Considered as a
one-parameter family

HX ! P1
qlnð�1Þrþ1;

it produces a family of product structure on ĤH?l

X n dC½NEf �C½NEf �. At two special points 0 and y,
the Frobenius structure specializes to the big quantum cohomology modulo extremal rays
of X and of X 0 respectively. The term ‘‘analytic continuation’’ used in this paper can be
understood in this way.

4. Local models

We move to the study of local models. The semisimplicity of the Frobenius manifolds
and the quantization formalism are used to reduce the invariance of Gromov–Witten
theory to the semi-classical (genus zero) case.

4.1. Semisimplicity of big quantum ring for local models. Toric variety admits a nice
big torus action and its equivariant cohomology ring is always semisimple, hence as
a deformation the equivariant big quantum cohomology ring (the Frobenius manifold) is
also semisimple. Givental’s quantization formalism works in the equivariant setting, hence
one way to prove the higher genus invariance for local models is to extend results in [11] to
the equivariant setting. This can in principle be done, but here we take a direct approach
which requires no more work.
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Lemma 4.1. For X ¼ PP r

�
Oð�1Þlðrþ1Þ lO

�
, QH �ðXÞ is semisimple.

Proof. By [3], the proof of Proposition 11.2.17, and [11], Lemma 5.2, the small
quantum cohomology ring is given by Batyrev’s ring (though X is only semi-Fano).
Namely for q1 ¼ ql and q2 ¼ qg,

QH �
smallðX ÞGC½h; x�½q1; q2�=

�
hrþ1 � q1ðx� hÞrþ1; ðx� hÞrþ1x� q2

�
:

Solving the relations, we get the eigenvalues of the quantum multiplications h� and x�:

h ¼ h jo iq
1

rþ1

1 q
1

rþ2

2 ð1 þ o iq
1

rþ1

1 Þ�
1

rþ2; x ¼ h jq
1

rþ2

2 ð1 þ o iq
1

rþ1

1 Þ
rþ1
rþ2ð4:1Þ

for i ¼ 0; 1; . . . ; r and j ¼ 0; 1; . . . ; r þ 1, where o and h are the ðr þ 1Þ-th and the ðr þ 2Þ-th
root of unity respectively. As these eigenvalues of h� (resp. x�) are all di¤erent, we see that
h� and x� are semisimple operators, hence QH �

smallðX Þ is semisimple.

This proves that the formal Frobenius manifold ðQH �; �Þ is semisimple at the origin
s ¼ 0. Since semisimplicity is an open condition, the formal Frobenius manifold QH �ðX Þ is
also semisimple. r

Remark 4.2. The Batyrev ring for any smooth projective toric variety, whether or
not equal to the small quantum ring, is always semisimple.

4.2. Invariance of mixed invariants of special type.

Proposition 4.3. For the local models, the correspondence F for a simple flop induces,
after the analytic continuation, an isomorphism of the ancestor potentials.

Proof. Since a flop induces K-equivalence, by (2.3) the Euler vector fields of X

and X 0 are identified under F. By Theorem 3.1 and Lemma 4.1, X and X 0 give rise to
isomorphic semisimple conformal formal Frobenius manifolds over R (or rather Rloc):

QH �ðX ÞGQH �ðX 0Þ

under F. The first statement then follows from Theorem 2.3, the quantization formula,
since all the quantities involved are uniquely determined by the underlying abstract Frobe-
nius structure.

To be more explicit, to compare FAX with AX 0 is equivalent to compare
FðĈC�1

X R̂RX Þe ûu=z with ĈC�1
X 0 R̂RX 0ebuO=z, and Fc with c 0. Recall that

�i :¼ qui ; ~��i :¼
�iffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�i; �iÞ

p :

Lemma 4.4. F sends canonical coordinates on X to canonical coordinates on X 0:
F�i ¼ � 0i , F~��i ¼ ~�� 0i . Moreover, c, C and u transform covariantly under F.

Proof. As F preserves the big quantum product, F sends idempotents f�ig to idem-
potents f� 0ig. Since the canonical coordinates are uniquely defined for conformal Frobenius

81Iwao, Lee, Lin and Wang, Invariance of GW theory under a simple flop

Brought to you by | Universidade Estadual de Santa Cruz  (Universidade Estadual de Santa Cruz )
Authenticated | 172.16.1.226

Download Date | 2/20/12 6:00 PM



manifolds (up to SN permutation which is fixed by F), F takes canonical coordinates
on X to those on X 0. Furthermore, F preserves the Poincaré pairing [11], hence that
F~��i ¼ ~�� 0i .

The F covariance of cðsÞ ¼ 1

48
log detð�i; �jÞ, the matrix uij ¼ ðdiju

iÞ and the matrix

Cmi ¼ ðTm; ~��iÞ also follow immediately. For example,

FCmi ¼ ðFTm;F~��iÞ

again by the F covariance of Poincaré pairing. r

The lemma implies that the Darboux coordinate systems on HX and HX 0
defined in

Section 2.4 via ~��i and ~�� 0i respectively are compatible under F. By the definition of the quan-
tization process (2.5), which assigns di¤erential operators q=qq i

k’s in an universal manner
under a Darboux coordinate system, it clearly commutes with F. It is thus enough to prove
the invariance of the semi-classical counterparts, or equivalently the ‘‘covariance’’ of the
corresponding matrix functions, under F. Note that all the invariance and covariance are
up to an analytic continuation.

Therefore, one is left with the proof of the covariance of the R matrix under F, after
analytic continuation. Namely FRðsÞ ¼ R 0ðFsÞ.

This follows from the uniqueness of R for semisimple formal conformal Frobenius
manifolds. To be explicit, recall that in the proof of [10], Theorem 1, the formal series

Rðs; zÞ ¼
Py
n¼0

RnðsÞzn of the R matrix is recursively constructed by R0 ¼ Id and the follow-

ing relation in canonical coordinates:

ðRnÞijðdui � du jÞ ¼ ½ðCdC�1 þ dÞRn�1�ij:ð4:2Þ

Applying F to it, we get FRn ¼ R 0
n by induction on n. r

In order to generalize Proposition 4.3 to simple flops of general smooth varieties,
which will be carried out in the next section by degeneration analysis, we have to allow
descendent insertions at the infinity marked points, i.e. those marked points where the
cohomology insertions come from j�H

�ðEÞHH �ðX Þ.

Theorem 4.5. For the local models, the correspondence F for a simple flop induces,
after the analytic continuation, an isomorphism of the generating functions of mixed invari-

ants of special type in the stable range.

Proof. Using Proposition 4.3 and 1.1 and by induction on the power k of descen-
dent, the theorem is reduced to the case of g ¼ 0 and with exactly one descendent insertion.
It is of the form htka;Tni0ðsÞ with k f 0 and by our assumption a A j�H

�ðEÞ. This series is
a formal sum of subseries

htka;Tn;Tm1
; . . . ;Tml

i0;2þl
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with l f 0 (n ¼ 2 þ l f 2), which are sums over b A NEð ~EEÞ. Each such series supports a
unique d2 f 0 in b ¼ d1lþ d2g.

If d2 ¼ 0 then the series (resp. its counterpart in X 0 ¼ ~EE 0 which supports the same d2)
is trivial for d1 f 1 (resp. d 0

1 f 1 where b 0 ¼ d 0
1l

0) since a is supported in E and the extremal
curves are supported in Z (resp. Z 0).

For the remaining case b ¼ 0, Since M0;nðX ; 0ÞGM0;n � X , we have

htka1; a2; . . . ; ani0;n;0 ¼
Ð

M0; n

ck
1 �

Ð
X

a1 � � � an:ð4:3Þ

It is non-trivial only if k ¼ dim M0;n ¼ n � 3, and then

Ð
X

aTnTm1
� � �Tml

¼
Ð

X 0
FaFTnFTm1

� � �FTml

since the flop f restricts to an isomorphism on E.

If d2 > 0, the invariance follows from [11], Theorem 5.6. r

We will generalize the theorem into the form of Theorem 0.2 by removing the local
model condition after we discuss the degeneration formula.

Remark 4.6. The proof of [11], Theorem 5.6 is by induction on d2 and n, which is
based on (1) the reconstruction theorem, (2) the case d2 ¼ 0 and (3) the case n ¼ 1 (quasi-
linearity). However the discussion there on d2 ¼ 0 was not explicitly addressed. In particu-
lar, b ¼ 0 terms were ignored. In that case, the f-special invariants are either zero or reduced
to F-invariant constants as above. The arguments there are thus valid with this noted.

Remark 4.7. By Section 4.1 and the proof of Proposition 4.3, the canonical coordi-
nates ui’s, idempotents �i’s, hence the transition matrix C and the R matrix all lie in some
integral extension ~RRloc of Rloc. It is interesting to know whether all genus g ancestor n-point
generating functions take value in ~RRloc and Fht

l
aiX

g ¼ ht
l
FaiX 0

g in ~RRloc. This is plausible
from Theorem 2.3 since the quantization process requires no further extensions. In fact ex-
plicit calculation suggests that ht

l
aiX

g might belong to Rloc.

5. Degeneration analysis

Let f : X dX 0 be a simple Pr flop with F being the graph correspondence. To
prove Theorem 0.2, we need to show that

Fht
k; l

aiX
g ¼ ht

k; l
FaiX 0

g

up to analytic continuation, for all t
k; l

a ¼ ðt
k1; l1

a1; . . . ; t
kn; ln

anÞ being of f-special type (in
the stable range 2g þ nf 3).

We follow the strategy employed in [11], §4, to apply [12], the degeneration formula
to reduce the problem to local models. The two changes are:
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(1) To generalize primary invariants to ancestors (and descendents).

(2) To generalize genus zero invariants to arbitrary genus.

(2) is almost immediate while (1) needs more explanations. We will focus on the necessary
changes and refer to [11], §4, for complementary details.

5.1. Mixed relative invariants and the degeneration formula. Given a pair ðY ;EÞ
with E ,! Y a smooth divisor, let G ¼ ðg; n; b; r; mÞ with m ¼ ðmiÞ A Nr a partition of

ðb:EÞ ¼ jmj :¼
Pr
i¼1

mi. For A A H �ðYÞln, k; l A Zn
þ and e A H �ðEÞlr, we require that

2g þ n þ rf 3 if l 3 0, and then the mixed relative invariant of stable maps with topologi-
cal type G (i.e. with contact order mi in E at the i-th contact point) is given by

ht
k; l

A j e; miðY ;EÞ
G ¼

Ð
½MGðY ;EÞ�virt

�Qn
j¼1

c
kj

j c
lj
j e�

Y ; jA
j

�
W e�

Ee;

where eY ; j : MGðY ;EÞ ! Y , eE : MGðY ;EÞ ! E r are evaluation maps on marked points
and contact points respectively.

The descendent cj is defined in the usual manner as c1ðLjÞ, with Lj ! MGðY ;EÞ
being the cotangent line at the j-th marked point for j ¼ 1; . . . ; n.

The ancestors are defined by cj :¼ s�
Gcj for j ¼ 1; . . . ; n, where

sG : MGðY ;EÞ ! Mg;nþrð5:1Þ

is the stabilization morphism which forgets the maps. Now cj ¼ c1ðLjÞ with Lj ! Mg;nþr.
We consider ancestors only at the n marked points.

If G ¼
‘
p

Gp, the relative invariants with possibly disconnected domain curves are de-

fined by the product rule:

ht
k; l

A j e; mi�ðY ;EÞ
G ¼

Q
p

hðt
k; l

AÞp j ep; mpiðY ;EÞ
Gp :

It is set to be zero if some ancestor in the right-hand side is undefined. This is the case when
there is a p with lGp 3 0 but gGp ¼ 0, nGp ¼ rGp ¼ 1.

Consider a degeneration W ! A1 of a trivial family with Wt GX for t3 0 and
W0 ¼ Y1 WY2 a simple normal crossing. All classes a A H �ðX ;ZÞln have global lifting
and for each lifting the restriction að0Þ on W0 is defined. Let ji : Yi ,! W0 be the inclusion
maps for i ¼ 1; 2. The lifting can be encoded by ða1; a2Þ with ai ¼ j �i að0Þ.

Let feig be a basis of H �ðEÞ with fe ig its dual basis. feIg forms a basis of H �ðE rÞ
with dual basis feIg where jI j ¼ r, eI ¼ ei1 n � � �n eir .

84 Iwao, Lee, Lin and Wang, Invariance of GW theory under a simple flop

Brought to you by | Universidade Estadual de Santa Cruz  (Universidade Estadual de Santa Cruz )
Authenticated | 172.16.1.226

Download Date | 2/20/12 6:00 PM



The degeneration formula expresses the absolute invariants of X in terms of the rela-
tive invariants of the two smooth pairs ðY1;EÞ and ðY2;EÞ:

Theorem 5.1 ([12]). Assume that 2g þ nf 3 if l 3 0, then

ht
k; l

aiX
g;n;b ¼

P
I

P
h AWb

Chht
1
k; l

a1 j eI ; mi
�ðY1;EÞ
G1

ht2
k; l

a2 j eI ; mi�ðY2;EÞ
G2

:ð5:2Þ

Here h ¼ ðG1;G2; IrÞ is an admissible triple which consists of (possibly disconnected)

topological types Gi ¼
‘jGij

p¼1

Gp
i with the same partition m of contact order under the identifi-

cation Ir of contact points. The marked points in G1 and G2 are labeled by x1; x2; . . . ; xn

and the gluing

G1 þIr G2

has type ðg; n; bÞ and is connected. In particular, r ¼ 0 if and only if that one of the Gi

is empty. The total genus gi, total number of marked points ni and the total degree
bi A NEðYiÞ satisfy the splitting relations g � 1 ¼ g1 � jG1j þ g2 � jG2j þ r, n ¼ n1 þ n2,
and ðb1; b2Þ is a lifting of b.

The constants Ch ¼ mðmÞ=jAut hj, where mðmÞ ¼
Q

mi and Aut h ¼ fs A Sr j hs ¼ hg.
We denote by W the set of equivalence classes of all admissible triples; by Wb and Wm the
subset with fixed degree b and fixed contact order m respectively.

Notation. Throughout this section, we use the convention that in (5.2) the valid in-
sertions t

kj ; lj
ðaiÞ j, j A f1; 2; . . . ; ng used in ht i

k; l
ai j e; mi�ðYi ;EÞ

Gi
correspond to those marked

points xj’s appeared in Gi.

Proof. Theorem 5.1 follows from the degeneration formula for virtual moduli cycles

proved by Li [12], with special attention paid on ancestors:

½MGðW0Þ�virt ¼
P
h AW

ChFh�D
!
�
½MG1

ðY1;EÞ�virt � ½MG2
ðY2;EÞ�virt�

where D : E r � E r ! E r is the diagonal. The descendents obey the same formula clearly.
For ancestors, we investigate the gluing diagram for h:

MG1
ðY1;EÞ �E r MG2

ðY2;EÞ ���!Fh

MGðW0Þ

s1�s2

???ys

MG�
1
� MG�

2

Gh

Mg;n

ð5:3Þ

::::::::::::::::::::::::>

:::::::::>

where MG�
i

is the moduli of stable curves with topological type Gi forgetting bi. The vertical
maps are stabilizations which define ancestors.

When the commutative diagram (5.3) exits, by the functoriality of the construction of
moduli cycles, the ancestors obey the formula on that component as well. This applies to
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those h even if some of the connected components in MG�
i

do not exist—as long as no an-
cestors are attached to those (unstable) marked points. In fact, F�

hs
�cj is then easily seen to

be the ancestor of the component MGp
i
ðYi;EÞ containing the marked point xj.

It remains to consider the case that there is a Gp
i with a marked point xj such that

lj 3 0, gGp
i
¼ 0 and nGp

i
¼ rGp

i
¼ 1. We need to show that the corresponding contribution

vanishes. But then it is clear that F�
hs

�cj ¼ 0 on MGp
i
ðYi;EÞ since F�

hs
�Lj is trivial there.

r

5.2. Reduction to relative local models. The first step is to apply deformation to the
normal cone

W ¼ BlZ�f0g X �A1 ! A1:

W0 ¼ Y1 WY2, Y1 ¼ Y ¼ BlZ X !f X and Y2 ¼ ~EE ¼ PZðNZ=X lOÞ !p Z. E ¼ Y X ~EE is
the f exceptional divisor as well as the infinity divisor of ~EE.

Similar construction applies to X 0:

W 0 ¼ BlZ 0�f0g X 0 �A1 ! A1;

W 0
0 ¼ Y 0

1 WY 0
2; Y 0

1 ¼ Y 0 ¼ BlZ 0 X 0 !f
0

X 0;

Y 0
2 ¼ ~EE 0 ¼ PZ 0 ðNZ 0=X 0 lOÞ !p

0

Z 0 and E 0 ¼ Y 0 X ~EE 0.

By the construction of Pr flops we have ðY ;EÞ ¼ ðY 0;E 0Þ. For simple Pr flops we even

have an abstract isomorphism ~EE G ~EE 0 as both are PP r

�
Oð�1Þlðrþ1Þ lO

�
. However

W0 YW 0
0 since the gluing of ~EE to Y along E GPr � Pr di¤ers from the one of ~EE 0, with

the Pr factors switched.

In fact, the flop f induces floc : Xloc ¼ ~EE dX 0
loc ¼ ~EE 0, the projective local model

of f , which is again a simple Pr flop.

Define the generating series for genus g (connected) relative invariants

hA j e; mið ~EE;EÞ
g :¼

P
b2 ANEð ~EEÞ

1

jAut mj hA j e; mið ~EE;EÞ
g;b2

qb2ð5:4Þ

and the one for all genera with possibly disconnected domain curves

hA j e; mi�ð ~EE;EÞ :¼
P

G;mG¼m

1

jAutGj hA j e; mi�ð ~EE;EÞ
G qbG

�hgG�jGj:ð5:5Þ

Here for connected invariants of genus g we assign the �h-weight �hg�1, while for discon-
nected ones we simply assign the product weights.

Proposition 5.2 (Reduction to relative local models). To prove

Fht
k; l

aiX
g ¼ ht

k; l
FaiX 0

g
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for all a A H �ðXÞln
and k; l A Zn

þ, it su‰ces to show

Fht
k; l

A j e; mið ~EE;EÞ
g0

¼ ht
k; l

FA j e; mið ~EE 0;EÞ
g0

for all A A H �ð ~EEÞln, k; l A Zn
þ, e A H �ðEÞlr, contact type m, and all g0 e g.

Proof. For the n-point mixed generating function

ht
k; l

aiX ¼
P

g

ht
k; l

aiX
g �hg�1 ¼

P
g;b ANEðXÞ

ht
k; l

aiX
g;bqb�hg�1;

the degeneration formula gives

ht
k; l

aiX ¼
P

b ANEðX Þ

P
h AWb

P
I

Chht
1
k; l

a1 j eI ; mi
�ðY1;EÞ
G1

ht2
k; l

a2 j eI ; mi�ðY2;EÞ
G2

qf�b�hg�1

¼
P
m

P
I

P
h AWm

Chðht1
k; l

a1 j eI ; mi
�ðY1;EÞ
G1

qb1�hgG1�jG1jÞ

� ðht2
k; l

a2 j eI ; mi�ðY2;EÞ
G2

qb2�hgG2�jG2jÞ�hr;

where ða1; a2Þ A H �ðY1Þln � H �ðY2Þln is any cohomology lifting of a and we have used
g � 1 ¼

P
i

ðgGi � jGijÞ þ r. Notice that b ¼ f�b1 þ p�b2 and we identify qb1 ¼ qf�b1 ,

qb2 ¼ qp�b2 throughout our degeneration analysis.

We consider also absolute invariants ht
k; l

ai�X with product weights in �h. Then by
comparing the order of automorphisms,

ht
k; l

ai�X ¼
P
m

mðmÞ
P

I

ht1
k; l

a1 j eI ; mi
�ðY1;EÞht2

k; l
a2 j eI ; mi�ðY2;EÞ�hr:ð5:6Þ

To compare Fht
k; l

ai�X and ht
k; l

Fai�X 0
, by [11], Proposition 4.4, we may assume

that a1 ¼ a 0
1 and a 0

2 ¼ Fa2. This choice of cohomology lifting identifies the relative invari-
ants of ðY ;EÞ and those of ðY 0;E 0Þ ¼ ðY ;EÞ with the same topological types. It remains to
compare

ht2
k; l

a2 j eI ; mi�ð
~EE;EÞ and ht2

k; l
a2 j eI ; mi�ð

~EE 0;EÞ:

We further split the sum into connected invariants. Let Gp be a connected part with
the contact order mp induced from m. Denote P : m ¼

P
p AP

mp a partition of m and PðmÞ the
set of all such partitions. Then

ht
k; l

A j e; mi�ð ~EE;EÞ ¼
P

P APðmÞ

Q
p AP

P
Gp

1

jAut mpj htk; l
A j ep; mpið ~EE;EÞ

Gp qbGp

�hgGp�1:

In the summation over Gp, the only index to be summed over is bGp

on ~EE and the
genus. This reduces the problem to hðt

k; l
AÞp j ep; mpið ~EE;EÞ

g .

Instead of working with all genera, the proposition follows from the same argument
by reduction modulo �hg. r

87Iwao, Lee, Lin and Wang, Invariance of GW theory under a simple flop

Brought to you by | Universidade Estadual de Santa Cruz  (Universidade Estadual de Santa Cruz )
Authenticated | 172.16.1.226

Download Date | 2/20/12 6:00 PM



5.3. Further reduction to local absolute invariants.

Proposition 5.3 ([11], Proposition 4.8). For the local simple flop ~EE d ~EE 0, to prove

Fht
l
A j e; mið ~EE;EÞ

g ¼ ht
l
FA j e; mið ~EE 0;EÞ

g

for all A A H �ð ~EEÞln, l A Zn
þ, and weighted partitions ðe; mÞ, it su‰ces to show for mixed in-

variants of special type

Fht
l
A; tkei

~EE
g0
¼ ht

l
FA; tkei

~EE 0

g0

for all A, l, e and k A Z
r
þ, and all g0 e g.

Proof. The proof in [11] works, so we only outline it. We apply deformation to the
normal cone for Z ,! ~EE to get W ! A1. Then W0 ¼ Y1 WY2 with

p : Y1 GPE

�
OEð�1;�1ÞlO

�
! E

being a P1 bundle and Y2 G ~EE. Let g be the p-fiber curve class.

We prove the theorem by induction on ðg; jmj; n; rÞ with r in the reverse ordering.
Without loss of generality we assume that e ¼ eI . The idea, inspired by [14], is to degen-
erate a suitable absolute invariant of f-special type (with virtual dimension matches) so
that the desired relative invariant appears as the main term. The same procedure in [11]
leads to

ht
l
A; tm1�1ei1 ; . . . ; tmr�1eiri

� ~EE
g

¼
P
m 0

mðm 0Þ �
P
I 0
htm1�1ei1 ; . . . ; tmr�1eir j eI 0

; m 0i�ðY1;EÞ
0 ht

l
A j eI 0 ; m 0ið ~EE;EÞ

g þ R;

where R denotes the remaining terms which either have lower genus or have total
contact order smaller than d2 ¼ jmj ¼ jm 0j or have number of insertions fewer than n

on the ð ~EE;EÞ side or the invariants on ð ~EE;EÞ are disconnected ones. R is F-invariant by
induction.

For the main terms, deg eI � deg eI 0 ¼ r� r 0 by the virtual dimension count. Also the
integrals on ðY1;EÞ turn out to be fiber integrals (b1 ¼ d2g) and this allows to conclude that
deg eI e deg eI 0 and then re r 0. The terms ht

l
A j eI 0 ; m 0ið ~EE;EÞ

g with r 0 > r are handled by
induction. The case r 0 ¼ r in fact leads to eI 0 ¼ eI . Thus there is a single term remaining,
which is

CðmÞht
l
A j eI ; mi

ð ~EE;EÞ

with CðmÞ3 0. The proposition then follows by induction. r

Proof of main theorems. We only need to prove Theorem 0.2.
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By Proposition 5.2, the theorem is reduced to the relative local case. Moreover, the
special type assumption implies that for any insertion t

kj ; lj
aj with nontrivial descendent

(kj f 1) we may represent aj by a cycle with support disjoint from Z. Thus we may select
the cohomology lifting of aj to be ðaj; 0Þ. To avoid trivial invariants this insertion only con-
tributes to the ðY1;EÞ side in the degeneration formula. Hence the theorem is reduced to
the case of relative invariants on local model ~EE ¼ PP r

�
Oð�1Þlðrþ1Þ lO

�
with at most an-

cestor insertions.

Now by Propositions 5.3, the theorem is further reduced to the case of mixed invari-
ants of f-special type with non-trivial appearance of e:

ht
l
A; tkei

~EE
g :

The 2-point case with g ¼ 0 and d2 ¼ 0 is zero (for d1 ¼ 0 by (4.3), and for d1 > 0 by
e A j�H

�ðEÞ). If d2 > 0 the F-invariance follows from [11], Theorem 5.6 (cf. Remark 4.6).
All other cases are in the stable range 2g þ nf 3 which follow from Theorem 4.5. The
proof is complete. r

Remark 5.4. The proof also shows that f-special invariants with non-trivial descen-

dent are F-invariant even for 2g þ n < 3, i.e. ðg; nÞ ¼ ð0; 1Þ or ð0; 2Þ.
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