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†

We develop a theory connecting the following three areas: (a) the
mean field equation (MFE)

�u+ eu = ρ δ0, ρ ∈ R>0

on flat tori Eτ = C/(Z+Zτ), (b) the classical Lamé equations and
(c) modular forms. A major theme in part I is a classification of
developing maps f attached to solutions u of the mean field equa-
tion according to the type of transformation laws (or monodromy)
with respect to Λ satisfied by f .

We are especially interested in the case when the parameter
ρ in the mean field equation is an integer multiple of 4π. In the
case when ρ = 4π(2n + 1) for a non-negative integer n, we prove
that the number of solutions is n+ 1 except for a finite number of
conformal isomorphism classes of flat tori, and we give a family of
polynomials which characterizes the developing maps for solutions
of mean field equations through the configuration of their zeros
and poles. Modular forms appear naturally already in the simplest
situation when ρ = 4π

In the case when ρ = 8πn for a positive integer n, the solvability
of the MFE depends on the moduli of the flat tori Eτ and leads
naturally to a hyperelliptic curve X̄n = X̄n(τ) arising from the
Hermite-Halphen ansatz solutions of Lamé’s differential equation

d2w

dz2
− (n(n+ 1)℘(z; Λτ ) +B)w = 0.

We analyse the curve X̄n from both the analytic and the algebraic
perspective, including its local coordinate near the point at infinity,
which turns out to be a smooth point of X̄n. We also specify the
role of the branch points of the hyperelliptic projection X̄n → P1

when the parameter ρ varies in a neighborhood of ρ = 8πn. In
part II, we study a “pre-modular form” Zn(σ; τ), a real-analytic
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function in two variables associated to X̄n(τ), which has many
symmetries and also the property that the τ -coordinates of zeros
of Zn(σ; τ) correspond exactly to those flat tori where the MFE
with parameter ρ = 8πn has a solution.

MSC 2010 subject classifications: 35J08, 35J75, 14H70, 33E05.
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0. Introduction

0.1. How to study the geometry of a flat torus E = EΛ := C/Λ? There
are at least two seemingly different approaches to this problem. In the first
approach one studies the Green’s function G = GE of E, characterized by

(0.1.1)

⎧⎨
⎩−�G = δ0 −

1

|E| on E,∫
E G = 0,

where the Laplacian� = ∂2

∂x2+
∂2

∂y2 = 4 ∂z∂z̄ on E is induced by the Laplacian

of the covering space C of E, |E| =
∫
E dx dy =

√
−1
2

∫
C/Λ dz∧dz̄ is the area

of E, δ0 is the Dirac delta measure at the zero point [0] = 0modΛ ∈ E,
and we have identified functions on E with measures on E using the Haar
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measure dx dy = 1
2 |dzdz̄| on E.1 In the second approach one studies the

classical Lamé equation

(0.1.2) Lη,B w := w′′ − (η(η + 1)℘(z) +B)w = 0

with parameters2 η ∈ R>0 and B ∈ C, where ℘(z) = ℘(z; Λ) is the Weier-
strass elliptic function

℘(z; Λ) =
1

z2
+

∑
w∈Λ�{0}

( 1

(z − w)2
− 1

w2

)
, z ∈ C.

Throughout this paper, we denote by ω1, ω2 a Z-basis of the lattice Λ,
τ = ω2/ω1 with Im(τ) > 0, and ω3 = −ω1 − ω2.

0.1.1. The Green’s function is closely related to the so-called concentra-
tion phenomenon of some non-linear elliptic partial differential equations
in two dimensions. For example, consider the following singular Liouville
equation with parameter ρ ∈ R>0

3

(0.1.3) �u+ eu = ρ · δ0 on E.

It is proved in [12] that for a sequence of blow-up solutions uk of (0.1.3)
corresponding to ρ = ρk with ρk → 8πn, n ∈ N, the set {pi, . . . , pn} of
blow-up points satisfies the following equations:

(0.1.4) n
∂G

∂z
(pi) =

∑
1≤j≤n, j �=i

∂G

∂z
(pi − pj) ∀i = 1, . . . , n.

For n = 1, the blow-up set consists of only one point p which by (0.1.4) is a
critical point of G:

(0.1.5)
∂G

∂z
(p) = 0.

1So the first equation in (0.1.1) means that

−
∫
E

G · �(f) dx dy = f(0)− |E|−1 ·
∫
E

f dx dy

for all smooth functions f ∈ C∞(E).
2We imposed the condition η > 0 on the real parameter η of the Lamé equation

Lη,B so that these Lamé equations are related to the mean field equations. The
parameter η are positive integers in classical literature such as [27, 67].

3Equation (0.1.3) with parameter ρ < 0 is not very interesting—it becomes too
easy.
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Such a connection of (0.1.4) with the Green’s function also appears in many
gauge field theories in physics. The well-known examples are the Chern–
Simons–Higgs equation for the abelian case, and the SU(m) Toda system
for the non-abelian case. See [45, 51, 52] and references therein.

This connection leads to the following question: How many solutions
might the system (0.1.4) have? Or an even more basic question:

How many critical points might the Green function G have?

Surprisingly, this problem has never been answered until [43], where the
second and the third authors proved the following result.

Theorem A. For any flat torus E, the Green function G has either three
or five critical points.

The statement of Theorem A looks deceptively simple at first sight.
However its proof uses the non-linear PDE (0.1.3) and is not elementary.

0.1.2. In view of Theorem A it is natural to study the system (0.1.4)
and the degeneracy question related to each solution of it. We will see in a
moment that such an investigation leads naturally to a fundamental hyper-
elliptic curve X̄n (which varies with n and E), and requires us to study its
geometry—especially the branch points for the hyperelliptic structural map
X̄n → P1(C). The precise definition of X̄n will later be given in (0.6.6).

In the literature there are at least two situations in which one encounters
this hyperelliptic curve X̄n. Both of them are related to the Lamé equation
(0.1.2) with η ∈ N. One of them is well-known, namely the spectral curve of
the Lamé equation in the KdV theory. In §7 we will prove that this spectral
curve is identical to the hyperelliptic curve X̄n; see Remark 7.4.3.

The second situation has a more algebraic flavor and is perhaps less
known to the analysis community. Let

p(x) = 4x3 − g2(Λ)x− g3(Λ).

The differential equation

(0.1.6) p(x)
d2y

dx2
+

1

2
p′(x)

dy

dx
−
(
η(η + 1)x+B

)
y = 0

on P1(C) is related to (0.1.2) by the change of variable x = ℘(z; Λ), where
p′(x) = d

dxp(x). People have been interested in describing those parameters
B so that the Lamé equation (0.1.6) has algebraic solutions only, or equiva-
lently the global monodromy group of (0.1.6) is finite. This question seems
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not to have been fully solved, though significant progress had been achieved
and there are algorithms to generate all cases; see [4, 65, 20] and references
therein.

0.1.3. A related and even more classical question is:

When is the global monodromy group of the Lamé equation (0.1.6) reducible?

That is, there is a one dimensional subspace C · y1(x) of the space of local
solutions which is stable under the action of the fundamental group

π1
(
P1(C)� {℘(z1; Λ) | z1 ∈ 1

2Λ/Λ}
)

of the complement of the 4 singular points of (0.1.6) on P1(C). This question
has a fairly complete answer:

(i) It is known that if the global monodromy group is reducible then the
parameter η of the Lamé equation is an integer and the monodromy
group is infinite.

(ii) If C ·y1(x) is a one-dimensional space of solutions of (0.1.6), then y1(x)
is an algebraic function in x. Moreover solutions which are not multi-
ples of y1(x) are not algebraic in x, and the action of the monodromy
group of (0.1.6) is not completely reducible (as a two-dimensional lin-
ear representation of the fundamental group).

See [65, §4.4] and [4, §3]. A solution of (0.1.2) of the form y1(℘(z; Λ)) with
η = n is traditionally known as a Lamé function.4

0.1.4. For each fixed torus E and each n ∈ Z>0, those parameters B
such that the monodromy group of the Lamé equation Ln,B is reducible are
characterized by the classical Theorem B below.

Theorem B ([27, 67, 53]). Suppose that η = n ∈ N. Then there is a poly-
nomial �n(B) of degree 2n + 1 in B such that equation (0.1.2) has a Lamé
function as its solution if and only if �n(B) = 0.

4When n is even, 1 + n/2 of the 2n + 1 Lamé functions are polynomials of
degree n/2 in ℘(z), and 3n/2 of the form

√
(℘(z)− ei)(℘(z)− ej) · Q(℘(z)) for

some polynomial Q(x) of degree (n/2) − 1 and some i �= j with i, j = 1, 2 or 3,
where ei := ℘(ωi/2) for i = 1, 2 or 3.

When n is odd, 3(n + 1)/2 of the 2n + 1 Lamé functions are of the form√
℘(z)− ei · Q(℘(z)) for some polynomial Q(x) of degree (n − 1)/2 and i = 1, 2

or 3. The rest (n − 1)/2 Lamé functions are of the form ℘′(z) · Q(℘(z)) =√
(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) · Q(℘(z)) for some polynomial Q(x) of degree

(n− 3)/2.
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It turns out that the algebraic curve

{(B,C) | C2 = �n(B)}

is identical to “the affine part” Yn of a complete hyperelliptic curve X̄n, to
be defined later in (0.5.2). Such an identification was only implicitly stated
in Halphen’s classic [27]. In this paper we will give a detailed and rigorous
proof of the statement; see Theorem 0.7. See also [27, Ch. 12], [67, Ch. 23]
and [53, Ch. 9] for traditional treatments of the Lamé equation.

0.1.5. The main theme of this paper is to explore the connection be-
tween the Liouville equation (0.1.3) and the Lamé equation (0.1.2) when
the parameter ρ in (0.1.3) and the parameter η in (0.1.2) satisfies the linear
relation η = ρ/8π.5 Equation (0.1.3) has its origin in the prescribed curva-
ture problem in conformal geometry. In general, for any compact Riemann
surface (M, g) we may consider the following equation

(0.1.7) �u+ eu − 2K = 4π

n∑
j=1

αj δQj
on M,

where K = K(x) is the Gaussian curvature of the given metric g at x ∈ M ,
Qj ∈ M are distinct points, and αj > −1 are constants.6 For any solution
u(x) to (0.1.7), the new metric

g̃ :=
1

2
eu · g

has constant Gaussian curvature K̃ = 1 outside those Qj ’s. Since (0.1.7) has
singular sources at the Qj ’s, the metric 1

2e
ug may degenerate at Qj for each

j and is called a metric on M with conic singularities at the points Qj ’s.

Digression. There is also an application of (0.1.3) to the complex Monge-Ampère equa-

tion:

(0.1.8) det
( ∂2w

∂zi∂z̄j

)
1≤i,j≤d

= e−w on (E�{0})d,

where (E�{0})d is the d-th Cartesian product of E�{0}. Obviously, for any solution u

to (0.1.3), the function

w(z1,...,zd)=−
d∑

i=1
u(zi)+ d·log 4

5In this article 2η = ρ/4π ∈ N most of the time.
6The points Qj and the constants αj are regarded as parameters of (0.1.7).
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satisfies (0.1.8) with a logarithmic singularity along the normal crossing divisor D =

Ed�(E�{0})d. In particular, bubbling solutions to (0.1.3) will give examples of bubbling

solutions to the complex Monge-Ampère equation (0.1.8), whose bubbling behavior could

be understood from our theory developed in this paper. Those examples might be useful

for studying the geometry related to the degenerate complex Monge–Ampère equations.

0.1.6. Equation (0.1.7) is a special case7 of a general class of equations,
called mean field equations:

(0.1.9) �u+ ρ

(
heu∫
heu

− 1

|M |

)
= 4π

n∑
j=1

αj

(
δQj

− 1

|M |

)
on M,

where h(x) is a positive C1-function on M and ρ is a positive real number.
Equation (0.1.9) arises not only from geometry, but also from many applica-
tions in physics. For example it appears in statistical physics as the equation
for the mean field limit of the Euler flow in Onsager’s vortex model, hence
its name. Recently the equation (0.1.9) was shown to be related to the self-
dual condensation of the Chern–Simons–Higgs model. We refer the readers
to [9, 17, 45, 46, 51, 52] and references therein for recent developments on
this subject.

Equation (0.1.9) has been studied extensively for over three decades. It
can be proved that outside a countable set of critical parameters ρ, solutions
u of (0.1.3) have uniform a priori bounds in C2

loc(M � {Q1, . . . , Qn}):
For any closed interval I not containing any of the critical parameters and any
compact subset Φ ⊂ M�{Q1, . . . , Qn}, there exists a constant CI,Φ such that
|u(z)| ≤ CI,Φ for all z ∈ Φ and every solution u(z) of (0.1.3) with parameter
ρ ∈ I;

see [5, 12, 14, 41].
The existence of uniform a priori bounds for solutions of (0.1.3) implies

that the topological Leray–Schauder degree dρ is well-defined when ρ is a
non-critical parameter. Recently, an explicit degree counting formula has
been proved in [13, 15], which has the following consequence:

Suppose that ρ ∈ (R>0�8πN), αj ∈ N for all j and the genus g(M) of M is at
least 1. Then dρ > 0, hence the mean field equation (0.1.9) has a solution.8

However when ρ ∈ 8πN>0, a priori bounds for solutions of (0.1.9) might
not exist, and the existence of solutions becomes an intricate question. The

7Namely the case when h is the constant function 1, and ρ = 4π
∑n

j= αj .
8For any natural number m ∈ N, the Leray-Schauder degree dρ is constant in

the open interval (8π, 8π(m+1)) by homotopy invariance of topological degree, and
dρ = m+ 1 in this open interval according to [15, Thm. 1.3].
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singular Liouville equation (0.1.3) on flat tori with ρ ∈ 8πN is the simplest
class of mean field equations where the parameter ρ is critical, and the
existence problem for equation (0.1.3) is already a delicate one in the case
when ρ = 8π. In [43] the second and third authors proved that equation
(0.1.3) has a solution if and only if the Green’s function on the torus has
five critical points; c.f. Theorem A in 0.1.1.

0.1.7. In this paper we will consider the case when the parameter ρ is of
the form ρ = 4πl for some positive integer l ∈ N. We note that if l is odd,
ρ = 4πl is not a critical parameter. In this case the degree counting formula
in [15, 16] gives the following result:

Theorem C. Suppose that l = 2n + 1 is a positive odd integer. Then the
Leray-Schauder degree d4πl of of equation (0.1.3) is 1

2(l + 1) = n+ 1.

Theorem C will be sharpened in corollaries 0.4.2 and 3.5.1 to:

Let ρ = 4π(2n+1) for some n ∈ Z≥0. Except for a finite number of tori up to
isomorphism, equation (0.1.3) has exactly n+ 1 solutions.

0.2. The above sharpening of Theorem C will be established via the
connection between the Liouville equation (0.1.3) and the Lamé equation
(0.1.2). Indeed the equation (0.1.3) is locally completely integrable according
to the following theorem of Liouville:

Any solution u to (0.1.3) can be expressed locally on E � {0} as

(0.2.1) u(z) = log
8|f ′(z)|2

(1 + |f(z)|2)2 ∀z ∈ E � {0},

where f(z) is a multi-valued meromorphic function on C�Λ (i.e. a meromor-
phic function on an unramified covering of C � Λ) such that the right hand
side of the above displayed expression is a well defined doubly periodic function
on C � Λ.

Such a function f is called a developing map of the solution u of (0.1.3).
The parameter ρ does not show up explicitly in (0.2.1). It enters the

picture when we consider the behavior of f near a lattice point z ∈ Λ.

0.2.1. When ρ = 4πl, l ∈ N, it is a fact that every developing map f(z)
of a solution to (0.1.3) extends to a single valued meromorphic function on
C. Such a developing map f is not doubly periodic in general; rather it is
SU(2)-automorphic for the period lattice Λ:

For every ω ∈ Λ there exists an element T = ( a b
c d ) ∈ SU(2) such that

f(z + ω) = Tf(z) = af(z)+b
cf(z)+d

for all z ∈ C.
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Moreover f(z) has multiplicity l + 1 at points of the lattice Λ ⊂ C, and no
critical point elsewhere on C. Conversely every meromorphic function f(z)
on C satisfying the above two properties is the developing map of a solution
to (0.1.3); see Lemma 1.2.4.

0.2.2. After replacing f by Tf for a suitable element T ∈ SU(2) we get
a normalized developing map f satisfying one of the following conditions:

(i) Type I (the monodromy of f is a Klein four):

f(z + ω1) = −f(z)

f(z + ω2) =
1

f(z)
∀z ∈ C.

(0.2.2)

(ii) Type II (the monodromy of f is contained in a maximal torus): There
exist real numbers θ1, θ2 such that

(0.2.3) f(z + ωi) = e2θif(z) ∀z ∈ C, ∀i = 1, 2.

Here ω1, ω2 is a Z-basis of Λ with Im(ω2/ω1) > 0. See §1 for more details.

0.2.3. We have seen that when the parameter ρ of the Liouville equation
(0.1.3) is 4πl with l ∈ N, solving (0.1.3) is equivalent to finding normalized
developing maps, i.e. meromorphic functions on C with multiplicity l+1 at
points of the lattice Λ and no critical points on C � Λ, whose monodromy
with respect to Λ is specified as one of the two types above. It turns out that
Liouville equation (0.1.3) with ρ/4π ∈ N is integrable in the sense that the
configuration of the zeros and poles of such a normalized developing map can
be described by either system of polynomial equations, or as the zero locus of
an explicitly defined C-valued real analytic function on an algebraic variety.
In other words the Liouville equation (0.1.3) with ρ/4π ∈ N is integrable
in the sense that the problem of solving this partial differential equation is
reduced to finding the zero locus of some explicit system of equations on a
finite dimensional space; see Theorem 0.4 and Theorem 0.6 below.

0.2.4. Let f(z) be a developing map of a solution u(z) of the Liouville
equation (0.1.3). Of course the formula (0.2.1) expresses u in terms of f .
There is a simple way to “recover” the developing map f from u for a
general parameter ρ ∈ R>0. Notice first that ∂

∂z of (0.1.3) gives

∂

∂z̄

(
∂2u

∂z2
− 1

2

(
∂u

∂z

)2
)

= 4

(
∂eu

∂z
− eu

∂u

∂z

)
= 0 in E � {0},
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which implies that uzz − 1
2u

2
z is a meromorphic function on E: A simple

computation using (0.2.1) gives the following formula of this meromorphic

function in terms of the developing map f of u:

(0.2.4) uzz − 1
2u

2
z =

f ′′′

f ′ − 3

2

(f ′′

f ′

)2
.

The right hand side of (0.2.4) is the Schwarzian derivative S(f) of the mero-

morphic function f , while the left hand side is Λ-periodic, with only one

singularity at 0 which is a pole of order at most 2, hence must be equal to a

C-linear combination of the Weierstrass function ℘(z; Λ) and the constant

function 1. It is not difficult to determine the coefficient of ℘(z; Λ) in this

linear combination: We know from equation (0.1.3) that

u(z) = 2l · log |z|+ (a C∞-function)

for all z in a neighborhood of 0 ∈ E. A straightforward calculation shows

that either f(z) has a pole of order l+1 at z = 0, or f(z) is holomorphic at

z = 0 and its derivative f ′(z) has a zero of order l at z = 0. In either case

the Schwarzian derivative S(f) has a double pole at 0 and

lim
z→0

z2S(f) = (l + 2)(l + 3)− 3

2
(l + 2)2 = −(l2 + 2l)/2.

In other words there exists a constant B ∈ C such that

(0.2.5) S(f) = −2(η(η + 1)℘(z) +B),

where η := ρ/8π = l/2.

On the other hand it is well-known that the “potential” of a second order

linear ODE can be recovered from the Schwarzian derivative of the ratio of

two linear independent (local) solutions of the ODE. In the case of the Lamé

equation (0.1.2) this general fact specializes as follows.

If w1, w2 are two linearly independent local solutions to the Lamé equation
Lη,B w = 0 in (0.1.2) with a general parameters η and B and h(z) :=
w1(z)/w2(z), then

S(h) = −2(η(η + 1)℘(z) +B).

Combining the above discussions, we conclude:

If η = ρ/8π then any developing map f(z) of a solution u(z) to (0.1.3) can
be expressed as a ratio of two C-linearly independent solutions of the Lamé
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equation (0.1.2) for some B ∈ C.9

We say that the Lamé equation Lη,B w = 0 on C/Λ corresponds to a solu-
tion u of (0.1.3) on C/Λ with ρ = 8πη ∈ 4πN if there exist two linearly
independent meromorphic solutions w1, w2 of Lη,B w = 0 on C such that
w1/w2 is a developing map of u. This is a property of the parameter B of
the Lamé equation.

0.2.5. We make a simple observation about a normalized developing map
of a solution to (0.1.3) with ρ/4π ∈ N.

If f(z) is normalized of type II, then eλf(z) also satisfies the type II condition
for all λ ∈ R. Thus (0.2.1) gives rise to a scaling family of solutions uλ(z),
where

(0.2.6) uλ(z) = log
8e2λ|f ′(z)|2

(1 + e2λ|f(z)|2)2 .

Consequently if (0.1.3) has a type II solution, then the same equation has
infinitely many solutions.

From (0.2.6), it is easy to see that uλ(z) blows up as λ → ±∞. As we have
discussed earlier, if ρ = 4πl with l = 2n + 1 an odd positive integer, then
solutions of (0.1.3) have a priori bound in C2

loc(E� {0}). Thus we conclude
that when ρ = 4πl with l a positive odd integer, (0.1.3) has a solution
because the topological degree is positive. Moreover such a solution must be
of type I by the existence of uniform a priori bound on compact subsets of
E � {0}.

Our first main theorem in this paper says that the converse to the state-
ment in the previous paragraph also holds. At the same time we provide a
self-contained proof of the above implication without using the uniform a
priori bound:

Theorem 0.3 (c.f. Proposition 1.5.1 and Theorem 2.2). Let ρ = 4πl with
l ∈ N. Then equation (0.1.3) admits a type I solution if and only if l is odd.

We will “classify” type I solutions for an odd positive integer l = 2n+1
in the next theorem 0.4. Let f(z) be a developing map of a solution of
(0.1.3) satisfying the normalized transformation formula of type I in (0.2.2).
Consider the logarithmic derivative g = (log f)′ = f ′/f , which is an elliptic
function on the double cover

E′ := C/Λ′ → E,

9The “constant” B ∈ C depends on both the (isomorphism class of the) flat
torus E and the solution u(z) of (0.1.3).
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of E, where

Λ′ := Zω′
1 + Zω′

2, ω′
1 := ω1 and ω′

2 := 2ω2.

Our next goal is to find all possible type I developing maps f for some
solution u of the Liouville equation (0.1.3) whose parameter ρ is an odd
integral multiple of 4π. To do so, we have to locate the position of poles of
g, or equivalently the position of zeros and poles of f .

Theorem 0.4 (Type I evenness and algebraic integrability). Let u be a
solution to (0.1.3) with ρ = 4π(2n+1), n ∈ Z≥0. Let f be a normalized type
I developing map of u, Λ′ = Zω1 + Z2ω2 = Zω′

1 + Zω′
2, and ei := ℘(12ω

′
i; Λ

′)
for i = 1, 2.

(1) The solution u(z) is even and the developing map f(z) of u(z) is also
even; i.e. u(−z) = u(z) for all z ∈ E and f(z) = f(−z) for all z ∈ C.

(2) There exist p1, · · · , pn ∈ C satisfying the following properties.

– 2pi �∈ Λ′ for i = 1, . . . , n,

– pi ± pj �∈ Λ′ for all i �= j, 1 ≤ i, j ≤ n,

– f has simple zeros at 1
2ω1 and ±pi for i = 1, . . . , n,

– f has simple poles at 1
2ω1 + ω2 and ±pi + ω2 for i = 1, . . . , n.

– Every zero or pole of f is congruent modulo Λ′ to one of the zeros
or poles listed above.

Note that the unordered set {pi modΛ′} ⊂ E′ is uniquely determined
by the normalized developing map f .

(3) Let qi := pi + ω2, i = 1, . . . , n for i = 1, . . . , n and let

zi := ℘(pi; Λ
′)− e2, z̃i = ℘(qi; Λ

′)− e2.

There exist constants μ and C1, . . . , Cn which depend only on the mod-
ular constants e1, e3, g2(Λ

′) and g3(Λ
′) such that the following poly-

nomial equations hold.

(0.4.1)

n∑
i=1

zji −
n∑

i=1

z̃ji = Cj and zj z̃j = μ ∀j = 1, . . . , n.

(4) Conversely let μ,C1, . . . , Cn be the constants in (3), and suppose that
the 2n-tuple (z1, . . . , zn; z̃1, . . . , z̃n) ∈ C2n is a solution of the system of
polynomial equations (0.4.1). There is an even type I developing map
f and p1, . . . , pn ∈ C with the following properties:
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– f has simple zeros at 1
2ω1 and ±pi for i = 1, . . . , n.

– f has simple poles at 1
2ω1 + ω2 and ±pi + ω2 for i = 1, . . . , n.

– zi = ℘(pi; Λ
′)− e2 and z̃i = ℘(pi + ω2; Λ

′)− e2 for i = 1, . . . , n.

We will prove Theorem 0.4 in §2. In view of this result, it is interesting
to know how many solutions the system (0.4.1) has. Since the topological
degree for (0.1.3) with ρ = 4π(2n+1) is known to be n+1 (by Theorem C), it
is reasonable to conjecture that (0.1.3) has n+1 solutions, and then (0.4.1)
has (n + 1)! solutions due to the permutation symmetry on {1, 2, . . . , n}
(c.f. [44, Conjecture 6.1] where a related version of this counting conjecture
was first formulated). This conjecture had been verified previously up to
n ≤ 5; see Remark 2.7. However for higher n it seems to be a non-trivial
task to work on the affine polynomial system (0.4.1) directly.

We will affirm this conjecture using the connection between the Liouville
equation (0.1.3) and the Lamé equation (0.1.2) discussed earlier.

Theorem 0.4.1. For any n ∈ N, the projective monodromy group of a
Lamé equation Ln+(1/2), B w = 0 on E is isomorphic to the Klein-four group
(Z/2Z)2 if and only if it corresponds to a type I solution of (0.1.3), in
the sense that there exist two meromorphic functions w1, w2 on C such that
Ln+(1/2), B w1 = 0 = Ln+(1/2), B w2 and the quotient w1/w2 is a developing
map of a solution of a Liouville equation (0.1.3) with ρ = 4π(2n+1) and the
monodromy group for w1/w2 is isomorphic to (Z/2Z)2. Moreover, each pa-
rameter B with the above property corresponds to exactly one type I solution
of (0.1.3).

Theorem 0.4.1 will be proved in § 3, Theorem 3.5. Its proof shows that the
number of solutions to (0.1.3) with ρ = 4π(2n+1) is equal to the number of
B’s in C such that all solutions to Ln+(1/2), B w = 0 are without logarithmic
singularity. A classical theorem of Brioschi, Halphen and Crawford says that
there exists a polynomial pn(B) of degree n+1 in B whose roots are exactly
the parameter values having the above property. Hence we have the following
corollary which sharpens Theorem C:

Corollary 0.4.2. Let ρ = 4π(2n+1), n ∈ Z≥0. There exists a finite set Sn

of tori such that for every torus not isomorphic to anyone in the exceptional
set Sn the Liouville equation (0.1.3) possesses exactly n+1 distinct solutions.

0.4.3. In §3 we will also give a new proof of the Brioschi–Halphen–
Crawford theorem by exploring the fact that the ratio f = w1/w2 of two
linearly independent solutions of the Lamé equation Ln+(1/2),B w = 0 sat-

isfies the equation (0.2.5) for the Schwarzian derivative with η = n+ 1
2 ; see
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Theorem 3.2. The new proof has several advantages. It provides a conve-
nient way to compute the polynomial pn(B) for each n. Moreover it is local
in nature. Thus it can be used to treat the mean field equation with multiple
singular sources of the form

(0.4.2) �u+ eu = 4π

l∑
j=1

αj δQj
on E,

where Q1, . . . , Ql are distinct points in E and α1, . . . , αl are positive integers.
In a forthcoming paper [11] we will prove that for generic Q1, . . . , Qn ∈ E,
equation (0.4.2) has exactly

1
2

∏l

j=1
(αj + 1)

distinct solutions provided that
∑l

j=1 αj is an odd positive integer.

An immediate consequence of Corollary 0.4.2 is a solution of the counting
conjecture stated in the paragraph after 0.4:

There exists a finite set Sn of tori such that for every torus not isomorphic
to anyone in the exceptional set Sn the polynomial system (0.4.1) has (n+1)!
solutions.

This might be helpful when we come to study the excess intersection at ∞
for the projectivized version of the system of equations (0.4.1) for general n.

0.4.4. Another consequence of Theorem 0.4 is the holomorphic depen-
dency of f(z; τ) on the moduli variable τ = ω2/ω1 in the upper half
plane H for normalized developing maps f(z; τ) of solution to (0.1.3) with
ρ = 4π(2n + 1) as in (0.4); we have not been able to prove this statement
directly from Liouville’s equation (0.1.3). The modular dependency of the
constants μ, Cj ’s in Theorem 0.4 indicates that the normalized developing
map might be invariant under modular transformations of τ for some con-
gruence subgroup of SL2(Z). To illustrate this connection between (0.1.3)
and modular forms, we will consider in §4 the simplest case ρ = 4π, where
(0.1.3) has exactly one solution for any torus. In this situation we can specify
a unique developing map f(z; τ) on Eτ = C/Λτ , where Λτ = Z + Zτ and
τ ∈ H; see Proposition 4.2 for the definition of this function f(z; τ) and
explicit formulas for it. When f(z; τ) is written as a power series

f(z; τ) = a0(τ) + a2(τ)z
2 + a4(τ)z

4 + · · · ,
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for each k the coefficient ak(τ) of zk is a modular form of weight k for
the principal congruence subgroup Γ(4) which is holomorphic on the upper-
half plane H but may have poles at the cusps of the modular curve X(4);
see Corollary 4.5. In addition we will show that the constant term a0(τ) of
f(z; τ) is a Q(

√
−1)-rational Hauptmodul which is also a modular unit ; i.e.

(a) a0(τ) is holomorphic and everywhere non-zero on H, (b) a0(τ) defines
a meromorphic function on X(4) with Q(

√
−1)-rational q-expansion at all

cusps of X(4), and (c) every meromorphic function on X(4) is a rational
function of a0(τ). See Corollary 4.4 and Remark 4.4.1 (b).

Underlying the above statements is the fact that the function f(z; τ)
satisfies a transformation law for the full modular group SL2(Z); see Propo-
sition 4.3 for the precise statement. Modulo a question 4.6.6 (a) on the ir-
reducibility of certain branched covering of the upper-half plane H, this
transformation law generalizes to the case when ρ = 4π(2n + 1) for any
natural number n ∈ Z≥0; see Corollary 4.6.5.

In a forthcoming paper we will consider equation (0.4.2) with multiple
singular sources and show that for each k the space of modular forms of
weight k arising from (0.4.2) is invariant under (suitably defined) Hecke
operators.

0.5. Next we want to classify solutions of the Liouville equation (0.1.3)
with ρ = 8πn for some positive integer n. By Theorem 0.3 any solution of
(0.1.3), if exists, must be of type II. Hence any solution of (0.1.3) begets
infinitely many solutions. We remark that not every torus admits a solution
to (0.1.3). For instance when ρ = 8π, there are no solutions to (0.1.3) for
rectangular tori, while there do exist solutions for τ close to eπi/3; see [43,
Example 2.5, 2.6]). Indeed [43, Theorem 1.1] asserts that in the case when
ρ = 8π, the Liouville equation (0.1.3) has a solution if and only the Green’s
function GE for the torus has a critical point which is not a 2-torsion. Hence
by Theorem A the Liouville equation (0.1.3) with ρ = 8π has a solution for if
and only if the Green function has five critical points. Let M1 = SL2(Z)\H
and let

Ω5 := { τ̄ ∈ M1 | G(z; τ̄) has five critical points }.

By the uniqueness theorem in [43, Theorem 4.1], we know that Ω5 is open;
while it is easy to see (using the holomorphic (Z/3Z)-action on the torus)
that the image of eπi/3 in M1 lies in Ω5. It is important to further investigate
the geometry of this moduli subset Ω5. In Part II of this series of papers, we
shall use methods for non-linear PDE’s to the Liouville equation (0.1.3) and
the theory of modular forms to prove that Ω5 is a simply connected domain
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and the boundary ∂Ω5 of Ω is real-analytically isomorphic to a circle, thereby
settling the conjecture on the shape of Ω5 raised in [43, §1 p. 915].10

0.5.1. In this paper (Part I of the series), we classify all type II solutions
for general n ∈ N and study their connection with the geometry of a family
of hyperelliptic curves. This will form the foundation of an investigation on
certain modular forms to be developed in Part II of this series [10].

We will also consider the logarithmic derivative g = f ′/f of a normalized
type II developing map f . The type II condition (0.2.3) implies that g is an
elliptic function on E = EΛ.

0.5.2. As was explained in 0.2.4, the Liouville equation (0.1.3) is related
to the Lamé equation (0.1.2) whose parameter η is equal to ρ/8π. In the
case when η is a positive integer n, there are explicit formulas for solutions,
of the Lamé equation (0.1.2), called the Hermite–Halphen ansatz ; c.f. [29,
I–VII] and [27, pp. 495–498]:

For any a1, . . . , an ∈ C � Λ such that the images [ai] ∈ E of ai under the
projection C → E = C/Λ, i = 1, . . . , n, represent n mutually distinct points
in E � {[0]}, the function

(0.5.1) wa(z) = ez·
∑n

i=1 ζ(ai;Λ)
n∏

i=1

σ(z − ai; Λ)

σ(z; Λ)

is a solution to (0.1.2) for some B ∈ C if and only if {[ai]} ∈ Yn ⊂ Symn(E�

{0}), where
(0.5.2)

Yn :=

⎧⎨
⎩{[a1], . . . , [an]}

∣∣∣∣∣∣
[ai] ∈ E�{0} ∀i, [ai] �= [aj ] for all i �= j,∑

1≤j≤n, j �=i (ζ(ai−aj) + ζ(aj)− ζ(ai)) = 0

for i = 1, . . . , n.

⎫⎬
⎭ .

Moreover if {[ai]}ni=1 is a point of Yn and wa(z) is a solution of a Lamé
equation (0.1.2) with η = n, then B = (2n− 1)

∑n
i=1 ℘(ai).

Note that wb(z) ∈ C× · wa(z) if b = (b1, . . . , bn) and bi ≡ ai (mod Λ)
i = 1, . . . , n.

0.5.3. The following properties are known from classical literature.

(i) Each ansatz solution wa(z) of Ln,B w = 0 satisfies

wa(z + ω) = e
∑n

i=1 ζ(ai;Λ)ω−
∑n

i=1 aiη(ω;Λ) · wa(z) ∀ω ∈ Λ.

In other words wa(z) is a common eigenvector for the global mon-
odromy representation of Λ = π1(E) on the 2-dimensional space of
local solutions of the Lamé equation Ln,B w = 0.

10This phenomenon was observed in computer simulations.
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(ii) Every one-dimensional eigenspace of the monodromy representation of
a Lamé equation Ln,B w = 0 is of the form C · wa(z) for some a such
that B = (2n − 1)

∑n
i=1 ℘(ai). In other words the map π : Yn → C

given by {[ai]}ni=1 → (2n − 1)
∑n

i=1 ℘(ai) is surjective. Note that
π ◦ ι = π for the involution ι : {[ai]}ni=1 → {[−ai]}ni=1 on Yn.

(iii) For every B ∈ C, the set π−1(B) is an orbit of the involution ι, and
π−1(B) is a singleton if and only if Ln,B w = 0 has a Lamé function
as a solution.

The above properties tell us that Yn can be regarded as the parameter space
of all one-dimensional eigenspaces of the monodromy representations on the
solutions of the Lamé equation Ln,B w = 0 on E when the parameter B
varies over C. This and the fact that π : Yn → C is a double cover drives
home the compelling picture that Yn can be regarded as a “spectral curve”
for the global monodromy representation.11 The algebraic structure on Yn
is explained in 0.5.4 below.

0.5.4. The analytic set of solutions of the system of equations

(0.5.3)
∑

1≤j≤n, j �=i

(ζ(ai − aj ; Λ) + ζ(aj ; Λ)− ζ(ai; Λ)) = 0 ∀i = 1, . . . , n

in variables (a1, . . . , an) under the constraint that

ai �∈ Λ ∀i = 1, . . . , n and ai − aj �∈ Λ ∀i �= j

descends to a locally closed algebraic subvariety of

Symn(E � {0}) = (E � {0})n/Sn

because Yn is stable under the symmetric group Sn, and the classical addition
formula (c.f. [67, 20·53 Example 2])

1

2

℘′(z) + ℘′(w)

℘(z)− ℘(w)
= ζ(z − w)− ζ(z) + ζ(w)

for elliptic functions allows us to express the definition of Yn algebraically:
Let Δ̃ be the divisor of En consisting of all points of En where at least two

11This is more than an analogy: Yn is indeed a spectral curve in KdV theory.
It parametrizes one-dimensional common eigenspaces for the commutator subring

of the differential operator d2

dz2 − n(n + 1)℘(z) in the ring of linear differential
operators in one variable.
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components are equal, and let Δ be the image of Δ̃ in SymnE. Denote by
Ũ the algebraic variety (E � {[0]})n �Δ.

Yn is the closed subvariety of Symn(E� {[0]})�Δ whose inverse image Ỹn in
the affine algebraic variety Ũ is defined by the system of equations

(0.5.4)
∑

1≤j≤n, j �=i

yi + yj
xi − xj

= 0, ∀i = 1, . . . , n.

Here xi, yi are the pull-back via the i-th projection of coordinates of the
Weierstrass form y2 = 4x3−g2(Λ)x−g3(Λ) of E = C/Λ. For each pair (i, j)
with i �= j, the regular function yi+yj

xi−xj
on the affine open subset Ũ(xi−xj) of

Ũ where xi �= xj extends to a regular function on Ũ , therefore the above
description defines an affine closed subvariety Ỹn of Ũ .

In view of the algebraic structure of Yn, the classically known facts re-
called in 0.5.3 means that Yn is “the affine part” of a hyperelliptic curve
and the π : Yn → C is the restriction to Yn of the hyperelliptic projection.
On the other hand, solutions to the Liouville equation (0.1.3) with ρ = 8πn
admit the following description.

Theorem 0.6 (Type II evenness and Green/algebraic system). Let u be a
solution to (0.1.3) with ρ = 8πn on E = C/Λ and let f be a normalized
developing map of u of type II.

(1) The developing map f is non-zero at points of Λ.
(2) There are 2n elements p1, . . . , pn, q1, . . . , qn ∈ C with the following

properties.

– [p1], . . . , [pn], [q1], . . . , [qn] are 2n distinct points in E, where [pi] :=
pimodΛ for all i and similarly for the [qi]’s.

– f has simple zeros at points above [p1], . . . , [pn] and simple poles
at points above [q1], . . . , [qn].

– f is holomorphic and non-zero at every point of C which is not
congruent modulo Λ to one of {p1, . . . , pn, q1, . . . , qn}.

(3) The zeros and poles of the developing map f are related by

{[q1], . . . , [qn]} = {[−p1], . . . , [−pn]}.

(4) There is a unique even solution in the one-parameter scaling family of

solutions uλ(z) = log 8 e2λ |f ′(z)|2
(1+e2λ|f(z)|2)2 of (0.1.3) with parameter λ ∈ R.

(5) The “zero points” p1, . . . , pn ∈ E of f satisfy the following n equations:

(0.6.1)

n∑
i=1

℘′(pi; Λ) · ℘r(pi; Λ) = 0, r = 0, . . . , n− 2,
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(0.6.2)

n∑
i=1

∂G

∂z
(pi) = 0,

where G(z) is the Green’s function of E.
(6) The meromorphic function g := d

dz log f = f ′/f on E is even and
is determined by the points [p1], . . . , [pn] ∈ E, while the normalized
developing map f is determined up to C× by [p1], . . . , [pn], via the
following formulas:
(0.6.3)

g(z) =

n∑
i=1

℘′(pi; Λ)

℘(z; Λ)− ℘(pi; Λ)
, f(z) = f(0) · exp

∫ z

0
g(ξ) dξ.

Conversely, if {[p1], . . . , [pn]} is a set of n distinct points of E � {0} which
satisfies equations (0.6.1) and (0.6.2), and

(0.6.4) {[p1], . . . , [pn]} ∩ {[−p1], . . . , [−pn]} = ∅,

then the function f defined by (0.6.3) is a type II normalized developing map
of a solution of the Liouville equation (0.1.3) with ρ = 8πn.

Theorem 0.6 will be proved in §5. While the type I system is purely
algebraic, the type II system is somewhat transcendental as it involves the
Green function of E. It is natural to isolate the Green equation

∑
∇G(pi) =

0 and consider the remaining n− 1 algebraic equations (0.6.1) first.

0.6.1. Let a = {a1, . . . , an} be an unordered set of complex numbers with
distinct images in E � {0} = (C � Λ)/Λ such that the equation (0.6.1) is
satisfied with pi = ai for i = 1, . . . , n. Let x = ℘(z; Λ), y = ℘′(z; Λ), so that
the torus E is given by the Weierstrass equation

y2 = 4x3 − g2(Λ)x− g3(Λ).

Let (xi, yi) = (℘(ai; Λ), ℘
′(ai; Λ)) for i = 1, . . . , n. Then the system of n− 1

equations (0.6.1) takes the algebraic form

(0.6.5)

n∑
i=1

xri · yi = 0, i = 0, 1, . . . , n− 2.

Recalled that the algebraic variety Yn is defined by the system of equations
(0.5.4).
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Theorem 0.6.2 (= Theorem 5.8.3). For any set of distinct complex num-
bers x1, . . . , xn, the two systems of linear equations in variables y1, . . . , yn
(0.6.5) and (0.5.4) are equivalent.

Define Xn ⊂ SymnE by

(0.6.6) Xn =

{
{(xi, yi)}ni=1

∣∣∣∣ (xi, yi) ∈ E � E[2] ∀i, xi �= xj ∀i �= j∑n
i=1 x

r
i · yi = 0 for r = 0, 1, . . . , n− 2

}
,

where E[2] = 1
2Λ/Λ is the subset of 2-torsion points of E. This variety Xn

is an affine algebraic curve, which will be called the (n-th) Liouville curve.
Theorem 0.6.2 implies that

Xn =
{
{[ai]}ni=1 ∈ Yn

∣∣℘(ai) �= ℘(aj) whenever i �= j, ℘′(ai) �= 0 ∀i
}
.

The following theorem says that the Liouville curve Xn is the unramified
locus of the Lamé curve X̄n for the hyperelliptic projection.

Theorem 0.7 (Hyperelliptic structure on Xn ⊂ Yn ⊂ X̄n).

(1) Let a = {[ai]}ni=1 be a point of Yn. The corresponding B in the Lamé
equation, in the sense of the Hermite–Halphen ansatz recalled in 0.5.1,
is given by

Ba = (2n− 1)

n∑
i=1

℘(ai).

(2) The map π : Yn → C defined by a → Ba is a proper surjective branched
double cover.

(3) The map π : Yn → C has a natural extension to a proper morphism

π̄ : X̄n → P1(C) = C ∪ {∞},

where X̄n is the closure of Xn in SymnE, for both the Zariski and the
complex topologies.

(4) The restriction

π|Xn
: Xn → π(Xn) =: Un

of π to the Zariski open subset Xn ⊂ Yn is a finite étale double cover
of the Zariski open subset Un ⊂ C. Points of the finite set X̄n � Xn

are precisely the ramification points of π̄.
(5) The curve X̄n is a (possibly singular) hyperelliptic curve of arithmetic

genus n and π̄ is the hyperelliptic structural morphism. Moreover X̄n =
Yn∪{[0]n} is the union of Yn with a single point [0]n := {[0], . . . , [0]} ∈
SymnE.
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(6) The curve X̄n is stable under the involution ι̃ of SymnE, defined by

ι : {P1, . . . , Pn} → {−P1, . . . ,−Pn} ∀P1, . . . , Pn ∈ E.

The restriction ῑ of ι̃ to X̄n is the hyperelliptic involution on X̄n. The

set of ramification points X̄n�Xn of π̄ coincides with the fixed point

set of the hyperelliptic involution ῑ on X̄n.

(7) The map π induces a bijection from the finite set Yn�Xn to the finite set

C�Un. A point {[ai]}ni=1 of Yn lies in Yn�Xn if and only if the function

wa as defined in 0.5.1 is a Lamé function. Hence #(Yn�Xn) = 2n+1

when Yn�Xn is counted with multiplicities inherited from C�Un when

C�Un is identified with the set of roots of the polynomial �n(B) = 0

of degree 2n+ 1 in Theorem B.

(8) The inverse image of the point ∞ = P1(C)�C under π̄ consists of the

single point 0n. This point 0n “at infinity” is a smooth point of X̄n for

every torus E.

0.7.1. A complete proof of Theorem 0.7 is given in §7, after some prepa-

ration in §6 on characterizations of Yn andXn related to the Lamé equations;

see Theorems 7.3, 7.4, Corollary 7.5.2 and Proposition 7.7. In particular, the

affine hyperelliptic curve Yn is defined by the explicit equation

C2 = �n(B; g2, g3) with deg �n(B) = 2n+ 1.

This curve, called the n-th Lamé curve, is smooth for generic tori. It is an

irreducible algebraic curve since the degree of �n is odd.

Due to its fundamental importance, we offer several proofs, from both

the analytic and the algebraic perspectives, for (part of) the theorem. We

must mention that the polynomial �n(B) in Theorem B has been treated

in the literature in several different contexts, including the investigation

of Lamé equations with algebraic solutions [4, 20] and the mathematical

physics related to Lamé equations. Thus a substantial portion of Theorem

0.7 overlaps with existing literature. However there are a number of issues for

which we were unable to locate satisfactory treatments in the literature. For

instance, why the closure X̄n of Yn in SymnE coincides with the projective

hyperelliptic model12 of the affine curve C2 = �n(B) at the infinity point,

instead of the closure in P2 of the latter curve.

12See 7.6.1.e for the definition of the projective hyperelliptic model defined by
�n(B).
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In this paper we attempt to provide a self-contained account of the hy-
perelliptic structure of X̄n, from both the analytic and the algebraic point of
view, for the convenience of the readers. The readers will find in our treat-
ment the precise behavior of the local structure near every a ∈ X̄n�Xn,
including the infinity point, and also “the meaning” of the coordinate C of
the Lamé curve in various contexts (c.f. Theorem 7.4 and Remark 7.4.2, as
well as formulas (5.6.4), (7.1.2), (7.1.4) and (7.4.1)). It is also worth mention-
ing that the coefficients of the polynomial �n(B) are effectively computable
by simple recursive relations (c.f. Theorem 7.4 and (7.3.6)).

0.7.2. Theorem 0.6 tells us that algebraic geometric structure

π̄n : (X̄n, Yn, Xn) → (P1(C),C, Un)

provides a scaffold for analyzing the mean field equation �u+eu = 8πnδ0 on
a flat torus: a necessary and sufficient condition for a point to be attached to
a type II solution of the mean field equation (0.1.3) with parameter ρ = 8πn
is that {p1, . . . , pn} satisfies the Green equation (0.6.2). Of course one wish
to pursue the above thread to bring about a complete analysis of the set of
all solutions of (0.1.3). The case n = 1, where X̄1 = E, has been successfully
treated in [43] with a combination of two techniques. Naturally one would
like to extend these methods to higher values of n.

0.7.3. The first technique is to use the double cover E → P1(C) ∼= S2

and the evenness of u to transform the equation to another one on S2 (with
more singular sources). To extend this step to a general positive integer n,
we believe that the hyperelliptic structure π̄ : X̄n → P1(C) is the right
replacement of E.

It will be shown in Part II of this series of articles that the map

σ : X̄n → E, {p1, . . . , pn} → σ({p1, . . . , pn}) =
∑

pi

is a branched covering of degree 1
2n(n+ 1), and the rational function

z([a]) := ζ(
∑

ai)−
∑

ζ(ai) [a] = {[a1], . . . , [an]} ∈ X̄n

on X̄n is a primitive generator of the extension field K(X̄n) over K(E).
Using this, a “pre-modular form” Zn(σ; τ) for τ ∈ H and σ ∈ Eτ will be
constructed, which has the property that non-trivial solutions to the Green
equation (0.6.2) on X̄n correspond exactly to the zeros of the single function
Zn(σ; τ).
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0.7.4. The second technique employed for the case ρ = 8π is to use the
method of continuity to connect the equation for ρ = 8π to the known case
when ρ = 4π by establishing the non-degeneracy of the linearized equations
of (0.1.3). For general ρ, such a non-degeneracy statement is out of reach at
this moment. However, since equation (0.1.3) has a solutions uη for every
ρ = 8πη �∈ 8πN, it is natural to study the limiting behavior of uη as η → n.
If the limit does not blow up, it will converge to a solution u for ρ = 8πn.
For the blow-up case, we will establish a connection between the location of
the blow-up set and the hyperelliptic geometry of Yn → P1(C):

Theorem 0.7.5. Let S = {p1, . . . , pn} be an element of SymnE such that
pi �= pj whenever i �= j. Suppose that S is the blow-up set of a sequence of
solutions uk of the Louiville equation (0.1.3) with parameter ρk such that
ρk → 8πn as k → ∞. Then S ∈ Yn. Moreover,

(1) If ρk �= 8πn for every k then S is a branch (or ramification) point of
Yn.

(2) If ρk = 8πn for all k then S is not a branch point of Yn.

The proof of Theorem 0.7.5 will be given in §8. Theorems 0.7.5 and
0.7 provide rather precise information on the blow-up set of sequences of
solutions of (0.1.3), which we believe will play a fundamental role in future
research on the mean field equations.

It is a pleasure to thank the referee for detailed comments on the lit-
erature on integrable systems and for suggestions on directions for future
research. C.-L. C. would like to thank Frans Oort for discussions on equa-
tion (0.6.5) during lunch in November 2011. He would also like to thank
the Institute of Mathematics of Academia Sinica for support during the
academic year 2012–2013, and also the Taida Institute for Mathematical
Sciences (TIMS) and the Department of Mathematics of National Taiwan
University for hospitality.

1. Liouville equations with singular source

1.1. A theorem of Liouville.

1.1.1. We begin with a quick review of a classical theorem of Liouville.

Proposition 1.1.2. Every R-valued C2 solution u of the differential equa-
tion

(1.1.1) �u+ eu = 0
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in a simply connected domain D ⊂ C can be expressed in the form

(1.1.2) u = log
8|f ′|2

(1 + |f |2)2

where f is a holomorphic function on D whose derivative f ′ does not vanish
on D. Conversely for every meromorphic function f on an open subset V ⊂
C with at most simple poles whose derivative does not vanish on V , the

function log 8|f ′|2
(1+|f |2)2 is a smooth function which satisfies equation (1.1.2).

A proof of Liouville’s theorem 1.1.2 is given in 1.1.8 for the convenience
of the readers.

Definition 1.1.3. Let u be a real-valued C2-function on a domain D ⊂ C

and satisfies equation (1.1.1) on D.
A developing map f of u is a meromorphic function f defined on a (not

necessarily connected) covering space π : D̃ → D of D such that

(1.1.3) u(z) = log
8|f ′(z̃)|2

(1 + |f(z̃)|2)2 for every z̃ ∈ D̃ and z = π(z̃).

For any pole z̃0 ∈ D̃ of f , the equality (1.1.3) for z = z0 means that the
right hand side of (1.1.3) has a finite limit as z → z̃0, and this limit is equal
to u(π(z̃0)).

Remark 1.1.4. (a) It is easy to see that every developing map f : D̃ →
P1(C) of a C2 solution u of (1.1.1) on D has no critical point on D̃. In other
words the holomorphic map f : D̃ → P1(C) is étale. More explicitly this
means that the derivative f ′ of the meromorphic function f does not vanish
at every point where f is holomorphic, and f has at most simple poles.

(b) The proof of Liouville’s theorem 1.1.2 in 1.1.8 provides another inter-
pretation of developing maps: a developing map f for a solution u of (1.1.1)
is an orientation-preserving local isometry, from a covering space of D with
the Riemannian metric 1

2 e
u (dx2 + dy2), to P1(C) with the Fubini–Study

metric (or equivalently the unit sphere S2 with the standard metric) which
has constant Gaussian curvature 1.

Developing maps are not unique. In Lemma 1.1.5 below we show that dif-
ferent developing maps of a solution u are related by special unitary Möbius
transformations.

Lemma 1.1.5. Let u be a C2 solution of equation (1.1.1) on a domain
D ⊂ C. Let f be a developing map for u on a covering space D̃ of D as in
as in Definition 1.1.3.
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(1) The solution u of (1.1.1) and its developing map f are related by13

(1.1.4) uzz −
1

2
u2z =

f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

.

(2) Let U be an element of PSU(2) represented by a 2× 2 special unitary

matrix ( a b
c d ) with a, b, c, d ∈ C. The function Uf := af+b

cf+d is also a

developing map of u on D̃.

(3) Assume that the covering space D̃ of D is connected. Suppose that f̃

is another developing of u on D̃. There exists an element T ∈ PSU(2)

such that f̃ = Tf .

Proof. The statements (1) and (2) are easily verified by direct calculations.

It remains to prove (3). Notice first that the Schwarzian derivatives of f

and f̃ are equal by (1). Hence there exists a Möbious transformation T , say

represented by an element ( a b
c d ) ∈ SL2(C), such that f̃ = Tf = af+b

cf+d .
14

From

log
8|f ′|2

(1 + |f |2)2 = log
8|(Tf)′|2

(1 + |Tf |2)2 , (Tf)′ =
f ′

(cf + d)2
,

we deduce that |af + b|2 + |cf + d|2 = 1 + |f |2 on D̃. Hence the quality

|az + b|2 + |cz + d|2 = 1 + |z|2

holds on C because meromorphic maps are open. Applying ∂∂̄ log to both

sides of the last displayed equality, we see that the Möbius transformation

T preserves the Fubini–Study metric on P1(C), or equivalently the spherical

metric on the 2-sphere S2. So T is an element of PSU(2), because PSU(2)

is the group of all orientation preserving isometries of P1(C).

13The right hand side of equation (1.1.4) is the Schwarzian derivative S(f) of

f ; the equality here means that the Schwarzian derivative of f descends to the

function uzz − 1
2u

2
z on D.

14Here we have used the assumption that D̃ is connected and a basic property of

Schwarzian derivatives: if S(g1) = S(g2) for two locally non-constant meromorphic

functions g1 and g2, then g1 and g2 differ by a Möbius transformation. This is

consequence of the special case that S(g) = 0 if and only if g is a linear fractional

transformation and the cocycle property of Schwarzian derivatives: S(g ◦ h)(z) =

S(g)(h(z)) · h′(z)2 + S(h)(z).
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Remark 1.1.6. In the notation of Lemma 1.1.5, let V be an element of
SU(2) such that V UV −1 = ( e

iθ 0
0 e−iθ ) for some θ ∈ R. Then the two devel-

oping maps V f̃ and V f of u are related by

V f̃ = e2iθV f.

1.1.7. Lemmas 1.1.5 can be reformulated as follows. See also 1.1.8.

Let u be a C2 solution of equation (1.1.1) on a domain D ⊂ C. There
exists a (not necessarily connected) covering space πu : Du,univ → D, a left
action of PSU(2) on Du, and a meromorphic function fu,univ : Du,univ →
P1(C) on Du,univ satisfying the following properties.

(a) π : Du,univ → D is a left principle homogeneous space for PSU(2).
(b) fu,univ is a developing map for u.
(c) For any open subset U ⊂ D and any developing map f for u|U on a

covering space π : Ũ → U of U , there exists a unique holomorphic map
g : Ũ → Du,univ such that f(z̃) = fu,univ(g(z̃)) for all z̃ ∈ Ũ .

1.1.8. A proof of Proposition 1.1.2. From the perspective of differ-
ential geometry, equation (1.1.1) is simply the prescribed Gaussian curvature
equation for the metric

g =
1

2
eu (dx2 + dy2)

on the domain D to have Gaussian curvature Kg = 1. Given that u is a
solution of the equation (1.1.1), a simple calculation shows that

(1.1.5) Kg = −e−u�u = 1.

So at any given point z1 ∈ D, there exists a meromorphic function f1(z)

on a neighborhood of V (z1) of z1 such that u(z) = log 8|f ′
1(z)|2

(1+|f1(z)|2)2 for all

z ∈ V (z1), because the Fubini–Study metric on C = P1(C)� {∞} is

4 dz dz̄

(1 + zz̄)2
.

The collection of germs of all such local developing maps f1 form a locally
constant sheaf Dev(u) over D with monodromy group PSU(2) according to
Lemma 1.1.5. Note that Dev(u) is the locally constant sheaf attached to
the covering space Du,univ in 1.1.7. The locally constant sheaf Dev(u) has
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a global section g because the domain D is simply connected. This global
section g is a developing map of u on D. The holomorphic map g̃ from D to
P1(C) defined by the meromorphic function g is étale as we have remarked in
1.1.4 (b), hence the image g̃ misses some point Q of P1(C). Pick an element
U ∈ PSU(2) which sends Q to ∞. Then f := Ug is a holomorphic function
on U which is also a developing map of u.

1.2. Liouville theory on tori with isolated singular data. It is a
challenge to extend the Liouville theory recalled in the previous section to
oriented Riemann surfaces and with singular sources. In this paper we will
consider the genus one case, so the Riemann surface will be a flat torus
E. Moreover we put just one singular source on E, and we will make this
singular source the additive unity 0 for a holomorphic group law on E.

1.2.1. We choose and fix a non-zero global holomorphic one-form β on
E, so that integrating β along paths starting from 0 gives an isomorphism∫
? β : E

∼−→ C/Λ for a lattice Λ ⊂ C, so that β is the pull-back of the
one-form dz = dx +

√
−1dy descended to C/Λ. The flat torus E will be

identified with C/Λ in the rest of this paper. Let ω1, ω2 be a Z-basis of Λ
such that τ := ω2/ω1 satisfies Im(τ) > 0. Let ω3 := −ω1 − ω2, so that
ω1 + ω2 + ω3 = 0.

We will consider the mean field equation

(1.2.1) �u+ eu = ρ · δ0, ρ ∈ R>0

on E = C/Λ, where � = ∂2

∂x2 +
∂2

∂y2 , δ0 is the Dirac measure at 0 and we have

identified L1-functions with (signed) measures using the Lebesgue measure
dx dy on C/Λ, so the equation (1.2.1) means that∫

E
(u · �h+ eu · h) dx dy = ρ · h(0)

for every smooth function h on E. The corresponding geometric problem is
the equation

Kg = −e−u�u = 1− ρe−uδ0

for the Gaussian curvature Kg of the metric g = 1
2e

u(dx2+dy2) on E, which
has a highly non-classical character.

We will be mostly interested in the case when the parameter ρ of the
equation (1.2.1) is an integer multiple of 4π. This integrality condition on
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ρ implies that every developing map of a solution of (1.2.1) is meromorphic
locally on E (and not just on E � {0}).
Lemma 1.2.2. Let u be a solution of (1.2.1) on E, where the parameter
ρ = 4πl for a positive integer l. Let f1 be a developing map of the restriction
to E�{0} of u, so that f1 is a holomorphic function on a universal covering
U of E � {0} whose derivative does not vanish on U . Then f1 extends to a
meromorphic function on a covering space of E in the following sense: There
exists a covering space γ : Ẽ → E of E such that the following statements
hold.

(a) The holomorphic function f1 on U descends to a function f2 on the
covering space γ−1(E � {0}) of E � {0}.

(b) The holomorphic function f2 on the open subset γ−1(E � {0}) of Ẽ
extends to a meromorphic function on Ẽ.

Equivalently, f2 defines a holomorphic map from Ẽ to P1(C).

Proof. This statement is local at 0 ∈ E. A proof can be found in [18, 44, 54],
based on the following inequality: For a punctured disk Δ×

ε with a small
radius ε we have

∞ >

∫
Δ×

ε

eu dA =

∫
Δ×

ε

8|f ′|2
(1 + |f |2)2 dA,

where the right hand side is the spherical area under the inverse stereo-
graphic projections covered by f(Δ×

ε ).
Alternatively, from the well-known formula

� log
√

x2 + y2 = 2π · δ(0,0)

on R2, one sees that every holomorphic map from a neighborhood V of 0 ∈ E
to P1(C) with multiplicity l+1 at 0 is a developing map of a solution of (1.2.1)
in V . Since any two local developing maps of any local solution of (1.2.1)
differ by an element of PSU(2), we conclude that every developing map of
every solution of (1.2.1) in a neighborhood of 0 ∈ E “is” a meromorphic
function in a neighborhood of 0 ∈ E.

Remark 1.2.3. As an immediate consequence of the fact that � log |z| =
2π · δ0, one sees that if a meromorphic function f on an open neighborhood

U of 0 ∈ C such that the locally L1 function u = log 8|f ′|2
(1+|f |2)2 satisfies

�u+eu = ρ ·δ0 on U for some real number ρ, then ρ = 4π · l, where l+1 ∈ N

is the multiplicity of f at 0. So the parameter ρ in the equation (1.2.1) must
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be in 4π ·Z≥0 if a developing map of a solution u is a meromorphic function
on C. Note also that the equation (1.2.1) has no solution when ρ = 0, for
otherwise the elliptic curve has a metric with constant Gaussian curvature
1, contradicting the Gauss–Bonnet theorem.

Lemma 1.2.4. Let u be a solution of the of equation (1.2.1) on E. Assume
that the parameter ρ is of the form ρ = 4πl where l is a positive integer.

(1) There exists a meromorphic function f on the universal covering C

of E which is a developing map of u. Let f̃ : C → P1(C) be the
holomorphic map corresponding to the meromorphic function f on C.

(2) For every T ∈ PSU(2), the meromorphic function Tf is also a devel-
oping map of u. Moreover every developing map of u is equal to Tf
for some element T ∈ PSU(2).

(3) Suppose that z0 is an element of the lattice Λ. The holomorphic map
f̃ : C → P1(C) has multiplicity l + 1 at z0. In other words either f is
holomorphic at z0 and f ′ has a zero of order l at z0, or f has a pole
of order l + 1 at z0.

(4) The holomorphic map f̃ : C → P1(C) has no critical point outside Λ.
In other words if z1 ∈ C � Λ, then either f is holomorphic at z1 and
f ′(z1) �= 0, or f has a simple pole at z1.

Proof. The statement (1) is a corollary of Lemma 1.2.2. The statement (2)
is a consequence of the interpretation of developing maps as local isometries
from the conformal metric 1

2 e
u dz dz̄ to the Fubini–Study metric 4 dz dz̄

(1+zz̄)2

and the fact that PSU(2) is the group of all orientation preserving isome-
tries of P2(C) with the Fubini–Study metric; c.f. 1.1.8. The statement (3)
is a consequence of the last paragraph of the proof of Lemma 1.2.2. The
statement (4) follows from 1.1.4 (a).

Remark 1.2.5. We discuss how to relate solutions of (1.2.1) on C/Λ and
C/(t·Λ) for t ∈ C×. Suppose that u(z; Λ) is a solution of the singular Liouville
equation (1.2.1) on C/Λ and f(z; Λ) is a developing map on C for u(z; Λ). It
is easy to check that u(w; tΛ) := u(t−1w; Λ)− log(tt̄) is a solution of (1.2.1)
on the elliptic curve C/tΛ whose universal covering is the complex plane
Cw with coordinate w = tz. Moreover f(t−1w; Λ) is a developing map for
the solution u(w; tΛ) on Cw.

Of course the above “gauge transformation rules” reflects the fact that
the three terms of equation (1.2.1) scale differently when the coordinate of
C changes from z to w = tz for a non-zero constant t: the equation (1.2.1)
is better written as

2
√
−1 ∂∂̄u+

√
−1
2 eu dz∧dz̄ = ρ · δ0,
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where the last term δ0 is the δ-measure at [0] ∈ C/Λ. The second term√
−1
2 eu dz∧dz̄ in the above equation depends on the choice of a global holo-

morphic 1-form on the elliptic curve, while the other two terms do not.

Lemma 1.2.6. Let f be a meromorphic function on the universal covering
C of E = C/Λ. This function f is a developing map of a solution u of
(1.2.1) with parameter ρ = 4πl ∈ 4πN if and only if the following conditions
hold.

(1) The holomorphic map f̃ : C → P1(C) corresponding to f has multi-
plicity l+1 at every point above Λ, and it has no critical point outside
Λ.

(2) For every ω ∈ Λ, there exists a unique element T ∈ PSU(2) such that

f(z + ω) = (Tf)(z) ∀z ∈ C.

Proof. The condition (1) means that the equality �u+ eu = 4π l ·
∑

ω∈Λ δω

holds for the function u := 8|f ′|
(1+|f |2)2 on C. The condition (2) means that u

descends to a function on C/Λ.

Definition 1.2.7. Let u be a solution u of the equation (1.2.1) on E, where
the parameter ρ ∈ 4π ·Z≥0. Let f be a meromorphic function on C which is
a developing map of u.

(1) The monodromy representation ρf of the fundamental group π1(E) ∼=
Λ of E attached to the developing map f is the group homomorphism
ρf : Λ → PSU(2) such that

f(z + ω) = (ρ(ω)f)(z) ∀ω ∈ Λ, ∀z ∈ C.

(2) The monodromy of the solution u of equation (1.2.1) is the PSU(2)-
conjugacy class of the homomorphism ρf : Λ → PSU(2), which de-
pends only on u and not on the choice of developing map f .

1.3. Monodromy constraints. Next we review the monodromy con-
straints on a developing map f of a solution of (1.2.1) on E, resulting from
the fact that the fundamental group Λ of E is a free abelian group of rank
two. By Lemma 1.2.6, there exist T1 = ρf (ω1), T2 = ρf (ω2) ∈ PSU(2) with
the following properties:

f(z + ω1) = T1f,

f(z + ω2) = T2f.
(1.3.1)
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In addition T1T2 = T2T1 in PSU(2) because Λ is commutative.

Lemma 1.3.1. Let Γ be a commutative subgroup of PSU(2).

(1) Suppose that Γ is isomorphic to the Klein-four group K4
∼= (Z/2Z)2.

(1a) Γ is conjugate to Γ0, where Γ0 is the image in PSU(2) of

{(
1 0
0 1

)
,

(√
−1 0
0 −

√
−1

)
,

(
0

√
−1√

−1 0

)
,

(
0 1
−1 0

)}

(1b) The centralizer subgroup of Γ in PSU(2) is equal to Γ.

(1c) The centralizer subgroup of Γ in PSL2(C) is also equal to Γ.

(1d) The normalizer subgroup NPSU(2)(Γ) is isomorphic to the sym-

metric group S4. In other words, NPSU(2)(Γ) is a semi-direct prod-

uct of Γ and PSU(2)(Γ)/Γ ∼= S3, and the conjugation action of

NPSU(2)(Γ) on Γ induces an isomorphism

NPSU(2)(Γ)/Γ
∼−→ Autgrp(Γ) ∼= Perm(Γ� {Id}) ∼= S3,

where Perm(Γ�{0}) is the permutations group of the set Γ�{Id}.
(1e) The subset {x ∈ PSL(2,C) | x · Γ · x−1 ⊂ PSU(2) } of PSL2(C)

is equal to PSU(2).

(2) If Γ is not isomorphic to (Z/2Z)2, then Γ is contained in a maximal

torus of PSU(2); i.e. there exists an element T0 ∈ PSU(2) such that

T0 ·Γ · T−1
0 is contained in the image in PSU(2) the diagonal maximal

torus {(
e
√
−1θ 0

0 e−
√
−1θ

)
: θ ∈ R/πZ

}
⊂ SU(2)

Proof. The spectral theorem tells us that every element of U(2) is conjugate

in U(2) to a diagonal matrix. Using this it is easy to verify the following

assertion, whose proof is omitted here.

Suppose that u is a non-trivial element of PSU(2).

• If u2 �= 1 in PSU(2), then the centralizer ZPSU(2)(u) of u is a maximal
torus in PSU(2), i.e. a conjugate of the image of the diagonal maximal
torus {(

e
√
−1θ 0

0 e−
√
−1θ

)
: θ ∈ R/πZ

}
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• If u is an element of order two in PSU(2), then the centralizer subgroup
ZPSU(2)(u) of u in PSU(2) is a semi-direct product of a maximal torus
of PSU(2) with a group of order two, equal to the normalizer of a max-
imal torus. Moreover ZPSU(2)(u) contains a unique subgroup which is
isomorphic to (Z/2Z)2.

The statement (2) follows, so do (1a), (1b) and (1c).

To prove (1d), by (1a) and (1b) it suffices to show that the normalizer

subgroup NPSU(2)(Γ0) on Γ0 contains a subgroup S of order 6 which intersect

Γ trivially. Let δ be the image of ( 0 −e−π
√

−1/4

eπ
√

−1/4 0
) in PSU(2) and let γ be

the image of 1√
2
(

−1 1√
−1

√
−1 ) in PSU(2). It is straightforward to check that

δ has order 2 and induces a transposition on Γ � {Id}, γ has order 3 and

δ ·γ ·δ−1 = γ−1. It follows that NPSU(2)(Γ0) is a semi-direct product Γ0�S3,

so NPSU(2)(Γ0) is isomorphic to S4. We have proved (1d). (Alternatively, it

is well known that PSU(2) contains a finite subgroup isomorphic to S4. The

statement (1d) also follows from this fact, (1a) and (1b).)

Finally the statement (1e) follows from (1a), (1d) and (1c): Suppose that

x ∈ PSL2(C) and Ad(x)(Γ0) = x · Γ0 · x−1 ⊂ PSU(2). By (1a) and (1d),

there exists y ∈ PSU(2) such that y ·x commutes with every element of Γ0.

By (1c) y · x ∈ Γ0, hence x ∈ y−1 · Γ0 ⊂ PSU(2).

Remark. The group NPSU(2)(Γ) is also isomorphic to SL2(Z/4Z)/{±I2}, the
quotient of SL2(Z) by the subgroup generated by the principal congruence

subgroup of level 4 and {±I2}.

Corollary 1.3.2. Let ρ : Λ → PSU(2) be a group homomorphism.

(i) If the image of ρ is isomorphic to (Z/2Z)2, then ρ is conjugate to the

homomorphism which sends ω1 to the image of (
√
−1 0
0 −

√
−1

) and ω2 to

the image of ( 0
√
−1√

−1 0
).

(ii) If the image of ρ is not isomorphic to (Z/2Z)2, then there exists real

numbers θ1, θ2 such that ρ is conjugate to the homomorphism which

sends ωi to ( e
√

−1θ1 0
0 e

√
−1θ2

) for i = 1, 2.

Lemma 1.3.3 below follows from Corollary 1.3.2 and Lemma 1.2.4 (1), (2).

Lemma 1.3.3. Let u be solution of equation (1.2.1) where the parameter

ρ > 0 is an integer multiple of 4π.
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Type I. If the image in PSU(2) of the monodromy of u is isomorphic to
(Z/2Z)2, then there exists a developing map f of u such that

f(z + ω1) = −f(z) ∀z,

f(z + ω2) =
1

f(z)
∀z.

(1.3.2)

The choice of f is unique up to sign and inverse. More precisely,
the set {f,−f, f−1,−f−1} is uniquely determined by the solution
u.

Type II. Suppose that the image in PSU(2) of the monodromy of u is not
isomorphic to (Z/2Z)2. There exists a developing map f of u and
two real numbers θ1, θ2 such that

f(z + ω1) = e2iθ1f(z) ∀z,
f(z + ω2) = e2iθ2f(z) ∀z.

(1.3.3)

Moreover, if {θ1, θ2} �⊆ 1
2Z then the set C×

1 ·f ∪C×
1 ·f−1 is uniquely

determined by u, where C×
1 := {w ∈ C : |w| = 1}.

Definition 1.3.4. (a) Let f be a solution of equation (1.2.1) where the
parameter ρ > 0 is an integer multiple of 4π. If the image of the monodromy
representation ρf of f is isomorphic to (Z/2Z)2, then say that f is of type
I ; otherwise we say that f is of type II.

(b) A developing map f which satisfies equation (1.3.2) (respectively (1.3.3))
will be said to be normalized of type I (respectively type II).

Lemma 1.3.5. Let f be a developing map of a solution u of equation (1.2.1)
where the parameter ρ > 0 is an integer multiple of 4π.

(1) If f is of type I and T ∈ PGL2(C) is a linear fractional transformation
such that T · f is again a developing map of a solution of equation
(1.2.1) with the same parameter ρ, then T ∈ PSU(2) and Tf is a
developing map of the same solution u of (1.2.1).

(2) Suppose that f is of type II. There exists a closed subgroup A of
PGL2(C), conjugate to the image in PGL2(C) of the diagonal non-
compact real torus A0 := {( a 0

0 1 ) : a ∈ R×
>0}, such that the following

statements hold.

(2a) T · f is a developing map of a solution uTf of equation (1.2.1)
with the same parameter ρ.

(2b) u
T1f

�= u
T2f

for any two distinct elements T1, T2 in A.
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Proof. The statement (1) follows from Lemma 1.2.6 and Lemma 1.3.1 (1e).
To show (2), we may assume that f is normalized of type II and take A
to be the image in PGL(2,C) of A0. Then the statement (2a) follows from
Lemma 1.2.6 and Lemma 1.3.3. The statement (2b) follows from Lemma
1.1.5 (3) because the only element of A which is conjugate in PGL2(C) to
an element in PSU(2) is the unity element of A.

1.3.6. Logarithmic derivatives of normalized developing maps. In
this article we approach the mean field equations (1.2.1) with ρ = 4πl,
l ∈ N>0 through the logarithmic derivative

g := (log f)′ =
f ′

f

of a normalized developing map f of a solution of (1.2.1). Recall that such
developing maps are meromorphic functions f on C satisfying 1.2.6 (1) and
either of equations (1.3.2), (1.3.3).

Lemma 1.3.7. Suppose that f is a normalized developing map of a solution
of (1.2.1), and l := ρ/4π is a positive integer. Let g := f ′/f .

(1) The developing map f on C is holomorphic and non-zero at every point
of Λ; i.e. f(Λ) ⊂ P1(C)� {0,∞}.

(2) The meromorphic function g on C has a zero of order l at every point
of Λ, no zeros and at most simple poles on C� Λ.

(3) If f is of type II, then g descends to a meromorphic function on E =
C/Λ.

(4) If f is of type I, then g descends to a meromorphic function ḡ on the
double cover E′ = C/Λ′, where Λ′ = Z · ω1 + Z · 2ω2.

Proof. The statements (3) and (4) are immediate from the equations (1.3.2)
and (1.3.3) for normalized developing maps.

Clearly g has at most simple poles on C. Lemma 1.2.4 (4) implies that g
has no zeros on C\Λ. For any point z0 ∈ Λ, if f has either a zero or a pole at
z0, then g will have a simple pole at every point of Λ, and the meromorphic
function ḡ on E′ = C/Λ′ defined by g will have no zero but at least one pole,
a contradiction. Therefore f has values in C× in a neighborhood of z0; we
have proved the statement (1). Lemma 1.2.4 (3) then implies that g has a
zero of order l at every point of Λ. We have proved statement (2).

1.4. Type I solutions. In this subsection we will show that the existence
of solution of (1.2.1) such that the image of the monodromy representation
is (Z/2Z)2 implies that the parameter l = ρ/4π is an odd positive integer.
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1.4.1. Notation for type I.

• Let ω′
1 = ω1, ω

′
2 = 2ω2 and let Λ′ := Z · ω′

1 + Z · ω′
2.

• Let ℘(z) = ℘(z; Λ′) be the Weierstrass ℘-function for the lattice Λ′ ⊂
C.

• Let ζ(z) = ζ(z; Λ′) = −
∫ z

℘(u)du = z−1 + · · · be the Weierstrass
ζ-function and let σ(z) = σ(z; Λ′) = exp

∫ z
ζ(u)du = z + · · · be the

Weierstrass σ-functions for Λ′ ⊂ C.
• Let g be the logarithmic derivative of the normalized developing map
f of a type I solution u of (1.2.1). Let ḡ be the function on E′ defined
by g.

The standard references for elliptic functions are [67, Ch. 20], [1, Ch. 7] and
[39, Ch. 18 §1]; we have followed the notation in [1, Ch. 7]:15

• ω′
1, ω

′
2 form a Z-basis of the lattice Λ′ with Im(ω′

2/ω
′
1) > 0. Note that

the latter condition means that (ω′
1, ω

′
2) is an oriented basis for the

standard orientation of the complex plane.
• ηi = η(ω′

i; Λ
′) for i = 1, 2, where ω → η(ω; Λ′) is the Z-linear function

from Λ′ to C such that

ζ(z + ω; Λ′) = ζ(z) + η(ω; Λ′) ∀z ∈ C, ∀ω ∈ Λ′.

• The classical Legendre relation

η1 · ω′
2 − η2 · ω′

1 = 2π
√
−1

means that

η(α)β − η(β)α = 2π
√
−1ψ(α, β) ∀α, β ∈ Λ′,

where ψ : Λ′ ×Λ′ → Z is the alternating pairing on Λ′ which sends an
oriented Z-basis (ω′

1, ω
′
2) of Λ

′ to 1.

1.4.2. Recall that the type I condition implies that

g(z + ω1) = g(z) ∀z,
g(z + ω2) = −g(z) ∀z.

(1.4.1)

15The notation in [39] is the same as in [1] except that Im(ω1/ω2) > 0. The
notation in [67] is: 2ω′

1, 2ω
′
2 form a Z-basis of Λ′ with Im(ω′

2/ω
′
1) > 0, and ζ(z +

2ω′
i; Λ

′) = ζ(z) + 2ηi(Λ
′) for i = 1, 2.
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According to Lemma 1.3.7, the meromorphic function ḡ on E′ has zeros of
order l at the two points of Λ/Λ′, no zeros and at most simple poles elsewhere
on E′.

From 1.3.7 (1), the principal divisor (ḡ) of the meromorphic function ḡ
on E′ has the form

(ḡ) = � · 0E′ + � · [ω2]E′ −
∑

P∈ḡ−1(∞)

P,

where [ω2]E′ = ω2modΛ′ is the image of ω2 in E′, and
∑

P∈ḡ−1(∞) P is the
polar divisor (ḡ)∞ of ḡ, an effective divisor of degree 2l which is a sum of 2�
distinct points of E′. Clearly the sum of the polar divisor under the group
law of E′ is equal to � times the 2-torsion point [ω2]E′ . We know from the
condition g(z + ω2) = −g(z) that the polar divisor (ḡ) of ḡ is stable un-
der the translation by the 2-torsion point [ω2]E′ . Let P1, . . . , Pl be a set of
representatives of the quotient of ḡ−1(∞) under the translation action by
[ω2]E′ . The sum μE′(P1, . . . , Pl) = P1 +E′ · · · +E′ Pl of this set of represen-
tatives under the group law of E′ is a 2-torsion point because the sum of
the polar divisor (ḡ)∞ is [2]E′([ω2]E′). Moreover it is clear that the image of
μE′(P1, . . . , Pl) in the quotient group E′[2]/{0E′ , [ω2]E′} is independent of
the choice of representatives P1, . . . , Pl. The following lemma says that this
image is equal to the non-trivial element of E′[2]/{0E′ , [ω2]E′}.
Lemma 1.4.3. Notation as above. The sum P1 +E′ · · ·+E′ Pl in E′ of any
set of representatives of the quotient ḡ−1(∞)/{0E′ , [ω2]E′} is congruent to
the non-zero 2-torsion point ω1

2 modΛ′ modulo the subgroup {0E′ , [ω2]E′} of
the group of all 2-torsion points of E′.

1.4.4. Lemma 1.4.3 is a consequence of a more precise statement Lemma
1.4.5; the latter uses Weierstrass σ-function. The σ-function is essentially the
odd theta function θ11(z) with half-integer characteristics, up to rescaling
of the z-variable, a harmless factor −π · e−η2z2/2 and the product

θ00(0) · θ01(0) · θ10(0)

of three even theta constants. (We adopt the notations of theta functions
from [49].) We recall some of the basic properties of the σ-function below.

(i) The function

σ(z) = σ(z; Λ′) = z ·
∏

ω∈Λ′�{0}

[(
1− z

ω

)
· exp

(
z

ω
+

z2

2ω2

)]
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is an entire odd function on C, with simples zeros on points of Λ′ and
non-zero elsewhere. In addition ζ(z) satisfies the following transforma-
tion law for translation by elements of Λ′.

(1.4.2) σ(z + α) = ε(α) · eη(α)(z+α

2
) · σ(z) ∀z ∈ C, ∀α ∈ Λ′,

where ε : Λ′ → {±1} is the quadratic character on Λ′ given by

ε(α) =

{
1 if α ∈ 2Λ′

−1 if α �∈ 2Λ′

(ii) Suppose that m is a positive integer and a1, . . . , am; b1, . . . , bm are
elements of C. The meromorphic function

h(z; a1, . . . , am; b1, . . . , bm) :=

∏m
i=1 σ(z − ai)∏m
i=1 σ(z − bi)

on C is Λ′-periodic if and only if
∑m

i=1 ai =
∑m

i=1 bi. Moreover if∑m
i=1 ai =

∑m
i=1 bi, then the principle divisor of the meromorphic func-

tion on E′ = C/Λ′ defined by
∏m

i=1 σ(z − ai)/
∏m

i=1 σ(z − bi) is

m∑
i=1

[ai]E′ −
m∑
i=1

[bi]E′ ,

where [ai]E′ (respectively [bi]E′) is the image of ai (respectively bi) in
E′ for i = 1, . . . ,m.

(iii) Suppose that (a1, . . . , am; b1, . . . , bm) and (a′1, . . . , a
′
m; b′1, . . . , b

′
m) are

two 2m-tuples of complex numbers such that
∑m

i=1 ai =
∑m

i=1 bk,∑m
i=1 a

′
i =

∑m
i=1 b

′
i, a

′
i ≡ ai (modΛ′) and b′i ≡ bi (modΛ′) for i =

1, . . . ,m. Then ∏m
i=1 σ(z − ai)∏m
i=1 σ(z − bi)

=

∏m
i=1 σ(z − a′i)∏m
i=1 σ(z − b′i)

(iv) Let h be a non-constant meromorphic function on E′. Let

a1, . . . , am, b1, . . . , bm

be elements of C such that the principle divisor of h is equal to∑m
i=1[ai]E′ −

∑m
i=1[bi]E′ . Then there exists a constant A ∈ C× such

that

h([z]E′) = A ·
∏m

i=1 σ(z − ai)∏m
i=1 σ(z − bi)

∀z ∈ C.
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Note that (ii) and (iii) are consequences of the transformation law (1.4.2) in
(i), and (iv) follows from (ii).

Lemma 1.4.5 ([44]). Let l be a positive integer. Let p1, . . . , pl; q1, . . . , ql be
elements in C� Λ satisfying

(1.4.3)
∑

pi +
∑

qi = lω2

and pi + ω2 ≡ qi (mod Λ′) for i = 1, . . . , l. Let

(1.4.4) h(z) =
σl(z)σl(z − ω2)∏l

i=1 σ(z − pi)
∏l

i=1 σ(z − qi)

be the meromorphic function on C attached to the 4l-tuple

(0, . . . , 0, ω2, . . . , ω2; p1, . . . , pl, q1, . . . , ql)

as in 1.4.4 (ii). Note that h(z) descends to a meromorphic function on E′

whose principle divisor is

l · 0E′ + l · [ω2]
′
E −

l∑
i=1

[pi]E′ −
l∑

i=1

[qi]E′

according to 1.4.4 (ii).

(a) The function h(z) satisfies h(z + ω2) = −h(z) if and only if

l∑
i=1

pi ≡ 1
2ω1 (mod Λ).

Namely,
∑l

i=1 pi is congruent to either 1
2ω1 or 1

2ω1 + ω2 modulo Λ′.
(b) Suppose that p1 + · · · + pl ≡ 1

2ω1 (mod Λ′). There exist elements
p′1, . . . , p

′
l; q

′
1, . . . , q

′
l in C satisfying the following conditions.

(b1) p′i ≡ pi (mod Λ′) and q′i ≡ qi (mod Λ′) for i = 1, . . . , l,

(b2)
∑l

i=1 p
′
i =

1
2ω1,

(b3) q′i = p′i + ω2 for i = 1, . . . , l − 1 and q′l = p′l + ω2 − ω1,

(b4) h(z) = σl(z)σl(z−ω2)∏l
i=1 σ(z−p′

i)
∏l

i=1 σ(z−q′i)
.

(c) Suppose that p1 + · · ·+ pl ≡ 1
2ω1 +ω2 (mod Λ′). There exist elements

p′1, . . . , p
′
l; q

′
1, . . . , q

′
l in C satisfying the following conditions.
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(c1) p′i ≡ pi (mod Λ′) and q′i ≡ qi (mod Λ′) for i = 1, . . . , l,

(c2)
∑l

i=1 p
′
i =

1
2ω1 + ω2,

(c3) q′i = p′i + ω2 for i = 1, . . . , l − 1, and q′l = p′l − ω2 − ω1,

(c4) h(z) = σl(z)σl(z−ω2)∏l
i=1 σ(z−p′

i)
∏l

i=1 σ(z−q′i)
.

Proof. Clearly (b2) and (b3) implies that

m∑
i=1

p′i +
m∑
i=1

q′i = l · ω2,

therefore (b4) follows from (b1)–(b3) by 1.4.4 (iii). Similarly (c1)–(c3) im-
plies (c4).

We will prove (a), (b1)–(b3), and (c1)–(c3) simultaneously from the
transformation law (1.4.2) and the condition (1.4.3).

Because pi+ω2 ≡ qi (mod Λ′) for each i, (1.4.3) implies that
∑l

i=1 pi ≡
m · ω1

2 + n · ω2 (mod Λ′) for integers m,n ∈ {0, 1}. By adjusting pl we may

assume that
∑l

i=1 pi = m · ω1

2 + n · ω2. Let

• p′i := pi for i = 1, . . . , l,
• q′i := pi + ω2 for i = 1, . . . , l − 1, and
• q′l := pl + ω2 − (mω1 + 2nω2).

By 1.4.4 (iii) h(z) = σl(z)σl(z−ω2)∏l
i=1 σ(z−p′

i)
∏l

i=1 σ(z−q′i)
holds. It remains to use the trans-

formation law (1.4.2) to see whether h(z + ω2) = −h(z).

There are only four possibilities for the pair (m,n), namely

(m,n) = (i) (0, 0), (ii) (1, 0), (iii) (0,1), or (iv) (1, 1).

One verifies by direction calculations that h(z + ω2) = h(z) if m = 0, while
h(z + ω2) = −h(z) if m = 1.

For instance when (m,n) = (0, 0), h(z+ω2) and h(z) differ by the factor
of automorphy

(−1)l exp(lη2z)

(−1)l exp[η2
∑l

i=1(z − pi)]
= 1,

meaning that h(z + ω2) = h(z).
When (m,n) = (1, 0), h(z + ω2) and h(z) differ by the factor

(−1)l−(l+1) exp(lη2z)

exp[η2
∑l−1

i=1(z − pi) + (η2 − η1)(z − pl − 1
2ω1) + η1(z − pl − 1

2ω1)]
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which is −1 since
∑

pi =
1
2ω1. The other two cases are checked similarly.

We have proved lemmas 1.4.5 and 1.4.3.

1.4.6. In order to construct type I solutions from the elliptic function g,
we need to find all the other constraints imposed on its poles.

Let p1, . . . , pl be points of C such that
⋃l

i=1 pi+Λ′ are the simple zeroes

of the developing map f and
⋃l

i=1 pi+ω2+Λ′ are the simple poles of f . Let
Pi := pi modΛ′ and let Qi := pi + ω2 modΛ′ for i = 1, . . . , l. We know that

P1, . . . , Pl, Q1, . . . , Ql

are 2l distinct points of (C� Λ)/Λ′ = E′ � {0E′ , [ω2]E′}; equivalently

pi − pj �∈ Λ ∀i �= j, 1 ≤ i, j ≤ l.

We also know that
�∑

i=1

pi ≡
ω1

2
(mod Λ)

according to Lemma 1.4.3. By 1.4.4 (iv) we know that there exists a constant
A ∈ C× such that

(1.4.5) g(z) = A · σl(z) · σl(z − ω2)∏l
i=1 σ(z − pi) ·

∏l
i=1 σ(z − qi)

,

where q1, . . . , ql are elements of C such that

(1.4.6) qi ≡ pi + ω2 (mod Λ′) ∀i, and

l∑
i=1

pi +

l∑
i=1

qi = lω2.

Notice that the residue of g(z) at z = pj is given by Arj for j = 1, . . . , l,
where

(1.4.7) rj =
σl(pj) · σl(pj − ω2)∏l

i=1, �=j σ(pj − pi) ·
∏l

i=1 σ(pj − qi)
for j = 1, . . . , l.

It is immediate from 1.4.4 (ii) that the formula (1.4.7) for rj is indepen-
dent of the choice of q1, . . . , ql satisfying (1.4.6), with p1, . . . , pl fixed, and
also independent of the choice of p1, . . . , pj−1, pj+1, . . . , pl in their respective
congruence classes modulo Λ′ when the qi’s and p1+· · ·+pj−1+pj+1+· · ·+pl
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are fixed. One checks by a routine calculation that the right hand side of
the formula (1.4.7) remains the same when pj is replaced by pj +α and qj is
replaced by α for any element α ∈ Λ′. So the right hand side of the formula
(1.4.6) is a meromorphic function of (P1, . . . , Pl) ∈ E′ × · · · × E′.

Lemma 1.4.7. Let p1, . . . , pl be elements of C such that
⋃l

i=1 pi + Λ′ are

the zeroes of the developing map f and
⋃l

i=1 pi + ω2 +Λ′ are the poles of f .
Let q1, . . . , ql be elements of C satisfying the conditions in (1.4.6). Then

(1.4.8) r1 = r2 = · · · = rl.

where the non-zero complex numbers r1, . . . , rl are defined by (1.4.7) and
the elements q1, . . . , ql ∈ C appearing in the formula (1.4.7) satisfies the
conditions in (1.4.6).

Proof. Write g = f ′/f as in (1.4.5) for a suitable constant A ∈ C×. Then
Arj = 1 for j = 1, . . . , l, hence r1 = r2 = · · · = rl.

Proposition 1.4.8. Let p1, . . . , pl be elements of C with the following prop-
erties.

(i)
∑l

i=1 pi ≡ ω1/2 (mod Λ),
(ii) pi − pj �≡ 0 (mod Λ) whenever i �= j, and
(iii) the residue equalities (1.4.8) hold, where r1, . . . , rl are defined by (1.4.7)

and the elements q1, . . . , ql ∈ C satisfy the conditions in (1.4.6).

Let h be an elliptic function on E′ defined by (1.4.4). Let A := r−1
1 and let

g1 := A · h.

(a) s1 = · · · = sl = −r1 = · · · = −rl, where

(1.4.9) sj =
σl(qj) · σl(qj − ω2)∏l

i=1 σ(qj − pi) ·
∏l

i=1, �=j σ(qj − qi)
for j = 1, . . . , l.

Consequently the residue of the simple pole Pi (respectively Qi) of the
meromorphic function A ·h on E′ is equal to 1 (respectively −1). Here
Pi := pi modΛ′ ∈ E′ and Qi := qi modΛ′ ∈ E′ for i = 1, . . . , l.

(b) If h is an odd function, then the following statements hold.

(b1) The subset {P1, . . . , Pl} ⊂ E′ � {0E′ , [ω2]
′
E} is stable under the

involution of E′ induced by “multiplication by −1”.

(b2) Exactly one of P1, . . . , Pl is a two-torsion point of E′; this point
is either ω1

2 modΛ′ or ω1

2 + ω2 modΛ′.



168 Ching-Li Chai et al.

(b3) l is an odd integer.

(c) Conversely suppose that the condition (b1) is satisfied, or equivalently
conditions all (b1)–(b3) hold. Then h is an odd function; i.e. h(−z) =
−h(z) for all z ∈ C.

(d) Assume h is an odd function, or equivalently that conditions (b1)–(b3)
hold.

(d1) There exists a normalized type I developing map f1 of a solution
of (1.2.1) with parameter ρ = 4πl such that f ′

1/f1 = g1.

(d2) f1 and −f1 are the only normalized type I developing map whose
logarithmic derivative is g1.

(d3) f1 is an even function, i.e. f1(−z) = f1(z) for all z ∈ C.

Proof. We know that h(z + ω2) = −h(z) for all z ∈ C by Lemma 1.4.5 (a).
So the statement (a) follows from the assumption that r1 = · · · = rl.

The set {P1, . . . , Pl} is the set of all (simple) poles with residue r1 of the
meromorphic differential hdz on E′. The assumption that h is odd means
that hdz is invariant under “multiplication by −1”, so the statement (b1)
follows. The statement (b2) follows because of assumption (i). The statement
(b3) follows from (a) and (b2).

Suppose that (b1)–(b3) hold. Let n = (2l− 1)/2. After renumbering the
pi’s we may assume that Pn+1 = −P1, Pn+2 = −P2, . . . , P2n = −Pn and
Pl = [ω2]E′ . According to 1.4.4 (iii), we have
(1.4.10)

h(z)=
σ2n+1(z) · σn+1(z − ω2) · σn(z + ω2)[∏n

i=1 σ(z−pi) · σ(z+pi)
]
·
[∏n

i=1 σ(z−pi−ω2) · σ(z+pi+ω2)
]
· σ(z− ω1

2
) · σ(z+ ω1

2
−ω2)

Using the fact that σ(z) is an odd function, we get

h(−z)

h(z)
=

σ(z + ω2) · σ(z − ω1

2 ) · σ(z + ω1

2 − ω2)

σ(z − ω2) · σ(z + ω1

2 ) · σ(z − ω1

2 + ω2)

= (−1) · eη2·z · eη1·z · e(η1−η2)·z = −1

by the transformation law for the σ-function. We have proved (c).
Assume again that (b1)–(b3) hold, so that l = 2n+1 is odd and h(z) is

an odd function. Then g1(z) is an odd meromorphic function on E′ which
has simple poles with residue 1 at P1, . . . , P2n+1 and has simple poles with
residue −1 at Q1, . . . , Q2n+1. From the proof of 1.4.8 (d) may and so assume
that p1 = pn+i for i = 1, . . . , n, and pn = ω1

2 , qn = ω1

2 + ω2, so that h(z)
is given by equation (1.4.10). For each of the 4n + 2 poles of g1(z) dz, the
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integral along a sufficiently small circle around the pole is ±2π. Hence the

line integral
∫ z
0 g1(w) dw is well-defined as an element of C/2π

√
−1Z and

the function

f2(z) = exp

∫ z

0
g1(w) dw

is a well-defined meromorphic function on C with simple poles at points in

the union
⋃2n+1

i=1 qi+Λ′ of Λ′-cosets, simple zeros at points in
⋃2n+1

i=1 pi+Λ′,
neither zero nor pole elsewhere on C. In particular f2(z) is holomorphic and

non-zero at points of Λ. Notice that f2(z) = f2(−z) for all z ∈ C because g1
is odd.

The fact that g1(w)dw is invariant under translation by ω1 implies that

f2(z + ω1) =

∫ ω1

0
g1(w) dw · f2(z) ∀z ∈ C .

Similarly the fact that g1(w + ω2) = −g1(w) implies that

f2(z + ω2) · f2(z) =
∫ ω2

0
g1(w) dw.

To prove (d) it suffice to show that

(1.4.11)

∫ ω1

0
g1(w) dw ≡ π

√
−1 (mod 2π

√
−1Z),

for then f1(z) =
√

f2(ω2)−1 · f2(z) will be a normalized developing map of

type I (for a solution of equation (1.2.1) with ρ = 2n + 1), for either of

the two square roots of f2(ω2)
−1. Clearly these are the only two normalized

developing maps of type I whose logarithmic derivatives are equal to g1.

To compute the integral
∫ ω1

0 g1(w) dw modulo 2π
√
−1Z, let Cε be the

path from 0 to ω2, obtained from the oriented line segment
−−→
0ω2 from 0 to

ω2 near by replacing the ε-neighborhood of each pole of g1(w)dw by the half

circle of radius ε to the right of
−−→
0ω2, for all sufficiently small ε > 0. Clearly

the integral
∫
Cε

g1(w) dw is independent of ε. Write Cε the union of the

small half circles and the “straight part” C ′
ε of Cε. Let m1 (respectively m2)

be the number of poles of g1 with residue 1 (respectively −1) on the line

segment
−−→
0ω2.

The fact that g1(w) dw is invariant under multiplication by −1 implies

that the integral of g1(w) over C
′
ε is 0, so

∫ ω1

0 g1(w) dw converges to (m1 −
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m2) · π
√
−1 as ε → 0+. In other words∫

Cε

g1(w) dw = (m1 −m2) · π
√
−1

for all (sufficiently small) ε > 0. On the other hand the assumptions (b1) and
(b2) tells us that m1−m2 is an odd integer. We have proved the statements
(d1)–(d3).

1.5. Type II scaling families and blow-up points. In type II, it fol-
lows from (1.3.3) that g = f ′/f is an elliptic function on E. From §1.2, g
has zero only at z = 0. Thus by Lemma 1.2.4,

(1.5.1) g(z) = A
σl(z)∏l

i=1 σ(z − pi)

for pi’s being simple zeros/poles of f with
∑

pi = 0. Now the Weierstrass
function σ is with respect to E. Also the points pi’s are unique up to elements
in Λ as long as the constraint

∑
pi = 0 is satisfied.

Proposition 1.5.1. For ρ = 4πl with l being odd, there are no type II,
i.e. blow-up, solutions to the mean field equation

�u+ eu = ρδ0 on E.

Proof. If there is a solution u with developing map f , then g = f ′/f is
elliptic on E with residues at pi, i = 1, . . . , l, being ±1. Since l is odd, the
sum of residues of g is non-zero, which contradicts to the classical fact that
the sum of residues of an elliptic function must be zero.

Therefore we may set l = 2n. Let p1, . . . , pn be zeros and pn+1, . . . , p2n
be poles of f . The residue of g at z = pj is given by Arj with

(1.5.2) rj =
σl(pj)∏l

i=1, �=j σ(pj − pi)
.

Then we have equations

(1.5.3) r1 = · · · = rn = −rn+1 = · · · = −r2n.

Recall that

f(z) = f(0) exp

∫ z

0
g(w) dw.
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Lemma 1.5.2. In order for f to verify (1.3.3), it is equivalent to require
that the periods integrals are purely imaginary:

∫
Li

g(z) dz ∈ iR, i = 1, 2.

Another characteristic feature for type II is that any solution must exist
in an one parameter scaling family of solutions. To see this, notice that if
f is a developing map of solution u then eλf also satisfies (1.3.3) for any
λ ∈ R. In fact eλf is a developing map of uλ defined by (0.2.6):

uλ(z) = log
8e2λ|f ′(z)|2

(1 + e2λ|f(z)|2)2

and it is clear that uλ is a scaling family of solutions of (1.2.1).

Let z0 be a zero of f . We know that z0 �≡ 0 and f ′(z0) �= 0. Thus

uλ(z0) ∼ 2λ → +∞ as λ → +∞

while if f(z) �= 0 then

uλ(z) ∼ −2λ → −∞ as λ → +∞.

Points like z0 are referred as blow-up points.

Thus as λ → +∞, the blow-up set of uλ consists of the zeros of f .
Similarly, as λ → −∞, the blow-up sets of uλ consists of the poles of f .

Remark 1.5.3. In general it is very hard to solve the residue equations
(1.4.8) (for type I) and (1.5.3) (for type II) directly, though some simple
cases had been treated in [43, 44] for ρ = 4π, 8π and 12π.

2. Type I solutions: evenness and algebraic integrability

Let ρ = 4πl, l ∈ N. Let u be a type I solution and f be a developing map
of u. In this section we will prove Theorem 0.4 stated in the introduction.
Proposition 1.5.1 proves that if l is odd then the solution is of type I. We
will start by proving the converse in Theorem 2.2, i.e., if the solution is
of type I then l must be odd. At the same time the evenness of u will
follow.
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2.1. The evenness of solutions. Recall that the logarithmic deriva-
tive

g = (log f)′ =
f ′

f

of the developing map f is an elliptic function on E′ = C/Λ′ with Λ′ =
Zω1 + Z2ω2. For the ease of notations we will use ω′

1 = ω1 and ω′
2 = 2ω2.

In the following all the elliptic functions are with respect to the torus
E′.

Since g has zero at z = 0 of order l, it also has zero of order l at z = ω2.
There are no other zeros hence it has simple poles at p1, . . . , pl and q1, . . . , ql
where pi’s are simple zeros of f and qi’s are simple poles of f modulo Λ′.
We may assume that

qi = pi + ω2, i = 1, . . . , l.

From

f(z) = f(0) exp

∫ z

0
g(w) dw,

the residues of g are 1 at pi’s and −1 at qi’s. Thus we may write g as

(2.1.1) g(z) =

l∑
i=1

(ζ(z − pi)− ζ(z − pi − ω2)) + c

By (1.4.1), it is easily seen that c = lη2/2.
There are also other useful equivalent forms of g:

g(z) =
1

2

l∑
i=1

(2ζ(z − pi)− ζ(z − pi − ω2)− ζ(z − pi + ω2))

= −1

2

l∑
i=1

℘′(z − pi)

℘(z − pi)− e2

= −1

2

l∑
i=1

d

dz
log(℘(z − pi)− e2)

by the addition formula.

Remark 2.1.1. The middle formula says that up to a constant g(z) is
the sum of slopes of the l lines from the point (℘(ω2), ℘

′(ω2)) = (e2, 0) to
the points (℘(z − pi), ℘

′(z − pi)) of the torus E′ under the standard cubic
embedding into C2 ∪ {∞}, for i = 1, . . . , l.
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The only constraint that remains is the order of zero of g at z = 0.
Namely

0 = g(0) = g′(0) = · · · = g(l−1)(0).

Notice first that

2g(0) =
∑ ℘′(pi)

℘(pi)− e2
=:
∑

s(pi)

is the first (degree one) symmetric polynomial of the slops s(pi). It is rea-
sonable to expect that some of the higher derivatives g(m)(0) are also higher
degree symmetric polynomials of slops. The expectation turns out to be true
only for m even and for odd degree polynomials:

Proposition 2.1.2. The even order derivatives g(2j)(0), j = 0, . . . , [ l−1
2 ], of

g from a basis of the odd degree symmetric polynomials in si’s up to degree
l for l being odd and up to degree l − 1 for l being even.

Proof. Consider the slope function

s(z) =
d

dz
log(℘(z)− e2) =

℘′(z)

℘(z)− e2

= −2ζ(z) + ζ(z + ω2) + ζ(z − ω2)

= −2(ζ(z)− ζ(z − ω2)− η2/2).

(2.1.2)

By differentiating the last equation, we get

1

2
s′(z) = ℘(z)− ℘(z − ω2)

= ℘(z)− e2 −
μ

℘(z)− e2

(2.1.3)

where we have used the half period formula with

μ = (e1 − e2)(e3 − e2) = e1e3 − (e1 + e3)e2 + e22 = 2e22 + e1e3.

Also

1

2
s′′ = ℘′ +

μ℘′

(℘− e2)2

= s
(
℘− e2 +

μ

℘− e2

)
.

(Notice the variations on signs with (2.1.3).) Then we have
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Lemma 2.1.3. The slope function satisfies the following ODE:

(2.1.4) s′′ =
1

2
s3 − 6e2s.

Proof. We will compute s′′ in a different way, namely

(2.1.5) s′ =
℘′′

℘− e2
− ℘′℘′

(℘− e2)2
=

6℘2 − 1
2g2

℘− e2
− s2.

It is elementary to see

6℘2 − g2
2

= 6(℘− e2)
2 + 12e2(℘− e2) + 6e22 −

g2
2

and

6e22 −
g2
2

= 6e22 + 2(e1e2 + e3e2 + e1e3) = 2(2e22 + e1e3) = 2μ.

Thus (2.1.5) becomes

s′ = 12e2 − s2 + 6(℘− e2) +
2μ

℘− e2
.

Then

s′′ = −2ss′ + 6℘′ − 2μs

℘− e2

= −24e2s+ 2s3 − 12s(℘− e2)−
4μs

℘− e2
+ 6s(℘− e2)−

2μs

℘− e2

= −24e2s+ 2s3 − 6s
(
℘− e2 +

μ

℘− e2

)
= −24e2s+ 2s3 − 3s′′,

where the last equality is by (2.1.4). The lemma follows.

To proceed to higher even derivatives, we notice that

(2.1.6) (sk)′′ = (ksk−1s′)′ = k(k − 1)sk−2(s′)2 + ksk−1s′′.

By (2.1.3) and (2.1.4),

(s′)2 = 4
(
℘− e− μ

℘− e

)2
= 4
(
℘− e+

μ

℘− e

)2
− 16μ =

(s′′
s

)2
− 16μ
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which is an even degree polynomial in s of degree 4 by Lemma 2.1.3. Thus
(sk)′′ is odd in s of degree k+2 if k is odd. By induction we then have that
s(2j) is a degree 2j + 1 odd polynomial in s.

The proposition now follows easily from

(2.1.7) 2g(2j)(0) =

l∑
i=1

s(2j)(pi)

and general facts on symmetric polynomials.

Now we are ready to prove

Theorem 2.2. Let ρ = 4πl. If the developing map f satisfies the type I
relation (1.3.2), then l is odd. Furthermore g(−z) = −g(z) and u(−z) =
u(z).

Proof. Consider the polynomial

S(x) =

l∏
i=1

(x− s(pi)).

By Proposition 2.1.2, the relations

0 = g(0) = g′′(0) = · · · = g(2[
l−1

2
])(0)

lead to the vanishing of all odd symmetric polynomials of s(pi)’s in the
expansion of S(x).

If l = 2n, then S(x) consists of only even degrees and its roots s(pi)
must appears in pairs. Without loss of generality we may assume that

(2.2.1) s(p1) = −s(pn+1), s(p2) = −s(pn+2), . . . , s(pn) = −s(p2n).

Notice that the slope equation

℘′(a)

℘(a)− e2
= s(a) = −s(b) = − ℘′(b)

℘(b)− e2

leads to b = −a or b = a + ω2. To see this, notice that under the cubic
embedding z → (℘(z), ℘′(z)), s(a) is slope of the line �a connecting the im-
ages of z = ω2 and z = a, with the unique third intersection point being
z = −a − ω2 and s(−a − ω2) = s(a). Thus the slope function defines a
branched double cover

s : E′ → P1(C).
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(From (2.1.3), it has 4 branch points given by ℘(z) = e2 ±
√
μ.)

In particular the line with slope −s(a) = s(−a) and passing through
(e2, 0) must be �−a ≡ �a+ω2

. That is, b = −a or b = a+ ω2 as claimed.

In our case (2.2.1), we must conclude pn+1 = −p1 since p1+ω2 = q1 can
not appear in pi’s. In the same way we conclude that

(2.2.2) pi = −pi+n, i = 1, . . . , n.

In particular
∑

pi = 0. But this violates
∑

pi ≡ 1
2ω1 modulo Λ′ (which

follows from g(z + ω2) = −g(z) in Lemma 1.4.5), hence l is odd.

For l = 2n+1, S(x) is a polynomial with odd degree terms only. In par-
ticular there is a root x = 0 of S(x) and we may assume that s(p2n+1) = 0
(namely p2n+1 =

1
2ω1 or 1

2(ω
′
1 + ω′

2) =
1
2ω1 + ω2).

Consider the polynomial S(x)/x with only even degree terms. In exactly
the same manner as above we conclude that (2.2.2) still holds and

S(x) = x

n∏
i=1

(x− s(pi))(x+ s(pi)).

It is clear that now g(−z) = −g(z). Then f(−z) = f(z), which implies
that u is an even function.

2.3. The polynomial system. The remaining statements in Theorem
0.4 which have not been proved yet are that these points [p1], . . . , [pn] on E
are determined by the polynomial equations (0.4.1) in ℘(pi)’s.

Philosophically this follows easily from (2.1.1) and (2.1.3). Indeed it is
clear that the odd order derivatives of g at z = 0 will involve only rational
expressions with denominator being powers of ℘(pi)− e2 and with at most
even derivatives ℘(z)(2j)(pi) in the numerator (all expressions in −pi are
transformed into expressions in pi). The latter can be written as polynomi-
als in ℘(pi) and thus the polynomial system is obtained.

Proof of Theorem 0.4. To write down the complete set of polynomial equa-
tions explicitly, recall that we have

g(z) =

l∑
i=1

(ζ(z − pi)− ζ(z − pi − ω2)− η2/2),

−g′(z) =
l∑

i=1

(℘(z − pi)− ℘(z − pi − ω2)),(2.3.1)
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−g(m+1)(z) =

l∑
i=1

(℘(m)(z − pi)− ℘(m)(z − pi − ω2)) ∀m ∈ Z≥0,

and the half period formula (let ℘̃(p) = ℘(p+ ω2))

℘̃ = e2 +
μ

℘− e2

where μ = (e1 − e2)(e3 − e2). Equivalently (℘− e2)(℘̃− e2) = μ.

In the proof of Theorem 2.2, the even order derivatives g(2j)(0) = 0,
j = 0, . . . , n, leads to the evenness of solutions. We will show that the re-
maining odd order differentiations g(2j+1)(0) = 0, j = 0, . . . , n− 1, leads to
the desired polynomial system.

To calculate g(2j+1)(0), we first notice that

Lemma 2.3.1. For every k ∈ N, (℘k)′′ is a degree k + 1 polynomial in ℘.
Indeed

(℘k)′′ = 2k(2k + 1)℘k+1 − g2
2
k(2k − 1)℘k−1 − k(k − 1)g3℘

k−2.

Proof. Since (℘k)′ = k℘k−1℘′, we get

(℘k)′′ = k(k − 1)℘k−2(℘′)2 + k℘k−1℘′′.

The lemma follows from Weierstrass’ cubic relations between ℘′ and ℘.

Now we set xi = ℘(pi), x̃i = ℘̃(pi) = ℘(pi + ω2) for i = 1, . . . , n. It is
clear that (xi − e2)(x̃i − e2) = μ for all i = 1, . . . , n.

During the following computations, we assume that p2n+1 = 1
2ω1 and

pn+i = −pi for i = 1, . . . , n. For the other case p2n+1 = 1
2ω1 + ω2, we could

replace f by 1/f to reduce to the former case, since f and 1/f give rise to
the same solution u.

For j = 0 we have from (2.3.1) that

−g′(0) = 2

n∑
i=1

xi + e1 − 2

n∑
i=1

x̃i − e3 = 0.

This is the degree one equation (m = 1) with c1 = −1
2(e1 − e3) �= 0.

For j = 1, since
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−g′′′ =
l∑
1

℘′′ −
l∑
1

℘̃′′ = 6

l∑
1

℘2 − 6

l∑
1

℘̃2,

the equation g′′′(0) = 0 becomes

n∑
i=1

x2i −
n∑

i=1

x̃2i = −1
2(e

2
1 − e23).

This is the degree two equation (m = 2) with c2 = −1
2(e

2
1 − e23).

The general case follows from Lemma 2.3.1. Suppose that g(2j+1)(0) = 0
gives rise to a new polynomial relation

∑n
i=1 x

j
i −

∑n
i=1 x̃

j
i = cj . A fur-

ther double differentiation increases the degree of the polynomial in ℘ by
one, hence it gives rise to a new relation

∑n
i=1 x

j+1
i −

∑n
i=1 x̃

j+1
i = cj+1,

with the universal constant cj+1 being determined by c1, c2, g2, g3 recur-
sively.

Therefore we conclude that xi = ℘(pi), x̃i = ℘(pi + ω2), i = 1, . . . , n,
satisfy the polynomial system:

n∑
i=1

xji −
n∑

i=1

x̃ji = cj , j = 1, . . . , n,

(xi − e2)(x̃i − e2) = μ, i = 1, . . . , n,

which is easily seen to be equivalent to the system (0.4.1).
Conversely, any solution of the polynomial system gives rise to a function

g which satisfies

g(j)(0) = 0, j = 0, 1, . . . , 2n.

From g, the developing map f is then constructed by Proposition 1.4.8.

Remark 2.3.2. In the next section we will prove that except for a finite
set of conformal equivalence classes of tori, the mean field equation (0.1.3)
has exactly n + 1 solutions for ρ = 4πl with l = 2n + 1. This implies
that, except for those tori, the above polynomial system has exactly n + 1
solutions up to permutation symmetry by Sn. Equivalently it has (n + 1)!
solutions.

Since the cj(τ)’s are all holomorphic in τ , solutions (xi(τ), x̃i(τ)) of
the polynomial system, hence the developing map f(z; τ), should then de-
pend on τ holomorphically. It is not so obvious how to prove the holo-
morphic dependence of f(z; τ) in the moduli space of tori by other meth-
ods.
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Example 2.4. For ρ = 4π, l = 1 and n = 0. Then p1 = 1
2ω1. The polyno-

mial system is empty and the solution u is unique. This was first proved in
[43].

Example 2.5. Consider the case ρ = 12π, i.e. l = 3 and n = 1. Let p1 = a.
p2 = −a and p3 =

1
2ω1. Then the equation g′(0) = 0 becomes

2
(
(℘(a)− e2)−

μ

℘(a)− e2

)
+ (e1 − e3) = 0.

That is, we get a degree 2 polynomial in ℘(a):

(℘(a)− e2)
2 + 1

2(e1 − e3)(℘(a)− e2)− μ = 0

and then

℘(a) = e2 +
1
4(e3 − e1)± 1

4

√
(e3 − e1)2 + 16(e1 − e2)(e3 − e2).

These are exactly the solutions obtained in [44] via a different method.
In particular there are precisely two solutions of the mean field equation on
any torus E with non-zero discriminant (e3− e1)

2+16(e1− e2)(e3− e2) �= 0
for the double cover E′, and with ρ = 12π. The case with zero discriminant
will be discussed in Example 3.6.

Example 2.6. Consider the case ρ = 20π, i.e. l = 5 and n = 2. The full set
of polynomial equations in xi’s and x̃i’s is given by

x1 + x2 − x̃1 − x̃2 = c1 = −1
2(e1 − e3),

x21 + x22 − x̃21 − x̃22 = c2 = −1
2(e

2
1 − e23),

(x1 − e2)(x̃1 − e2) = μ,

(x2 − e2)(x̃2 − e2) = μ.

Now the number of solutions N ′
n (here n = 2) for x1.x2, x̃1, x̃2 can be

calculated by the Bezout theorem to be N ′
2 = 1× 2× 2× 2− r∞2 = 8− r∞2

where r∞2 is the number of solutions at ∞, counted with multiplicity, of
the projectivized system of polynomial equations. The projective system
is

X1 +X2 − X̃1 − X̃2 = c1X0,

X2
1 +X2

2 − X̃2
1 − X̃2

2 = c2X
2
0 ,

(X1 − e2X0)(X̃1 − e2X0) = μX2
0 ,

(X2 − e2X0)(X̃2 − e2X0) = μX2
0 .
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And the infinity solutions are given by setting X0 = 0:

X1 +X2 = X̃1 + X̃2, X2
1 +X2

2 = X̃2
1 + X̃2

2 ,

X1X̃1 = 0, X2X̃2 = 0.

This shows that {X1, X2} = {X̃1, X̃2}. Since these four variables are not all
zero, it is easy to see that there are precisely two solutions given by

P1 : X1 = 0 = X̃2, X2 = X̃1 �= 0,

P2 : X2 = 0 = X̃1, X1 = X̃2 �= 0.

It remains to compute the multiplicity of P1 and P2. Consider P1 first.
Since it is in the chart Ũ1 := {X̃1 �= 0}, in terms of yi = Xi/X̃1, i = 1, 2,
ỹ2 = X̃2/X̃1 and y0 = X0/X̃1, P1 has coordinates (y0, y1, y2, ỹ2) = (0, 0, 1, 0)
and the system at point P1 reads as fi = 0, i = 1, . . . , 4, where

f1 = y1 + y2 − 1− ỹ2 − c1y0,

f2 = y21 + (y2 − 1)2 + 2(y2 − 1)− ỹ22 − c2y
2
0,

f3 = (y1 − e2y0)(1− e2y0)− μy20 = y1 + · · · ,
f4 = (y2 − e2y0)(ỹ2 − e2y0)− μy20 = (y2 − 1)ỹ2 + ỹ2 + · · · .

From these expressions, the appearance of degree one monomial in each
fi shows that the local analytic coordinates (y0, y1, y2 − 1, ỹ2) at the point
P1 can be replaced by f1, f3, f2, f4 accordingly, and thus the multiplicity is
one. Indeed P1 = (0, 0, 1, 0) is a simple point of {fi = 0} by computing the
Jacobian

det
∂(f1, f2, f3, f4)

∂(y0, y1, y2, ỹ2)
(0, 0, 1, 0) = e1 − e3 �= 0.

Similarly the multiplicity at P2 is one. Thus r∞2 = 2 and N ′
2 = 8 − 2 =

6.
Since any reordering of pi’s leads to the same solution, also it is easy

to see that for generic tori we do not have any solution with x1 = x2, so
finally

N2 = N ′
2/2! = 3 = 2 + 1.

Remark 2.7. The above method can be extended to the case n = 3, ρ = 28π
to show that N3 = 4 since in this case the infinity solutions are still zero
dimensional. It fails for n ≥ 4 since positive dimensional intersections at
infinity do occur and excess intersection theory is needed. The cases n = 4
and n = 5 were recently settled in [42] where the infinity solutions are one
dimensional.
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3. Lamé for type I: finite monodromies

In this section we prove Theorem 0.4.1 (c.f. Theorem 3.5).

3.1. From mean field equations to Lamé. The second order equa-
tion

(3.1.1) Lη,B w := w′′(z)− (η(η + 1)℘(z) +B)w(z) = 0

is known as the Lamé equation with two parameters η and B; the pa-
rameter η is called the index and B is the called the accessary parame-
ter.

3.1.1. Recall that for any two linearly independent solutions w1 and w2

of a general second order ODE w′′ = Iw, the Schwarzian derivative

S(h) =
h′′′

h′
− 3

2

(
h′′

h′

)2

of h = w1/w2 satisfies S(h) = −2I, hence for any two linear independent
local solutions w1, w2 of the Lamé equation (3.1.1) we have

S(w1

w2
) = −2(η(η + 1)℘(z) +B).

Conversely if h1 is meromorphic function with S(h1) = −2(η(η+1)℘(z)+B,
then S(h1) = S(w1

w2
) for a chosen pair of linearly independent solutions

w1, w2 of (3.1.1), therefore h1 is equal to a linear fractional transformation
of w1

w2
, or equivalently there exists a pair of linearly independent solutions

w3, w4 of (3.1.1) such that h1 = w3/w4.

3.1.2. Suppose that u is a solution of the mean field equation

(3.1.2) �u+ eu = ρδ0

on a flat torus E = C/Λ, Λ = Zω1 + Zω2, and f is a developing map of u
on a covering space of the punctured torus E � {0}. As in §1, locally u is
expressed in f via

u(z) = log
8|f ′(z)|2

(1 + |f(z)|2)2 .

Let η := ρ/8π. By (1.1.4), we have
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S(f) :=
f ′′′

f ′ − 3

2

(f ′′

f ′

)2
= uzz −

1

2
u2z = −2η(η + 1)

1

z2
+O(1),

(3.1.3)

where the last equality follows from the asymptotic expansion

u ∼ 4η log |z|

at z = 0 and that u is smooth outside z = 0 in E. The expression of
S(f) in u shows that it is a meromorphic function on E, which is holo-
morphic outside {0} and its polar part at z = 0 is given by the last ex-
pression in (3.1.3). Therefore there exists a constant B = B(E, η, u) such
that

(3.1.4) S(f) = uzz − 1
2u

2
z = −2(η(η + 1)℘(z) +B).

It follows that there exist two linearly independents solutions w1 and w2

of the Lamé equation (3.1.1) with accessary parameter B(E, η, u) such that
f = w1/w2.

3.1.3. The Lamé equation (3.1.1) had been studied in the classical lit-
erature in two special cases, very extensively in case when the index η is
a positive integer, and somewhat less so in the case when the index η is
a half-integer, i.e. 2η = 2n + 1 is an odd positive integer. We have seen
in the previous sections that the former case corresponds to type II so-
lutions while the latter case is for type I solutions. The main objective
of this section is to prove that for any odd positive integer 2n + 1, on
all but a finite number of isomorphism classes of elliptic curves, there are
precisely n + 1 solutions to the mean field equation �u + eu = 4π(2n +
1)δ0.

The following theorem is due to Brioschi [7], Halphen [27, pp. 471–473]
and Crawford [19] in the late nineteenth century; see [19] for a complete
proof. See also [53, pp. 162–164] for a succinct presentation of Halphen’s
transformation as well as [67, p. 570] for Crawford’s procedure for analyzing
Brioschi’s solution.

Theorem 3.2. Let n be a non-negative integer.

(a) There exists a monic polynomial pn(B; Λ) = pn(B, g2(Λ), g3(Λ)) of de-

gree n+1 in B with coefficients in Z[g2(Λ)4 ; g3(Λ)
4 ] such that the Lamé

equation Ln+1/2,B w = 0 on C/Λ has all solutions free from logarithm
at z = 0 if and only if pn(B; Λ) = 0.
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This polynomial pn(B, g2, g3) ∈ Z[12 ][B, g2, g3] is homogeneous of
weight n+ 1 if B, g2, g3 are given weights 1, 2, 3 respectively.

(b) For any lattice Λ outside a finite subset Sn of homothety classes of
lattices in C, the polynomial pn(B; Λ) has n+ 1 distinct roots.

Proof. The logarithm-free solutions of the Lamé equation Ln+1/2,B w = 0
were first discovered by Brioschi [7, p. 314], but the underlying structure are
more transparently exhibited using Halphen’s transformation [27, p. 471]
as carried out in detail by Crawford [19]. The statement (a) is proved in
[19]; see also [53, p. 164] for a presentation of Crawford’s proof. A slightly
different proof of (a) following the same train of ideas can be found in [3,
p. 26–28].

Crawford’s proof provides a recursive formula for pn(B; Λ). When Λ is
of the form Z+

√
−1aZ with a ∈ R>0, this recursive formula also produces a

Sturm sequence starting with pn(B), therefore pn(B; Λ) has n+ 1 distinct
real roots; see [19, p. 94].16 This implies that the discriminant of the poly-
nomial pn(B; Λ) , which is a modular form for SL2(Z), is not identically 0.
The statement (b) follows. See §3.3 for remarks on Sturm’s theorem used in
Crawford’s proof.

Remark 3.2.1. We will give an alternative proof of part (a) of Theorem
3.2 in §3.4, which is essentially local near z = 0. Our proof not only provides
a new construction of the polynomial pn(B), it also generalizes to the case
with multiple singular sources. This generalization will be presented in a
later work; c.f. [11].

3.3. Remark on Sturm’s theorem. Crawford’s proof in [19, p. 94] that
the polynomial pn(B; Λ) has n + 1 distinct real roots for rectangular tori
uses a fact closely related to Sturm’s theorem on real roots of polynomials
over R, not found in standard treatment of this topic, such as [64, 11.3]
and [33, 5.2].17 We have been able to find only one reference of this fact,
as a “starred exercise” in [63, p. 149 ex. 30]. In Proposition 3.3.3 below we

16The statement that pn(B) has n + 1 distinct real roots was proved in [19,
p. 94] under the condition that the x-coordinates of the three non-trivial two-torsion
points, ei = ℘(ωi/2; Λ) for i = 1, 2, 3, are real numbers. This is the case when the
lattice Λ is of the form Λτ with τ ∈

√
−1R>0.

17This fact must be familiar to all educated scientists in the late nineteenth
and early twentieth century, often used freely without comments in mathematical
writings at the time. This is the case for the proofs in [67, p. 557] and [53, p. 163] for
the existence of 2m+ 1 distinct real roots of the polynomial lm(B) corresponding
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provide a mild generalization of the usual form of Sturm’s theorem for the
convenience of the readers. Its corollary 3.3.4 is equivalent to [63, p. 149
ex. 30].

Definition 3.3.1. A sequence of non-zero polynomials

f0(x), f1(x), . . . , fm(x) ∈ R[x]

is a Sturm sequence on (a, b] if the following two properties hold.

(i) fm(x) is either positive definite or negative definite on (a, b].

(ii) Suppose that ξ ∈ (a, b] and fi(ξ) = 0 for some i with 1 ≤ i ≤ m − 1.
Then fi−1(ξ) and fi+1(ξ) have opposite signs (in the sense that either they
are both non-zero with opposite signs, or are both zero).18

Remark. There is an extra condition in the conventional definition of a
Sturm sequence: f1(ξ) and f0(ξ) have the same sign for every root ξ of
f0(x) in (a, b]. This condition has been dropped in Definition 3.3.1 above.

3.3.2. Definition. Let f0(x), f1(x), . . . , fm(x) be a Sturm sequence.

(1) For every real number ξ, define σ(ξ) to be the total number of changes
of signs in the sequence (f0(ξ

+), f1(ξ
+), . . . , fm−1(ξ

+), fm(ξ)).19

(2) Define a {−1, 0, 1}-valued “local index” function εf0(x) on R attached to
a real polynomial f0(x) ∈ R[x] as follows.

• Suppose that f0(ξ) = 020 and multx=ξ f0(x) is odd.
21 Define

εf0(x)(ξ) :=

{
1 if f0(ξ

+) and f1(ξ) have the same sign
−1 if f0(ξ

+) and f1(ξ) have opposite signs

to 2m+ 1 Lamé functions for the equation

d2w

dz2
− (m(m+ 1)℘(z; Λ) +B)w = 0

when Λ = Z +
√
−1aZ for some a ∈ R>0 and m ∈ N>0. However this then-well-

known fact is no longer part of the general education for mathematicians today.
18The latter possibility is ruled out by condition (i).
19Here we used fi(ξ

+) to make sure that each term has a well-
defined sign. In view of condition (ii), we could have used the sequence
(f0(ξ

+), f1(ξ), . . . , fm−1(ξ), fm(ξ)) in the definition, suppress zeros when counting
the number of variations of signs in it.

20f1(ξ) �= 0 if f0(ξ) = 0, by (i) and (ii).
21For a zero ξ of f0(x), the sign of f0(x) changes when x moves across ξ if and

only if multx=ξ f0(x) is odd.
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• εf0(x)(ξ) = 0 if multx=ξ f0(x) is even. In particular εf0(x)(ξ) = 0 if
f0(ξ) �= 0.

(3) Define Zf0(x)((a, b]) ∈ Z by

Zf0(x)((a, b]) :=
∑

ξ∈(a,b]
εf0(x)(ξ).

This number Zf0(x)((a, b]) counts the number of zeros of f0(x) with odd
multiplicity with a signed weight given by εf0(x). It can be thought of as
some sort of “total Lefschetz number” for f0(x)|(a,b].

Proposition 3.3.3. Let f0(x), f1(x), . . . , fm(x) be a Sturm sequence on
(a, b]. Then

Zf0(x)((a, b]) = σ(a)− σ(b),

i.e. σ(a)−σ(b) is the number of zeros of f0(x) in the half-open interval (a, b]
with odd multiplicity, counted with the sign εf0(x).

Proof. Condition (ii) ensures that crossing a zero in [a, b) of any of the inter-
nal members f1(x), . . . , fm−1(x) of the Sturm chain makes no contribution
to changes of σ(ξ). Each time a zero ξ0 of f0(x) with odd multiplicity is
crossed, σ(ξ) decreases by εf0(x)(ξ) as ξ moves from the left of ξ0 to its right.
On the other hand, moving across a zero of f0(x) with even multiplicity does
not change the value of σ. So the σ(b)−σ(a) is equal to the total number of
zeros of f0(x) in (a, b] with odd multiplicity, counted with the sign εf0(x).

Corollary 3.3.4. Let f0(x), . . . , fm(x) be a Sturm sequence on (a, b]. Let
n ∈ N be a non-negative integer. If σ(a)− σ(b) = ±n and f0(x) has at most
n distinct real roots in (a, b], then f0(x) has exactly n distinct real roots in
the half-open interval (a, b]. In particular if a = −∞, b = ∞, deg(f0(x)) = n
and σ(−∞)− σ(∞) = ±n, then f0(x) has n distinct real roots.

3.4. A proof of Theorem 3.2 (a). Let’s start with any f as the quotient
of two independent solutions of Lamé equation Ln+1/2,B w = 0 at z = 0 and
consider v(z) = log f ′(z). It is readily seen that

v′′ − 1

2
(v′)2 =

(f ′′

f ′

)′
− 1

2

(f ′′

f ′

)2
= S(f).

We remark that the function v satisfies the similar equation as u in (3.1.3),
but v is analytic in nature while u is only a real function.
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The indicial equation at z = 0 is given by λ2 − λ − η(η + 1) = (λ −
(η + 1))(λ + η) = 0. If there are logarithmic solutions, the fundamental

solutions are given as

(3.4.1) w1(z) = zη+1h1(z), w2(z) = ξw1(z) log z + z−ηh2(z),

where ξ �= 0 and h1, h2 are holomorphic and non-zero at z = 0. But then

f =
aw1 + bw2

cw1 + dw2

is easily seen to be logarithmic as well if ad−bc �= 0, thus the Lamé equation

has no logarithmic solutions at z = 0 if and only if we have one nontrivial

solution quotient f to be logarithmic free at z = 0.

Now suppose that the Lamé equation has no solutions with logarith-

mic term. Let f be a ratio of two independent solutions. Without lose of

generality, we may assume that f is regular at 0. Since η = n+ 1
2 and

(3.4.2) S(f) = −2((n+ 1
2)(n+ 3

2)℘(z) +B),

to require that f is logarithmic free at z = 0 is equivalent to that f(z) =

c0 + c2n+2z
2n+2 + · · · near z = 0 with c0 �= 0.

Recall that

℘(z) =
1

z2
+
∑
k≥1

(2k + 1)Gk+1z
2k

where Gk =
∑

ω∈Λ∗ 1/ω2k is the standard Eisenstein series of weight 2k for

SL2(Z). It is customary to write g2 = 60G2 and g3 = 140G3. It is also well

known that all Gk’s are expressible as polynomials in g2, g3.

We will show that the solvability of the Schwarzian equation (3.4.2) for

f being of the proposed form is equivalent to the statement that B satisfies

pn(B) = 0 for some universal polynomial pn(B, g2, g3) of degree n+1. Indeed,

let

v := log f ′ = log c2n+2(2n+ 2) + (2n+ 1) log z +
∑
j≥1

djz
j .

For convenience we set ej = (j + 1)dj+1 for j ≥ 0 and then

v′ =
2n+ 1

z
+
∑
j≥0

ejz
j
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The degree z−1 terms in

v′′ − 1

2
(v′)2 = −2((n+ 1

2)(n+ 3
2)℘(z) +B)

match by our choice. That there is no z−1 term in the right hand side of
(3.4.2) shows that e0 = 0. Then the constant terms give e1− 1

22(2n+1)e1 =
−2B, i.e. ne1 = B. For n = 0, we must conclude B = 0. Thus we set
p0(B) = B.

Similarly, for j ≥ 1, the degree j terms in the LHS give

(j + 1)ej+1 − 1
22(2n+ 1)ej+1 − 1

2

j−1∑
i=1

eiej−i.

Since there is no odd degree terms in the right hand side of (3.4.2), by
considering j = 1, 3, 5, . . . we first conclude inductively that ei = 0 for i
even.

Next we consider degree j = 2, 4, 6, . . . terms inductively. Write Ek =
e2k−1 for k ≥ 1. Then j = 2k leads to

(3.4.3) 2(k − n)Ek+1 − 1
2

k∑
i=1

EiEk+1−i = −2(n+ 1
2)(n+ 3

2)(2k + 1)Gk+1.

We have just seen that nE1 = B. If we assign degree k to Gk, then (3.4.3)
shows inductively that Ek = Ek(B, g2, g3) is a degree k polynomial in B
which is homogeneous in B, g2, g3 of degree k up to k ≤ n.

Now put k = n in (3.4.3), the first term vanishes and we must have

p̃n(B, g2, g3) :=

n∑
i=1

EiEn+1−i − 8(n+ 1
2)

2(n+ 3
2)Gn+1

vanishes too. Up to a multiplicative constant, this p̃n(B) is the degree n +
1 polynomial in B we search for. Indeed, by our inductive construction
through (3.4.3), the leading coefficients cn of p̃n(B) depends only on n.
Hence pn(B, g2, g3) := c−1

n p̃n(B, g2, g3) is monic in B and homogeneous of
degree n+ 1 in B, g2, g3.

Conversely, if p̃n(B) = 0, then E1, . . . , En can be solved by (3.4.3) up to
k = n − 1. For k = n − 1, p̃n(B) = 0 is equivalent to (3.4.3) at k = n. By
assigning any value to En+1, we can use (3.4.3) for k ≥ n + 1 to find Ej ,
j ≥ n+ 2. Thus this f is a solution to the Schwarzian equation (3.4.2) and
is free from logarithmic terms. The proof is complete.
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Remark 3.4.1. Notice that En+1 = e2n+1 = (2n+2)d2n+2 is a free param-
eter. All Ek’s are determined by B and En+1. For any B with pn(B) = 0, the
three constants c0, c2n+2 and En+1 provide the three dimensional freedom
for f due to the freedom of SL2(C) action on f .

Remark 3.4.2. We have seen that the type I developing map f(z) is even.
This also follows form our proof of Theorem 3.2 since we do not assume the
a priori evenness during the proof.

To apply Theorem 3.2 to study mean field equations for ρ = 4π(2n+1),
the essential point is the following theorem.

Theorem 3.5 (= Theorem 0.4.1). Let n be a non-negative integer. The
projective monodromy group of the Lamé equation Ln+(1/2),B w = 0 is iso-
morphic to Klein’s four-group (Z/2Z)2 if and only if there exists two mero-
morphic solutions w1, w2 on C of the above Lamé equations such that w1

w2
is

a type I developing map of a solution of the mean field equation �u+ eu =
4π(2n+ 1)δ0. Moreover, each such value of the accessary parameter B with
the above property gives rise to exactly one type I solution.

Proof. Let u be a type I solution of the mean field equation �u+ eu = ρ δ0
on C/Λ and let f be a normalized developing map of u satisfying the type
I transformation rules (1.3.2). We know from Theorem 2.2 that there exists
a non-negative integer n such that ρ = 4π(2n + 1), and we have seen that
there exists a complex number B such that the Schwarzian derivative S(f)
of f is equal to −2((n + 1

2)(n + 3
2)℘(z; Λ) + B). Then local solutions of

the Lamé equation Ln+1/2,B w = 0 are free of logarithmic solutions, and
there exists two solutions w1, w2 over C such that f = w1

w2
. The projective

monodromy group of the equation Ln+1/2,B w = 0 is canonically isomorphic
to the monodromy group of the meromorphic function w1

w2
, which is a Klein

four group K4 by the type I transformations (1.3.2). We have proved the
“only if” part of Theorem 0.4.1.

Conversely, suppose that the projective monodromy group of a Lamé
equation Ln+1/2,B w = 0 is a Klein-four group. Then all local solutions
of this Lamé equation are free of logarithmic singularities, and there are
for two linearly independent solutions w1, w2 of this equation which are
meromorphic functions over C. It is easy to check from basic theory of linear
ODE’s with regular singularities that the holomorphic map w1

w2
: C → P1(C)

has no critical point outside Λ, and has multiplicity 2n+ 2 at points of Λ.
Let ρ : Λ → GL2(C) be the monodromy representation of the differ-

ential equation Ln+1/2,B w = 0 attached to the basis w1, w2 of solutions of
Ln+1/2,B w = 0. Let ρ̄ : Λ → PSL2(C) be the composition of ρ with the
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canonical projection GL2(C) → PSL2(C). Because PSU(2) is a maximal
compact subgroup of PSL2(C), the finite subgroup Im(ρ̄) of PSL2(C) is a
conjugate of a subgroup of PSU(2), i.e. there exists an element S1 ∈ GL2(C)
such that S1 ·Im(ρ̄)·S−1

1 ⊂ PSU(2). By Corollary 1.3.2, there exists an ele-
ment S2 ∈ PSU(2) such that S2·S1·ρ̄(ω1)·S−1

1 ·S−1
2 and S2·S1·ρ̄(ω2)·S−1

1 ·S−1
2

are the image in PSU(2) of (
√
−1 0
0 −

√
−1

) and ( 0
√
−1√

−1 0
) respectively. Write

S2 · S1 = ( a b
c d ). Then f1 := aw1+cw2

bw1+dw2
is a developing map of a solution of

�u+ eu = 4π(2n+ 1)δ0, by Lemma 1.2.6, and it is normalized of type I by
construction. We have proved the “if” part of Theorem 0.4.1. The uniqueness
assertion in the last sentence of Theorem 0.4.1 is clear from the correspon-
dence we have established, between solutions of the mean field equation
�u + eu = 4π(2n + 1)δ0 and Lamé equations Ln+1/2,B w = 0 such that no
solution has logarithmic singularity.

Corollary 3.5.1. On any flat torus C/Λ, the mean field equation �u+eu =
4π(2n + 1) δ0 at most n + 1 solutions. It has exactly n + 1 solutions except
for a finite number of conformal isomorphism classes of flat tori.

Proof. This is an immediate consequence of theorems 3.2, 3.5 and 0.4.1.

Corollary 3.5.2. For η = n+ 1
2 , the monodromy group M of Ln+1/2,B w = 0

on an elliptic curve C/Λ is finite if and only if it corresponds to a type I
solution of the mean field equation �u + eu = 4π(2n + 1)δ0 on C/Λ as in
Theorem 3.5.

Proof. It was shown in [4, Thm. 2.3] that the monodromy group of the Lamé
equation Ln+(1/2),B w = 0 is finite if and only if no solution of Ln+(1/2),B w =
0 has logarithmic singularity, and if so the projective monodromy group
Ln+(1/2),B w = 0 is isomorphic to (Z/2Z)2.

Example 3.6. By (3.4.3), it is easy to determine pn(B). For example,

p1(B) = B2 − 3
4g2,

p2(B) = B3 − 7g2B + 20g3.

For ρ = 12π, the two solutions to the mean field equation collapse to the
same one precisely when p1(B) has multiple roots. This is the case if and
only if g2 = 0, which means that τ = eπi/3.

To see this from Example 2.5 is a little bit trickier. We may solve

(e3 − e1)
2 + 16(e1 − e2)(e3 − e2) = 0
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in terms of the modular function

λ(τ ′) =
e3 − e2
e1 − e2

where τ ′ = ω′
2/ω

′
1 = 2ω2/ω1 = 2τ . A simple calculation leads to

(λ− 1)2

λ
= −16, i.e. λ2 + 14λ+ 1 = 0.

Then the corresponding j invariant is

j(τ ′) := 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
= −28153

λ

(λ− 1)2
= 243353.

In general it would be difficult to determine τ ′ from j. Fortunately the

value j = 243353 appears in the famous list of elliptic curves with complex

multiplications (see e.g. [30]) and it is known that

τ ′ ≡
√
−3 (mod SL2(Z)).

Take τ in the fundamental region, then there is a unique choice of τ , namely

τ = 1
2(1 +

√
−3) = eπ

√
−1/3, which gives rise to

2τ = 1 +
√
−3 ≡

√
−3 = τ ′ (mod SL2(Z)).

4. Singular Liouville equations with ρ = 4π and modular
forms

In §2, we discussed how to find all type I solutions by solving a system of

polynomial equations which depends holomorphically on the moduli param-

eter τ of the torus Eτ = C/Λτ = C/(Z+Zτ), where τ varies in the upper-half

plane H. In this section, we consider the simplest case

(4.0.1) �u+ eu = 4πδ0 in Eτ ,

and show that certain modular forms of level 4 are naturally to the solutions

of (4.0.1) as τ varies. The general case with multiple singular sources will

be considered in a subsequent work.
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4.1. Notation.

• Let H be the upper-half plane. The group SL2(R) operates transitively

on H through the usual formula ( a b
c d ) · τ = aτ+b

cτ+d .

• Let j(γ, τ) be the 1-cocycle of SL2(R) for its action on H, defined by

j(γ; τ) = cτ + d for any γ = ( a b
c d ) ∈ SL2(R) and any τ ∈ H.

• Denote by K4 the subgroup of PSU(2) ⊂ PSL2(C) isomorphic to

(Z/2Z)2, consisting of the image in PSU(2) of the four matrices

(
1 0
0 1

)
,

(√
−1 0
0 −

√
−1

)
,

(
0

√
−1√

−1 0

)
and

(
0 1
−1 0

)
.

We know from Lemma 1.3.1 (1b) that the centralizer subgroup of K4

in PSL2(C) is equal to itself.

• Let N(K4) be the normalizer subgroup of K4 in PSU(2), which is

also equal to the normalizer subgroup of K4 in PSL2(C). We know

from Lemma 1.3.1 (1d) that N(K4) is a semi-direct product of K4 with

S3 and N(K4) is isomorphic to S4. Moreover the conjugation action

induces an isomorphism from N(K4)/K4 to the permutation group of

the three non-trivial elements of K4.

Proposition 4.2. (a) For any τ ∈ H, there exists a unique normalized

developing map f(z; τ) for the unique solution u(z) of the equation (4.0.1)

which has the following properties.

ordz=a f(z, τ) = 0 ∀a �≡ 1
2 (mod Λ)(4.2.1)

d
dzf(z; τ)

∣∣
z=0

= 0, d2

dz2 f(z; τ)
∣∣
z=0

∈ C×.(4.2.2)

The holomorphic map f(z; τ) : C → P1(C) is etale outside Λτ .(4.2.3)

f(z + 1; τ) = −f(z), f(z + τ ; τ) = 1/f(z; τ) ∀z ∈ C.(4.2.4)

f(−z; τ) = f(z; τ) ∀z ∈ C.(4.2.5)

f(12τ ; τ) = 1 ∀z ∈ C.(4.2.6)

ordz=1/2 f(z; τ) = 1(4.2.7)

ordz=(1/2)+τ f(z; τ) = −1(4.2.8)

(b) The function f(z; τ) in (a) is characterized by properties (4.2.1), (4.2.4),

(4.2.6) and (4.2.7), i.e. if h(z) is a meromorphic function on C which

satisfies (4.2.1), (4.2.4), (4.2.6) and (4.2.7) for an element τ ∈ H, then

h(z) = f(z; τ) for all z ∈ C.
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(c) The function f(z; τ) can be expressed in terms of Weierstrass elliptic

functions:

f(z; τ) = −e
1
4η(τ ; Λτ )·(1+τ) ·

σ( z2−
1
4 ; Λτ ) · σ( z2+

1
4 ; Λτ )

σ( z2−
1
4−

τ
2 ; Λτ ) · σ( z2+

1
4+

τ
2 ; Λτ )

= −e
1
4η(τ ; Λτ )·(1+τ) ·

σ2(14 ; Λτ )

σ2(14+
τ
2 ; Λτ )

·
℘( z2 ; Λτ )− ℘(14 ; Λτ )

℘( z2 ; Λτ )− ℘(14+
τ
2 ; Λτ )

=
℘( τ4 ; Λτ )− ℘(14 + τ

2 ; Λτ )

℘( τ4 ; Λτ )− ℘(14 ; Λτ )
·

℘( z2 ; Λτ )− ℘(14 ; Λτ )

℘( z2 ; Λτ )− ℘(14 + τ
2 ; Λτ )

(4.2.9)

Proof. (a) For any τ ∈ H, we have proved that in §2 that equation (4.0.1)

has a unique solution u(z; τ), z ∈ Eτ and there exists a normalized type I

developing map f(z; τ) for u(z; τ). Because the centralizer subgroup of K4

in PSU(2) is K4 itself, normalized type I developing maps consists are of

the form γ · f with γ ∈ K4. Properties (4.2.1)–(4.2.5) are satisfied by all

4 normalized developing maps. The first part of (4.2.4) and (4.2.6) implies

that f(z; τ) has either a zero or a pole at z = 1
2 . Changing f1 to (

0
√
−1√

−1 0
)·f

if necessary, we may assume that f1(
1
2 ; τ) = 0. Then f(z; τ) has a simple

zero at z = 1
2 by (4.2.1), and properties (4.2.7)–(4.2.8) hold for f . Similarly

properties (4.2.1), (4.2.4) and (4.2.5 for f imply that f( τ2 ; τ) = ±1. Changing

f to (
√
−1 0
0 −

√
−1

) ·f if necessary, we have produced a normalized developing

map satisfying (4.2.1)–(4.2.8).

(b) Suppose that h(z) is a meromorphic function which satisfies properties

(4.2.1), (4.2.4), (4.2.6) and (4.2.7). Then h(z) descends to a meromorphic

function on C/2Λτ which has simple zeros at ±1
2 mod 2Λτ , simples poles at

±1
2 + τ mod2Λτ and no zeros or poles elsewhere just like f(z, τ). Therefore

h(z) = c · f(z; τ) for some c ∈ C×. This constant c is equal to 1 by (4.2.7).

(c) For the first equality in (4.2.9), it suffices to show that the function

e
1
4η(τ ; Λτ )·(1+τ) ·

σ( z2−
1
4 ; Λτ ) · σ( z2+

1
4 ; Λτ )

σ( z2−
1
4−

τ
2 ; Λτ ) · σ( z2+

1
4+

τ
2 ; Λτ )

satisfies conditions (4.2.1), (4.2.4), (4.2.6) and (4.2.7) according to (b). The

properties (4.2.1), (4.2.4) and (4.2.7) follows quickly from the transformation

law for the Weierstrass σ-function σ(z; Λτ ) and the fact that the entire

function σ(z; Λτ ) has simple zeros at points of Λτ does not vanish elsewhere.
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The condition (4.2.6) is equivalent to

σ( τ4−
1
4 ; Λτ )

σ(−3τ
4 − 1

4 ; Λτ )
= −e−

1
4η(τ ; Λτ )·(1+τ),

which follows from the transformation law of σ(z; Λτ ) with respect to the
element τ ∈ Λτ . We have proved that the first equality

f(z; τ) = e
1
4η(τ ; Λτ )·(1+τ) ·

σ( z2−
1
4 ; Λτ ) · σ( z2+

1
4 ; Λτ )

σ( z2−
1
4−

τ
2 ; Λτ ) · σ( z2+

1
4+

τ
2 ; Λτ )

in (4.2.9). The second equality in (4.2.9) follows from the classical formula

(4.2.10) ℘(u; Λ)− ℘(v; Λ) = −σ(u+ v; Λ) · σ(u− v; Λ)

σ2(u; Λ) · σ2(v; Λ)
.

The last equality in (4.2.9) is equivalent to

(4.2.11)
℘( τ4 ; Λτ )− ℘(14 + τ

2 ; Λτ )

℘( τ4 ; Λτ )− ℘(14 ; Λτ )
= −e

1
4η(τ ; Λτ )·(1+τ) ·

σ2(14 ; Λτ )

σ2(14+
τ
2 ; Λτ )

,

which is easily verified using (4.2.9) and the transformation law of the Weier-
strass σ-function σ(z; Λτ ) with respect to the lattice Λτ . We have proved part
(c) of Proposition 4.2.

Proposition 4.3. Let f(z; τ) be the developing map specified in Proposi-
tion 4.2.

(a) There exists a unique group homomorphism ψ : SL2(Z) → N(K4) such
that

(4.3.1) f
(
j(γ, τ)−1 ·z; γ · τ

)
= ψ(γ)·f(z; τ) ∀z ∈ C, ∀τ ∈ H.

Here ψ(γ)·f(z; τ) = af(z;τ)+b

−b̄f(z;τ)+ā
if ψ(γ) is the image of ( a b

−ā b̄ ) in PSU(2).

(b) The homomorphism ψ is surjective. The kernel Ker(ψ) of ψ is equal to
the subgroup of SL2(Z) generated by ±I2 and the principal congruence sub-
group Γ(4) of level 4, consisting of all γ ∈ SL2(Z) with γ ≡ I2 (mod 4). The
inverse image ψ−1(K4) of K4 under ψ is the principal congruence subgroup
Γ(2). (In other words ψ induces an isomorphism SL2(Z/4Z)/{±I2} ∼−→
N(K4), and also an isomorphism SL2(Z/2Z)

∼−→ N(K4)/K4
∼= S3.)

(c) ψ(( 1 1
0 1 )) = the image in PSU(2) of the unitary matrix

( e
π
√

−1/4 0
0 e−π

√
−1/4 ), and ψ(( 0 1

−1 0 )) = the image in PSU(2) of
√
−1√
2
(−1 1

1 1 ).
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Proof. (a) It is easily checked that for each γ ∈ SL2(Z), f(j(γ, τ)
−1·z; γ ·τ) is

a developing map of the unique solution of (4.0.1), and that for each ω ∈ Λτ

we have f(j(γ, τ)−1·z+ω; γ · τ) = ±f(z; τ)±1. Since f(j(γ, τ)−1·z+ω; γ · τ)
and f(z; τ) are developing maps for the same solution of (4.0.1), there exists

an unique element ψ(γ) ∈ PSU(2) such that the equality (4.3.1) holds. The

fact that f(j(γ, τ)−1·z + ω; γ · τ) = ±f(z; τ)±1 for each ω ∈ Λτ means that

ψ(γ) ∈ N(K4).

For all γ1, γ2 ∈ SL2(Z), we have

f(j(γ1γ2, τ)
−1z; γ1γ2 ·τ) = f(j(γ1, γ2 ·τ)−1 · j(γ2, τ)−1 ·z; γ1 ·(γ2 ·τ))

= ψ(γ1)·f(j(γ2, τ)−1 ·z; τ)
= ψ(γ1)·ψ(γ2) · f(z; τ),

therefore ψ(γ1γ2) = ψ(γ1)· ψ(γ2). We have proved statement (a).

(b) We get from (a) that for any γ = ( a b
c d ) in SL2(Z) we have

(4.3.2) f(j(γ, τ)−1z+u γ ·τ+v; γ ·τ) = ψ(γ)·f(z+(ua+vc)τ+(ub+vd); τ)

for all u, v ∈ Q. For any given γ ∈ Γ(2), we have

(ua+vc)τ+(ub+vd) ≡ uτ + v (mod 2Λτ ) ∀(u, v) ∈ Z2,

so the equality (4.3.2) for all (u, v) ∈ Z2 implies that ψ(γ) commutes with

every element of K4. Hence ψ(γ) ∈ K4 for any γ ∈ Γ(2).

Suppose that γ ∈ Γ(4). Then

(ua+vc)τ+(ub+vd) ≡ uτ + v (mod 2Λτ ) ∀(u, v) ∈ 1
2Z

2,

and the equality (4.3.2) with z = 0 implies that

(ψ(γ)·f)(uτ + v; τ) = f(uγ ·τ + v; γ ·τ) ∀(u, v) ∈ 1
2Z

2.

Because we already know that ψ(γ) ∈ K4, the last equality implies that

ψ(γ) = I2. We have proved that Γ(4) ⊂ Ker(ψ).

Suppose that γ = ( a b
c d ) ∈ Ker(ψ). As before we have

(4.3.3) f(j(γ, τ)−1z+u γ ·τ+v; γ ·τ) = f(z+(ua+vc)τ+(ub+vd); τ)
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for all (u, v) ∈ Q2. The transformation law (4.2.4) for f(z; τ) and the above
equality for (u, v) ∈ Z2 imply that

(ua+ vc)τ + (ub+ vd) ≡ uτ + v (mod 2Λτ ) ∀(u, v) ∈ Z2,

therefore γ ∈ Γ(2). The equation (4.3.3) with z = 0 and u, v ∈ 1
2Z tells us

that

f(u γ ·τ+v; γ ·τ) = f((ua+vc)τ+(ub+vd); τ) ∀(u, v) ∈ 1
2Z

2.

The properties (4.2.4), (4.2.6) and (4.2.7) imply that

(ua+ vc)τ + (ub+ vd) ≡ ±(uτ + v) (mod 2Λτ ) ∀(u, v) ∈ 1
2Z

2,

therefore γ ∈ {±I2}·Γ(4). We have proved the statement (b).

(c) We want to compute T := ψ( 1 1
0 1 ) and S := ψ( 0 1

−1 0 ). The defining
relation for T is

(4.3.4) f(z; τ + 1) = T · f(z; τ) ∀z ∈ C, ∀τ ∈ H.

Substituting z by z + ω in (4.3.4) with ω ∈ Λτ gives us two equalities

T ·
(√

−1 0
0 −

√
−1

)
=
(√

−1 0
0 −

√
−1

)
· T and

(
0

√
−1√

−1 0

)
· T = T ·

(
0 −1
1 0

)

in PSU(2). A easy computation with the above equalities reveals that γ ∈
( e

π
√

−1/4 0
0 e−π

√
−1/4 ) ·K4, i.e. f(z; τ + 1) = ±

√
−1 · f(z; τ)±1. Since f(12 ; τ) =

f(12 ; τ+1) = 0, the possibilities narrow down to f(z; τ+1) = ±
√
−1·f(z; τ).

It remains to determine the sign, which amounts to computing f( τ+1
2 ; τ)

From the first equality in (4.2.9) we get

f( τ+1
2 ; τ) = −e

1
4η(τ ; Λτ )·(1+τ) ·

σ( τ4 ; Λτ ) · σ( τ+2
4 ; Λτ )

σ(− τ
4 ; Λτ ) · σ(3τ+2

4 ; Λτ )

= e
1
4 [η(τ ; Λτ )−η(1; Λτ )]

= −
√
−1

The second equality in the displayed equation above follows from the trans-
formation law of the Weierstrass σ-function, while the last equality follows
from the Legendre relation η(1; ,Λτ )τ − η(τ ; Λτ ) = 2π

√
−1. We conclude

that

f(z; τ + 1) =
√
−1·f(z; τ),
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which gives the formula for T = ψ(( 1 1
0 1 )).

Finally let’s compute S. The defining relation for S is

f
(
− 1

τ z; −
1
τ ) = S · f(z; τ)

The functional equation for z → z+ω with ω ∈ Λτ gives us two equalities

S ·
(
1 0
0 −1

)
=
(
0 1
1 0

)
· S and

(
1 0
0 −1

)
· S = S ·

(
0 1
1 0

)

in PSU(2). A straight-forward computation gives four possible solutions of
S, which translates into

f(− 1
τ z; −

1
τ ) = ±f(z; τ) + 1

f(z; τ)− 1
or ± f(z; τ)− 1

f(z; τ) + 1

The requirement that f(− 1
2τ ; −

1
τ ) = 1 eliminates two possibilities: the two

± signs above are both −1. The requirement that f(12 ; −
1
τ ) = 0 shows that

f
(
− 1

τ z; −
1
τ ) = −f(z; τ)− 1

f(z; τ) + 1
.

We have proved the statement (c).

Recall that the quotient Γ(4)\H has a natural structure as (the C-points
of) a smooth affine algebraic curve Y (4). The compactified modular curve
X(4) is the smooth compactification X(4) of Y (4). As a topological space
X(4) is naturally identified as the quotient by Γ(4) of H�P1(Q); the topol-
ogy of the latter is described in [56, p. 10]. The complement X(4) � Y (4) ,
called the cusps of X(4), is a set with 6 elements naturally identified with
Γ(4)\P1(Q), or equivalently the set P1(Z/4Z) of Z/4Z-valued points of the
scheme P1 over Z. It is well-known that X(4) has genus zero; c.f. [56,
(1.6.4), p. 23].

The general discussion in §2, of which the present situation is the special
case ρ = 4π, implies that the function τ → f(0; τ) is holomorphic on H.
Proposition 4.3 implies that the holomorphic function τ → f(0; τ) on H

descends to a holomorphic function hX(4) on the open modular curve Y (4).
The next corollary says that hX(4) is a Hauptmodul for X(4).

Corollary 4.4. (a) The holomorphic function hX(4) on Y (4) is a meromor-
phic function on X(4) which defines a biholomorphic isomorphism h∗X(4)

from X(4) to P1(C). This isomorphism h∗X(4) is equivariant with respect to
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ψ, for the action of SL2(Z)/{± Id2}·Γ(4) on X(4) and the action of N(K4)
on P1(C).

(b) We have explicit formulas for hX(4)(τ) = f(0, τ):

(4.4.1) h(τ) = −e
1
4η(τ ; Λτ )·(1+τ) ·

σ2(14 ; Λτ )

σ2(14+
τ
2 ; Λτ )

=
℘( τ4 ; Λτ )− ℘(14 + τ

2 ; Λτ )

℘( τ4 ; Λτ )− ℘(14 ; Λτ )

(c) The isomorphism h∗X(4) sends (the image of) the standard cusp “∞ ·√
−1”, that is the point ∞ ∈ P1(Q), to the point 0 ∈ P1(C).

Proof. The formula (4.4.1) in (b) follows immediately from the formulas
(4.2.9) for f(z; τ).

There are two ways to see that hX(4) is a meromorphic function on
X(4). One can use either of the two formulas in (b) and classical results on
Weierstrass elliptic functions. The other way is to use Picard’s theorem: we
know that f(0, τ) �= 0 for all τ ∈ H. The ψ-equivariance of f(0, τ) implies
that

f(0, τ) �∈ {±1,±
√
−1, 0,∞} ∀τ ∈ H,

for the set {±1,±
√
−1, 0,∞} is the orbit of N(K4) on P1(C). So hX(4)

cannot have essential singularities at any of the cusps.

From the meager information in the previous paragraph we can already
conclude that the holomorphic map hX(4) from X(4) to P1(C) has degree
1: Because X(4) has exactly 6 cusps, the map hX(4) is totally ramified over

the six points of {±1,±
√
−1, 0,∞} ⊂ P1, and the Hurwitz formula forces

the degree of hX(4) to be 1.

The fact that hX(4) sends the standard cusp ∞ ·
√
−1 to 0 can be seen

by an easy computation, using the formula (4.4.1) and the q-expansion of
the Weierstrass ℘-function

1
(2π

√
−1)2

℘(z; Λτ ) =
1

2
+

qz
(1− qz)2

+
∑

m,n≥1

n qmn
τ (qnz + q−n

z )−
∑

m,n≥1

n qmn
τ

in the range |qτ | < |qz| < |qτ |−1, where qτ = e2π
√
−1τ and qz = e2π

√
−1z for

τ ∈ H and z ∈ C.

Remark 4.4.1. (a) The fact that f(0; τ) is a Hauptmodul for the principal
congruence subgroup Γ(4) is classical; see [58, p. 176]. We have not been able



198 Ching-Li Chai et al.

to locate in the literature the transformation formula in Proposition 4.3, but

formula is not difficult to prove starting from the formula (4.2.9) for f(z; τ).

Perhaps the only new thing here is the phenomenon that type I solutions of

the Liouville equation �u + eu = 4π(2n + 1)δ0 on elliptic curves produce

modular forms for Γ(4) in an organized way.

(b) Clearly the function f(0; τ) is a modular unit in the sense that it is a

unit in the integral closure of C[ j ] in C(X(4)), where j is the j-invariant

and C(X(4)) is the function field of the modular curve X(4) over C. It

turns out that f(0; τ) is actually a unit of the integral closure of Q[ j ] in

the function field of the modular curve X(4)
Q(

√
−1)

over Q(
√
−1); see [38,

Thm. 1, p. 189].

Corollary 4.5. For k = 0, 1, 2, . . . ∈ N, let ak(τ) be the holomorphic func-

tion on H defined by

(4.5.1) f(z; τ) =

∞∑
k=0

ak(τ) z
k, z ∈ C, τ ∈ H,

where f(z; τ) is the developing map in Proposition 4.2. For each k ≥ 0,

ak(τ) is a holomorphic function on H and defines a modular form of weight

k for the congruence subgroup Γ(4) in the sense that

ak(γ · τ) = j(γ, τ)k · ak(τ) ∀γ ∈ Γ(4).

Moreover ak(τ) is meromorphic at the cusps of X(4) for every k ∈ N.

Proof. The transformation formula (4.5.1) follows immediately from Propo-

sition 4.3. The fact that f(z; τ) is holomorphic on C×H implies that ak(τ)

is a holomorphic function on H. The last assertion that ak(τ) is meromor-

phic at the cusps is most easily seen from the explicit formula (4.2.9) for

f(z; τ).

4.6. Generalization to ρ = (2n+1)4π. The considerations leading to

the transformation formula (4.3.1) with respect to SL2(Z) for the normalized

developing map f(z; τ) for the unique solution of �u + eu = 4π · δ0 on

C/Λτ specified in Proposition 4.2 can be extended for all type I cases. In

4.6.1–4.6.5 below we formulate the basic geometric structures which lead

to a generalization of (4.3.1), and ends with an unsolved irreducibility and

monodromy question in 4.6.6.
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Definition 4.6.1. Let n be a non-negative integer.

(1) Let Mn be the set of all pairs (u(z), τ), where τ ∈ H and u(z) is a
solution of the mean field equation �u+ eu = 4(2n+ 1)π · δ0 on the
elliptic curve C/Λτ .
Let πn : Mn → H be the map which sends a typical element (u(z), τ)
in Mn to the point τ of the upper-half plane H. Note that πn is
surjective according to Theorem 0.4.

(2) Let Dn be the set of all (f(z), τ), where τ is an element of H and f(z)
is a developing map of a solution of �u+ eu = 4(2n+ 1)π · δ0 on the
elliptic curve C/Λτ whose monodromy group is equal to the standard
Klein’s four subgroup K4 ⊂ PSU(2) in the notation of 4.1.
Let pn : Dn→Mn be the map which sends a typical element (f(z), τ) ∈
Dn to the element (log 8|f ′(z)|2

(1+|f(z)|2)2 , τ) of Mn, and let π̃n = πn ◦ pn :

Dn → Hn be the natural projection map which sends each element
(f(z), τ) ∈ Dn to τ .

(3) Let D′
n be the subset of Dn consisting of all pairs (f(z), τ) ∈ D′ such

that and f(z) is a normalized type I developing map for an element
(u(z), τ) ∈ Mn satisfying the monodromy condition that f(z + 1) =
−f(z) and f(z + τ) = f(z)−1 for all z ∈ C. Let p′n : D′ → Mn be the
restriction to D′

n of pn, and let π̃′
n = π◦p′n : D′ → Hn be the restriction

to D′
n of πn.

(4) Define φn : Mn → D′
n be the map which sends a typical element

(u(z), τ) ∈ Mn to the element (f(z), τ) ∈ D′
n such that f(12) = 0 and

f( τ2 ) = 1.
This map φn is well-defined because for each normalized type I devel-
oping map (f(z), τ) ∈ D′

n, we have

f(12) = 0 or ∞, f( τ2 ) = ±1;

these four possibilities are permuted simply transitively by the action
of K4 through fractional linear transformations.

Lemma 4.6.2. Let Mn,Dn,D
′
n be as in Definition 4.6.1 above.

(1) Each of the three sets Mn,Dn and D′
n has a natural structure as a

one-dimensional complex manifold such that the maps πn : Mn → H,
π̃n : Dn → H and π̃′

n : D′
n → H are finite surjective holomorphic

maps. Moreover there exists a discrete subset Rn ⊂ H which is sta-
ble under the natural action of the modular group SL2(Z) on H with
|SL2(Z)\Rn| < ∞, such that πn, π̃n and π̃′

n are unramified over the
complement H�Rn of Rn.
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(2) The action of the finite group N(K4) on Dn via linear fraction trans-

formations is holomorphic, making pn : Dn → Mn an unramified

Galois cover with group N(K4). Similarly the map p′n : D′
n → Mn is

a holomorphic unramified Galois cover for the action of the standard

Klein’s four group K4 in PSU(2).

(3) The map φn : Mn → D′
n is a holomorphic section of p′n : D′

n → Mn.

Consequently pn : Dn → Mn is a trivial Galois cover with group

N(K4) and p′n : D′
n → Mn is a trivial Galois cover with group K4.

Proof. The statement (1) for πn : Mn → H follows from theorems 0.4 and

3.2. The part of statement (1) for π̃n : Dn → H and π̃′
n : D′

n → H is a

consequence of theorems 0.4 and 3.2 and the group-theoretic lemmas 1.3.1

and 1.3.2.

The action of N(K4) on Dn is easily seen to be continuous and is simply

transitive on every fiber of pn : Dn → Mn. The first part of statement (2)

follows. The second part of (2) is proved similarly.

The fact that p′n ◦ φn = idMn
is immediate from the definition. It is not

difficult to see that φn is continuous, which implies that φn is holomorphic.

The first statement in (3) is proved; the rest of (3) follows.

Definition 4.6.3. Define compatible actions of the modular group SL2(Z)

on Mn and Dn as follows. For any element γ ∈ SL2(Z), any element

(u(z), τ) ∈ Mn, and any element (f(z), τ) ∈ Dn such that pn((f(z), τ)) =

(u(z), τ),

• γ sends (u(z), τ) ∈ Mn to the element

(
u(j(γ, τ)·z) + log(|j(γ, τ)|2), γ · τ

)
∈ Mn,

• and γ sends (f(z), τ) ∈ Dn to the element

(
f(j(γ, τ)·z), γ ·τ

)
∈ Dn.

It is easy to check that pn : Dn → Mn is SL2(Z)-equivariant, i.e.

pn
(
γ · (f(z), τ)

)
= γ · pn

(
(f(z), τ)

)
for every γ ∈ SL2(Z), and every element (f(z), τ) ∈ Dn.

Lemma 4.6.4. (1) The actions of SL2(Z) on Dn and Mn defined in 4.6.3

are holomorphic.
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(2) The holomorphic maps

pn : Dn → Mn, πn : Mn → H and π̃n = πn ◦ pn : Dn → H

are equivariant for the SL2(Z)-actions on Dn,Mn and H.

(3) The actions of SL2(Z) and N(K4) on Dn commute.

(4) The submanifold D′
n ⊂ Dn is stable under the action of the principal

congruence subgroup Γ(2) of level 2 in SL2(Z).

Proof. That the action of SL2(Z) on Dn andMn is continuous can be verified

without difficulty, from which (1) follows. The proofs of statements (2)–(4)

are easy and omitted.

Corollary 4.6.5. Suppose that Mn is connected.

(a) There exists a group homomorphism

ψn : SL2(Z) → N(K4)

such that

φn

(
γ · (f(z), τ)

)
= ψn(γ) · φn

(
(f(z), τ)

)
for all γ ∈ SL2(Z) and all elements (f(z), τ) ∈ Mn.

(b) The homomorphism ψn in (a) satisfies

Γ(4) ⊆ Ker(ψn) and ψn(Γ(2)) ⊆ K4.

4.6.6. Questions. (a) Is Mn connected? 22

(b) Suppose that Mn is connected. What is the Galois group of the ramified

cover πn : Mn → Hn? Is it the symmetric group Sn+1?

5. Type II solutions: evenness and Green’s functions

In this section we give a proof of Theorem 0.6 concerning type II solutions.

By Proposition 1.5.1, we may assume that ρ = 8nπ (l = 2n). Let u be a

solution of (0.1.3), and f be a developing map of u. We recall that uλ in

(0.2.6) is a one parameter family of solutions of (0.1.3).

22We think the answer is very likely “yes”, but we don’t have a proof.
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5.1. Evenness of solutions for ρ = 8nπ.

Theorem 5.2. There is a unique even solution within each normalized type
II family of solutions of the singular Liouville equation �u+eu = 8nπ δ0 on
a torus E, n, where n is a positive integer. In other words for any normalized
type II developing map f of a solution u of the above equation, there exists
a unique λ ∈ R such that the solution

uλ(z) = log
e2λ|f ′(z)|2

(1 + e2λ|f(z)|2)2

of the same equation satisfies uλ(−z) = uλ(z) ∀z ∈ C.

Proof. Let f be a normalized type II developing map of a solution u of
(0.1.3). It is enough to show that there exists a unique λ ∈ R such that
fλ(z) := eλ · f(z) satisfies fλ(−z) = c/fλ(z) for a constant c with |c| = 1.

Let g := f ′/f , the logarithmic derivative of f ; it is a meromorphic func-
tion on E = C/Λ because f is normalized of type II. It suffice to show that
g is even, for then

f(−z) = f(0) exp

∫ −z

0
g(w) dw =

f(0)2

f(z)
,

and the unique solution of λ is given by λ = − log |f(0)|.

We know from Lemma 1.3.7 that f is a local unit at points of Λ and g
is a meromorphic function on E which has a zero of order 2n at 0 ∈ E, no
other zeros and 2n simple poles on E. Moreover the residue of g is equal to
1 at n of the simple poles of g, and equal to −1 at the other n simple poles.

Denote by P1, . . . , Pn the n simples poles of g with residue 1 on E = C/Λ,
corresponding to zeros of the developing map f , and let Q1, . . . , Qn be the
n-simple poles of g with residue −1, corresponding to simple poles of f .
Let p1, . . . , pn ∈ C be representatives of P1, . . . , Pn ∈ C/Λ; similarly let
q1, . . . , qn ∈ C be representatives of Q1, . . . , Qn ∈ C/Λ. The condition on
the poles of g allows us to express g in terms of the Weierstrass ζ-function:

(5.2.1) g(z) =

n∑
i=1

ζ(z − pi)−
n∑

i=1

ζ(z − qi) +
∑
i=1

ζ(pi)−
∑
i=1

ζ(qi)

for a unique constant c, because g(z) −
∑n

i=1 ζ(z − pi) +
∑n

i=1 ζ(z − qi)
is a meromorphic holomorphic function on E. Of course the constant c is
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completely determined by the elements p1, . . . , pn; q1, . . . , qn ∈ C:

c =
∑
i=1

ζ(pi)−
∑
i=1

ζ(qi).

It remains to analyze the condition that g(z) has a zero of order 2n at 0 ∈ E,

i.e.

(5.2.2) 0 = −g(r)(0) = −drg

dzr

∣∣∣∣
z=0

=

n∑
i=1

℘(r−1)(pi)−
n∑

i=1

℘(r−1)(qi)

for r = 1, . . . , 2n− 1 because

−g(r)(z) =

n∑
i=1

℘(r−1)(z − pi)−
n∑

i=1

℘(r−1)(z − qi).

Only the conditions that g(2s+1)(0) = 0 for s = 0, 1, . . . , n − 1 will be used

for the proof of Theorem 5.2. The vanishing of the even-order derivatives of

g will be explored in the proof of Theorem 5.6.

By Lemma 5.4 below, relations (5.2.2) for r = 1, 3, 5, . . . , 2n − 1 imply

that the sets {℘(p1), . . . , ℘(pn)} and {℘(q1), . . . , ℘(qn)} are equal as sets

with multiplicities. Because P1, . . . , Pn; Q1, . . . , Qn are 2n distinct points

on E, it follows that ℘(pi) �= ℘(pj) whenever i �= j and {Q1, . . . , Qn} =

{−P1, . . . ,−Pn} as subsets of E�{0} with n elements. From the expression

(5.2.1) of g and the fact that ζ(z) is an even function on C one sees that

g(z) is even. Theorem 5.2 is proved modulo the elementary Lemma 5.4.

We record the following statements from the proof of Theorem 5.2.

Corollary 5.3. Let f be a normalize type II developing map of a solution

u of the equation �u+ eu = 8nπ δ0 for a positive integer n. Then the zeros

pi’s of f modulo Λ correspond to n elements P1, . . . , Pn ∈ E � {0} and the

poles qi’s of f modulo Λ correspond to n elements Q1, . . . , Qn ∈ E � {0}.
Moreover the following statements hold.

(a) {Q1, . . . , Qn} = {−P1, . . . ,−Pn} as subsets of E�{0} with n elements.

(b) ℘′(pi) �= 0, or equivalently Pi is not a 2-torsion point of E, for i =

1, . . . , n.

(c) ℘(pi) �= ℘(pj) for any i, j = 1, . . . , n such that i �= j.
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Lemma 5.4. (a) For each positive integer j, there exists a polynomial
hj(X) ∈ C[X] of degree j + 1 such that

℘(2j)(z) :=
( d

dz

)2j
℘(z) = hj(℘(z))

as meromorphic functions on C.

(b) For every symmetric polynomial P (X1, . . . , Xn) ∈ C[X1, . . . , Xn], there
exists a polynomial Q(W1, . . . ,Wn) ∈ C[W1, . . . ,Wn] such that

P (℘(z1), . . . , ℘(zn)) = Q
( n∑

i=1

℘(zi),

n∑
i=1

℘(2)(zi),

n∑
i=1

℘(4)(zi), . . . ,

n∑
i=1

℘(2n−2)(zi)
)

as meromorphic functions on Cn.

Proof. Taking the derivative of the Weierstrass equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

and divide both sides by 2℘′(z), we get

℘(2)(z) = 6℘(z)2 − 1

2
g2.

An easy induction shows that ℘(2j)(z) is equal to hj(℘(z)) for a polynomial
hj(X) ∈ C[X] of degree j + 1 and the coefficient aj of Xj+1 is positive.
In fact one sees that aj = (2j + 1)! when one compares the coefficient of
z−2j−2 in the Laurent series expansion of ℘(2j)(z) and hj(℘(z)). We have
proved the statement (a).

The statement (b) follows from the fact that every symmetric polynomial
in C[X1, . . . , Xn] is a polynomial of the Newton polynomials p1(X1, . . . , Xn),
. . ., pn(X1, . . . , Xn), where pj(X1, . . . , Xn) :=

∑n
i=1X

j
i for j = 1, . . . , n.

5.5. Green/algebraic system for ρ = 8nπ. Let u be a type II even
solution of the singular Liouville equation �u + eu = 8nπ δ0 on a torus
E = C/Λ, where n is a positive integer. As before let f be a normalized
developing map of u and let g = (log f)′ = f ′/f . Let p1, . . . , pn ∈ C be
the simple zeros of f modulo Λ and let −p1, . . . ,−pn be the simple poles
of f modulo Λ as in Corollary 5.3. Let P1 = p1modΛ, . . . , Pn = pnmodΛ ;
they are exactly the blow-up points of the scaling family uλ of solutions of
�u+ eu = 8nπ δ0.
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5.5.1. Two approaches to the configuration of blow-up points. We
will investigate the constraints on the configuration of the points P1, . . . , Pn

with two approaches outlined below. The plans are executed in §5.6 and §5.7
respectively.

A. In the first approach we have the relations (5.2.2) for r = 2, 4, . . . , 2n−2
and also the condition that the period integrals of the meromorphic differ-
ential g(z) dz on E are purely imaginary; the latter comes directly from
the assumption that the image of the monodromy of the type II developing
map lies in the diagonal maximal torus of PSU(2). The first n − 1 con-
ditions translate into a system of polynomial equations in the coordinates
℘(p1), . . . , ℘(pn), ℘

′(p1), . . . , ℘′(pn) of the n points P1, . . . , Pn:

(5.5.1) ℘′(p1)℘
r(p1) + · · ·+ ℘′(pn)℘

r(pn) = 0, ∀r = 0, . . . , n− 2,

while the monodromy constraint becomes

(5.5.2)

n∑
i=1

∂G

∂z
(pi) = 0

where G is the Green’s function on E as in (0.1.1).

The method used in this approach also shows that the n equations (5.5.1)
and (5.5.2) are also sufficient: if P1 = p1modΛ, . . . , Pn = pnmodΛ are n
elements in E with distinct x-coordinates ℘1(p1), . . . , ℘(pn) satisfying equa-
tions (5.5.1) and (5.5.2) and none of P1, . . . , Pn is a 2-torsion point of E,
then there exists a normalized type II developing map f for a solution of
�u+ eu = 8nπ δ0 such that p1, . . . , pn is a set of representatives of the zeros
of f modulo Λ.

B. In the second approach, results on blow-up solutions of a mean field
equation on a Riemann surface provides the following constraints

(5.5.3) n
∂G

∂z
(pi) =

∑
1≤j≤n, j �=i

∂G

∂z
(pi − pj), for i = 1, 2, . . . , n,

on the blow-up points P1, . . . , Pn.

5.5.2. We will see in 5.7 that the system of equations (5.5.3) is equivalent
to the combination of (5.5.2) and the following system of equations

(5.5.4)
∑
j �=i

℘′(pi) + ℘′(pj)

℘(pi)− ℘(pj)
= 0, for i = 1, . . . , n.
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Moreover for elements (P1, . . . , Pn)∈(E�E[2])n with distinct x-coordinates
℘(p1), . . . , ℘(pn), the two systems of equations (5.5.1) and (5.5.4) are equiv-
alent.23 This means that among elements of the subset Bln ⊂ En consisting
of all n-tuples (P1, . . . , Pn) ∈ (E�{0})n satisfying the constraints (5.5.2) for
blow-up points, those satisfying the non-degeneracy condition

(5.5.5) ℘′(pi) �= 0 and ℘(pi) �= ℘(pj) whenever i �= j ∀1 ≤ i, j ≤ n

are indeed blow-up points of the scaling family uλ(z) of a type II solution
of the singular Liouville equation �u+ eu = 8nπ δ0 on E.

We recall some properties about period integrals and Green’s functions
in lemmas 5.5.3–5.5.4 below, before returning to the first approach outlined
in 5.5.1.

Lemma 5.5.3. For any y ∈ C and any ω ∈ Λ = H1(E;Z), the ω-period of

the meromorphic differential ℘′(y) dz
℘(z)−℘(y) on E = C/Λ is given by

(5.5.6)

∫
Lω

℘′(y)

℘(z)− ℘(y)
dz ≡ 2ω · ζ(y)− 2η(ω) · y (mod 2π

√
−1Z).

Here Lω : [0, 1] → C is any piecewise smooth path on C such that Lω(1) −
Lω(0) = ω and ℘(z) �= ℘(y) for all z ∈ Lω([0, 1]).

Proof. This is a reformulation of [44, Lemma2.4]. Note that meromorphic

differential ℘′(y) dz
℘(z)−℘(y) on E has poles at 0 and ±y (mod Λ), with residues 0

and ±1 respectively, therefore the period integral Iω(y) :=
∫
Lω

℘′(y) dz
℘(z)−℘(y) is

well-defined modulo 2π
√
−1Z. The addition formula for ℘(z) gives

℘′(y) dz

℘(z)− ℘(y)
=

℘′(z) dz

℘(z)− ℘(y)
− 2ζ(z + y; Λ)dz + 2ζ(z; Λ)dz + 2ζ(y; Λ)dz

The lemma follows after an easy calculation, using the functional equation
for ζ(z; Λ) and the fact that d

dz log σ(z) = ζ(z) and; see [44, Lemma2.4] for
details.

Alternatively, one computes

d

dy
Iω(y) =

∫
Lω

(2℘(z + y)− 2℘(y))dz = −2℘(y) + 2η(ω)

23For every m ∈ N, E[m] denote the subgroup of m-torsion points on E.
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and determine the constant of integration up to 2π
√
−1Z by evaluation at

2-torsion points of E.

Lemma 5.5.4. Let G be the Green’s function on E = C/Λ as in (0.1.1).
The following formulas hold.

(5.5.7) G(z) = − 1

2π
log
∣∣∣Δ(Λ)

1

12 · e−z η(z;Λ)/2 · σ(z; Λ)
∣∣∣ on E,

(5.5.8) − 4π
∂G

∂z
(z) = ζ(z; Λ)− η(z; Λ) ∀z ∈ C.

In the first formula (5.5.7), η(z; Λ) is the quasi-period and Δ(Λ) is the non-
zero cusp form of weight 12 for SL2(Z) given by the formula

Δ(Λ) = g2(Λ)
3 − 27g3(Λ)

2 =
(2π

√
−1)12

(ω2)12
· qτ ·

∞∏
m=1

(1− qnτ )
24,

where qτ = e2π
√
−1τ , τ = ω2/ω1 with Im(τ) > 0.

Remark 5.5.5. (a) An equivalent form of 5.5.4 (a) is

G(z; Λτ ) = − 1

2π
log

∣∣∣∣e−π Im(z)2

Im(τ) ·Δ(C/Λτ )
− 1

12 · θ[ 1/2
1/2

](z; τ)

∣∣∣∣
for the Green’s function G(z; Λτ ) on the elliptic curve C/Λτ , where τ is an
element of the upper-half plane and Λτ = Z+Z·τ)). Here we have used the
general notation for theta functions with characteristics

θ[ a
b
](z; τ) :=

∑
m∈Z

eπ
√
−1 τ(m+a)2 · e2π

√
−1 (m+a)(z+b).

The equivalence of the two formulas follows from the formulas

σ(z,Λτ ) = − 1

π
eη(1,Λτ ) ·

θ[ 1/2
1/2

](z; τ)

θ[ 0
0
](z; τ)θ[ 0

1/2
](z; τ)θ[ 1/2

0
](z; τ)

and

θ[ 0
0
](z; τ)θ[ 0

1/2
](z; τ)θ[ 1/2

0
](z; τ) = 2 η

Dedekind
(τ)3 = 2

(
q

1

24
τ

∞∏
m=1

(1− qmτ )
)3

.

(b) The function Z(z; Λ) := ζ(z; Λ) − η(z; Λ) = −4π ∂G
∂z appeared in [28,

p. 452]; we will call it the Hecke form. For any integers a, b and N ≥ 1 such
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that gcd(a, b,N) = 1 and (a, b) �≡ (0, 0) (mod N), Z( a
N+ b

N τ ; Z + Zτ) is a

modular form of weight one and level N , equal to the Eisenstein series

− N · EN
1 (τ, s; a, b)

∣∣
s=0

= − N · Im(τ)s ·
′∑

(m,n)≡(a,b)modN

(mτ + n)−1 · |mτ + n|−2s

∣∣∣∣∣∣
s=0

.

See [28, p. 475].

Proof of Lemma 5.5.4. The formula (5.5.7) is proved in [40, II, §5]. The

equivalent formula in 5.5.5 (a) is proved in [23, p. 417–418]. See also [43,

§7] and [44, §2]. The formula (5.5.8) follows from (a) by an easy computa-

tion.

Theorem 5.6. Let n be a positive integer. Let Pi = pimodΛ , i = 1, . . . , n

be n distinct points on E = C/Λ such that {P1, . . . , Pn}∩{−P1, . . . ,−Pn} =

∅. In other words ℘(p1), . . . , ℘(pn) are mutually distinct and none of the Pi’s

is a 2-torsion point of E. There exists a normalized type II developing map f

for a solution u of �u+eu = 8πnδ0 on E such that f(p1) = · · · = f(pn) = 0

if and only if

(5.6.1)

n∑
i=1

∂G

∂z
(pi) = 0

and

(5.6.2) ℘′(p1)℘
r(p1) + · · ·+ ℘′(pn)℘

r(pn) = 0 for r = 0, . . . , n− 2.

Notice that (5.6.1) is the same as (5.5.2) and (5.6.2) is the same as

(5.5.1).

Proof. We use the notation in the proof of Theorem 5.2 and continue with

the argument there. The logarithmic derivative g′ = f ′/f of a normalized

type II developing map has simple poles at the 2n points ±P1, . . . ,±Pn and

is holomorphic elsewhere on E. Moreover the residues of g at Pi (resp. at

−Pi) is 1 (resp. −1) for each i. Therefore

(5.6.3) g(z) =
℘′(p1)

℘(z)− ℘(p1)
+ · · ·+ ℘′(pn)

℘(z)− ℘(pn)
.
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because g(0) = 0. We know two more properties of g: (a) g(z) has a zero of
order 2n at z = 0, and (b) for any ω ∈ Λ and any piecewise smooth path
Lω : [0, 1] → C such that L(1)− L(0) = ω and

L([0, 1]) ∩
[(⋃n

i=1 pi + Λ
)
∪
(⋃n

i=1−pi + Λ
)]

= ∅,

we have ∫
Lω

g dz ∈
√
−1R.

To see what property (a) means, we expand g(z) at z = 0 as a power series
in ℘(z):

g(z) =

n∑
j=1

℘′(pj)

℘(z) (1− ℘(pj)/℘(z))
=

∞∑
m=0

⎛
⎝ n∑

j=1

℘′(pj)℘(pj)
m

⎞
⎠ · ℘(z)−m−1

Because g has exactly 2n simple poles and is holomorphic elsewhere on E,
we see that orderz=0 g(z) = 2n if and only if all n − 1 equations in (5.6.2)
hold.

We know that η(z; Λ)y − zη(y; Λ) ≡ 0 (mod
√
−1R) for all y, z ∈ C

because the left-hand side is R-bilinear, and we know from the Legendre
relation that the statement holds when y, z are both in Λ. By Lemma 5.5.3,

∫
Lω

g(z) dz ≡ 2

n∑
j=1

(
ωζ(pj)− η(ω)pj

)
(mod 2π

√
−1Z)

≡ 2ω ·
n∑

j=1

(
ζ(pj)− η(pj)

)
(mod

√
−1R)

for all ω ∈ Λ. Therefore property (b) holds for g given by (5.6.3) if and only
(5.6.1) holds. We have proved the “only if” part of Theorem 5.6.

Conversely suppose that equations (5.6.2) and (5.6.1) hold. We have seen
that the meromorphic function g(z) given by (5.6.3) has a zero of order 2n
at z = 0 and the period integrals of g dz are all purely imaginary. Therefore
f(z) = exp

∫ z
0 g(w) dw is a type II developing map for a solution of the

singular Liouville equation �u+ eu = 8πn δ0.

Remark 5.6.1. The property (a) that the order of the meromorphic func-
tion

℘′(p1)

℘(z)− ℘(p1)
+ · · ·+ ℘′(pn)

℘(z)− ℘(pn)
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on E at z = 0 is equal to 2n is also equivalent to: ∃C ∈ C× such that

(5.6.4)

n∑
j=1

℘′(pj)
∏
i �=j

(℘(z)− ℘(pi)) = C.

5.7. Analytic approach to the configuration of the blow-up set.

5.7.1. We may also study the set {p1, . . . , pn} from the analytic point of

view. As we have already seen, {pi} represents the blow-up set of the family

of solutions uλ as λ → ∞. The equations which determine the position of

blow-up points are of fundamental importance in the study of bubbling solu-

tions of semi-linear equations such as mean field equations, Chern–Simons–

Higgs equation, Toda system in two dimension, or scalar curvature equation

in higher dimensions. Hence we will derive these equations from the analytic

perspective.

We recall the definition of blow-up points for a sequence of solutions uk,

k ∈ N, to the mean field equation

(5.7.1) �uk + euk = ρk δ0 on E

with possibly varying singular strength ρk such that ρk → ρ = 8πn for some

n ∈ N. If ρk = 8πn for all k, this goes back to the situation uλ in (0.2.6) as

has been discussed. It is important to consider blow-up phenomenon from

a sequence of solutions uk with ρk → ρ. (It is known that if ρ �∈ 8πN then

there is no blow-up phenomenon [12].)

Definition 5.7.2. A subset S = {P1, . . . , Pm} ⊂ E = C/Λ is called the

blow-up set of the sequence of solutions (uk)n∈N of (5.7.1) with ρk → 8πn if

for all i

uk(Pi) → +∞ as k → ∞,

while if P �∈ S then

uk(P ) → −∞ as k → ∞.

Points Pi in the blow-up set are called blow-up points of the sequence of

solutions (uk).
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It is also shown in [12] that m = n and the configuration of the blow-up
points {P1, . . . , Pn} satisfies the following equations:

(5.7.2) nGz(Pi) =

n∑
j=1, �=i

Gz(Pi − Pj), i = 1, 2, . . . , n,

where z is the coordinate for C and Gz = ∂G
∂z . Notice that the system

of equations (5.7.2) is the same as the equations (5.5.3). Summing the n
equations in (5.7.2) from i = 1, . . . , n, we get

(5.7.3)

n∑
i=1

Gz(Pi) = 0,

since ∂G
∂z is an odd function. The last equation (5.7.3) is the same as the

Green equation (5.5.2) and (5.6.1).

Lemma 5.7.3. Let {P1, . . . , Pn} be a set of n mutually distinct points in
E � {0} = C/Λ� {[0]}, and let p1, . . . , pn be elements of C such that Pi =
[pi] := pimodΛ for i = 1, . . . , n. The system of equations (5.7.2) for the set
{P1, . . . , Pn} is equivalent to the combination of the Green equation (5.7.3)
and the following system of equations

(5.7.4)
∑

1≤j≤n, j �=i

(
ζ(pi− pj ; Λ)+ ζ(pj ; Λ)− ζ(pi; Λ)

)
= 0, i = 1, . . . , n.

Notice that for each i, the sum in the left-hand side of (5.7.4) is inde-
pendent of the choice of representatives p1, . . . , pn ∈ C of P1, . . . , Pn ∈ C/Λ.

Proof. We have seen that the n equations in (5.7.2) imply the Green equation
(5.5.2). It suffices to show that under (5.7.3), the system of equations (5.7.2)
is equivalent to the system of equations (5.7.4).

We know from (5.5.8) that Gz(Pi) = ζ(pi; Λ) − η(pi; Λ) for each i. So
the Green equation (5.7.3) means that

∑n
i=1 ζ(pi; Λ) =

∑n
i=1 η(pi; Λ). For

each i the i-th equation in (5.7.2) becomes

n ·
[
ζ(pi; Λ)− η(pi; Λ)λ] =

∑
1≤j≤i, j �=i

(
ζ(pi − pj ; Λ)− η(pi; Λ) + η(pj ; Λ)

)

which is equivalent to the i-th equation in (5.7.4) because
∑n

i=1 ζ(pi; Λ) =∑n
i=1 η(pi; Λ).

Remark 5.7.4. Part of the condition for the blow-up set {P1, . . . , Pn} of a
sequence of solutions (uk) as in Definition 5.7.2 is that
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(5.7.5) Pi �= Pj for i �= j,

instead of the stronger property

(5.7.6) {P1, . . . , Pn} ∩ {−P1, . . . ,−Pn} = ∅

which is satisfied when {p1, . . . , pn} are zeros of a normalized developing
map of a solution of �u+ eu = 8πn δ0.

5.8. Equivalence of algebraic systems (5.6.2) and (5.7.4) under
(5.7.6)

5.8.1. In light of Theorem 0.6, the analytic discussion in §5.7 suggests
that the system of equations (5.5.2) + (5.6.2) may be equivalent to the
system of equations (5.5.2) + (5.7.4) under the constraint that Pi �= Pj

whenever i �= j and Pi �= −Pj for all i, j.

Since the Green equation (5.5.2) is the only non-holomorphic equation
shared by both systems, one might optimistically ask

Are the two holomorphic systems of n− 1 equations (5.6.2) and (5.7.4) equiv-
alent?

Note that the sum of the n equations in (5.7.4) is zero, hence we may remove
one equation from (5.7.4).

5.8.2. To answer this question, we recall the addition formula

1

2

℘′(z)− ℘′(u)

℘(z)− ℘(u)
= ζ(z + u)− ζ(z)− ζ(u).

Thus (5.7.4) with additional constraint pi �= ±pj for i �= j is equivalent to

(5.8.1)
∑
j �=i

℘′(pi) + ℘′(pj)

℘(pi)− ℘(pj)
= 0, i = 1, . . . , n.

Let (xi, yi) := (℘(pi), ℘
′(pi)). As points on E they are related by the

defining cubic curve equation y2i = p(xi) = 4x3i −g2xi−g3. Then (5.8.1) and
(5.6.2) can be written as the following systems respectively:

(5.8.2)

n∑
j=1, �=i

yi + yj
xi − xj

= 0, i = 1, . . . , n,
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where xi �= xj for i �= j is imposed, and

(5.8.3)

n∑
i=1

xliyi = 0, l = 0, . . . , n− 2.

Both systems of equations (5.8.2) and (5.8.3) are linear in the yi’s, and in
fact we can prove their equivalence in a general context:

Proposition 5.8.3. For a given set of mutually distinct elements
x1, . . . , xn ∈ C, the linear systems of equations

(5.8.4)
∑

1≤j≤n, j �=i

Yi + Yj
xi − xj

= 0, ∀i = 1, . . . , n

and

(5.8.5)

n∑
i=1

xli · Yi = 0, ∀l = 0, . . . , n− 2

in variables Y1, . . . , Yn are equivalent.

Proof. The system (5.8.4) corresponds to the n× n matrix

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
k=2

1
x1−xk

1
x1−x2

1
x1−x3

· · · 1
x1−xn

1
x2−x1

n∑
k=1, �=2

1
x2−xk

1
x2−x3

· · · 1
x2−xn

...
...

. . .
...

1
xn−x1

1
xn−x2

· · · · · ·
n−1∑
k=1

1
xn−xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

that is, An = (aij) ∈ Mn(Q(x1, . . . , xn)), where aij = 1
xi−xj

if j �= i, and

aij =
∑n

k=1, �=i
1

xi−xk
if j = i, which is the sum of all the other entries in the

same row. Note that the sum of all rows in An is the zero row vector. In
particular, detAn = 0.

The system of equations (5.8.5) corresponds to the (n− 1)× n matrix

Bn :=

⎛
⎜⎜⎜⎝

1 · · · 1
x1 · · · xn
...

. . .
...

xn−2
1 · · · xn−2

n

⎞
⎟⎟⎟⎠ .
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Let b = (b1, . . . , bn), where bi is the determinant of the (n−1)×(n−1) minor
of Bn without the i-th column. Then bi’s are given by the Vandermonde
determinant:

bi =
∏

1≤l<k≤n; l,k �=i

(xk − xl).

Let Cn be the (n − 1) × n matrix consisting of the first n − 1 rows of An,
and define c = (c1, . . . , cn) similarly.

We want to prove that c �= 0, which implies that rankAn = n − 1 and
the kernel of An is spanned by c. Then the equivalence of these two linear
systems simply means that b and c are proportional to each other.

We claim that

(5.8.6) ci =
(−1)n+i(n− 1)!∏

k �=i(xk − xi)
, i = 1, . . . , n.

Due to symmetry, it is enough to consider the case i = n. We will show
that the order of cn along the divisor xk −xl is non-negative for all k, l �= n.
This will imply that cn is a constant times

∏n−1
k=1(xk − xn)

−1.
Again by symmetry, it is enough to check the case k = 1, l = 2. The only

terms which may contribute poles along xk − xl are a11, a12, a21 and a22.
If we subtract the second row by the first row, and then add the resulting
first column into the second column, we get the following (n− 1)× (n− 1)
matrix ⎛

⎜⎜⎜⎜⎜⎝

1
x1−x2

+ r −r ∗ · · · ∗
r (x1 − x2)∗ ∗ · · · ∗
∗ (x1 − x2)∗ ∗ · · · ∗
...

...
...

. . .
...

∗ (x1 − x2)∗ ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎠ ,

where r =
∑n

j=3
1

x1−xj
, as well as all entries labeled by ∗, does not have pole

along the divisor x1−x2. This shows that det (aij)1≤i,j≤n−1 has non-negative
order along x1 − x2. So there exists an element dn ∈ C such that

(5.8.7) cn =
dn∏

k<n(xk − xn)
.

By Lemma 5.8.4 below we have dn = (n − 1)! �= 0. Then (5.8.6) holds
and we have c �= 0. Now we note that

bi =
(−1)n−i

∏
1≤l<k≤n(xk − xl)∏

k �=i(xk − xi)
=

1

(n− 1)!

∏
1≤l<k≤n

(xk − xl)ci,

i.e. b is parallel to c. Hence the equivalence is proved.
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Lemma 5.8.4. The constant dn in (5.8.7) is (n− 1)!.

We offer two proofs.

The first/analytic proof. It is easy to see that d1 = 1. If we may show

that dn = (n− 1)dn−1 for n ≥ 2 then we are done. We observe that

dn∏
2≤k<n(xk − xn)

= lim
x1→∞

dnx1∏
k<n(xk − xn)

which, by the definition of cn and (5.8.7), is equal to

lim
x1→∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
k=2

x1

x1−xk

x1

x1−x2

x1

x1−x3
· · · x1

x1−xn−1

1
x2−x1

n∑
k=1, �=2

1
x2−xk

1
x2−x3

· · · 1
x2−xn−1

...
...

. . .
...

1
xn−1−x1

1
xn−1−x2

· · · · · ·
n∑

k=1, �=n−1

1
xn−1−xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Since

lim
x1→∞

n∑
k=2

x1
x1 − xk

= n− 1,

by evaluating the limit, the determinant becomes

(n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
k=3

1
x2−xk

1
x2−x3

1
x2−x4

· · · 1
x2−xn−1

1
x3−x2

n∑
k=2, �=3

1
x3−xk

1
x3−x4

· · · 1
x3−xn−1

...
...

. . .
...

1
xn−1−x2

1
xn−1−x3

· · · · · ·
n∑

k=2, �=n−1

1
xn−1−xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (n− 1)

dn−1∏
2≤k<n(xk − xn)

.

Thus dn = (n− 1)dn−1 as expected.

The second/algebraic proof. It is enough to consider the specialization

xi = ζi for i = 1, . . . , n, where ζ = e2πi/n is the n-th primitive root of unity.
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Let A′ = (a′ij) be the specialized matrix and A′′ = (a′′ij) the Hermitian
matrix with

a′′ij := ζia′ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1− ζj−i
if i �= j,

n−1∑
k=1

1

1− ζk
=

n− 1

2
if i = j.

Here the diagonal entries a′′ii =
1
2(n− 1) follows from the fact that

1

1− ζk
+

1

1− ζn−k
=

1− ζn−k + 1− ζk

1− ζk − ζn−k + 1
= 1.

Let V be the underlying vector space of the group ring Q̄[Z/nZ] =⊕
j∈Z/nZ Q̄ · [j]. Then (A′′)t is the matrix representation of the following

operator T on V with respect to the basis [1̄], [2̄], · · · [n̄]:

T =
n− 1

2
+

n−1∑
j=1

1

1− ζj
[j].

We put the Hermitian inner product on V so that [i]’s are orthonormal. It
is easy to diagonalize A′′. Indeed, for a ∈ Z/nZ, let

xa :=
∑

i∈Z/nZ
ζ−ia[i] ∈ Q̄[Z/nZ].

Then V is also the orthogonal direct sum of the one dimensional subspaces
Va := Q̄ ·xa. It is easily seen that [j] ·xa = ζjaxa. Hence xa’s are eigenvectors
of T with eigenvalues

λa =
n− 1

2
+

n−1∑
j=1

ζja

1− ζj
.

In fact λa = a− 1 for a = 1, . . . , n. To see this, we rewrite λa as

λa = (n− 1)−
n−1∑
j=1

1− ζja

1− ζj
= (n− 1)−

n−1∑
j=1

a−1∑
k=0

ζjk.

By changing the order of summation, for k = 0 we get n − 1, while for
k = 1, . . . , a− 1 we get

∑n−1
j=1 ζ

jk = −1. Hence λa = a− 1 as expected.



Mean field equations, hyperelliptic curves and modular forms 217

The diagonalization in terms of matrices reads as

CA′′ =

⎛
⎜⎜⎜⎝
0

1
. . .

n− 1

⎞
⎟⎟⎟⎠ C,

where the a-th row vector of C = (zij)1≤i,j≤n, zij := ζ−ij corresponds to xa.

Now we work on Λn−1V and Λn−1T ∈ End(Λn−1V ). For a square matrix

B, Λn−1B = adj(B)t is the “non-transposed” cofactor matrix. It has the

covariant property that Λn−1B1B2 = (Λn−1B1)(Λ
n−1B2). We find

Λn−1A′′ = Λn−1C−1

⎛
⎜⎜⎜⎝
(n− 1)!

0
. . .

0

⎞
⎟⎟⎟⎠Λn−1C.

Hence

(5.8.8) (Λn−1A′′)ni = (n− 1)!(Λn−1C−1)n1(Λ
n−1C)1i.

To compute the right hand side, from C.C̄t = nIn and C.(Λn−1C)t =

(detC)In, we get

Λn−1C = n−1(detC)C̄.

Also C−1 = n−1C̄t. The same reasoning implies that

Λn−1C−1 = n−(n−1)Λn−1C̄t = n−n(det C̄t)Ct = (detC)−1Ct.

In particular, (5.8.8) becomes

(Λn−1A′′)ni =
(n− 1)!

n
ζi.

By definition of ci, the equation (5.8.7) for dn specialized to xi = ζi

reads as (notice that
∏n−1

j=1 (1− ζj) = n)

(−1)n+i(Λn−1A′)ni =
(−1)n+idn∏
k �=i(ζ

k − ζi)
=

(−1)n+idnζ
i(−1)n−1

n
.

Since (−1)n+i(Λn−1A′)ni = (−1)n+i(−1)n−1(Λn−1A′′)ni, the above two ex-

pressions lead to dn = (n− 1)!.
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Remark. We found the algebraic proof first which gives the value dn =

(n − 1)!. The shorter and more elementary analytic proof came much later

which was inspired by the factorial nature of dn. Then we were informed by

Y. Zarhin that Lemma 5.8.4 appeared in [55, §1], with a different proof.

Corollary 5.8.5. For P1, . . . , Pn ∈ E satisfying Pi �= Pj for i �= j and

Pi �= −Pj for all i, j, the system of equations (5.6.2) is equivalent to (5.8.1),

hence also equivalent to (5.7.4).

Remark 5.8.6. We record two easy observations about the system of linear

equations

(5.8.9)

n∑
i=1

sli · Yi = 0, l = 0, . . . , n− 2

with s1, . . . , sn in C.

(a) If s1, . . . , sn are mutually distinct, and (y1, . . . , yn) is a solution of (5.8.9)

in which one yi is 0, then all yj ’s are equal to zero.

(b) If s1, . . . , sn are not mutually distinct, then (5.8.9) only has trivial

solutions in the following sense: We have a set {t1, . . . , tm} consisting of

mutually distinct numbers such that {s1, . . . , sn} = {t1, . . . , tm}. Suppose
that (y1, . . . , yn) is a solution of (5.8.9), let zj :=

∑
all i s.t. si=tj

yi for

i = 1, . . . ,m. Then the system of linear equations for y1, . . . , yn becomes

m∑
j=1

slj · zj = 0 for l = 0, . . . , n− 2,

and z1 = · · · = zm = 0 by the non-vanishing of the Vandermonde determi-

nant.

6. Lamé for type II: characterizations of Xn and Yn

6.1. An overview for this section.

6.1.1. In §5, we have proved that for each positive integer n, for every

solution u of the mean field equation

(6.1.1) �u+ eu = 8πn · δ0 on C/Λ
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there exists a set a = {a1, . . . , an} of n complex numbers which satisfies

(5.5.2), (5.6.2) and (5.7.6) such that

(6.1.2) f(z) = fa(z) :=

n∏
i=1

exp

∫ z

0

℘′(ai)

℘(w)− ℘(ai)
dw,

is a normalized type II developing map of u. Moreover every set a =

{a1, . . . , an} of complex numbers satisfying conditions (5.6.1), (5.6.2) and

(5.7.6) gives rise to a solution of the above mean field equation.

6.1.2. In this section we will leave the Green equation (5.6.1) alone and

consider those a = {a1, . . . , an} satisfy only the equations (5.6.2) under the

constraint (5.7.6), that is, we consider a in the set Xn defined in (0.6.6) in

the introduction. We would like to characterize a ∈ Xn in terms of certain

Lamé equations.

6.1.3. We will make use of the following addition formulas freely:

℘′(z)

℘(z)− ℘(u)
= ζ(z − u) + ζ(z + u)− 2ζ(z),(6.1.3)

℘′(u)

℘(z)− ℘(u)
= ζ(z − u)− ζ(z + u) + 2ζ(u),(6.1.4)

1

2

℘′(z)− ℘′(u)

℘(z)− ℘(u)
= ζ(z + u)− ζ(z)− ζ(u),(6.1.5)

1

4

(
℘′(z)− ℘′(u)

℘(z)− ℘(u)

)2

= ℘(z + u) + ℘(z) + ℘(u).(6.1.6)

Definition 6.1.4. Let Λ be a cocompact lattice in C. Let n ≥ 1 be a

positive integer. Let [a] = {[a1], . . . , [an]} be an unordered list of n elements

in (C/Λ)� {[0]}, possibly with multiplicity. Define a meromorphic function

f[a](z) on C by

(6.1.7) f[a](z) = f[a](z; Λ) :=

n∏
i=1

exp

∫ z

0
(ζ(w−ai)− ζ(w+ai)+2ζ(ai)) dw.

where ai is a representative in C of [ai] for each i = 1, . . . , n.

Note that f[a] depends only on the element {[a1], . . . , [an]} of the sym-

metric product Symn(C/Λ�{[0]}) and not on the choice of representatives
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ai ∈ [ai]. Because ζ(z; Λ) = d
dz log σ(z; Λ), we get from (6.1.4) an equivalent

definition

(6.1.8) f[a](z) := (−1)n · e2z
∑n

i=1 ζ(ai) ·
n∏

i=1

σ(z − ai)

σ(z + ai)
.

Note also that f[a](0) = 1 and f[a](−z)·f[a](z) = 1 for all z.

Definition 6.1.5. Let a = {a1, . . . , an} be an unordered list of elements of

C�Λ. The Hermite-Halphen ansatz function wa(z) attached to the list a is

the meromorphic function on C defined by

(6.1.9) wa(z) = wa(z; Λ) := ez
∑

ζ(ai)
n∏

i=1

σ(z − ai)

σ(z)
.

Remark. (a) In classical literature the functions wa(z) arise as explicit

solutions of the Lamé equation

(6.1.10) w′′ =
(
n(n+ 1)℘(z) +B

)
w;

see [29, I–VII], [27, p. 495–497] and also [67, §23.7].

(b) Clearly we have

f[a](z) =
wa(z)

w−a(z)
,

where −a is the list {−a1, . . . ,−an} and [a] is the list {[a1], . . . , [an]}.

(c) If b = {b1, . . . , bn} is a list such that bi − ai ∈ Λ for all i = 1, . . . , n, then
wb

wa
∈ C×, a non-zero constant.

Lemma 6.1.6. If a list [a] = {[a1], . . . , [an]} of n elements of (C/Λ)�{[0]}
satisfies (5.6.1), (5.6.2) and the non-degeneracy condition (5.7.6), then there

exists a constant B = B[a] such that the Schwarzian derivative of f[a] satisfies

S(f[a]) = −2
(
n(n+ 1)℘(z; Λ) +B[a]

)
.

Proof. By Theorem 5.6, f[a] is a normalized developing map for the mean

field equation (6.1.1), and the assertion follows from (3.1.4).
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6.1.7. The constant B[a] in Lemma 6.1.6 can be evaluated by a straight-
forward computation; the answer is

(6.1.11) B[a] = (2n− 1)

n∑
i=1

℘(ai; Λ).

On the other hand there is a proof of the formula (6.1.11) for B[a] without
resorting to messy computations, via Lamé’s differential equation (6.1.10)
because f[a] can be written as the ratio of two linearly independent solu-
tions of (6.1.10). The idea is this: use the Hermite–Halphen ansatz functions
wa(z) to find solutions to Lamé equations, and the constant B can be com-
puted from the ansatz solutions wa. Then f[a]a = wa/w−a has the expected
Schwarzian derivative by ODE theory.

We take this approach since it requires less computation to prove the
formula (6.1.11) for B, and it leads to a characterization of the set Yn defined
in (0.5.2) as the set of all unordered lists a = {[a1], . . . , [an]} of n elements
in (C/Λ) � {[0]} such that wa(z; Λ) satisfies a Lamé equation (6.1.10) for
some B ∈ C, see Theorem 6.2. We then move back to characterize the set
Xn defined in (0.6.6) as the set of all a’s such that ordz=0f

′
[a](z) = 2n, which

is the highest possible value of ordz=0f[a](z); see Theorem 6.5. This leads to
the important consequence that for a ∈ Yn, a �∈ Xn if and only if a = −a,
and a characterization of Xn via the Schwarzian derivative.

The following result is known in the literature, see e.g. [27]. We reproduce
its proof here for the sake of completeness.

Theorem 6.2 (Characterization of Yn). Let n ≥ 1 be a positive integer.
Let a = {a1, . . . , an} be an unordered list of n elements in C � Λ. Let wa

be defined as in (6.1.9). Let [a] be the unordered list {[a1], . . . , [an]}, where
[ai] := aimodΛ ∈ C/Λ for each i.

(1) There exists a constant B ∈ C such that the meromorphic function wa

on C satisfies the Lamé equation (6.1.10) if and only if the following
conditions hold.

– [ai] �= [aj ] whenever i �= j, and

– the ai’s satisfy
(6.2.1)∑

j �=i

(
ζ(ai − aj ; Λ)− ζ(ai; Λ) + ζ(aj ; Λ)

)
= 0, i = 1, . . . , n.

In other words the necessary and sufficient condition is that a is a
point of the variety Yn in the notation of (0.6.6).
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(2) If the system of equations (6.2.1) holds for a, then wa satisfies the
Lamé equation (6.1.10) whose accessary parameter B of the equation
is

B = B[a] = (2n− 1)

n∑
i=1

℘(ai; Λ).

Proof. If there are two indices i1 �= i2 such that [ai1 ] = [ai2 ], then wa(ai1) =
w′
a(ai1) = 0. If wa(z) is a solution of the second order linear ODE (6.1.10),

then all higher derivatives of wa(z) vanish at z = ai1 , so wa(z) is identi-
cally zero, a contradiction. We have shown that the [ai]’s must be mutually
distinct if wa(z) is a solution of (6.1.10).

The logarithmic derivative

w′
a(z; Λ)

wa(z; Λ)
=
∑
i

(
ζ(ai; Λ) + ζ(z − ai; Λ)− ζ(zΛ)

)

of wa is an elliptic function on C/Λ. Applying d
dz again, we get

w′′
a

wa
=
(w′

a

wa

)′
+
(w′

a

wa

)2
=
∑(

℘(z)− ℘(z − ai)
)
+
∑(

ζ(ai) + ζ(z − ai)− ζ(z)
)2

+
∑
i �=j

(
ζ(ai) + ζ(z − ai)− ζ(z)

)(
ζ(aj) + ζ(z − aj)− ζ(z)

)
= 2n℘(z) +

∑
i

℘(ai)

+
∑
i �=j

(
ζ(ai) + ζ(z − ai)− ζ(z)

)(
ζ(aj) + ζ(z − aj)− ζ(z)

)

(6.2.2)

where we have used the consequence

(
ζ(ai) + ζ(z − ai)− ζ(z)

)2
= ℘(z) + ℘(ai) + ℘(z − ai).

of (6.1.5) and (6.1.6) to add up the first two sums after the second equality

sign in (6.2.2) to get the last expression of w′′
a

wa
in (6.2.2).

The sum in the last line of (6.2.2) is an elliptic function on C/Λ with a
double pole at z = 0 with Laurent expansion n2

z2 +O(1); denote this function
by Fa(z). Therefore wa satisfies a Lamé equation (6.1.10) for some B ∈ C

if and only if Fa(z) has no pole outside of [0] ∈ C/Λ.



Mean field equations, hyperelliptic curves and modular forms 223

Suppose [ai0 ] appears in the list [a] = {[a1], . . . , [an]} r times with r ≥ 2
for some i0 ∈ {1, . . . , n}. Then Fa(z) has a double pole at z = ai0 , where it
has a Laurent expansion

Fa(z) = r(r − 1)(z − ai0)
−2 +O

(
(z − ai0)

−1
)
.

We have shown that if Fa(z) is holomorphic outside Λ, then [ai] �= [aj ]
whenever i �= j.

Under the assumption that [a1], . . . , [an] are mutually distinct, the func-
tion Fa(z) is holomorphic on (C/Λ)�{[z1], . . . , [an]} and has at most simple
poles at [z1], . . . , [zn]. Therefore Fa(z) is holomorphic outside Λ if and only
if its residue at z = ai is zero for i = 1, . . . , n, which means that∑

j �=i

(
ζ(aj ; Λ) + ζ(ai − aj ; Λ)− ζ(ai; Λ)

)
= 0, ∀1 ≤ i ≤ n.

This proves the statement (1) of Theorem 6.2.

We know that there a constants B1 ∈ C such that

(6.2.3) Fa(z) = n(n− 1)℘(z; Λ) +B1,

because Fa(z) is holomorphic on C/Λ� {[0]} and its Laurent expansion at
z = 0 is n(n − 1) · z−2 + O(1). To determine B1, we need to compute its
Laurent expansion at z = 0 modulo O(z). From

ζ(z − ai; Λ) = −ζ(ai; Λ)− ℘(ai; Λ)z +O(z2),

we get

Fa(z) =
∑
i �=j

(
− 1

z
− ℘(ai; Λ)z +O(z2)

)(
− 1

z
− ℘(aj ; Λ)z +O(z2)

)

= n(n− 1)
1

z2
+ 2(n− 1)

∑
i

℘(ai; Λ) +O(z).

In particular B1 = 2(n− 1). From (6.2.2) we get

w′′
a

wa
= n(n+ 1)℘(z; Λ) + (2n− 1)

n∑
i=1

℘(ai; Λ).

We have proved the statement (2).
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Remark 6.2.1. (a) Clearly that the necessary and sufficient condition in
Theorem 6.2 (1), which defines the variety Yn, depends only on the list [a] =
{[a1], . . . , [an]} of elements in (C/Λ)� {[0]} determined by a.

(b) It is also clear that a list a = {a1, . . . , an} satisfies the condition in 6.2 (1)
if and only if the list −a = {−a1, . . . ,−an} does.

Proposition 6.3. Let a = {a1, . . . , an} be an unordered list of elements in
C� Λ, n ≥ 1.

(1) The function wa(z) is a common eigenvector for the translation action
by elements of Λ:

wa(z + ω)

wa(z)
= eω·

∑n
i=1 ζ(ai;Λ)−η(ω;Λ)·

∑n
i=1 ai ∀ω ∈ Λ.

This “eigenvalue package” attached to wa is the homomorphism

χa : Λ → C×, ω → eω·
∑n

i=1 ζ(ai;Λ)−η(ω;Λ)·
∑n

i=1 ai ∀ω ∈ Λ,

which depends only on the list [a] = {[a1], . . . , [an]}.
(2) If wa satisfies a Lamé equation (6.1.10), then so does w−a.
(3) For any unordered list b = {b1, . . . , bn} of elements in C � Λ, the

functions wa and wb are linearly dependent if and only if either [b] = [a]
or [b] = [−a], where [−a] is the unordered list {[−a1], . . . , [−an]} of
elements in C/Λ.

(4) The homomorphisms χa and χ−a are equal if and only if there exists
an element ω ∈ Λ such that

(6.3.1)

n∑
i=1

ζ(ai; Λ) =
η(ω; Λ)

2
and

n∑
i=1

ai =
ω

2
,

in which case Im(χa) ⊆ {±1}.
(5) Suppose that wa and w−a are two solutions of a Lamé equation (6.1.10),

and [a] �= [−a]. Then χa �= χ−a. Moreover C ·wa and C ·w−a are char-
acterized by the monodromy representation of (6.1.10) as the two one-
dimensional subspaces of solutions which are stable under the mon-
odromy.

Proof. The statement (1) is immediate from the transformation formula for
the Weierstrass σ function. The statements (2) and (3) are obvious and easy
respectively. The statement (4) is a consequence of the Legendre relation for
the quasi-periods.
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Suppose that [a] �= [−a] and χa = χ−a. By (3) the monodromy represen-
tation of the Lamé equation (6.1.10) is isomorphic to the direct sum χa⊕χb,
and the character χa has order at most 2 by (4). Consider the algebraic form

(6.3.2) p(x)
d2y

dx2
+

1

2
p′(x)

dy

dx
−
(
n(n+ 1)x+B

)
y = 0

of the Lamé equation (6.1.10). The monodromy group M of (6.3.2) contains
the monodromy group (6.1.10) as a normal subgroup of index at most 2,
therefore M is a finite abelian group of order dividing 4. In particular the
monodromy representation of the algebraic Lamé equation (6.3.2) is com-
pletely reducible. However one knows from [65, Thm. 4.4.1] or [4, Thm. 3.1]
that the monodromy representation of (6.3.2) is not completely reducible, a
contradiction. We have proved the first part of (5). The second part of (5)
follows from the first part of (5).

Proposition 6.4. Suppose that [a] = {[a1], . . . , [an]} and [b] = {[b1], . . . , [bn]}
are two points of Yn, n ≥ 1. If

∑n
i=1 ℘(ai; Λ) =

∑n
i=1 ℘(bi; Λ), the either

[a] = [b] or [a] = [−b].

Proof. Pick representatives ai ∈ [ai] and bi ∈ [bi] for each i = 1, . . . , n.
Suppose that [b] �= [a] and [b] �= [−a]. The functions wa(z) and wb(z) are
linearly independent by Proposition 6.3 (3) because [b] �= [a], and they satisfy
the same Lamé differential equation because B[a] = B[b]. By either [65,
Thm. 4.4.1] or [4, Thm. 3.1], that image of the monodromy representation
of the Lamé equation d2w

d2z − (n(n+ 1)℘(z; Λ) + B[a])w = 0 is not contained
in C×I2, for otherwise the monodromy group of the algebraic form of the
above Lamé equation on P1(C) is contained in the product of C×I2 with a
subgroup of order two in GL2(C). So C · wa and C · wb are the two distinct
common eigenspaces of the monodromy representation of the above Lamé
equation on C/Λ. If follows that C ·w−a = C ·wa and C ·w−b = C ·w−b, i.e.
[a] = [−a] and [b] = [−b]. Therefore the cardinality of the monodromy group
of the above Lamé equation divides 4, and the cardinality of the monodromy
group of the algebraic form of the same Lamé equation divides 8, which again
contradicts [65, Thm. 4.4.1] and [4, Thm. 3.1].

Theorem 6.5 (Characterization of Xn by ordz=0 f
′
[a](z)). Let n ≥ 1 be

a positive integer. Let a = {[a1], . . . , [an]} be an unordered list of n non-
zero points on the elliptic curve C/Λ. Let a1, . . . , an be representatives of
[a1], . . . , [an] in C� Λ.

(0) f[a] is a constant if and only if [a] = [−a], where [−a] is the unordered
list {[−a1], . . . , [−an]} of n non-zero elements in the elliptic curve C/Λ.
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(1) If [a] �= [−a], then ordz=0 f
′
[a](z) ≤ 2n.

(2) Assume that [a] �= [−a]. Then ordz=0f
′
[a](z) = 2n if and only if the

Weierstrass coordinates (℘(ai; Λ), ℘
′(ai; Λ)) of [a1], . . . , [an] in C/Λ

satisfy the following system of polynomial equations.

(6.5.1)

n∑
i=1

℘′(ai; Λ) · ℘k(ai; Λ) = 0, for k = 0, . . . , n− 2.

Moreover if the above equivalent conditions hold, then

– ℘′(ai; Λ) �= 0 for all i = 1, . . . , n, and

– ℘(ai; Λ) �= ℘(aj ; Λ) whenever i �= j.

In other words [a] is a point of the variety Xn defined in (0.6.6).

Proof. The divisor div(f[a]) of the meromorphic function f[a] on C is stable
under translation by Λ, and div(f[a])modΛ is the formal sum (or 0-cycle)

n∑
i=1

[an]−
n∑

i=1

[−an]

of points of C/Λ. So if f[a] is a constant, the above formal sum is 0, meaning
that [a] = [−a]. Conversely if [a] = [−a], then

n∑
i=1

ζ(ai; Λ) = −
n∑

i=1

ζ(ai; Λ) = 0

and f[a] is equal to the constant function 1. We have proved statement (0).

Let (xi, yi) := (℘(ai; Λ), ℘
′(ai; Λ)). We have

(6.5.2) f ′
[a] = f[a] ·

n∑
i=1

℘′(ai; Λ)

℘(z; Λ)− ℘(ai; Λ)

and

n∑
i=1

yi
℘(z; Λ)− xi

=

n∑
i=1

yi ℘(z; Λ)
−1

1− xi ℘(z; Λ)−1
=

∞∑
k=1

( n∑
i=1

yix
k
i

)
℘(z; Λ)−k−1.

We conclude that

• ordz=0 f[a](z) > 2n if and only if
∑n

i=1 yix
k
i = 0 for k = 0, . . . , n− 1,
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• ordz=0 f[a](z) = 2n if and only if
∑n

i=1 yix
k
i = 0 for 0 ≤ k ≤ n − 2

while
∑n

i=1 yix
n−1
i �= 0.

Suppose that ordz=0 f
′
[a](z) > 2n, i.e.

∑n
i=1 yix

k
i = 0 for k = 0, . . . , n−1.

If x1, . . . , xn are distinct, we get from the non-vanishing of the Vandermonde
determinant that y1 = · · · = yn = 0, meaning that [a1], . . . , [an] are all 2-
torsion points. That contradicts the assumption that [a] �= [−a]. So we know
that x1, . . . , xn are not all distinct. Apply the argument in Remark 5.8.6 (b):
let {s1, . . . , sm} = {x1, . . . , xn} as sets without multiplicity, let

zj :=
∑

all i s.t. si=tj

yi for i = 1, . . .m,

and we have z1 = · · · = zm = 0. Note that for each j, the yi’s which appear
in the sum defining zj differ from each other at most by a sign ±1, so that
the sum zj is either 0 or a non-zero multiple of a yi. Note that we have
cancelled a number of pairs ([ai1 ], [−ai2 ]) in forming the reduced system of
equations

m∑
j=1

zjs
k
j = 0 for k = 0, . . . , n− 1.

That z1 = · · · = zm = 0 means that, after removing a number of pairs
([ai1 ], [−ai2 ]) from the unordered list [a], we are left with another unordered
list [b] with [b] = [−b]. So again we have [a] = [−a], a contradiction with
proves the statement (1). The first part of statement (2) follows.

It remains to prove the second part of (2). We are assuming that [a] �=
[−a] and

∑n
i=1 yix

k
i = 0 for k = 0, . . . , n − 2. If there exists i1, i2 between

1 and n such that xi1 = xi2 , the same argument in the previous paragraph
produces a contradiction that [a] = [−a]. Therefore x1, . . . , xn are mutually
distinct. If there is an i0 such that yi0 = 0, then y1 = · · · = yn = 0 by
Remark 5.8.6 (a), contradicting the assumption that [a] �= [−a].

We have seen in Proposition 5.8.5 that Xn ⊂ Yn, where Xn is defined
in (0.6.6) and Yn is defined in (0.5.2). The following proposition, which is a
consequence of Theorem 6.5, describes the complement of Xn in Yn.

Proposition 6.6. Let [a] = {[a1], . . . , [an]} be a point of Yn, i.e. [ai] �= [0]
for each i, [ai] �= [aj ] whenever i �= j and the equations (6.2.1) hold. Then
[a] ∈ Xn if and only if [a] �= [−a].

Proof. The “only if” part is part of the definition of Xn. Assume that [a] �=
[−a]. We mush show that a ∈ Xn. We know from Theorem 6.2 and 6.5 (0)
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that wa and w−a are linearly independent solutions of the Lamé equation
(6.1.10). If a �∈ Xn, then the lists [a] and [−a] have common members. So
either (A) there exist two indices i1, i2 such that i1 �= i2 and [ai1 ] = [−ai2 ],
or (B) there exists an index i3 such that [ai3 ] = [−ai3 ]. We start with a
non-canonical process to reduce the length of the list [a] while keeping the
associated functions wa and w−a unchanged up to some non-zero constants:
First remove all ai’s such that [ai] = [−ai] from the list a. In the resulting
reduced list, remove both ai1 and ai2 from the list if i1 �= i2 and [ai1 ] = [−ai2 ].
Keep doing so until we get a sublist b = {b1, . . . , bm} of a such that [b] and
[−b] have no common members, m < n, and there exists a non-zero constant
C ∈ C× such that

f[b] =
wb

w−b
= C · wa

w−a
= C · f[a].

The Schwarzian derivative S(f[a]) satisfies

(6.6.1) S(f[a]) = −2(n(n+ 1)℘(z) +B[a]).

Let

2η := ordz=0 f
′
[a](z).

Theorem 6.5 (1) tells us that

2η = ordz=0 f
′
[b](z) ≤ 2m < 2n.

But then

S(f[a]) =
f ′′′
[a]

f ′
[a]

− 3

2

(f ′′
[a]

f ′
[a]

)2
= −2η(η + 1)

1

z2
+O(1),

which contradicts (6.6.1). Therefore [a] ∈ Xn.

The characterization of Xn in terms of the Schwarzian derivative follows
similarly:

Corollary 6.7 (Characterization of Xn by S(f)). Let n ≥ 1 be a positive
integer. Let a1, . . . , an be complex numbers in C�Λ, let [a] be the unordered
list {[a1], . . . , [an]} and let [−a] be the unordered list {[−a1], . . . , [−an]}. Then
[a] ∈ Xn if and only if [a] �= [−a] and

(6.7.1) S(f[a]) = −2(n(n+ 1)℘(z; Λ) + (2n− 1)

n∑
i=1

℘(ai; Λ)).



Mean field equations, hyperelliptic curves and modular forms 229

Proof. If [a] ∈ Xn then [a] �= [−a] by definition, and a ∈ Yn because Xn ⊂
Yn. It follows that f[a] = wa/w−a is a quotient of two linearly independent
solutions of a Lamé equation (6.1.10) and the formula for S(fa) follows from
Theorem 6.2 and the standard ODE theory.

Conversely, if (6.7.1) holds then ordz=0 f
′
a(z) = 2n. Hence a ∈ Xn by

Theorem 6.5.

Remark 6.8. We would like to point out the striking similarity between the
solution wa to the Lamé equation and the defining power series of complex
elliptic genera in the Weierstrass form studied in [66]. In a certain context
of topological field theory, complex elliptic genera serves as the genus one
partition function. In contrast to it, the mean field equation studies local
yet very precise analytic behavior of a genus one curve. It would be very
interesting to uncover a good reason that will account for the similarity
between these two theories.

7. Hyperelliptic geometry on X̄n

We have seen in Proposition 6.4 that the fibers of the map π : Yn → C

which sends a typical point of Yn represented by an unordered list [a] =
{[a1], . . . , [an]} of n elements in C/Λ� {[0]} to

π([a]) = B[a] = (2n− 1) ·
n∑

i=1

℘(ai; Λ)

are exactly the orbits of the involution ι : [a] → [−a] on Yn. We have also
seen that the complement Yn �Xn of Xn ⊂ Yn is the set of all points of Yn
fixed by the involution ι. In turn the fact that both Xn and Yn are locally
the locus of common zeros of n− 1 holomorphic functions on n-dimensional
complex manifolds suggest that Xn and Yn are both one-dimensional. The
fact that there exists a two-to-one map from Xn → C suggest that Xn

is the unramified locus of a possibly singular hyperelliptic curve, Yn is a
partial compactification of Xn, ι is the hyperelliptic involution on Yn, and
π : Y → C is the hyperelliptic projection. This section is devoted to the
proof of Theorem 0.7, which asserts that the above guesses are indeed true,
and provides more detailed information about this hyperelliptic curve. Due
to its fundamental importance, we shall give two different treatments of this
result, one based on the theory of ordinary differential equations and another
one based on purely algebraic method.

The analytic method continues the train of ideas in §6, that points of Yn
corresponds to the ansatz solutions of Lamé equations with fixed index n but
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varying accessory parameters. With the analytic method it is easier to show

that the closure X̄n ofXn in the n-th symmetric product SymnE = En/Sn of

E = C/Λ is Yn∪{∞}, where “∞” stands for the point {0, . . . , 0} of SymnE.

Moreover one gets a recursively defined polynomial �n(B) of degree 2n + 1

in B, whose roots are the image of the ramification points of π : Yn → C, i.e.

fixed points of the involution ι on Yn. With the algebraic method one gets

not only the same polynomial �n(B), but also an explicit regular function

C on X̄n such that C2 = �n(B). In particular, X̄n has arithmetic genus n.

The algebraic method also allows us to analyze the limiting equations at ∞
and prove that ∞ is a smooth point of X̄n.

We emphasize that a priori there is no definite reason that the compact-

ification of Yn in SymnE should agree with the projective hyperelliptic model

of Xn defined in 7.6.1.e. Such an identification is one of the main statements

we will establish; see Proposition 7.7.

7.1. Review of linear second order ODE. The starting point of this

section is the following simple well-known observation on a second order

ODE

(7.1.1) w′′ = Iw

Recall that the Wronskian

(7.1.2) C :=

∣∣∣∣w1 w2

w′
1 w′

2

∣∣∣∣ = w1w
′
2 − w2w

′
1 = w1w2 ·

d

dz
log

w1

w2

of two linearly independent solutions w1, w2 is obviously a non-zero constant

since C ′ = 0. If the product X = w1w2 is easier to get hold of, then we may

express the solutions w1, w2 in terms of C and X: we have

X ′

X
=

w′
1

w1
+

w′
2

w2
,

C

X
=

w′
2

w2
− w′

1

w1
,

hence

w′
1

w1
=

X ′ − C

2X
,

w′
2

w2
=

X ′ + C

2X
.

In particular,

(7.1.3) w1 = X1/2 exp
(
− C

2

∫
dz

X

)
, w2 = X1/2 exp

(C
2

∫
dz

X

)
.
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From

(X ′ + C

2X

)′
=
(w′

2

w2

)′
=

w′′
2

w2
−
(w′

2

w2

)2
= I − (X ′ + C)2

4X2
,

one finds easily that

(7.1.4) C2 = X ′2 − 2X ′′X + 4IX2.

Differentiating (7.1.4) we see that the product X = w1 · w2 of any two
solutions w1, w2 of the equation (7.1.1) satisfies

(7.1.5) X ′′′ − 4IX ′ − 2I ′X = 0.

This third order ODE is known as the second symmetric power of the equa-
tion (7.1.1) and can easily be derived directly. In this way, (7.1.4) is simply
the first integral of (7.1.5) with integration factor −2X.

Conversely suppose we have a non-trivial solution X of the second sym-
metric power (7.1.5) of (7.1.1). Then X ′2 − 2X ′′X + 4IX2 is a constant24

and the constant C is defined up to sign by (7.1.4), so we get a pair of func-
tions w1, w2 defined by (7.1.3). It can be checked easily using (7.1.4) that
w1 and w2 are indeed solutions of the equation (7.1.1).

Remark 7.2. The product X = w1 ·w2 has appeared implicitly in our
previous discussions, in the sense that there exists a developing map for a
solution of the mean field equation �u + eu = 8πn δ0 whose logarithmic
derivative is equal to −C/X for some non-zero constant C. To see this, recall
that for any given solution of the above mean field equation on C/Λ, there
exist two independent solutions of a Lamé equation

d2w

dz2
− (n(n+ 1)℘(z; Λ) +B)w = 0

such that w1/w2 =:f is a developing map of u. Then

(7.2.1) g :=
f ′

f
=

(w′
1w2 − w1w

′
2)/w

2
2

w1/w2
=

−C

w1w2
=

−C

X
.

We start with the analytic approach of Hermite-Halphen; c.f. [27, p. 499]
and [67, §23.7].

24Of course if this constant is zero, then the functions w1, w2 defined by (7.1.3)
are linearly dependent.
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Theorem 7.3. Let n ≥ 1 be a positive integer.

(i) There exist polynomials s1(B), s2(B), s3(B), . . . , sn(B) in B with co-
efficients in Q[g2(Λ), g3(Λ)] with the following properties:

– for every element [a] = {[a1], . . . , [an]} ∈ Yn and any i = 1, . . . , n,
the i-th elementary polynomial of {℘(a1; Λ), . . . , ℘(an; Λ)} is
equal to si(B[a]), where B[a] := (2n− 1)

∑n
i=1 ℘(ai; Λ).

– s1(B) = (2n− 1)−1B, and si(B) is of degree i with leading coef-
ficients in Q× for i = 2, . . . , n.

– si(B) is homogenous of weight i for i = 2, . . . , n if B, g2, g3 are
given weights 1, 2, 3 respectively.

(ii) The fibers of the map π : Yn → C defined by

π : {(xi, yi)}ni=1 → B[a] = (2n− 1)

n∑
i=1

xi

are orbits of the involution ι : [a] → [−a] on Yn. In other words

π−1(B[a]) = {[a], [−a]} ∀[a] ∈ Yn.

The subset Xn ⊂ Yn is the complement in Yn of the fixed point set
(Yn)

ι of the involution ι; it is also equal to the subset of Yn consisting
of all elements [a] = {[a1], . . . , [an]} ∈ Yn such that ℘′(ai; Λ) �= 0
for all i and ℘(ai; Λ) �= ℘(aj ; Λ) for all pairs (i, j) with i �= j and
1 ≤ i, j ≤ n. Moreover Xn is a locally closed smooth one-dimensional
complex submanifold of Symn(C/Λ).

(iii) The set (Yn)
ι = Yn�Xn is a finite subset of Yn with at most 2n + 1

elements. Up to C× the set of all ansatz functions wa(z) with [a] ∈ Y ι
n

coincides with the set of all Lamé functions of index n. In other words
Y ι
n = Yn�Xn is in natural bijection with the set of all Lamé functions

of index n up to non-zero constants.
(iv) The closure X̄n of Xn in Symn(C/Λ) consists of Yn and a single “point

at infinity” [0]n := {[0], . . . , [0]}: X̄n = Yn ∪ {[0]n}.
(v) The map π : Yn → C extends to a surjective continuous map π̄ : X̄n →

P1(C) which sends the point [0]n to ∞ ∈ P1(C).

7.3.1. Proof of Theorem 7.3 (i). Consider the Weierstrass equation
y2 = p(x) = 4x3 − g2x − g3, where (x, y) = (℘(z), ℘′(z)), and we set
(xi, yi) = (℘(ai), ℘

′(ai)) for [a] = {[a1], . . . , [an]} ∈ Yn. Pick ai ∈ [ai] for



Mean field equations, hyperelliptic curves and modular forms 233

i = 1, . . . , n. Consider the following pair of ansatz solutions Λa(z), Λ−a(z)
the Lamé equation

(7.3.1)
d2w

dz2
−
(
n(n+ 1)℘(z; Λ) +B

)
w = 0,

where

(7.3.2) Λa(z) :=
wa(z)∏n
i=1 σ(ai)

= ez
∑

ζ(ai)
n∏

i=1

σ(z − ai)

σ(z)σ(ai)
.

Let X̃[a](z) = Λa(z)Λ−a(z) be the product of this pair. Note that if [a] �∈ Xn

then [a] = [−a] by Proposition 6.6 and Λa = Λ−a. From the addition theorem
we have

X̃a(z) = (−1)n
n∏

i=1

σ(z + ai; Λ)σ(z − ai; Λ)

σ(z; Λ)2σ(ai; Λ)2

= (−1)n
n∏

i=1

(℘(z; Λ)− ℘(ai; Λ)) = X(℘(z; Λ))

(7.3.3)

That is X̃[a](z) = X[a](℘(z; Λ)), where

X[a](x) = (−1)n
n∏

i=1

(x− ℘(ai; Λ)).

a polynomial of degree n in the variable x.

We know that X̃[a](z) satisfies the second symmetric power of the Lamé
equation (7.3.1)

(7.3.4)
d3X̃

dz3
− 4(n(n+ 1)℘(z; Λ) +B)

dX̃

dz
− 2n(n+ 1)℘′(z,Λ)X̃(z) = 0,

it is thus a polynomial solution in the variable x, to the algebraic form

(7.3.5) p(x)
d3X

dx3
+

3

2

dp

dx
· d

2X

dx2
−4((n2+n−3)x+B)

dX

dx
−2n(n+1)X = 0,

of (7.3.4), where p(x) is the cubic polynomial

p(x) = 4x3 − g2(Λ)x− g3(Λ)
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in the Weierstrass equation for C/Λ. As a result, X[a](x) will be determined
by B and certain initial conditions.

Indeed, write X[a](x) = (−1)n(xn−s1x
n−1+ · · ·+(−1)nsn), then (7.3.5)

translates into a linear recursive relation for each μ = n−1, . . . , 0, where we
set s0 = 1 by convention:

0 = 2(n− μ)(2μ+ 1)(n+ μ+ 1)sn−μ − 4(μ+ 1)Bsn−μ−1

+ 1
2g2(μ+ 1)(μ+ 2)(2μ+ 3)sn−μ−2

− g3(μ+ 1)(μ+ 2)(μ+ 3)sn−μ−3.

(7.3.6)

Since B = (2n − 1)s1, the initial relation for μ = n − 1 is automatic. Let
s1(B) := (2n − 1)−1B. The recursive relations (7.3.6) with si substituted
by si(B) define polynomials s2(B), . . . , sn(B) ∈ Q[g2, g3] which satisfy the
first condition listed in Theorem 7.3 (i). Moreover we see from the recursive
relations that sj is a polynomial of degree j in B, and it is homogenous of
weight n if B, g2, g3 are given weights 1, 2, 3 respectively, for j = 1, . . . , n,
We have proved Theorem 7.3 (i).

7.3.2. Proof of Theorem 7.3 (ii). The first sentence of Theorem 7.3 (ii)
is a restatement of Proposition 6.4. We give another proof here more in line
with the proof of (i). Suppose now we have two elements

[a] = {[a1], . . . , [an]}, [b] = {[b1], . . . , [bn]} ∈ Yn

such that
n∑

i=1

℘(ai; Λ) =

n∑
i=1

℘(a′i; Λ).

Let X[a](x) be the polynomial in x of degree n such that X[a](℘(z; Λ)) =
Λa(z)Λ−a(z); similarly let X[b] be the polynomial of degree n such that
X[b](℘(z; Λ)) = Λb(z)Λ−b(z). Then X[a] and X[b] both satisfy the same equa-
tion (7.3.5), and we get from the recursive relations (7.3.6) that X[a] = X[b],
i.e.

n∏
i=1

(x− ℘(ai; Λ)) =

n∏
i=1

(x− ℘(bi; Λ)).

Therefore {℘(a1; Λ), . . . , ℘(an; Λ)} = {℘(b1; Λ), . . . , ℘(bn; Λ)} as unordered
lists.

We claim that either [a] = [b] or [a] = [−b] as unordered lists. Otherwise
after renumbering the ai’s and the bi’s, there exist integers r, s ≥ 1 with
r + s ≤ n such that the following hold:
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(i) [ai] = [bi] ∈ 1
2Λ/Λ for all i such that r + s+ 1 ≤ i ≤ n,

(ii) [ai] �∈ 1
2Λ/Λ and [bi] �∈ 1

2Λ/Λ, for all i such that 1 ≤ i ≤ r + s,
(iii) [ai] = [−bi] for i = 1, . . . , r,
(iv) [ai] = [bi] for i = r + 1, . . . , r + s.
(v) [ai] �= [−aj ] if i �= j and 1 ≤ i, j ≤ r.

We know from Theorem 6.5 (0) that wa(z) and wb(z) are linearly indepen-
dent because [a] �= [±b], and they satisfy the same Lamé equation with index
n because B[a] = B[b]. So the Schwarzian derivative of wa/wb is

S(wa/wb) = 2
(
n(n+ 1)℘(z; Λ) +B[a]

)
.

On the other hand conditions (i)–(iv) tells us that wa/wb is equal to a non-
zero constant times the function f[c] = wc/w−c, where [c] = {c1, . . . , cr}, so
S(f[c]) = 2(n(n + 1)℘(z; Λ) + B[a]). The condition (v) above tells us that
[c] �= [−c], so we get from Proposition 6.5 (1) that ordz=0 f[c] ≤ 2r ≤ 2n− 2,
which implies that S(f[c]) �= 2(n(n+ 1)℘(z; Λ) + B[a]). We have proved the
first sentence of (ii): if B[a] = B[b], [a], [b] ∈ Yn, then either [a] = [b] or
[a] = [−b].

The second sentence of Theorem 7.3 (ii) is the content of Proposition 6.6.
The argument below provides a different proof and also the rest of the state-
ment (ii) at the same time. Suppose that [a] = {[a1], . . . , [an]} is a given point
of Yn. As in §7.1, we know that

(
d
dzX[a](℘(z; Λ))

)2 − 2X[a](℘(z; Λ))
d2

dz2X[a](℘(z; Λ))

+ 4
(
n(n+ 1)℘(z; Λ) +B[a]

)
X[a](℘(z; Λ))

2
(7.3.7)

is a constant because its derivative vanishes identically; write this constant
as C2. This constant C2 can be evaluated by plugging in z = ai in equa-
tion (7.3.7), for any i with 1 ≤ i ≤ n:

C2 =
(dX[a]

dx
(℘(ai; Λ)) · ℘′(ai; Λ)

)2
for each i = 1, . . . , n.

Suppose that C2 = 0. We know from §7.1 that wa and w−a are linearly
dependently, therefore [a] = [−a]. The above argument also tells us that
π−1(B[a]) is the singleton {[a]}. In this case wa(z) is a Lamé function of
index n: up to C× it is a square root of X[a](℘(z; Λ)), a polynomial of degree
n in ℘(z; Λ). We also see that [a] �∈ Xn, because for each i we know that
either ℘′(ai; Λ) = 0 or ℘(ai; Λ) is a multiple root of X[a](x).
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On the other hand, suppose that C2 �= 0. Then

℘′(ai; Λ) �= 0 and
dX[a]

dx
(℘(ai; Λ)) �= 0 for i = 1, . . . , n.

Therefore [a] �= [−a], and [a], [−a] ∈ Xn. After making a choice of a square
root C of C2, one can “pick out” [a] from the pair {[a], [−a]} using C and
{℘(a1; Λ), . . . , ℘(an; Λ)}, by

(7.3.8) C =
dX[a]

dx
(℘(ai; Λ)) · ℘′(ai; Λ)

The above formula shows that the map π : Yn → C is a local isomorphism
near [a] and [−a]. The procedure reviewed in §7.1 tells us that the pair of
ansatz functions wa, w−a are determined up to C× byX[a](x), so π

−1(B[a]) =
{[a], [−a]} in this case. We have proved Theorem 7.3 (ii).

Remark 7.3.3. The proofs of Theorem 7.3 (i) and (ii) employed the method
in [27, pp. 498–500] and [67, pp. 570–572] which gives a recursive formula for
the product of a pair of ansatz solutions wa and w−a in terms of the auxiliary
parameter B[a], then bootstrap to find the ansatz pair wa, w−a.

The ansatz solutions parametrized by Yn are eigenfunctions for the trans-
lation action of the lattice Λ, and they are also eigenfunction for the differ-
ential operator d2

dz2 − n(n + 1)℘(z; Λ). In this sense Yn can be regarded as
the spectral curve of this second order differential operator.

Theorem 7.3 (v) asserts that for every B ∈ C there exist an element
[a] ∈ Yn such that B[a] = B. We discuss the dichotomy whether π : Yn → C

is ramified above B from the perspective of the translation action of Λ on
the solution space of the Lamé equation Ln,B[a]

.

1. Case [a] ∈ Xn, equivalently [a] �= [−a]. In this case C·wa and C·w−a are
one-dimensional spaces of solutions of the same Lamé equation Ln,B[a]

but
their eigenvalue packages for the translation action by Λ are different, hence
the ansatz solutions C ·wa and C ·w−a are intrinsic to the Lamé equation
Ln,B[a]

.

2. Case [a] �∈ Xn, equivalently [a] = [−a]. The assumption that [a] �∈ Xn

is equivalent to [a] = [−a]. We have seen in the proof of 7.3 (ii) that up to a
non-zero constant wa(z) is a square root of a polynomial of ℘(z; Λ); in other
words wa is a Lamé function. In this case the action of Λ on the space of
solutions of the Lamé equation Ln,B[a]

is not diagonalizable, and the Lamé
functions C·wa are the only Λ-eigenfunctions among the space of solutions
of the Lamé equation Ln,B[a]

.
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7.3.4. Proof of Theorem 7.3 (iii). We have seen in the last paragraph

of Remark 7.3.3 that (Yn)
ι is in natural bijection with the set of all Lamé

functions of index n up to C×. One knows from classical literature that there

exists a polynomial �n(B) ∈ Q[g2(Λ), g3(Λ)] of degree 2n+1 in the variable

B, explicitly defined by recursion, whose roots are precisely the B[a]’s with

[a] ∈ (Yn)
ι; see Theorem B in §0. Theorem 7.3 (iii) follows.

The definition of this polynomial �n(B) will be reviewed in the proof of

Theorem 7.4. It is known that �n(B) has 2n+1 distinct real roots when the

lattice has the form Λ = Z+
√
−1tZ for some t ∈ R>0. This fact is stated on

line 13, page 221 in Liouville’s letter [47], where Liouville said that one can

use Sturm’s method to prove that the polynomial �n(B), written as R(B)

in loc. cit., has 2n + 1 (real) roots and therefore there are 2n + 1 Lamé

functions. The proof in [27, pp. 471–476] goes through a change of variable

u = 2v, y = ℘′(v; Λ), which has the advantage that every Lamé function is

rationally expressible in terms of ℘(v,Λ) and ℘′(v; Λ); this proof is sketched
in [53, p. 163]. In [67, §23.41] Lamé functions “of the third kind” (in the case

when n is even) is discussed, with the other three cases left as exercises.

Sturm’s method, in the form of Corollary 3.3.4, was used in all references

above.

7.3.5. Proof of Theorem 7.3 (iv)–(v).

Suppose that [a] = {[a1], . . . , [an]} is a point of X̄n. By definition there

exists a sequence [a]k = {[ak,1], . . . , [ak,n]} ∈ Xn which converges as k → ∞.

Let Bk = B[a]k = (2n − 1)
∑n

i=1 ℘(ak,i; Λ). Then B := limk→∞Bk exists as

an element of C∪ {∞} = P1(C). Let Xk(x) = X[a]k(x) be the polynomial of

degree n in x determined by Bk through the recursive relation (7.3.6). We

discuss the two cases (a) B ∈ C and (b) B = ∞ ∈ P1(C).

(a) Suppose that B �= ∞. By (7.3.6) the coefficients sj(Bk) of Xk(x) are

uniformly bounded for j = 1, . . . , n. Thus the roots xk,i = ℘(ak,i; Λ) ∈
C of Xk(x) are uniformly bounded as well. This implies that ai �∈ Λ for

i = 1, . . . , n, wak
→ wa, [a]k → [a] in Symn(C/Λ), and wa is a non-trivial

solution of the Lamé equation w′′ = (n(n+1)℘(z; Λ)+B)w. Notice that we

must have ai �= aj whenever i �= j. For otherwise wa(z) has multiplicity at

least 2 at z = ai, which implies that wa is identically zero, a contradiction.

We conclude that [a] ∈ Yn.

(b) Suppose that B = ∞. We claim that [ak,i] → [0] for all i = 1, . . . , n.
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Change the variable to t = x−1. Look at the polynomial

Yk(y) := sn(Bk)
−1 · yn ·X[a]k(y

−1)

= yn − sn−1(Bk)
sn(Bk)

yn−1 + · · ·+ (−1)n−1 s1(Bk)
sn(Bk)

+ (−1)n 1
sn(Bk)

(7.3.9)

whose roots are {℘(ak,1; Λ)−1, . . . , ℘(ak,n; Λ)
−1}. The assumption that Bk →

∞ as k → ∞ tells us that Yk(y) → yn as k → ∞, which implies that all the

roots ℘(ak,i)
−1 of Yk(y) go to 0 as k → ∞. Therefore ak,i → 0 as k → ∞ for

all i = 1, . . . , n.

Combining the cases (a) and (b), we draw the following conclusions.

• The map πn|Xn
: Xn → C extends to a continuous map π̄n : X̄n →

P1(C).

• The inverse image π̄−1
n (∞) of the point ∞ ∈ P1(C) under π̄ consists

of a single point [0]n = {[0], . . . , [0]}.
• The inverse image π̄−1(C) of C under π̄ is contained in Yn. In other

words X̄n � {[0]n} ⊆ Yn.

• Because π̄n is compact by definition, and we already know that πn(Xn)

contains the complement of a finite subset of C, therefore π̄n is surjec-

tive.

We have proved Theorem 7.3 (v) and half of (iv).

To complete the proof of Theorem 7.3 (iv), we need to show that (Yn)
ι ⊂

X̄n. Let [a] ∈ (Yn)
ι be a given element of Yn�Xn. We know that there exists

an element [b] ∈ X̄n such that B[b] = B[a], and have seen [b] ∈ Yn. Theorem

7.3 (ii) tells us that either [b] = [a] or [b] = [−a]. In either case we conclude

that [a] = [−a] = [b] ∈ X̄n. We have proved Theorem 7.3.

Corollary 7.3.6. Let ([a]k)k∈N = ({[ak,1], . . . , [ak,n]})k∈N be a sequence of

elements in Xn indexed by N. If there exists an i between 1 and n such that

[ak,i] → [0] in C/Λ, then [ak,i] → [0] in C/Λ for all i = 1, . . . , n.

Remark 7.3.7. The proof of Theorem 7.3 (i) has appeared in [27, p. 499–

500]. The proof in [67, §23.7] is essentially the same, except that X[a](x)

is expressed as a polynomial in x − e2 and recursive formula was given

for the coefficients of powers of x − e2. We may compare our argument

with [67, §23.7] on such a polynomial solution X to (7.3.5), which is indeed

the origin where X(x) and Λa were first found during our study. Let X =∑∞
r=0 cr(x−e2)

n−r be a solution of (7.3.5) in descending power. Since p(x) =
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4(x− e1)(x− e2)(x− e3), there is a recursive formula for cr:

4r(n+ 1
2 − r)(2n+ 1− r)cr

= (n+ 1− r)
(
12e2(n− r)(n− 2− r)− 4e2(n

2 + n− 3)− 4B
)
cr−1

− 4(n+ 1− r)(n+ 2− r)(n+ 3
2 − r)(e1 − e2)(e2 − e3)cr−2.

The above recursive formula is slightly different from (7.3.6). Given c0 = 1
and c1, we can solve c2, . . . , cn and express them as polynomials in c1 and
B. The recursive formula forces cn+1 = · · · = c2n = 0. The next coefficient
c2n+1 appears as another “free parameter”, and the coefficients of higher
order terms are expressed as polynomials of c1. The condition that X(x) is
a polynomial is that cl = 0 for all l ≥ n. Thus X(x) is a polynomial solution,
which is determined by c1 and B.

From (−1)nΛaΛ−a =
∏n

i=1((x − e2) + (e2 − xi)) =
∑n

r=0 cr(x− e2)
n−r,

we see that c1 =
∑n

i=1(e2 − xi) = ne2 −
∑n

i=1 xi = ne2 − B. Hence X is a
polynomial in B.

Remark 7.3.8. The statement of Theorem 7.3 (iv), that X̄n = Yn ∪ {∞},
does not seem to have appeared in the literature, but this fact must be known
as it follows quickly from the method of recovering the ansatz pair wa, w−a

from their product. The behavior of Xn or Yn at B = ∞ is important, which
will be discussed in Proposition 7.5).

We would like to rephrase Theorem 7.3 in purely algebraic terms without
appealing to solutions of Lamé equations. It is given below, whose proof uses
system (5.6.2) instead of (5.8.1).

Theorem 7.4. Let n ≥ 1 be a positive integer. Let s1, . . . , sn ∈ Q[g2, g3][B]
be the polynomials in Theorem 7.3 (i) defined recursively by the relation
(7.3.6).

(1) The space Xn admits a natural projective compactification X̂n as a
possibly singular, hyperelliptic curve defined by the following equation
in (B,C):

C2 = �n(B, g2(Λ), g3(Λ))

= 4B s2n + 4g3(Λ) sn−2 sn − g2(Λ) sn−1 sn − g3(Λ) s
2
n−1.

(2) The discriminant discB(�n(B)) ∈ Q[g2, g3] in the variable B of the
polynomial �n(B) is a non-zero polynomial in two variables g2, g3; it is
homogeneous of weight 2n(2n + 1) if g2, g3 are given weights 2 and 3
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respectively. In other words discB(�n(B)) ∈ Q[g2(Λ), g3(Λ)] is a non-
zero modular form of weight 4n(2n + 1) for the full modular group
SL2(Z), holomorphic on H and also on the cusps.

Remark. The polynomial �n(B, g2, g3) has degree 2n+1 in the variable B;
it is homogeneous of weight 2n+ 1 in B, g2 and g3 when B, g2, g3 are given
weights 1, 2, 3 respectively. The projective curve X̂n has arithmetic genus n;
it is smooth unless discB(�n(B))(Λ) = 0.

Proof. Let p(x) = 4x3 − g2x− g3 and let q(x) =
∏n

j=1(x− xj). The set Xn

is defined by 2n− 1 polynomial equations

y2i = p(xi) ∀i = 1, . . . , n and

n∑
i=1

xki yi = 0 ∀k = 0, 1, . . . , n− 2

in the 2n variables x1, . . . , xn; y1, . . . , yn and n(n+ 1)/2 inequalities

xi �= xj ∀i �= j, 1 ≤ i, j ≤ 1 and yi �= 0 ∀i = 1, . . . , n.

Applying Cramer’s rule to the n − 1 linear equations
∑n

i=1 x
k
i yi = 0 in

yi’s, we conclude that there is a constant25 C ∈ C× such that

(7.4.1) yi =
C∏

j �=i(xi − xj)
, i = 1, . . . , n.

Since q′(xi) =
∏

j �=i(xi − xj), we get

(7.4.2) p(xi)q
′(xi)

2 = C2, i = 1, . . . , n,

and so q(x)|(p(x)q′(x)2−C2). This implies that there are h1, . . . , hn, a, b ∈ C

such that

(7.4.3)
p(x)q′(x)2 − C2

q(x)2
=

n∑
i=1

hi
(x− xi)

+ ax+ b.

It is easy to compute (e.g. using power series expansion of p, q at xi)

hi = Resx=xi
p(x)

q′(x)2

q(x)2
− Resx=xi

C2

q(x)2

25This “constant” C depends on n and the lattice Λ.
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= p′(xi) + p(xi)
q′′(xi)

q′(xi)
+ C2 q

′′(xi)

q′(xi)3
(7.4.4)

= p′(xi) + 2p(xi)
q′′(xi)

q′(xi)
.

From (7.4.3) we get

(7.4.5) p(x)q′(x)2 − C2 =

n∑
i=1

hi
q(x)2

(x− xi)
+ (ax+ b)q2(x).

Comparing coefficients of x2n+1 and x2n on both sides, we get

(7.4.6) a = 4n2, b = 8n

n∑
i=1

xi = 8n s1

(recall that q(x) = xn − s1 x
n−1 + · · ·+ (−1)nsn and so s1 =

∑n
i=1 xi).

Now, in a similar and easier manner, we write

p′(x)q′(x)

q(x)
=

n∑
i=1

p′(xi)

(x− xi)
+ (12nx+ 12s1),

p(x)q′′(x)

q(x)
=

n∑
i=1

p(xi)

(x− xi)

q′′(xi)

q′(xi)
+ (4n(n− 1)x+ 8(n− 1)s1).

(7.4.7)

Then (7.4.4), (7.4.5), (7.4.6) and (7.4.7) lead to

(7.4.8) pq′2 − p′q′q − 2pq′′q + 4
(
n(n+ 1)x+ (2n− 1)s1

)
q2 − C2 = 0.

One more differentiation gives

0 = p′q′2 + 2pq′q′′ − p′′q′q − p′q′′q − p′q′2 − 2p′q′′q − 2pq′′′q − 2pq′′q′

+ 4n(n+ 1)q2 + 8(n(n+ 1)x+ (2n− 1)s1)qq
′

= −2q
(
pq′′′ + 3

2p
′q′′ − 4((n2 + n− 3)x+B)q′ − 2n(n+ 1)q

)
,

which is (−2q) times the linear ODE (7.3.5), and so the same recursive
relation (7.3.6) shows that q is determined by s1.

Suppose we have two different points x = {(x1, y1), . . . , (xn, yn)} x′ =
{(x′1, y′1), . . . , (x′n, y′n)} in Xn such that πn(x) =

∑n
i=1 xi =

∑n
i=1 x

′
i = πn(y),

by rearrangement we have xi = x′i for all i and then y′i = ±yi for all i. If
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yi = y′i for some i, then by (7.4.1),

C ′∏
j �=i(x

′
i − x′j)

=
C∏

j �=i(xi − xj)
,

which implies that C = C ′ and yj = y′j for all j, a contradiction. Hence
yi = −y′i for all i. We have shown that if two different points x, x′ of Xn

have the same image in C under the map πn, then x′ = ι(x), where ι is the
involution on Xn defined by “multiplication by −1” on C/Λ.

The constant terms in formula (7.4.8) leads to

(7.4.9) C2 = �n(B) = 4B s2n + 4g3 sn−2 sn − g2 sn−1 sn − g3 s
2
n−1,

where sk = sk(B) is a polynomial of degree k and B = (2n − 1)s1. Thus
deg �n = 2n+1. Equation (7.4.9) provides a natural algebraic (hyperelliptic)
compactification X̂n of Xn.

To make this precise, we show that Xn is mapped onto those B ∈ C

with C2 = �n(B) �= 0. Indeed we define sk by sk(B) and xi’s by q(x) =
xn − s1x

n−1 + · · · + (−1)nsn =
∏n

i=1(x − xi). Then (7.4.8) holds, and by
substituting x = xi we get p(xi)q

′(xi)2 = C2 as in (7.4.2).
If C �= 0, we get p(xi) �= 0 and q′(xi) �= 0 which give the non-degenerate

conditions. Now we define

yi :=
C

q′(xi)
=

C∏
j �=i(xi − xj)

�= 0, i = 1, . . . , n.

Then y2i = p(xi) and {(xi, yi)} solves the system of equations

n∑
i=1

xki yi = 0 k = 0, . . . , n− 2,

hence gives rise to a point in Xn.
If C = 0, we have either p(xi) = 0 or q′(xi) = 0 for all i = 1, . . . , n.

Let xi = ℘(ai). In the former case ai = −ai is a half period and yi = 0. In
the latter case xi = xj for some j �= i. Notice that {(xi, yi)} still satisfies
the equations

∑n
i=1 x

k
i yi = 0 for k = 0, . . . , n − 2 since they define a closed

set. The same argument in the proof of Theorem 6.5 shows that [a] = [−a],
where [a] = {[a1], . . . , [an]}.

If B → ∞, then the first n elementary symmetric polynomials for the
unordered list x−1

1 , . . . , x−1
n all go to 0, because the i-th elementary symmet-

ric polynomial in x−1
1 , . . . , x−1

n is sn−i

sn
for i = 1, . . . , n. Since xi = ℘(ai), we

get ai → 0 for all i. That is, π̄−1(∞) = (0, . . . , 0).



Mean field equations, hyperelliptic curves and modular forms 243

We have proved Theorem 7.4 (1) at this point. The statement of Theorem
7.4 (2) is a consequence of the second paragraph of 7.3.4 in the proof of
Theorem 7.3 (iii). There we recalled that for a rectangular lattice Λτ with τ ∈√
−1R>0, the polynomial �n(B; Λτ ) in B has 2n+1 distinct real roots, and

gave references for this fact. Clearly this fact implies that the discriminant
of �n(B) is not identically zero. Theorem 7.4 (2) follows.

Example 7.4.1. For n = 1, s0 = 1, s1 = B and then

C2 = �1(B) = 4B3 − g2B − g3

which is exactly the equation for E, since X̄1
∼= E.

For n = 2, s0 = 1, s1 =
1
3B, s2 =

1
9B

2 − 1
4g2, and then

C2 = �2(B) = 4
81B

5 − 7
27g2B

3 + 1
3g3B

2 + 1
3g

2
2B − g2g3

= 1
81(B

2 − 3g2)(4B
3 − 9g2B + 27g3).

In terms of s1, it is C
2 = �2(3s1) = (3s21 − g2)(4s

3
1 − g2s1 + g3).

For n = 3, s0 = 1, s1 =
1
5B, s2 =

2
75B

2− 1
4g2, s3 =

1
3252B3− 1

3·5g2B+ 1
4g3,

and then

C2 = �3(B)

= 1
223454B(16B6 − 504g2B

4 + 2376g3B
3

+ 4185g22B
2 − 36450g2g3B + 91125g23 − 3375g32)

= s1(
500
81 s

6
1 − 70

9 g2s
4
1 +

22
3 g3s

3
1 +

31
12g

2
2s

2
1 − 9

2g2g3s1 +
9
4g

2
3 − 1

12g
3
2).

Remark. The referee has kindly informed us that the curve C2 = �2(B)
appeared in [22, p. 63] as a hyperelliptic curve Ĉ whose affine coordinates
(z, w) are related to (B,C) here by z = −B and w =

√
−19C

2 .
The paper [22] is based on the general construction of spectral curves

Γn introduced in [35, §1]. Note that the factors eζ(ai)z σ(z−ai)
σ(z) of the ansatz

function wa(z) in Definition 6.1.5 appeared in [35, p. 284] up to a factor

−σ(ai): the function Φ(x, α) in [35] is −eζ(α)z σ(z−α)
σ(z)σ(α) .

Explicit examples of Riemann surfaces associated to (finite gap) Lamé
potentials and Treibich–Verdier potentials can be found in [62].

Remark 7.4.2 (Meaning of the parameter C). We have introduced the same
notation C in various places. Indeed they are all equivalent: The constant C
in (7.4.1) coincides with the constant C in (5.6.4) by setting w = xi = ℘(ai)
in (5.6.4). It also coincide with the Wronskian C defined in (7.1.2) up to sign
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by comparing (7.2.1) with the expression of g(z) in (5.6.3) (using (5.6.4) and
(7.3.3)). These equivalences allow us to study the hyperelliptic curve Yn from
both the analytic and algebraic point of views at the same time.

Remark 7.4.3 (Relation to KdV theory). There are several methods for
computing compute �n(B) in the literature, e.g. [20, 65]. It is also interesting
to note that the hyperelliptic curve X̂n also appears in the study of KdV
equations, where it is known as the spectral curve.

Indeed in KdV theory, a differential operator P2n+1 of order 2n + 1 is
constructed by

P2n+1 =

n∑
l=0

(f ′
n−l(z)− 1

2fn−l(z))L
l,

where L = −d2/dz2+u(z), f0(z) = 1 and fk(z) satisfies the recursive relation

(7.4.10) f ′
k+1 = −1

4f
′′′
k + uf ′

k +
1
2u

′fk, k = 0, 1, 2, · · · .

Using the recursion (7.4.10), we have

[P2n+1, L] = 2f ′
n+1.

A potential u(z) is called a stationary solution to an n-th KdV hierarchy
equation if f ′

n+1 = 0. Let

F (z;E) =

n∑
l=0

fn−l(z)E
l.

Then F (z;E) satisfies

(7.4.11) F ′′′ − 4(u− E)F ′ − 2u′F = 0.

Conversely, if F (z;E) is a monic polynomial in E of degree n and satisfies
(7.4.11), write F (z;E) =

∑n
l=0 fn−l(z)E

l. Then fk(z) satisfies (7.4.10) with
fk = 0 for k ≥ n+ 1. By integrating (7.4.11), we obtain

(7.4.12) 1
2F

′′F − 1
4(F

′′)2 − (u− E)F 2 = R2n+1(E),

where R2n+1(E) is independent of z and is a monic polynomial in E of
degree 2n + 1. The spectral curve for the potential u, if u is a stationary
solution of the n-th KdV hierarchy, is by definition the hyperelliptic curve

y2 = R2n+1(E);
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it parametrizes one-dimensional eigenspaces of the commutator subring of
the differential operator L in the space of ordinary differential operators.

If u(z) = n(n+1)℘(z) is the Lamé potential and B = −E, then (7.4.11)
is identical to (7.3.4) with F (z;E) = X(z). As we have seen already, X(z) is
also a polynomial in ℘(z). By using x = ℘(z), (7.4.8) is identical to (7.4.12)
(with C2 = 4R2n+1(E) and E = −B). By this adjustment, the curve (7.4.9)
is identical to the spectral curve in KdV theory. For more details see [24,
Ch.1 §2].

The Lamé potential is a very special type of finite gap potentials. There
is an extensive literature. The readers may consult [31, 21, 32, 50, 48, 34,
35, 36, 57, 62, 37, 59, 60, 61].

The Lamé potential is also a special case of Picard potential [26]; the
system of equations (5.7.4) (i.e. equations for Yn (0.5.3)) appeared in [25,
(3.8) in p.82]. According to [25, Rmk. 3.3], that was the first time after [8]
when (5.7.4) reappeared in mathematical publications. However in a com-
ment in [25, p.83] the authors said that the conditions (5.7.4) appear to be
too difficult to be handled directly, so they turned to develop another method
to compute the spectral curve.

The following proposition arises from the study of the process B → ∞.
When xi → ∞, we have yi → ∞ too. Asymptotically (xi, yi) ∼ (t2i , 2t

3
i ) hence∑

xki yi ∼ 2
∑

t3+2k
i . The uniqueness of π̄−1(∞) suggests the uniqueness of

solutions of the limiting equations up to permutations. It turns out to be
true and can be proved along the similar reasoning as above.

Proposition 7.5. Consider the following system of n−1 homogeneous equa-
tions in Pn−1(C) (n ≥ 2) with coordinates t1, . . . , tn:

(7.5.1)

n∑
i=1

t2k+1
i = 0, k = 1, 2, . . . , n− 1,

subject to the non-degeneracy conditions
∏n

i=1 ti �= 0 and
∏

i<j(ti + tj) �= 0.
Then the solution exists uniquely up to permutations.

Proof. When B → ∞, by either (7.3.9) or (7.4.2) we see that all ti’s have the
same order |B|1/2. Since the polynomial system in ti’s comes from the leading
order terms of the original system

∑
xki yi = 0, by passing to a subsequence

if necessary, in the limit B → ∞ we get a point [t1 : · · · : tn] ∈ Pn−1 solving
the limiting equations. In fact [t] ∈ P(T0(X̄n)) ⊂ P(T0(Sym

nE)).
However a more careful argument is needed to verify the nondegeneracy

conditions. We recall that for a ∈ Xn, ℘(ai)’s are the roots of the polynomial
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X(x) where the coefficients sj(B)’s satisfy the recursive relation (7.3.6).
Thus ℘(ai)/B tends to the roots of the limiting polynomial X∞:

X∞(x) = xn − s̄1x
n−1 + s̄2x

n−2 + · · ·+ (−1)ns̄n,

where we set s̄0 = 1 and

(7.5.2) s̄k =
2(n− k + 1)

k(2n− 2k + 1)(2n− k + 1)
s̄k−1, k = 1, . . . , n.

To prove (℘(ai) − ℘(aj))/B �→ 0 as B → ∞ is equivalent to showing that
X∞ has n distinct roots, a statement which does not seem to be obvious.
Instead, we use (7.4.1) in its analytic form

(7.5.3) C = ℘′(ai)
∏
j �=i

(℘(ai)− ℘(aj)).

Obviously |C| ∼ |B|n+1/2 and |℘′(ai)| ∼ |℘(ai)|3/2 ∼ |B|3/2. Thus if there is
some j such that |℘(ai)− ℘(aj)| = o(1)|B| as |B| → ∞ then (7.5.3) yields

|B|n+1/2 ∼ |C| ≤ o(1)|B|n+1/2,

which is a contradiction. Therefore we have

lim
B→∞

℘(ai)

B
�= lim

B→∞

℘(aj)

B

for i �= j. Now we write (℘(ai), ℘
′(ai)) = (xi, yi) ∼ (t2i , 2t

3
i ). Then the leading

term of
∑

i x
k
i yi is 2

∑
i t

2k+3
i for k = 0, . . . , n − 2. By passing to B → ∞,

the limit of ti/|B|1/2 (still denoted by ti) then satisfies

n∑
i=1

t2k+1
i = 0, 1 ≤ k ≤ n− 1,

and ti + tj �= 0 for any i, j. This proves the existence of solutions.

The remaining task is to prove the uniqueness. While it may be possible
to prove this by working harder on the asymptotic equations, however, owing
to its elementary nature, we will offer a purely elementary argument using
only basic algebra.

Before we proceed, notice that the loci
∏

ti = 0 or
∏

i<j(ti + tj) = 0
provide positive dimensional solutions to the system. Thus it is crucial to
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analyze the non-degenerate conditions. By a Vandermonde-like determinant
argument, it is easy to see that under the assumption ti �= 0 for all i, we
have ti �= −tj for all i �= j if and only if t2i �= t2j for all i �= j.

Let q(t) =
∏n

j=1(t − tj) =
∑n

i=0(−1)isit
n−i, where si is the i-th ele-

mentary symmetric polynomial in tj ’s, and pl =
∑n

i=1 t
l
i being the Newton

symmetric polynomial for all l ≥ 0. Then

q′(t)

q(t)
+

q′(−t)

q(−t)
=

n∑
i=1

1

t− ti
− 1

t+ ti
= 2

∑
m≥1

p2m−1t
−2m.

The conditions p3 = p5 = · · · = p2n−1 = 0 imply that (comparing degrees)

q′(t)

q(t)
+

q′(−t)

q(−t)
=

2p1
t2

+
(−1)n2p2n+1

t2q(t)q(−t)
.

Denote by u = t2, ui = t2i , G(u) = q(t)q(−t) =
∏n

i=1(u−ui), this then could
be regarded as an equality in C(u) as

n∑
i=1

ti
u− ui

=
p1
u

+
(−1)np2n+1

uG(u)
.

From now on we denote ′ = d/du, then

ti = Resu=ui
=

(−1)np2n+1

uiG′(ui)
.

In particular, u3iG
′(ui)2 = C2 is independent of i, where C = (−1)np2n+1.

So G(u) | u3G′(u)2 − C2 and we may perform division to write

u3G′(u)2 − C2

G(u)2
=

n∑
i=1

hi
u− ui

+ n2u+ 2nτ1

for some hi ∈ C and τ1 =
∑n

i=1 ui. Using series expansion in u − ui we
calculate

Resu=ui

u3G′(u)2 − C2

G(u)2
= 3u2i +

2u3iG
′′(ui)

G′(ui)2
,

hence there are a, b ∈ C such that

u3G′(u)2 − C2

G(u)2
=

3u2G′(u)

G(u)
+

2u2G′′(u)

G(u)
+ au+ b.
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By division again, it is clear that

2u3G′′(u) = 2(n(n− 1)u+ 2(n− 1)τ1)G(u) + · · ·

and 3u2G′(u) = 3(nu+ τ1)G(u) + · · · . Hence

a = −n(n+ 1), b = −(2n+ 1)τ1,

u3G′2 − 3u2G′G− 2u2G′′G− (au+ b)G2 = C2.

Differentiation and simplification lead to −G(u) times the equation

2u3G′′′ + 9u2G′′ − 2((n2 + n− 3)u+ (2n− 1)τ1)G
′ − n(n+ 1)G = 0.

Write G(u) =
∑n

i=0(−1)n−iτn−iu
i (so τ0 = 1 and τk = 0 if k < 0 or

k > n by convention), the above linear third order ODE translates into the
recursive relation:

(i− n)(2i+ 1)(i+ n+ 1)τn−i = −2(i+ 1)(2n− 1)τ1τn−i−1.

This rather short recursion (instead of four terms) is due to the fact that
the ODE has an irregular singularity at u = 0. It is consistent for i = n
(0 = τ0τ−1) and for i = n − 1 (τ1 = τ1), and then all τk, k ≥ 2, are
completely determined by τ1. This proves the uniqueness of solution up to
permutations.

Remark. The non-degeneracy conditions in Proposition 7.5 are essential:
when n ≥ 4 the set of all degenerate solutions has a natural structure as a
positive dimensional algebraic variety.

7.5.1. Question. Let (b1 : . . . : bn) ∈ Pn−1(C) be a non-degenerate solu-
tion of equation (7.5.1). Let Kn be the smallest subfield of C which contains
b2/b1, . . . , bn/b1. Is [Kn : Q] = n! ?26

Corollary 7.5.2. The curve X̄n is smooth at the infinity point [0]n.

Proof. The idea is that the solutions sought in Proposition 7.5 describe the
tangent directions of X̄n at 0n, in the sense that the projectivized tangent
cone of X̄n at [0]n is the affine open subset projective spectrum of the ring

R = C [t1, . . . , tn]

/(∑n
i=1t

2k+1
i

)
1≤k≤n−1

;

26The answer is likely “yes”, but we don’t have a proof.
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associated by localization to the homogeneous element

n∏
i=1

ti ·
∏

1≤i<j≤n

(ti + tj)

of R. Once we know this then the existence and uniqueness statement in
Proposition 7.5 is equivalent to the smoothness of X̄n at 0n. However the
above description of the projectivized tangent cone of X̄n at [0]n is not self-
evident from the definition of X̄n as the closure of Xn in Symn(C/Λ). So we
proceed slightly differently.

Let (r1, . . . , rn) be a non-degenerate solution of the system of equations
in Proposition 7.5. From the non-vanishing of the Vandermonde determinant
one sees that

∑n
i=1 ri �= 0. From Hensel’s lemma one sees that there exists

a morphism α from the spectrum of a formal power series ring C[[t]] to the
inverse image in Symn(C/Λ) of X̄n which sends the closed point of SpecC[[t]]
to [0]n, such that

xi
yi

→ ri t+O(t2) ∀i = 1, . . . , n.

The condition that r1+ · · ·+ rn �= 0 tells us that α induces an isomorphism
between C[[t]] and the completed local ring of X̄n at the point [0]n.

7.6. Comparing the compactifications X̄n and X̂n of Xn.

7.6.1. At this point we have two compactifications of the smooth alge-
braic curve Xn. We summarize the situation.

7.6.1.a. By definition Xn is a locally closed algebraic subvariety of the
symmetric product Symn(C/Λ). The first compactification X̄n of Xn is the
closure of Xn in Symn(C/Λ). We have seen that X̄n contains the closed
subvariety Yn of Symn(C/Λ�{[0]}). The latter variety Yn classifies all ansatz
solutions modulo C× to Lamé equations of index n ∈ N>0.

7.6.1.b. The map “multiplication by −1” on C/Λ defines an involution ι̃ on
Symn(C/Λ). The subvarieties Xn, Yn, X̄n of Symn(C/Λ) are stable under the
involution ι̃. The restriction of ι̃ to X̄n is an involution ῑ on X̄n. It turned
out that Xn is the complement in X̄n of the fixed point set (X̄n)

ῑ of the
involution ῑ. One of the fixed points of ῑ is the point [0]n = {[0], . . . , [0]}
of Symn(C/Λ); the rest are all in Yn. In particular X̄n � Yn = {[0]n}. It is
known that #(X̄n)

ῑ ≤ 2n+ 2, and the equality #(X̄n)
ῑ = 2n+ 2 holds for

all Λ outside of a finite number of homothety classes of lattices in C.
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7.6.1.c. The map πn : Yn → C which sends a point [a] ∈ Yn to the accessary

parameter B[a] of the Lamé equation satisfied by the ansatz function wa is

an algebraic morphism from Yn to the affine line A1 over C. The morphism

πn : Yn → A1 extends to a morphism π̄n : X̄n → P1. This projection

morphism π̄n is compatible with the involution ι in the sense that π̄n = π̄n◦ῑ,
and π̄n(x) = π̄n(x

′) for two points x, x′ ∈ X̄n if and only if either x = x′ or
ῑ(x) = x′.

In particular π̄n induces a bijection from the fixed point set (X̄n)
ῑ to a

finite subset Σ̄n ⊂ P1(C). This ramification locus Σ̄n for π̄n is the disjoint

union of {∞} with a finite subset Σn ⊂ C. The restriction πn|Xn
of πn to

Xn makes Xn an unramified double cover of the complement A1�Σn of Σn

in A1.

7.6.1.d. The ramification locus Σn is the set of roots of a polynomial �n(B)

�n(B) = 4Bs2n + 4g3(Λ)sn−2sn − g2(Λ)sn−1sn − g3(Λ)s
2
n−1

of degree 2n + 1 in the variable B with coefficients in Q[g2, g3], where the

polynomials sn, sn−1, sn−2 ∈ Q[g2, g3][B] are defined recursively by equa-

tions (7.3.6), starting with s0 = 1 and s1 = (2n − 1)−1B. The recursive

relation (7.3.6) implies that �n(B, g2, g3) is homogenous of weight 2n + 1 if

g2, g3 are given weights 1, 2, 3 respectively; the coefficient of B2n+1 in �n(B)

is a positive rational number.27

7.6.1.e. The polynomial �n(B) gives rise to another compactification X̂n

of Xn. Let X
∗
n be the zero locus of the homogeneous polynomial

Fn(Â, B̂, Ĉ) := Ĉ2Ân−1 − Â2n+1�n(B̂/Â)

in the projective plane P2 with projective coordinates (Â : B̂ : Ĉ). By defini-

tion X̂n is the partial desingularization of X∗
n, changing the local structure

near the singular point (0 : 0 : 1) by replacing the structure sheaf near

(0 : 0 : 1) by its normal closure in the field of fractions. More explicitly we

replace a small Zariski open neighborhood of the point (0 : 0 : 1) in X∗
n by

the corresponding open neighborhood of the curve

v2 = u · (u2n+1�n(1/u))

27The coefficient of Bi in si(B) is
2i

2n−1 · n(n−1)(n−2)···(n−i+1)
[(2n)(2n−1)(2n−2)···(2n−i+1)]·[(2n−1)(2n−3)(2n−5)···(2n−2i+1)] for i = 1, . . . , n.
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near (u, v) = (0, 0); the coordinates are related by

B̂

Â
= B =

1

u
,

Ĉ

Â
= C =

v

un+1
.

The natural morphism X̂n → X∗
n is a homeomorphism, and is a local iso-

morphism outside the point ∞̂ which maps to the point (0 : 0 : 1) ∈ X∗
n.

The projective curve X̂n is reduced, irreducible and has arithmetic genus n;

we call it the “hyperelliptic model” of Xn.

We have a “hyperelliptic involution” ι̂ on X̂n, given by

ι̂ : (Â : B̂ : Ĉ) → (Â : B̂ : −Ĉ)

in projective coordinates. The Xn is the complement in X̂n of the fixed
point set (X̂n)

ι̂ of the hyperelliptic involution. We also have a morphism

π̂n : X̂n → P1, defined by π̂n : (Â : B̂ : Ĉ) → (Â : B̂) over the open subset

of X̂n where Â is invertible, and π̂n : (Â : B̂ : Ĉ) → ( Â
Ĉ

: B̂
Ĉ
) over the open

subset of X̂n where Ĉ is invertible. One of the fixed points ι̂ is ∞̂. The map
π̂n induces a bijection from (X̂n)

ι̂ to Σ̄n.

The hyperelliptic projection π̂n is compatible with the hyperelliptic in-

volution ι̂ on X̂n, in the sense that π̂n(P ) = π̂n(P
′) if and only either P ′ = P

or P ′ = ι̂(P ), for any two points P, P ′ ∈ X̂n. The restriction of the triple

(X̂n, π̂n, ι̂) to the open subset Xn ⊂ X̂n is naturally identified with the
restriction to Xn of the triple (X̄n, π̄n, ῑ).

7.6.2. A natural and inevitable question is:

Is there an isomorphism between the two triples (X̄n, π̄n, ῑ) and (X̂n, π̂n, ι̂)
which extends the natural isomorphism between the complements of the fixed
point sets of ῑ and ι̂?

The parallel properties of the two compactifications reviewed in 7.6.1 suggest

that the answer is likely “yes”. Since both X̄n and X̂n are reduced and
irreducible, to answer this question affirmatively, we need to show that the

natural identification of the “common open” dense subset Xn of both sides
extends to an isomorphism.

We will see in Lemma 7.6.4 that methods in the previous part of this
section already shows that the identity map on Xn extends to a morphism

φ : X̄n → X̂n of algebraic varieties. That φ is a morphism at ∞̄ = [0]n is a
consequence of (and equivalent to) Corollary 7.5.2.



252 Ching-Li Chai et al.

The following properties of the morphism φ : X̄n → X̂n between reduced
irreducible complete algebraic curves are easily deduced from previous ar-
guments:

(a) φ is bijective on points, i.e. φ is a homeomorphism.
(b) φ is an isomorphism over Xn = X̄n � (X̄n)

ῑ.
(c) φ is an isomorphism near the point ∞̄ = [0]n. This is a rather trivial

case of Zariski’s Main Theorem and is easily verified directly.

So we are left with showing that φ is a local isomorphism at each point of
(Yn)

ι, ramification points “at finite distance”.

7.6.3. The properties in 7.6.2 (a)–(c) of the morphism φ : X̄n → X̂n do
not formally imply that φ is an isomorphism: it may happen that there
exists a point P ∈ Yn ⊂ X̄n such that the injection

φ∗ : OX̂n,φ(P ) → OX̄n,P

induced by φ between the stalks of the structure sheaves of X̄n and X̂n at P
and φ(P ) is not an isomorphism. If this “undesirable” phenomenon happens
at one ramification point P ∈ Yn, the arithmetic genus of X̄n will be strictly
smaller than n, the arithmetic genus of X̂n. To put it differently, the fact
that φ : X̄n → X̂n is a bijective morphism tells us that the hyperelliptic
model X̂n can “only be more singular” than X̄n.

If we can show that the arithmetic genus of X̄n is n, it will follow that
φ is an isomorphism. This approach may well be possible, but we will take
an easier route: We have seen that the discriminant disc(�n(B)) of �n(B) is
a non-zero holomorphic modular form for the full modular group SL2(Z). If
the discriminant disc(�n(B)) does not vanish when evaluated at the lattice
Λ ⊂ C in question, then the polynomial �n(B; Λ) has 2n + 1 distinct roots
in C and X̂n is smooth, which forces the morphism φ : X̄n → X̂n to be an
isomorphism.

Suppose now that the elliptic curve we are given is Λτ0 = Z + Zτ0 for
some τ0 ∈ H such that disc(�n(B))(Λτ0) = 0. The idea now is to embed the
given situation in a one-parameter family such that the morphism φ is an
isomorphism outside the central fiber, then use purity (Hartog’s theorem):

Let τ vary in a small open disk D⊂H containing τ0 such that disc(�n(B))(Λτ) �=
0 for all τ ∈ D and get a family of maps (φτ : X̄n,τ → X̂n,τ )τ∈D parametrized
by D. Use the fact that φτ is an isomorphism for all τ in the punctured disk
D∗ = D�{τ0} and that φτ0 is an isomorphism outside a finite subset of X̄n,τ0

to show that φτ0 itself is an isomorphism.
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Details will be carried out in Proposition 7.7

Lemma 7.6.4. The identity map idXn
: Xn → Xn on Xn extends uniquely

to a morphism φ : X̄n → X̂n.

Proof. Let (x1, y1), . . . , (xn, yn) be the Weierstrass coordinates of the prod-
uct En = E × · · · × E. The affine coordinate B of X∗

n is given by B =
(2n− 1)

∑n
i=1 xi. From the proofs of Theorems 7.3 and 7.4 we see that the

other affine coordinate C of X∗
n can be expressed by polynomials in the xi’s

and yi’s: C = yi ·
∏

j �=i(xi − xj) for all i = 1, . . . , n. It follows that the

birational map φ from X̄n to X̂n is a morphism at every point of X̄n�{∞̄}.
Corollary 7.5.2 implies that φ is a morphism at ∞̄ as well.

Proposition 7.7. The morphism φ : X̄n → X̂n is an isomorphism.

Proof. We may and do assume that the given lattice Λ is Λτ0 for an element
τ0 ∈ H. Let (x1, y1), . . . , (xn, yn) be the Weierstrass coordinates of En as in
the proof of Lemma 7.6.4, where E = C/Λ. It suffices to prove the following

Claim: For every monomial h(x, y) in x1, . . . , xn, y1, . . . , yn, the restric-
tion to Xn of its Sn-symmetrization

ΠSn
(h) = (n!)−1

∑
σ∈Sn

h(σ(x), σ(y))

is the pull-back under φ of a polynomial in B and C.

We have seen in the proofs of Theorems 7.3 and 7.4 that the restriction
to Xn of every symmetric polynomial in x1, . . . , xn can be expressed as a
polynomial in B. Because

C[x1, . . . , xn, y1, . . . , yn]
/(

y2i − 4x3i + g2xi + g3
)
1≤i≤n

is a free module over the ring of symmetric polynomials C[x1, . . . , xn]
Sn with

basis given by monomials of the form

xr ys =

n∏
i=1

xrii ·
n∏

i=1

ysi

with 0 ≤ ri ≤ n − i and 0 ≤ si ≤ 1 for all i = 1, . . . , n, and the sym-
metrization operator ΠSn

is linear over the ring of symmetric polynomials
in x1, . . . , xn, it suffices to prove the claim in the case when h(x, y) is one
of the above basis elements xr ys. In principle one should be able to show
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directly that the symmetrization ΠSn
(xr ys) of xr ys is a polynomial in B

and C. Here we take an easier way out using purity as indicated in 7.6.3.

Let τ vary over H, and consider the fiber product over H of n copies

of the universal elliptic curve whose fiber over τ ∈ H is Eτ = (C/Λτ ).

Over the open subset of the n-time fiber product of E � {[0]}, we have

affine coordinates x1, y1, . . . , xn, yn as before. Let Xn be the relative affine

spectrum over H of

O
H

[
x1, . . . , xn, y1, . . . , yn,
(
∏

1≤i<j(xi − xj))
−1

]/( ∑n
j=1 x

l
j yj , l=0,1,...,n−2,

y2i − 4x3i + g2(Λτ )xi + g3(Λτ ), 1≤i≤n

)

Let X∗
n be the relative projective curve over OH defined by the homogeneous

polynomial

Fn(Â, B̂, Ĉ) = Ĉ2Ân−1 − Â2n+1�n(B̂/Â)

as in 7.6.1.e, where g2 = g2(Λτ ) and g3 = g3(Λτ ) in the definition of �n(B).

Let Φ : X̄n → X∗
n be the morphism extending the identity map on Xn. Let U

be the complement in X∗
n of the set of all ramification points over those τ ’s

where the discriminant disc(�n(B)) vanishes, so that U is the complement of

the union of the section ∞̄ and a discrete set of points in X∗
n. We know that

Φ is an isomorphism over U. Notice that the two-dimensional variety X∗
n is

normal outside the zero locus of Â, because it is regular in codimension one

and Cohen–Macaulay (in codimension two).

For any symmetrized monomial ΠSn
(xr ys) of xr ys considered earlier,

we know that its restriction to U is equal the pull-back of the restriction

to the a regular function on the open subset Φ(U) of codimension at least

2. By purity (or Hartog’s theorem for normal analytic spaces) this regular

function on Φ(U) extends to a regular function hr,s on the complement in

X∗
n of the section (0 : 0 : 1) “at infinity”. Restricting to the fiber over τ0

and the Claim follows. We have proved the φ is an isomorphism for every

elliptic curve of the form Eτ = C/Λτ , for any element τ in the upper-half

plane H.

Remark 7.7.1. There is a variant of the proof following the same idea, but

uses Zariski’s Main Theorem instead of purity: take the closure X̄n of Xn in

the n-th symmetric product of the universal elliptic curve. Apply Zariski’s

Main Theorem to the map from the normalization of X̄n to X̂∗
n. One needs

to be careful when it comes to the operation of taking the closure, for in

general this operation does not commute with the operation of passing to a

fiber. Details are left to the interested readers.
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8. Deformations via blow-up sequences

8.1. In this section we will prove Theorem 0.7.5 concerning the blow-up
set of a blow-up sequence uk to the mean field equation �uk + euk = ρkδ0
with ρk → 8πn on E = C/Λ. Recall that the assumption that uk is a blow-
up sequence means that the subset S ⊂ E consisting of all elements P ∈ E
such that limk→∞ uk(P ) = ∞ is a non-empty finite subset of E; this subset
S is called the blow-up set of the blow-up sequence (uk).

8.1.1. The following facts are known; see for instance [6, Thm. 3, p. 1237],
[41, p. 1256].

(i) limk→∞ uk(x) = −∞ for all x ∈ E�S, uniformly on compact subsets
of E�S,

(ii) There exists an (8πN≥1)-valued function P → αP on S such that
the limit limk→∞ euk |E converges to the measure

∑
P∈S αP δP on E,

where δP denotes the delta-measure at P for all P ∈ S.

Note that
∑

P∈S αP = 8πn because
∫
E euk = ρk for all k, and this sequence

converges to 8πn by assumption.
Clearly the blow-up set of a blow-up sequence does not change if we pass

to a subsequence, therefore we may assume either (1) ρk �= 8πn for all k, or
(2) ρk = 8πn for all k. Theorem 0.7.5 asserts that the blow-up set S is an
element of Yn and αP = 8π for all P ∈ S; moreover S ∈ Xn in case (1) and
S ∈ Yn�Xn in case (2).

8.1.2. Part (2) of the Theorem 0.7.5, namely the case ρk = 8πn, follows
easily from results in §5, 6 and 7. Suppose that n is a positive integer (uk)k∈N
is a blow-up sequence of solutions of �u + eu = 8πδ0 on E = C/Λ. By
Theorems 5.2, 5.6, Proposition 5.8.3 and Theorem 6.5, for each k there
exists an element [a(k)] ∈ Xn and a real number λk ∈ R such that

uk(z) = log
8 e2λk | f ′

[a(k)] |2

(1 + e2λk |f[a(k)](z)|2)2
∀k,

where f[a(k)](z) = w[a(k)](z)/w[−a(k)](z) is the quotient of the ansatz functions as
in Definitions 6.1.4 and 6.1.5. The curve X̄n being projective, after pass-
ing to a subsequence we may and do assume that the sequence [a(k)] ∈ Xn

converges to a point [x0] ∈ X̄n. We claim that [x0] ∈ Xn, i.e. x0 is not a ram-
ification point of π̄n : X̄n → P1(C). For otherwise the sequence of functions
f[a(k)](z) converges to the constant function 1, uniformly on compact subsets
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of E, which implies that uk cannot be a blow-up sequence, a contradiction

which proves the claim.

From the fact that [x0] ∈ Xn it follows that the sequence f[a(k)](z) con-

verges to f[x0]. Therefore the sequence λk goes to ∞, and S = [x0] ∈ Xn.

We have proved Theorem 0.7.5 (2). The remaining case (1) when ρk �= 8πn

for all k will be proved in Theorem 8.4 and Corollary 8.6.

8.2. The setup. Let n be a positive integer. Write ρ = 8πη, η ∈ R+.

Consider a solution u be of

(8.2.1) �u+ eu = 8πη δ0

on E = C/Λ, Λ = Zω1+Zω2, where the parameter η∈R>0 satisfies |η−n| <
1
2 . When the parameter η satisfies n− 1

2 < η < n+ 1
2 , the topological Leray–

Schauder degree of the equation (8.2.1) is non-zero, hence it has solution.

Let (uk)k∈N be a sequence of solutions of (MFE-eta) with parameters ηk
in the above range, and assume that limk→∞ ηk = n. We are interested in

knowing the behavior of this sequence (uk).

8.2.1. The natural map C�Λ → E�{[0]} is a Galois covering space

with group Λ. We know that C�Λ has a universal covering isomorphic to

the upper-half plane H. Let z : H → C�Λ be a universal covering map;

here we have abused the notation and use the same symbol “z” for both

the coordinate function on C and this covering map. Denote by [z] the

composition of z with the natural projection map C�Λ → E�{[0]} =: E×,
so that [z] : H → E× is a universal covering map of E×.

8.2.2. Let Γ ⊂ PSL2(R) be the discrete subgroup of PSL2(R) consisting

of all deck transformations of the covering map [z] : H → E×, so that Γ

is naturally isomorphic to the fundamental group of E× Let Δ ⊂ Γ be the

group of all deck transformations of the covering map z : H → C�Λ. We

know that Δ is a normal subgroup of Γ, and the quotient Γ/Δ is naturally

isomorphic to Λ, the Galois group of the Galois cover C�Λ → E×, therefore
Δ is equal to the subgroup [Γ,Γ] of Γ generated by all commutators.

The fundamental group of E�{[0]} is a free group in two generators,

so Γ is a finitely generated Fuchsian subgroup of PSL2(R). The Fuchsian

subgroup Δ ⊆ Γ is not finitely generated; it is a free group with a set of free

generators indexed by Λ.
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Let H∗ be the union of H and the set of all cusps28 with respect to Γ,

with the usual topology as defined in [56, pp. 8–10] which is compatible with

the Γ-action. Note that H∗ is contractible.

Lemma 8.2.3. (1) The map z : H → C�Λ extends uniquely to a continuous

Δ-invariant map z∗ : H∗ → C, which lifts the continuous Γ-invariant map

[z]∗ : H∗ → E extending [z] : H → E×.

(2) The maps z∗ and [z]∗ induce homeomorphisms Δ\H∗ ∼−→ C and Γ\H∗ ∼−→
E respectively.

Proof. The existence of the latter map [z]∗ : H∗ → E is well-known, and the

existence of the former map z∗ : H∗ → C follows from the existence of the

latter because H∗ is contractible. We have proved (1). The statement (2)

follows from the statement (1).

8.2.4. Choose and fix free generators γ̃1, γ̃2 of Γ such that the image of

γ̃i in Γ/[Γ,Γ] ∼= Λ is ωi for i = 1, 2. Let c0 ∈ H∗ be the unique cusp such

that z∗(c0) = 0 and the stabilizer subgroup StabΓ(c0) of c0 in Γ is equal to

the cyclic subgroup generated by the commutator [γ̃1, γ̃2] := γ̃1γ̃2γ̃
−1
1 γ̃−1

2 .

It follows that the inverse image z∗(0) of 0 ∈ C under z∗ :H∗ → C is equal

to [Γ,Γ]·c0.

8.2.5. According to Proposition 1.1.2, for each k there exists a meromor-

phic function fk(ξ) on H such that

(8.2.2) uk ◦ z = log
8| d

dz fk|2
(1 + |fk|2)2

.

The Schwarzian derivative

S(fk) =
d3

dz3 fk
d
dz fk

− 3

2

(
d2

dz2 fk
d
dz fk

)2

of Φ is equal to

S(fk) =
d2uk
dz2

◦ z − 1

2

(duk
dz

)2
= −2(ηk(ηk + 1)℘(z; Λ) +Bk)

28Recall that a cusp with respect to Γ is an element of P1(R) = R ∪ {∞} which
is fixed by a parabolic element in Γ.
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for some constant Bk. Thus fk can be written as a ratio of two independent
solutions of the Lamé equation

d2w

dz2
=
(
ηk(ηk + 1)℘(z; Λ) +Bk

)
w.

8.2.6. Choose and fix a branch of log z on H, i.e. a holomorphic function
on H whose exponential is equal to the function z : H → C�Λ; we abuse
the notation and denote this function again by log z.

The indicial equation of the Lamé equation above is given by

λ2 − λ− ηk(ηk + 1) = (λ− (ηk + 1))(λ+ ηk) = 0.

The difference ηk+1− (−ηk) = 2ηk+1 of the two roots of the above indicial
equation is not an integer because of the assumption that |ηk − n| < 1

2 .
Hence there exist two linearly independent solutions wk,1, wk,2 on H which
near c0 are of the form

wk,1 = e(ηk+1) log z ·(hk,1 ◦ z), wk,2 = e−ηk log z ·(hk,2 ◦ z),

where hk,1(z) and hk,2(z) are holomorphic functions in an open neighbor-
hood of z = 0 with the property that hk,1(0) = 1 = hk,2(0). The quotient

(8.2.3) fk :=
wk,1

wk,2

is a meromorphic function fk on H such that

(8.2.4) fk(c0) := lim
ξ→c0

fk(ξ) = 0

and

(8.2.5) fk(γ̃
−1
2 γ̃−1

1 γ̃2γ̃1 · ξ) = e4π
√
−1ηkfk(ξ) ∀ξ ∈ H.

Lemma 8.2.7. Let Tk ∈ PSL2(C) be the linear fractional transformation
such that fk = Tk · fk. The limit

lim
ξ→c0

fk(ξ) =: fk(c0)

exists in P1(C) and is equal to Tk·0, the image of 0 ∈ P1(C) under the linear
fractional transformation Tk.
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Lemma 8.2.8. (a) If fk(0) = 0, then there exists a constant Ak ∈ C× such

that fk = Ak · fk.

(b) If fk(0) = ∞, then there exists a constant Ak ∈ C× such that then

fk = Ak/fk.

Proof. Let Tk be the linear fractional transformation such that fk = Tk · fk
as in the proof of Lemma 8.2.7.

If fk(c0) = 0 = fk(0), then there exists a unique element Ak ∈ C× such

that Tk is the image of (Ak 0
0 1 ); the statement (a) follows. If fk(c0) = ∞, then

there exist a unique element Ak ∈ C× such that Tk is the image of ( 0 Ak

1 0 ).

We have proved (b).

8.3. Normalizing fk’s through monodromy.

8.3.1. Let ρfk : Γ → PSU(2) be the monodromy representation attached

to the developing map fk of the solution uk, defined by

fk(γ · ξ) = ρfk(γ) · fk(ξ) ∀γ ∈ Γ, ∀ξ ∈ H.

Note that

ρfk(γ1 · γ2) = ρfk(γ1) · ρfk(γ2) ∀γ1, γ2 ∈ Γ.

Let Sk,i = ρfk(γ̃i) ∈ PSU(2) for i = 1, 2. Then we have

(8.3.1) fk(γ̃i · ξ) = Sk,i · fk(ξ) for i = 1, 2, ∀ξ ∈ H.

Let

(8.3.2) βk := Sk,2 · Sk,1 · S−1
k,2 · S

−1
k,1 = ρfk([γ̃2, γ̃1]) ∈ PSU(2).

8.3.2. So far we have not imposed any restriction on the developing map

fk of the solution uk of �u+eu = ρk ·δ0. Modifying fk by a suitable element

of PSU(2), we may and do assume that Sk,1 = ρfk(γ̃1) lies in the diagonal

maximal torus of PSU(2), i.e. there exists θk ∈ R/2π
√
−1Z and ak, bk ∈ C

with |ak|2 + |bk|2 = 1 such that

(8.3.3) Sk,1 =

(
e
√
−1·θk 0

0 e−
√
−1·θk

)
and Sk,2 =

(
ak −bk
bk ak

)
,
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in matricial notation. Note that we have

(8.3.4) βk := [Sk,2, Sk,1] =

(
akak + e−2

√
−1θkbkbk akbk(−1 + e2

√
−1θk)

akbk(1− e−2
√
−1θk) bkbke

2
√
−1θk + akak

)

in PSU(2).

Lemma 8.3.3. Recall that we have assumed that Sk,1fk = e2iθkfk, n− 1
2 <

ηk := ρk/8π < n+ 1
2 and ηk �= n. Suppose in addition that n− 1

4 < ηk < n+ 1
4 ,

then fk(c0) ∈ C×.

Proof. We need to show that fk(c0) is not equal to 0 nor to ∞. Suppose first
that fk(c0) = 0. By Lemma 8.2.8 (a) there exists a constant Ak ∈ C× such
that fk = Ak · fk. The monodromy relation (8.2.5) for fk implies that

[Sk,2, Sk,1] = ρfk([γ̃2, γ̃1]) =

(
e2π

√
−1ηk 0

0 e2π
√
−1ηk

)

in PSU(2). Comparing with (8.3.4), we get ak · bk · (e2
√
−1θk − 1) = 0. But

we know that bk �= 0 and e2
√
−1θk �= 1, for otherwise Sk,1 would commute

with Sk,2, contradicting the assumption on ηk. We conclude that ak = 0. In
other words becomes

(8.3.5) fk(γ̃1ξ) = e2iθkfk(ξ), fk(γ̃2ξ) = − b2k
fk(ξ)

∀ξ ∈ H.

Therefore the logarithmic derivative

gk :=
d

dz
(log fk) =

dfk
dz

fk

of fk descends to a meromorphic function gk on the elliptic curve E′ :=
C/Λ′, where Λ′ = Zω1 + Z2ω2. Moreover we know that gk has a simple
pole at 0modΛ′ with residue 2ηk + 1, and the equation (8.3.5) tells us
that gk has a simple at ω2modΛ′ as well. On the other hand because fk is
a developing map of a solution uk to the equation �u + eu = 8πηk δ0, the
meromorphic function fk has multiplicity 1 at all points above [0] = 0modΛ.
So the meromorphic function gk on E′ has two simple poles but no zero, a
contradiction. We have proved that fk(c0) �= 0.

Suppose that fk(c0) = ∞. By Lemma (8.2.8) (b) there exists a constant
Ak ∈ C× such that fk = Ak/fk. The same argument as in the previous case
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shows that the logarithmic derivative of fk descends to a meromorphic func-
tion on C/Λ′ which has at least two simple poles but no zero, a contradiction
again.

Lemma 8.3.4. Notation and assumptions as in 8.3.2 and Lemma 8.3.3.
Let γk ∈ PSU(2) be the element

(8.3.6) γk :=

(
e2π

√
−1ηk 0

0 e2π
√
−1ηk

)

in PSU(2). Let pk, qk be elements of C× such that

|pk|2 + |qk|2 = 1 and fk(c0) =
qk
pk

.

Let

(8.3.7) Tk :=

(
pk −qk
qk pk

)

(1) The equality

(8.3.8) [Sk,2, Sk,1] = T−1
k · γk · Tk

holds in PSU(2).
(2) Explicitly, the equality in (1) means that either

[1− (|pk|2e−2
√
−1ηk + |qk|2e2

√
−1ηk)]ak = pkqk(e

2
√
−1ηk − e−2

√
−1ηk)bk

[e2
√
−1θk − (|pk|2e−2

√
−1ηk+|qk|2e2

√
−1ηk)]bk = −pkqk(e

2
√
−1ηk−e−2

√
−1ηk)ak

(8.3.9)

or

[1 + (|pk|2e−2
√
−1ηk + |qk|2e2

√
−1ηk)]ak = −pkqk(e

2
√
−1ηk − e−2

√
−1ηk)bk

[e2
√
−1θk + (|pk|2e−2

√
−1ηk+|qk|2e2

√
−1ηk)]bk = pkqk(e

2
√
−1ηk−e−2

√
−1ηk)ak

(8.3.10)

In both cases we have ak · bk �= 0, for all k.
(3) If (8.3.9) holds, then

|bk|2=
|
(
1− |pk|2e−2

√
−1ηk − |qk|2e2

√
−1ηk
)
|2

|pk|2|qk|2 |(e2
√
−1ηk−e−2

√
−1ηk)|2+ |(1− |pk|2e−2

√
−1ηk − |qk|2e2

√
−1ηk)|2 ,
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|ak|2=
|pk|2|qk|2 |(e2

√
−1ηk−e−2

√
−1ηk)|2

|pk|2|qk|2 |(e2
√
−1ηk−e−2

√
−1ηk)|2+ |(1− |pk|2e−2

√
−1ηk − |qk|2e2

√
−1ηk)|2 ,

and

e2
√
−1θk = −1− |pk|2e−2

√
−1ηk − |qk|2e2

√
−1ηk

1− |pk|2e2
√
−1ηk − |qk|2e−2

√
−1ηk

,

so |ak|2, |bk|2 and e2
√
−1θk are all determined by e2

√
−1ηk and fk(c0). In

addition ak · bk is also determined by e2
√
−1ηk and fk(c0).

(4) If (8.3.10) holds, then

|bk|2=
|
(
1 + |pk|2e−2

√
−1ηk + |qk|2e2

√
−1ηk
)
|2

|pk|2|qk|2 |(e2
√
−1ηk−e−2

√
−1ηk)|2+ |(1+ |pk|2e−2

√
−1ηk + |qk|2e2

√
−1ηk)|2 ,

|ak|2=
|pk|2|qk|2 |(e2

√
−1ηk−e−2

√
−1ηk)|2

|pk|2|qk|2 |(e2
√
−1ηk−e−2

√
−1ηk)|2+ |(1+ |pk|2e−2

√
−1ηk + |qk|2e2

√
−1ηk)|2 ,

and

e2
√
−1θk = −1 + |pk|2e−2

√
−1ηk + |qk|2e2

√
−1ηk

1 + |pk|2e2
√
−1ηk + |qk|2e−2

√
−1ηk

,

so |ak|2, |bk|2 and e2
√
−1θk are all determined by e2

√
−1ηk and fk(c0). In

addition ak · bk is also determined by e2
√
−1ηk and fk(c0).

Proof. (1) Clearly limξ→c0(Tk · fk)(ξ) = 0. By Lemma 8.2.8 there exists a
constant ck ∈ C× such that Tk · fk = ck fk. We have

Tk[Sk,2, Sk,1]fk(ξ) = Tkfk([γ̃2, γ̃1] ξ) = ck fk([γ̃2, γ̃1] ξ) = ck γk · fk(ξ)

for all ξ ∈ H, therefore

Tk[Sk,2, Sk,1]fk = ck γk · fk = γk · (ckfk) = γk · Tk · fk.

So Tk[Sk,2, Sk,1] = γk · Tk in PSU(2). We have proved the statement (1).

(2) The equality [Sk,2, Sk,1] = T−1
k · γk · Tk in PSU(2) is equivalent to the

equality

Sk,1 · Sk,2 · S−1
k,1 = ±S−1

k,2 · T
−1
k · γk · Tk

when both sides are regarded as elements of SU(2) with Sk,1, Sk,2 given by
(8.3.3) and Tk given by (8.3.7). A straightforward calculation shows that

T−1
k · γk · Tk =

(
|pk|2 e2

√
−1ηk + |qk|2 e−2

√
−1ηk −pk qk(e

2
√
−1ηk − e−2

√
−1ηk)

pkqk(e
−2

√
−1ηk − e2

√
−1ηk) |pk|2e−2

√
−1ηk + |qk|2e2

√
−1ηk

)
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and

Sk,1 · Sk,2 · S−1
k,1 =

(
ak bk e

2
√
−1θk

−bk e
−2

√
−1θk ak

)

The statement (2) follows: the equation (8.3.9) corresponds to the case Sk,1 ·
Sk,2 · S−1

k,1 = S−1
k,2 · T

−1
k · γk · Tk, while the equation (8.3.10) corresponds to

the case Sk,1 · Sk,2 · S−1
k,1 = −S−1

k,2 · T
−1
k · γk · Tk.

The formulas in (3) and (4) for |ak| and |bk| follow from (8.3.9) and
(8.3.10) respectively, through routine calculations which are omitted here.
Notice that these formulas imply that ·bk �= 0. Recall that we already know
that ak �= 0, for otherwise Sk,2 would commute with Sk,1. We also know
that pk · qk �= 0, for fk(c0) �= 0,∞. The assumptions on ηk implies that
||pk|2e−2

√
−1ηk + |qk|2e2

√
−1ηk | < 1, so we know from (8.3.9) and (8.3.10) that

ak �= 0 in both cases.

The formulas in (3) and (4) for e2
√
−1θk follows from (8.3.9) and (8.3.10)

respectively. For instance if we multiply the second equation in (8.3.9) by the
complex conjugate of the first equation in (8.3.9), cancel out the non-zero

factor akbk on both sides, then we get the formula for e2
√
−1θk in (3).

These formulas clearly show that in both cases |ak|, |bk| and e2π
√
−1θk

are determined by e2π
√
−1ηk and fk(c0) and not on the choices of pk and qk.

That ak · bk is also determined by e2πηk and fk(c0) in each of the two cases
follows quickly from (8.3.9) and (8.3.10).

We are ready to prove the remaining case (1) of Theorem 0.7.5. Let’s
recall the situation. We are given a (uk)k is a blow-up sequence of solutions
such that �uk + eu = 8πηk δ0 on E = C/Λ for each k, limk→∞ ηk = n
with {P1, . . . , Pm} as the blow-up set of this blow-up sequence. We may
and do assume that n − 1

4 < ηk < n + 1
4 and ηk �= n for all k. We know

from [12] that m = n, Pi �= [0] for each i = 1, and limk→∞ uk(P ) → −∞
P ∈ E�{P1, . . . , Pn}, uniformly on compact subsets of �{P1, . . . , Pn}.
Theorem 8.4. There is a constant A ∈ C× such that limk→∞ fk(ξ) → A
uniformly on compact subsets of the inverse image H�[z]−1({[0], P1, . . . , Pn})
of E�{[0], P1, . . . , Pn}. Furthermore we have {P1, . . . , Pn}= {−P1, . . . ,−Pn}.

8.5. Proof of Theorem 8.4.

8.5.1. We first note that there exists a constant B ∈ C such that the
Lamé equations
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(8.5.1) w′′ =
(
ηk(ηk + 1)℘+Bk

)
w

converge to

(8.5.2) w′′ =
(
n(n+ 1)℘+Bk

)
w

because limk→∞ ηk = n and limk→nBk = B. This is a consequence of the fact
that uk,z and uk,zz converge uniformly on compact sets in E�{p1, . . . , pn}.

8.5.2. For each k choose a normalized developing map fk of uk as in 8.3.2,
and choose pk, qk ∈ C× such that |pk|2 + |qk|2 = 1 and fk(c0) = qk/pk. By
Lemma 8.2.8 there exists for each k a constant ck ∈ C× such that

pkfk − qk
q̄kfk + p̄k

= ckfk,

where fk = wk,1/wk,2 is a solution of the Lamé equation (8.5.1) on the
universal covering H of E�{[0]} defined in 8.2.6. Equivalently,

(8.5.3) fk =
pkckfk + qk
−qkckfk + pk

.

The convergence of the Lamé equations (8.5.1) implies that after passing to
a subsequence if necessary, there exist solutions w1, w2 of (8.5.2) on H such
that limk→∞wk,i = wi for i = 1, 2 and limk→∞ fk → f := w1/w2, uniformly
on compact set in E away from the discrete set of poles and zeros of w1 and
w2. Clearly

w′′
i = (n(n+ 1)℘+B)wi,

and locally near c0 the wi’s can be written in the form

w1(ξ) = e(n+1) log z · (h1 ◦ z), w2(ξ) = e−n log z · (h2 · ◦z)

where h1, h2 holomorphic functions in a neighborhood of c0 such that

lim
ξ→c0

hi(ξ) = 1 for i = 1, 2.

Most of our analysis will be based on the limiting behavior of (8.5.3) as
k → ∞.

Again passing to a subsequence if necessary, we may and do assume
that there exist p, q ∈ C with |p|2 + |q|2 = 1 such that pk → p and qk → q
as k → ∞. Similarly we may and do assume that there exist a, b ∈ C with
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|a|2+|b|2 = 1 such that ak → a and bk → b as k → ∞. Let A := q/p ∈ P1(C).
Clearly

lim
k→∞

fk(0) = lim
k→∞

qk/pk = A.

We may and do assume moreover that the limit limk→∞ exists in P1(C); let

c := lim
k→∞

ck.

8.5.3. Our first claim is that c is either 0 or ∞. Suppose that c ∈ C×.
Let

f :=
p̄cf+ q

−q̄cf+ p
.

Then fk(ξ) −→ f(ξ) for all ξ outside some discrete subset Σ of H. Hence

uk ◦ z → u ◦ z = log
8|f ′(z)|2

(1 + |f(z)|2)2

uniformly on compact sets outside some discrete set of H. This contradicts
to our assumption that uk blows up as k → ∞, We have proved that either
c = 0 or c = ∞.

8.5.4. Next we claim that

A ∈ C× and c = 0.

This claim and the equation (8.5.3) imply that limn→∞ fk(ξ) = A for all ξ
outside of some discrete subset of H, and the first statement of Theorem 8.4
follows.

8.5.5. We will show that A �= ∞. Suppose to the contrary that A = ∞,
i.e. p = 0 and |q| = 1.

Our first step is to show that a := limk→∞ ak = 0. Write αk := e2π
√
−1ηk ;

clearly limk→∞ αk = 1. Passing to a subsequence if necessary, we may and
do assume that either (8.3.9) holds for all k or (8.3.10) holds for all k. In
the case when (8.3.10) holds for all k, taking the limit of both sides of the
first equation in (8.3.10), we see immediately that limk→∞ ak = 0. In the
case when (8.3.9) holds for all k, substitute |pk|2 by 1 − |qk|2 in the first
equation of (8.3.9), then divide both sides by αk − α−1

k , we get(
1

αk + 1
+ |qk|2

)
ak = pk qk bk.



266 Ching-Li Chai et al.

Taking the limit of the above equality as k → ∞, again we conclude that

a = limk→∞ ak = 0, so |b| = 1.

We will analyse the two possibilities of c separately and show that both

lead to contradictions. Suppose first that c = 0. From (8.5.3) it is clear that

f(ξ) �= ∞ =⇒ |fk(ξ)| −→ ∞.

However, if we select ξ so that f(ξ) �= ∞ and f(g2ξ) �= ∞ (such ξ certainly

exists), then

(8.5.4) fk(γ̃2ξ) = Sk,2fk(ξ) =
akfk(ξ)− bk

bkfk(ξ) + ak
−→ 0,

which contradicts the previous conclusion that |fk(γ̃2ξ)| → ∞. So c �= 0.

Suppose next that c = ∞. Again by (8.5.3) we have

f(ξ) �= 0 =⇒ fk(ξ) −→ 0,

and convergence is uniform on compact sets outside the zeros of f. But then

fk(γ̃2ξ) → ∞, which contradicts fk(γ̃2ξ) → 0 provided that f(γ̃2ξ) �= 0.

We have shown that the assumption A = ∞ leads to assumption for both

possible values of c. We have proved that A �= ∞, i.e. A ∈ C.

8.5.6. Now we know that fk(0) → A with A ∈ C. Substituting fk ◦ z =

z2ηk+1 +O(|z|2ηk+2) near c0 into (8.5.3), we get

fk ◦ z =
qk
pk

+
ck
p2k

z2ηk+1(1 +O(|z|)).

On the other hand we know from general facts about blow-up sequences

that the regular part of uk(z) at z = 0 tends to −∞, i.e.

(
uk ◦ z − 4ηk log |z|

)∣∣∣
z=0

= log
8| d

dz fk|2|z|−4ηk

(1 + |fk ◦ z|2)2
∣∣∣
z=0

= log
8|ck|2(2ηk + 1)2

|pk|2(1 + |fk(0)|2)2
−→ −∞,

which implies that ck → c = 0.
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8.5.7. We still need to exclude the possibility that A = 0. Suppose to the
contrary that A = 0, or equivalently |p| = 1 and q = 0. The same argument
used at the beginning of 8.5.5 shows that a = 0 and |b| = 1. Since c = 0, by
(8.5.3),

f(ξ) �= ∞ =⇒ fk(ξ) −→ 0.

Then by the expression (8.5.4) we have fk(γ2ξ) → ∞ whenever f(ξ) �= ∞,
hence f(γ2ξ) = ∞ by the above implication. But as before we may select ξ
so that both f(ξ) �= ∞ and f(γ2ξ) �= ∞. This is a contradiction. We have
proved that A ∈ C×.

8.5.8. It remains to show that the blow-up set is stable under [−1]E , i.e.
{P1, . . . , Pn} = {−P1, . . . ,−Pn}. From (3.1.3), we see that

S(fk(−z)) = S(fk)(−z) = −2(η(η + 1)℘(−z) +Bk) = S(fk(z)),

hence fk(−z) is also a developing map for uk. Since fk(z) is normalized in the
sense of 8.3.2, fk(−z) = fk ◦ (−z) is also normalized, so our results applies
to fk(−z) as well. We conclude that fk(−z) → A outside {P1, . . . , Pn}.
This implies that this set coincides with {−P1, . . . ,−Pn}. We have prove
Theorem 8.4.

Corollary 8.6. Let uk be a blow-up sequence of solutions to (0.1.3) with
ρk = 8πηk → 8πn, ηk �= n for all k. Let S = {P1, . . . , Pn} be the blow-up
set. Then S is a finite branch point of the hyperelliptic curve C2 = �n(B).

Proof. The blow-up set S satisfies equations (5.7.2), or equivalently (5.7.4),
thus S ∈ Yn. Now Theorem 8.4 implies that {Pi}ni=1 = {−Pi}ni=1, hence
S ∈ Yn�Xn, i.e. it is a branch point of π̄ : X̄n → P1(C).

8.7. Further remarks.

8.7.1. Consider the regular part of the Green function

G̃(z, q) := G(z − q) +
1

2π
log |z − q|.

Let S = {P1, . . . , Pn} ⊂ E be a set of n distinct points on E = C/Λ;
pick representatives p1, . . . , pn ∈ C of P1, . . . , Pn. For i = 1, . . . , n we define

fpi
(z) := 8π(G̃(z, pi)− G̃(pi, pi))

+
∑
j �=i

(G(z − pj)−G(pi − pj))− 8πn(G(z)−G(pi)),
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μi := exp(8π(G̃(pi, pi) +
∑
j �=i

G(pj − pi))− 8πnG(pi)).

Then we have the important global quantity associated to the set S:

D(S) := lim
r→0

n∑
i=1

μi

(∫
Ωi\Br(pi)

efpi (z) − 1

|z − pi|4
−
∫
R2\Ωi

1

|z − pi|4

)
,

where Ωi is any open neighborhood of pi in E such that Ωi ∩ Ωj = ∅ for
i �= j, and

⋃n
i=1Ωi = E.

Under the hypothesis of Corollary 8.6, it was shown in [16] for n = 1
and in [45] for general n ∈ N, but in a slightly different context, that

ρk − 8πn = (D(S) + o(1)) exp(−max
T

uk).

In general it is difficult to compute D(S) even for n = 1. In the case
n = 1, the hyperelliptic curve is the torus E and the branch points consist
of the three half-periods. In the very special case that T is a rectangular
torus, the sign of D(12ωi) has been calculated: D(12ω3) < 0 and D(12ωi) > 0
for i = 1, 2. Furthermore D(12ωi) < 0 if and only if 1

2ωi is a minimal point
[16].

It is clear that when D(S) �= 0, its sign provides important information
when we study bubbling solutions (blow-up sequence) with ρ �= 8πn (e.g. if
D(S) > 0 then the bubbling may only occur from the right hand side). Also
in the case ρk = 8πn for all k, if a blow-up family uλ exists then D(S) = 0
trivially for S begin the blow-up set.

In particular, we pose the following

Conjecture 8.7.2. For rectangular tori, there are n branch points on the
associated hyperelliptic curve with D(S) < 0, and n + 1 branch points with
D(S) > 0.

Conjecture 8.7.2 is known only when n = 1 as mentioned above.

8.7.3. Theorem 8.4 provides a connection between singular Liouville equa-
tions and the branch points of the associated hyperelliptic curve. We expect
the phenomenon to hold true for other related equations. For example we
might ask the following question on Chern–Simons–Higgs equation:

Suppose that uε is a sequence of bubbling solutions of the Chern–Simons–Higgs
equation

�uε +
1

ε2
euε(1− euε) = 8πnδ0 in E.
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Is the bubbling set {p1, . . . , pn}, as ε → 0, a branch point of the hyper elliptic
curve C2 = �n(B)?

This has recently been answered affirmatively for n = 1 and for E a
rectangular torus [45, 46].
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pp. 437–480.

[63] J. V. Uspensky; Theory of Equations, New Tork, McGraw–Hill Book
Co., 1948.

[64] van der Waerden; Algebra, Vol. I, Ungar, 1949; first German edition
1930.
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