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Introduction: In 1956 J. Milnor constructed a non-standard smooth structures
on S7 which startled the whole mathematical society because it is the first known
example that a manifold can admit more than one smooth structures! This article is
an attemption to understand this construction.

Start from the sphere bundle S(E) of an oriented four plane bundle E over
S4, can show the total space M of S(E) is a topological S7 if the Euler number
e(E) = 1. In this case, if M is diffeomorphic to the standard S7, we can attach an
8-disk to the disk bundle D(E) along the boundary M via this diffeomorphism to get
a smooth closed 8-manifold W . By applying the Hirzebruch signature formula to W ,
we will obtain some divisibility condition on its Pontryagin numbers. By a detailed
computation of the characteristic classes, this can not be true for some E, and we
get the “exotic spheres”.

The main construction is in §4, the computation of characteristic classes is done
in §1 (1.2) (1.3). Other part of this paper is devoted to a proof of Hirzebruch signa-
ture formula. Since I adopt the topological approach, Thom’s cobordism theorem is
discussed in §2.
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§1 Topological preliminaries.

(1.0) Cohomology group of grassmanian manifolds. Let Gn(Cm) be the
grassemannian of all n dimensional complex linear subspaces of Cm. It is known
as the classfying space of Cm bundles in the sense that any Cm bundle E → M

arises from f∗γn for some f : M → Gn(Cm) with m large enough, where γn is the
“universal bundle” with fiber γn

[X] the vector space X. In order to attach a “natural
characteristic class” c(E) to E, it must satisfies c(f∗γ) = f∗c(γ). So it is necessary
to study cohomology of Gn(Cm). To begin with, we construct a cell decomposition
as follows. Let

C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cm

be a fixed filtration. For any X ∈ Gn(Cm), the sequence of m numbers

0 ≤ dimC(X ∩C1) ≤ · · · ≤ dimC(X ∩Cm) = n

has n jumps, and denote the sequence of jumps by j(X). We call a sequence σ =
(σ1, . . . , σn) with 1 ≤ σ1 < σ2 < · · · < σ ≤ m a Schubert symbol. For each Schubert
symbol σ, we associate a subset e(σ) in Gn(Cm) as the collection of all X with
j(X) = σ. e(σ) is topologically a cell of complex dimension

(σ1 − 1) + (σ2 − 2) + · · ·+ (σn − n)

This dimension formula is easy to see by deform X a little bit, but it needs some
work to show it is really an open cell (cf. [MS] p.76), anyway it is elementary. There
are totally

(
m
n

)
such cells, and the whole collection of these cells form a CW complex

structure of Gn(Cm).

In particular, there is no cell of (real) odd dimension, and for cells of even
dimension 2r, they corresponds to those σ such that (let τi = σi − 1):

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ m− n

τ1 + τ2 + · · ·+ τn = r.

When m is large, say m − n ≥ r, and n ≥ r, the number of all such σ is exactly
the partition number p(r) of r. Since no cells are of odd dimension, the cohomology
groups are then clear:

H2r+1(Gn(Cm);Z) = 0

H2r(Gn(Cm);Z) ' Zp(i).

In the case m, n both large, one will suspect that this cohomology ring is a polynomial
ring with each even dimension 2i a generator ci (the universal chern class) for the
following reason: If this is true, than for cs1

1 · · · csr
r (= ci1 · · · ci`

with i1 ≤ · · · ≤ i`)
to be of degree 2r, there are exactly p(r) terms of such monomials! (corresponds to
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the partions I = {i1, . . . , i`}.) This is maybe the origine how chern classes invented.
Since the construction of characteristic are not the goal of this article, I will just list
the formal axioms of chern classes and define the Pontryagin classes from it. And
then compute them in some special cases that will be used later.

(1.1) Characteristic classes. Start from the following (without proof)

Theorem. For any complex vector bundle E over a manifold M , we can uniquely
associate an element c(E) =

∑
i≥0 ci(E) ∈ H2∗(M ;Z), the (total) chern class of E,

such that

(1) c0(E) = 1, ci(E) ∈ H2i(M ;Z) and ci(E) = 0 for i > rank(E).
(2) Naturality: c(f∗E) = f∗c(E) for any f : M ′ → M .
(3) Whitney sum formula: c(E ⊕ F ) = c(E) · c(F ).
(4) Normalization: c(γ1) = 1 − g, where γ1 is the universal line bundle over Pn(C)
and g is the Poincare dual of the hyperplane class.

Remark. In fact cn(E) = e(ER), the Euler class of the underlying real oriented
vector bundle. This is the first step to define the chern class.

For a complex manofold M , we denote c(TM) by c(M), for example let’s com-
pute c(Pn(C)). Let ε be the trivial line bundle, it can be show that TPn(C) ⊕
ε ' ⊕n+1

γ̄1 and we have ci(Ē) = (−1)ici(E), so apply the sum formula, we get
c(Pn(C)) = c(TPn(C)⊕ ε) = c(γ̄1)n+1 = (1 + g)n+1.

Now we define the Pontryagin classes pi(E) of a real vector bundle E by

pi(E) = (−1)ic2i(E ⊗C) ∈ H4i(M ;Z).

and p(E) =
∑

pi(E) the total Pontryagin class. It has similar properties as (1) to
(4), with (3′) p(E⊕F ) = p(E) ·p(F ) (mod 2-torsion). and (4′) p(γ1

R) = 1+g2. These
are all easy consequences of E ⊗C 'C E ⊗C if E is real, and ER ⊗C ' E ⊕ Ē if
E is complex. For example, c(γ1

R ⊗C) = (1− g)(1 + g) = 1− g2, so p(γ1
R) = 1 + g2.

Also for the tangent bundle, p(Pn(C)) = (1 + g2)n+1.

Consider the carnonical quaternion line bundle γ over Pm(H) = (Hm+1−0)/H×,
by the right action of H×. It has the sphere bundle S(γ) ' S4m+3 ⊂ Hm+1. (But
the total space E(γ) is not Hm+1 − 0!). Notice that S(γ) has the fiber S3 = Sp1 =
the unit group of H, hence S(γ) is in fact a S3 principal bundle. This is the Hopf
fibration in the quaternion case. Since γ has a natural underlying real and complex
bundle structure, we will compute c(γC) and p(γR).

The principal bundle S(γ):

S3 i−→ S4m+3

yp0

Pm(H)
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has a homotopy long exact sequence end at π0(S3) term,

πk(S3) i∗−→πk(S4m+3)
p0∗−→πk(Pm(H)) ∂−→πk−1(S3)

When k =1,2, and 3 we get πk(Pm(H)) = trivial. Now from the cohmology Gysin
sequence:

Hi−1+4(S4m+3) −→ Hi(Pm(H)) ∪e−→Hi+4(Pm(H))
p∗0−→Hi+4(S4m+3)

where e = e(γR) = c2(γC) ∈ H4(Pm(H)). We have for i + 3, i + 4 6= 4m + 3,
ie. i 6= 4m, 4m − 1, ∪e gives an isomorphism Hi(Pm(H)) ' Hi+4(Pm(H)). In
particular, H4i(Pm(H)) = ei · Z. Combine with the above result on π1, π2, and π3,
using Hurwicz theorem, we conclude Hi(Pm(H)) = 0 for i = 1,2, and 3. This then
implies Hi(Pm(H)) = 0 for i 6 |4. That is, H∗(Pm(H)) = Z[e]/em+1 as a truncated
polynomial ring generated by e. (Note. If one feel a cell decomposition of Pm(H) is
visible, then this result is in hand.) So c(γC) = 1 + e, use the eailier technique, have

(1− p1 + p2 − · · ·) = (1− c1 + c2 − · · ·)(1 + c1 + c2 + · · ·)
= (1 + c2)(1 + c2)

= 1 + 2e + e2.

so p(γR) = 1− 2e + e2.

Now we specialize to m=1, then P1(H) ≡ S4. Denote e by u (for we will compute
the Euler class of other bundles later). We summarize what we have done: The Hopf
bundle γ has e(γ) = u, p1 = −2u. Its sphere bundle S(γ) is a S3 bundle over S4 with
total space S7.

There are still many other S3 bundles over S4. We will classify them and compute
all their characteristic classes.

(1.2) SO(4) bundles over S4. To begin with, those vector bundles are classified
by the homotopy group π3(SO(4)) by glueing two trivial bundles along the equator
S3. So let’s compute it and find its generators.

Recall a well known result ([S] p.115), SO(3) ' P3(R), this is proved by consider
the map ρ:S3 → SO(3) defined by using quaternion multiplication

(∗) ρ(u)v = uvu−1

here v ∈ S2 is considered as the unit sphere of the space spanned by i, j, and k in the
quaternion H (this map ρ in fact says S3 = Sp1 = Spin(3)). So π1(SO(3)) = Z/2Z
and πi(SO(3)) = πi(S3) for i ≥ 2. Now consider the principal bundle structure:

SO(3)
j−→ SO(4)

yp

S3
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where p is defined by p(g) = g · 1, and define a map σ: S3 → SO(4) by

(∗∗) σ(u)v = uv

also use the quaternion multiplication. Since p(σ(u)) = σ(u) · 1 = u · 1 = u, σ is a
section, and by standard result on principal bundle we conclude SO(4) ' S3×SO(3).
So we have

π3(SO(4)) ' π3(S3)× π3(SO(3)) = Z⊕ Z

and its two generators are [σ] and [j ◦ ρ], it is reasonable to still denote the later one
by ρ because the behavior of j is compatible with the quaternion structure under
consideration. In view of (*) and (**) we can now describe the general form of all
such bundles, they all come from the form fhj : S3 → SO(4), where

(∗ ∗ ∗) fhj(u)v = uhvuj

This is just a corollary of the following

Lemma. Let G be a topological group, then for k ≥ 2 the (pointwise) multiplication
of two homotopy classes in πk(G) corresponds to the composition law of homotopy
classes.

Proof. Let φ1, φ2 : (Ik, ∂Ik) → (G, e) and let φ0 be the constant map e, then clearly
have homotopies

φ1 + φ0 ∼ φ1, φ0 + φ2 ∼ φ2

Multiply these two homotopies, we get

(φ1 + φ0) · (φ0 + φ1) ∼ φ1 · φ2

By the definition of composition law, the left hand side is exactly φ1+φ2. This proves
the lemma. Qed.

In fact, it is very clear that σ corresponds to the Hopf bundle discussed before
because we use right action there, and as a S3 = Sp1 bundle its coordinate transform
will be the left transformation. So we have an even simpler set of generators, namely
the right Hopf bundle γ and the left Hopf bundle γ̄ defined by left action. It correspons
to the homotopy class σ̄ := σρ−1, that is

(∗∗)′ σ̄(u)v = vu.

This complete the description of the SO(4) bundles over S4.

Since γ, γ̄ are isomorphic as real bundles, they have the same Euler class e = u,
but since the “quaternion orientation” is changed, we will have p1 = 2u. Now we will
use a general argument to compute the characteristic classes of all these bundles.
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(1.3) Characteristic classes of SO(4) bundles over S4. In general, SO(n)
bundles over a space X are classified by the set of homotopy classes [X, G̃n(R∞)].
Where G̃n(Rm) is the grassmanian of all oriented n planes in Rm, or more explicitly,
it is SO(m)/SO(n)× SO(m− n). When X happens to be a sphere Sm, it is just as
what we have done in (1.2) that this set ' πm(G̃n(R∞)) ' πm−1(SO(n)), which is
also easily deduced from the following fibration structure:

SO(n) i−→ SO(N + n)/SO(N)
yp

G̃n(RN+n)

Now we will show both maps e and p1: π4(G̃4) → H4(S4) are group homomorphisms.
For example, let [f ] ∈ π4(G̃4), p1 is the map

[f ] 7→ p1(f∗γ̃4)([S4])

so p1(f∗γ̃4)([S4]) = f∗(p1γ̃
4)([S4]) = p1γ̃

4(f∗[S4]) by the definition of f∗ and f∗, and
the last map [f ] 7→ f∗([S4]) is exactly the Hurwicz homomorphism

π4(G̃4) → H4(G̃4).

Combine with the isomorphism π4(G̃4) ' π3(SO(4)), we furnish the computations:

Proposition: The SO(4) bundle Ehj defined by fhj has e(Ehj) = (h + j)u and
p1(Ehj) = 2(h− j)u. In another word, for k ≡ l (mod 2), there is an unique SO(4)
bundle E such that p1(E) = 2ku and e(E) = lu.

Proof. Obviously by looking at the characteristic classes of the right and left hopf
bundles γ and γ̄. Another way to see this is to see the tangent bundle TS4, which has
e(TS4) = 2u (the Euler number) and p1(TS4) = 0 since TS4⊕ε = TS4⊕NS4 =

⊕5
ε

and by the sum formula. (TS4 corresponds to f11, the “sum” of γ and γ̄.) Qed.

(1.4) Characteristic numbers. For a complex manifold M of dimension n, it is
easy to see (described below) there are exactly p(n) terms of products of ci’s to be of
the top degree 2n (the real dimension of M). Also for a 4n dimensional real manifold
M , there are exactly p(n) terms of products of pi’s to of the top degree 4n. Here all
characteristic class are understood to be of the tangent bundle TM .

Let I = {i1, . . . , ir} be any partition of n with i1 ≥ · · · ≥ ir. Define cI =
ci1 · · · cir and pI = pi1 · · · pir they are all of top degree classes. By evaluating these
top degree classes on [M ], we get some intergers and called them the “characteristic
numbers”. (chern numbers and Pontryagin numbers) We will see in the next section
that the Pontryagin numbers have strong relation to the cobordism problem. Here
we compute some examples that will be used later.

6



Again let I = {i1, . . . , ir} be any partition of n with i1 ≥ · · · ≥ ir. Define

M I
C = Pi1(C)× · · · ×Pir (C)

M I
R = P2i1(C)× · · · ×P2ir (C)

so dim(M I
C) = 2n, dim(M I

R) = 4n as real manifolds. We want to show, the char-
acteristic numbers are good enough invariants to distinguish these manifolds, that
is

Lemma. The p(n) × p(n) matrix [cI(MJ
C)]IJ of characteristic numbers is non-

singular. And the same statement holds for [pI(MJ
R)]IJ .

Proof. It is convinient (although not strictly necessary) to introduce another set of
characteristic classes, the chern character ch =

∑
i≥0 chi, which is defined to be

∑n

i=1
exi =

∑n

i=1
(1 + xi +

1
2
x2

i + · · ·) = n + c1 +
c2
1 − 2c2

2
+ · · ·

that is, ch1 = c1, ch2 = (c2
1 − 2c2)/2, . . .. We don’t need to know the exact formula

between c and ch, we only have to know they are equivelent Q-bases, which is quite
obvious. The advantage to use ch is the following fact, ch(E ⊕ F ) = ch(E) + ch(F ),
which is clear by definition. In our case it reads

(∗) ch(M1 ×M2) = ch(M1) + ch(M2),

this linearity allows us to handle product space much easier. We only have to prove
the matrix formed by a(I, J) = chI(MJ

C) is nonsingular. Then the first part of the
lemma follows. (chI is defined by the same way as cI)

Since chi(M) = 0 if i > dimC(M), by the property (*), we get a(I, J) = 0
if |I| < |J |. (At least one is is larger than all jt.) Furthermore, even in the case
|I| = |J |, a(I, J) = 0 unless I = J . Introduce a total order on all partitions which
extends the partial order |I|, then the matrix [a(I, J)] is in a triangular form. So to
prove it to be nonsingular, only have to prove the diagonal elements (ie. I = J) are
nonzero. Let I = J = i1, . . . , ir, then a(I, I) is

r∏

`=1

chi`
(Pi1(C)× · · · ×Pir (C))[M I

C]

=
r∏

`=1

(chi`
(Pi1(C)) + · · ·+ chi`

(Pi`(C)))[M I
C]

where the obvious zero terms are omitted. By evaluating on the [M I
C] from ` =

1, · · · , r gradually, again use chi(M) = 0 if i > dimC(M), we find

a(I, I) =
r∏

`=1

chi`
(Pi`(C))[Pi`(C)].
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so we only have to compute chn(Pn(C)). By the formula TPn(C)⊕ε ' ⊕n+1γ̄ which
is already used in (1.1), get chn(Pn(C)) = (n + 1)chn(γ̄). Since γ̄ is a line bundle,
by def chn(γ̄) = c1(γ̄)n/n! and by the definition of chern class the later term is gn,
which is the generator of H2n(Pn(C)) and gn([Pn(C)]) is not zero. This proves the
(first part) of the lemma.

For the Pontryagin case, we define for a real bundle E, phi(E) = ch2i(E ⊗C),
then for M a complex manifold, phi(TM) = ch2i((TM)R ⊗C) = ch2i(TM ⊕ TM)
= ch2i(TM) + ch2i(TM) = 2ch2i(TM). Then by the same manner we also get the
matrix with entries phI(MJ

R) is nonsingular. Since these classes phi are an equivalent
basis of pi over Q, the result follows. Qed.

(1.5) Cohomology ring of G̃n(R∞).

For later use, we state the following theorem and refer its proof to the literature
([MS] p.179).

Theorem. Let R be an integral domain with 2 to be invertible, and denote pi, e the
characteristic classes of the universal bundle ξ̃, then

H∗(G̃2n+1(R∞); R) = R[p1, . . . , pn]

H∗(G̃2n(R∞); R) = R[p1, . . . , pn−1, e]
.
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§2 Thom’s Cobordism Theorem

(2.0) Introduction. We will consider the oriented case only. Two closed n-
manifolds M1,M2 are said to be cobordant if there is an (n+1)-dimensional compact
oriented manifold-with-boundary W such that M1−M2 = ∂W . This equality means
an orientation preserving diffeomorphism. This relation clearly defines an equiva-
lence relation on all closed n-manifolds. Using the disjoint union as addition law, the
set of cobordism classes form an abelian group, denoted by Ωn. Toghther with the
cartisian product as multiplication law, the set Ω =

⊕
n≥0 Ωn then becomes a com-

mutative graded ring, with the class of all manifolds that bound as the zero element
and [pt] the multiplication unit. We have to check that the product is well-defined:
If M1 −M2 = ∂W1 and M ′

1 −M ′
2 = ∂W ′

2, then we have

M1 ×M ′
1 −M2 ×M ′

2 = ∂(W1 ×M ′
1 −M2 ×W ′

2)

so the map: Ωm × Ωn → Ωm+n is actually well-defined. The commutativity and
associativity are clear.

The goal of this section is to study the structure of the ring Ω, or actually
Ω⊗Q. We will start from the Thom transversality theorem which will lead us to a
representation of Ωn as a certain homotopy group of the Thom space of a universal
bundle, we then need some results of rational homotopy groups or Serre’s theory of C-
ismorphism to transform these homotopy groups into homology groups of classifying
spaces. In this step we have to consider Ω⊗Q or Ω(modC) to get a satisfictory
result.

An important observation is that by using the deRham cohomology and Stokes’
theorem, corbodant manifolds have the same Pontryagin numbers, (say all the pon-
tryagin numbers are zero if a manifold bounds). The result in (1.4) about the Pon-
tryagin numbers of (products of) complex projective spaces then shows, the various
products of P2nj (C)’s with j1 + · · ·+ jr = m are all in distinct cobordism classes in
Ω4m, and the total number of such products is p(m).

Since the cohomology rings of classifying spaces are known to be generated by
characteristic classes (Pontryagin classes in our case), and by counting the dimension,
we can finally conclude that the ring Ω⊗Q is freely generated by {[P2n(C)]|n ≥ 0}.
This is exactly the context of Thom’s Cobordism Theorem in the oriented case. And
we will use this result to prove the Hirzebruch’s Signature Theorem in the next
section.

The P2k+1(C)’s do not appear because they bound some manifolds in the fol-
lowing manner: Consider the indentification of C2k+1 and Hk+1, then taking pro-
jectilization (the compatibility of both action by C× and H× is obvious), we get a
fiber bundle f :P2k+1(C) → Pk(H) with fibre P1(C) ' S2, this bundle has structure
group SO(3), so this bundle is in fact the sphere bundle of some vector bundle and
then it bounds the disk bundle.
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Another remark is the determination of cobordant relation by Pontryagin num-
bers. In this fashion, Thom’s cobordism theorem can also be stated as “Two man-
ifolds are coborbant if and only if they have the same pointryagin numbers”. The
result of this section can implies this statement to be true when we ignore the torsion
part.

(2.1) Transversality. Let f :X → Y be a smooth map between two smooth mani-
folds, A a subset of X, and Z a submanifold of Y . f is said to be transversal to Z on
A (denoted by f |∩A Z or write f |∩Z on A), if ∀x ∈ f−1(Z) ∩ A, have the following
surjectivity condition

Df(TxX) + Tf(x)Z = Tf(x)Y.

We dorp A if A = X. In the case Z reduced to be a point, and A = X, this is
just the usual definition of a regular value. The reason to study the transversality is
due to following observation: If f |∩Z and Z is of codimension k in Y , then by the
implicit function theorem we have f−1(Z) a smooth submanifold of X of codimension
k (empty set is allowed). And the normal bundle of f−1(Z) in X is isomorphic to the
pull back bundle f∗(N) of the normal bundle N of Z in Y .

Now we begin to prove the transversality theorem which says that any smooth
map can be approximated by transversal ones.

Theorem (Thom). Let f :X → Y be smooth, and f |∩A Z, where A is a closed
set of X and Z is a submanifold of Y , let d be any metric compatible with the
underlying topology of Y and ε > 0, then there is a smooth map g:X → Y such that
g |∩Z, d(f(x), g(x)) < ε and f |A = g|A.

Proof. There are several steps:

(1) Since transversality is an open condition, there is an open set U ⊂ A such that
f |∩U Z. Now we will choose some appropriate coordinate coverings to reduce the
problem to the case of Euclidean sapces. First of all, let Y0 = Y −Z and Yi be charts
cover Z with Z ∩Yi coordinate planes. Secondly, choose Vi charts such that {Vi} is a
refinement of both {X −A,U} and {f−1(Yi)}. Since we can not modify f on A, we
need an even more refine covering of those Vi that do not interesect A. We choose
(by paracompactness) {Wi} a family of locally finite relatively compact charts with
{W̄i} finer than {Vj}. Since the index will no longer be preserved, we re-indexing Vi

(so some Vi may equals Vj). Finally we disgard those Wi which are contained in U .
Still denote the final family by {Wi}. It is claerly a covering of X − U .

(2) We will construct fi inductively such that

a) d(fi(x), fi−1(x)) ≤ ε/2i ∀x ∈ X.
b) fi ≡ fi−1 outside a compact neighborhood of W̄i in Vi.
c) fi |∩Z on f−1

i (Z) ∩ (W̄1 ∪ · · · ∪ W̄i).

Once this is done, we get lim fi = g: X → Y the desired smooth map. Notice
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there is no limit process since the covering is chosen to be locally finite. Actually
when X is compact, {Wi} is a finite family. We remark also that in the whole process,
we never change the value of f near A.

(3) For each i ≥ 1, fi−1(Vi) ⊂ Yj(i) for some j(i). Since Vi, Yj are all coordinate
charts, by the induction steps, we only have to treat everything in the Euclidean
spases. Namely, K ≡ W̄ ⊂ V ⊂ Rn, Z = Y ∩Rq ⊂ Y ⊂ Rp, and f : V → Y smooth
with f |∩Z on a relatively closed set S (S is to be thought as W̄1 ∪ · · · ∪ W̄ i−1).

Consider the projection p:Rp → Rp−q, then Z = p|−1
Y (0), so p ◦ f : V → Rp−q

has 0 as a regular value if and omly if f is transversal to Z, thus it suffices to consider
the case Z = 0, that is, a point.

(4) Since 0 is now a regular value of f on S, what we have to do is to modify it to
be regular on all S ∪K. Using a smooth partition of unity, construct a smooth map
λ: V → [0, 1] which equals 1 on a neighborhood of K and equals 0 outside a compact
neighborhood K ′ of K in V . By sard’s theorem, there are always points arbitrarily
near 0 and are still regular values, pick y with |y| < ε and consider

g(x) = f(x)− λ(x)y.

then by the definition of λ, clearly have

1. g has 0 as a regular value (ie. g |∩ 0) on K.
2. g ≡ f outside K ′.
3. |g(x)− f(x)| < ε.

Since y can be chosen arbitrarily near 0 and | ∂
∂xi

λ| is globally bounded, we can
make g,Dg near f,Df uniformly. By 2. g |∩ 0 on S − K ′, so we only have to care
about the set (S ∩K ′) ∩ g−1(0). Notice S ∩K ′ is a compact set, so when |y| small
we have Dfx onto ⇒ Dgx onto. So g |∩ 0 on S ∪K as required. Qed.

(2.2) Thom homorphism: τ : πk+n(T(ξ)) → Ωn.

Let ξ be an oriented k plane bundle over the base manifold B equipped with a
bundle metric, we define the Thom space T(ξ) of ξ to be D(ξ)/S(ξ), that is, identify
all vectors with length ≥ 1 to a single point, we always denote this point by t0 and
refer to it the base point. We notice that different metrics give the same Thom space.
When B is compact, T(ξ) is just the one point compatification of the total space E(ξ)
of ξ. Actually, this point of view is used more often, and for simplicity, we assume
that B is compact.

Given a map f : Sk+n → T(ξ) with ∞ 7→ t0, have f−1(B) ⊂ Sk+n − f−1(t0), so
f−1(B) can be considered to be in some open set U with Ū ⊂ Sk+n−f−1(t0) ' Rk+n.
We can operate everything inside U , that is we will not change f outside U . Notice
that by definition f is surely transverse to B outside U . By transversality theorem,
we may modify f in its homotopy class and keep it unchanged outside U , so we may
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assume f |∩B, then f−1(B) is an n dimensional closed oriented submanifold of U .
That is we get an element of Ωn.

To prove that τ is well defined, suppose F :Sk+n × [0, 1] → T(ξ) be a homotopy
such that F (x, 0) = f0(x), F (x, 1) = f1(x). We may choose F such that F (·, [0, 1

3 ]) =
f0, F (·, [ 23 , 1]) = f1. Apply the transversality theorem to X = F−1(E(ξ)) ∩ (Sk+n ×
(0, 1)), get a map F̃ coinside with f0 near 0, and coinside with f1 near 1, and F̃−1(B)
is a manifold with boundary f−1

1 (B)− f−1
0 (B). So τ is well defined as a set map.

To prove τ is a group homomorphism we go back to the definition of the addition
rule in homotopy groups, clearly it corresponds to the disjoint union of manifolds in
our construction of τ , say, one in the north half sphere and one in the south half
sphere. This complete the proof.

In the following consider in particular B = G̃k(Rk+p) and ξ = ξ̃k
p the oriented

universal k plane bundle. Denote the bundle projection by π. Then we have

(2.3) Theorem (Thom). τ is an ismorphism for k ≥ n + 2 and p ≥ n.

Proof. Surjectivity: we only need k ≥ n, p ≥ n in this part.

Let [M ] ∈ Ωn. By Whitney embedding theorem, M can be embeded in Rk+n.
(Whitney’s theorem is much easier to prove if k ≥ n+1.) Let ν be the normal bundle
of M in Rk+n. By the existence of tubular neighborhood of M , denoted by U , we
can construct the generalized Gauss map:

g:U ' E(ν) −→ E(ξ̃k
n) ↪→ E(ξ)

Complete g to be a map g: Sn+k → T(ξ) by sending all points outside U to t0. Then
do the same as before, can assume g to be transversal to B. It is then clear that
τ([g]) = [M ].

Injectivity: This is much more involved than the surjective part. In fact we
don’t need this part in the remaining sections. Even more, when we finally prove the
Thom’s cobordism theorem for Ω⊗Q, we obtain the injectivity for those homotopy
classes that are not torsion elements as a corollary. Anyway, for completeness we give
the proof.

So let g: Sk+n → T(ξ) be transversal to B and g−1(B) = M = ∂N , have to
show g ∼ constant map. M is an closed n manifold in Rk+n ⊂ Sk+n.

Claim 1: Can embed N in Rk+n × [0, 1
2 ] such that N ∩ (Rk+n × [0, 1

4 ]) = M × [0, 1
4 ]

(it’s true that near ∂N , N has a product structure, the collar theorem, but how one
get such embedding globally?)

Assume this, then let V be a tubular neighborhood of N in Rk+n × [0, 1] with
d(V,N) < ε and then U = V ∩ (Rk+n × {0}) is the tubular neighborhood of M in
Rk+n.
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Claim 2: We can deform the map g such that g|U : U → E(ξ) is a bundle map.

Once this is done, g can be extended to be a bundle map g̃:V → E(ξ) by the
classification theory of vector bundles (cf. [Hirsh] p.100). Define g̃ on the whole
Rk+n × [0, 1] by sending the complement of V to t0. Then g̃ gives the desired homo-
topy from g to the constant map t0.

To prove claim 1, let h: M × [0, 1) diffeomorphic onto a neighborhood of ∂N (the
collar). Define β:R → [0, 1] to be a smooth increasing cut-off function such that
β(x) = 0 for x < 1

2 + ε and β(x) = 1 for x > 1− ε. Then define h1: N → Rk+n× [0, 1
2 ]

by

h1(y) =





(x, 1
2s) for y ∈ h(M × [0, 1

2 ])

p for y 6∈ h(M × [0, 1))

(1− β(s))(x, 1
4 ) + β(s)p for 1

2 ≤ s < 1

where p = (x0,
1
2 ) with x0 ∈ M an arbitrary point. Although h1 is a smooth map, the

resulting image h1(N) is never a manifold. It looks like the roof of an old fashioned
house. But it still contains the collar M × [0, 1

4 ].

Since k ≥ n+2, k+n+1 ≥ 2(n+1)+1 = 2 dim(N)+1. We can apply the smooth
approximation theorem which says in such a dimension, embeddings are dense in the
space of smooth maps. (cf. []) So we find a map

h2: N ↪→ Rk+n+1

and h2 ≡ h1 in h(M × [0, 1
4 ]). Claim 1 is proved.

To prove claim 2, we first deform the map g such that it sends all points outside
U to t0 and keep g unchanged on a smaller neighborhood of M = g−1(B). Recall
the universal bundle π: E(ξ) → B and denote the bundle projection of U → M by p.
Let x ∈ U , by using the linear structures on Up(x), which is induced by the normal
bundle ν (it is just a rescaling of each fiber), and the linear structure on ξπ(g(x)), can
define for s ∈ [0, 1],

H(x, s) =
g(s~x)

s
,

with H(x, 0) = Dgπ(x)(~x), which is surely a linear map on the normal space over p(x)
(since Dg is linear on the whole tangent space), and this linear map is an isomorphism
by the transversality of g Thus g0 ≡ H(·, 0) defines a bundle map U → E(ξ) and
H(·, s), s ∈ [0, 1] defines the homotopy from g ≡ g1 to g0. The construction behavior
well on points near ∂U , so claim 2 is proved. This complete the proof of this “Thom
isomorphism”. Qed.

(2.4) Rational Homotopy Groups.

Although we have established the ismorphism of Thom homomorphism, in gen-
eral it is still difficult to compute the higher homotopy groups. The Hurwicz theorem,
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which established a good relation between the homology group and homotopy group,
is such a type of theorem that we need now, but its original form needs strong as-
sumptions which are surely not satisfied in our situation. Anyway, since we only
concern with the non-torsion part Ω⊗Q, so we only have to compute the so-called
rational homotopy groups. (But it is still not possible to include the theory here.) In
this case, we have (cf. [DFN] p.129)

Theorem. Let X be a finite CW complex which is r-connected with r ≥ 1, then
after ⊗Q, the Hurwicz homomorphism

πi(X)⊗Q −→ Hi(X;Q)

is an isomorphism for i ≤ 2r.

In order to apply this to our case, we must show T(ξ) have some higher connec-
tivity, but since B = G̃k(Rk+p) whose cell decomposition is well known, say el is an
open j cell of it, then the inverse image π−1(el) is clearly an open j + k cell of T(ξ),
Together with the zero cell t0, we obtain a CW complex structure of T(ξ) without
cells of dimension between 0 and k, that is, T(ξ) is (k− 1)-connected. So we get, for
n ≤ k − 2:

πk+n(T(ξ))⊗Q ' Hk+n(T(ξ);Q).

Now we have the Thom isomorphism

Hk+n(T(ξ), t0;Z) ' Hk+n(D(ξ), S(ξ);Z) ' Hn(B;Z).

So by connecting the three ismorphisms, we finally obtain for k ≥ n + 2,

Ωn ⊗Q ' Hn(B;Q).

As noted (1.5), by letting k large enough, Hn(B;Q) is freely generated by Pontryagin
classes of the universal bundle ξ, so it is zero when 4 6 |n, and is of dimension p(m)
if n = 4m. Toghther with the calculation on products of P2n(C)’s. which shows the
various products of P2nj (C)’s with j1 + · · · + jr = m are all in distinct cobordism
classes, since the total number of such products is exactly p(m), we finally get the

Thom’s Cobordism Theorem:

Ω⊗Q = Q[P2(C),P4(C),P6(C), . . .]

Qed.

Remark. In the proof we do not need each step to be isomorphism. We only need

p(r) = dimHn(B;Q) = dimHk+n(T(ξ), t0;Q)

≥ dim(πk+n(T(ξ))⊗Q) ≥ dim(Ωn ⊗Q)

≥ p(r)

So we need only the surjective part of the Thom homomorphism τ (which is the easier
part), and the injective part of the rational Hurwicz homomorphism.
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§3 Hirzebruch’s signature theorem

(3.0) Genera. Let R be a commutative ring over Q. An R-genus is defined to be
a ring homomorohism φ : Ω ⊗Q → R. Since as a ring, Ω ⊗Q is generated by the
projective spaces P2i(C), i ≥ 0, we only have to know the value of φ on these spaces.
This section is in fact a realization of this simple observation.

(3.1) Signature. Let M be a 2n dimensional oriented closed manifold. By Poincare
duality, the intersection form qM on Hn(M,Z) is a nondegenerate pairing, it is alter-
nating when n is odd, symmetric when n is even, in the later case, it is unimodular.
Since we have some classification theory of integarl quadratic forms and alternating
forms, it is very hopeful that the study of the intersection form will provide some
important information about the topology of M . Now we define the signature σ(M)
of M to be zero when 4 6 | dim(M) and to be the signature of qM (that is, the number
of positive eigenvalues σ+ minus the number of negative eigenvalues σ−). We notice
that we can also define the signature by using cohomology, the intersection pairing
is then the cup product and evaluated on the fundamental class [M ]. Using deRham
cohomology, the intersection pairing then can be viewed as the integration of wedge
of closed differential forms over M . This view-point will be very useful in some cases.

As an example, we will now show that the signature of manifolds is a genus.

Lemma. The signature is a Z-genus, that is,

(1) σ(V + W ) = σ(V ) + σ(W ), σ(−V ) = −σ(V ).
(2) σ(V ×W ) = σ(V )× σ(W ).
(3) σ(M) = 0 if M bounds some compact oriented manifolds.

Proof. (1) is clear since the intersection form of disjoint union of manifolds splits as
the direct sum of the individual ones.

(2) We use the cohomology with coefficient in R. Let M4k = V n ×Wm, by the
Kunneth formula,

H2k(M) =
⊕

s+t=2k

Hs(V )⊗Ht(W ).

Let {vs
i }, {wt

j} be the basis of Hs(V ),Ht(W ), such that vs
i v

n−s
j = δij , w

t
iw

m−t
j = δij

for s 6= n
2 , t 6= m

2 . (We can not do this in the middle dimension in general) Let
A = H

n
2 (V ) ⊗H

m
2 (W ) when n,m are both even, and let A = 0 in other cases. Let

B = A⊥ in H2k(M), that is, the space spanned by elements not in A (elements in
A can not be orthogonal to A because the intersection product on A is the tensor
product qV ⊗ qW which is also nondegenerate). The set

{vs
i ⊗ wt

j |s + t = 2k, s 6= n

2
(t 6= m

2
)}

is an orthogonal basis of B. We will show in fact σ(B) = 0, and σ(A) = 0 when
4 6 |n(4 6 |m). Then σ(M) = σ(A) + σ(B) = σ(A) = σ(V )× σ(W ) as required.
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To prove σ(B) = 0, observe (vs
i ⊗ wt

j) · (vs′
i′ ⊗ vt′

j′) 6= 0 only when i = i′, j = j′

and s + s′ = n, (t + t′ = m), and it equals ±1 in this case. The intersection matrix
thus has ±(

0
1

1
0

)
as its building blocks. It is then clear that σ(B) = 0.

If 4 6 |n (so 4 6 |m), we have to show σ(A) = 0. This amounts to say that the
symmetric bilinear form obtained from the tensor product of two alternating forms
must has zero signature. By the structure theorem of nondegenerate alternating form
over R, we know it has a matrix representation with

(
0
−1

1
0

)
as the building block.

And the tensor product of two such matrix gives




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




so the intersection matrix on A is a direct sum of the above matrix, it clearly has
zero signature.

(3) Let i : M4k → W 4k+1 be the boundary inclusion. We have the following
commutative diagram:

· · · → H2k(W ) i∗−→ H2k(M) ∂∗−→ H2k+1(W,M) → · · ·y
y

y
· · · → H2k+1(W,M) ∂∗−→ H2k(M) i∗−→ H2k(W ) → · · ·

The verticle maps are all isomorphisms by Poincare-Lefschetz duality. Let A =
Im i∗, B = Ker i∗. Since i∗, i∗ are dual vector space maps, A is dual to H2k(M)/B

under the duality between H2k(M) and H2k(M). So dim(A) = dimH2k(M) −
dim(B). By the exactness of the above diagram, dim(A) = dim(B), so we get
dim(A) = dim(B) = 1

2 dimH2k(M). Now by Stokes’ theorem, for any ω ∈ A,

∫

M

(i∗ω)2 =
∫

W

d(i∗ω ∧ i∗ω) = 0

so the zero cone of the intersection form contains A. Since A has half the dimension,
this can happen only when σ+ = σ−, that is, σ(M) = 0. This complete the proof of
this lemma. Qed.

(3.2) Multiplicative sequences. Let φ be a genus, it is natural to consider the
generating power series

Pφ(x) =
∞∑

n=0

φ(P2n(C))x2n.
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In the case of signature, It is easy to see that σ(P2n(C)) = 1, so the generating
power series is Pσ(x) = 1 + x2 + x4 + · · · = 1/(1 − x2). What we want to do now
is to find a polynomial K(p) = K(p1, p2, . . .) with (formal) Pnotryagin classes as its
variables, such that K(p(M))[M ] = φ(M), the left hand side means we substitute the
pontryagin classes of M into the formal variables p, then evaluate at the fundamental
class [M ] by using the term of degree n when dim(M) = 4n, it is a linear combination
of Pontryagin numbers. Unfortunately this polynomial can not be obtained very
directly from Pφ. The method to do this was invented by Hirzebruch (also the
definition of genera is due to him).

Let’s start from an arbitrary even power series Q(x) = 1+ q1x
2 + q2x

4 + · · · with
coefficients in R (we use even power series in order to make some expression clear,
see later), and form

∏n

i=1
Q(xi) = 1 + q2

∑n

i=1
x2

i + · · ·
= 1 + K1(p1) + k2(p1, p2) + · · ·

+ Kn(p1, . . . , pn) + Kn+1(p1, . . . , pn, 0) + · · ·

here we regard the variables xi’s as have weight 2, and the weight 4r parts of the first
product is a symmetric polynomial of x2

i . Let pi be the i-th elementary symmetric
polynomial of x2

i , then we can transformed the weight 4r part into the an unigue
polynomial of these pi’s, this is the definition of Kr. By the theory of symmetric
polynomials, we know that Kr is independent of the number of variables n if n ≥ r.
In the following, we will always assume n is large enough, in fact we can take n = ∞,
the resulting series is denated by K(p), here the variable p denates 1 + p1 + p2 + · · ·,
the formal total pontryagin classes. In the special case p = 1 + p1 = 1 + x2, we have
K(1 + x2) = Q(x).

Lemma. The function φQ(M) := K(p(M))[M ] is an R genus.

Proof. (1) We first check that if M4n = ∂W 4n+1 then φQ(M) = 0. In this case
we have TW |M = TM ⊕ ε, where ε is the trivial normal bundle of M in W . Then
p(M) = p(W )|M , that is, all pontryagin classes of M are restriction of those of W ,
since any Pontryagin number pI of M is the integration of the corresponding closed
(wedge of) Pointryagin form ωI on M = ∂W , by Stokes’ theorem,

pI =
∫

M

ωI =
∫

W

dω̃I = 0

where ω̃I is the Pontryagin form on W such that ω̃I |M = ωI . This proves (1).

(2) We have to show the adivitity and multiplicativity. The aditivity is obvious,
the multiplicativity is more subtle. We have to prove: Let p′ = 1 + p′1 + p′2 + · · ·,
p′′ = 1 + p′′1 + p′′2 + · · ·, (p′k, p′′k of weight 4k). If p = p′p′′ = 1 + p1 + p2 + · · · by
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collecting corresponding terms, then

K(p) ≡ K(p′p′′) = K(p′)K(p′′).

(This is why people call Kr the multiplicative sequences.) Let Q(x) =
∑∞

i=0 qix
2i as

before. For any partition I = {i1, . . . , ir} of n, let qI = qi1 · · · qir , and let

sI(p1, . . . , pn) =
∑

x2j1
1 · · ·x2jr

r

where the sum is over all distinct permutations (j1, . . . , jr) of I. Since it is symmetric
in x2

i ’s, it is uniquely represented by a polynomial in p′is, this is the definition of sI .
Then we have

sI(p′p′′) =
∑

{H,J}=I
sH(p′)sJ(p′′),

which is just a partition of standard monomials into two parts of fewer variables.
Again by comparing corrseponding terms, we have

Kr(p1, . . . , pn) =
∑

I
qIsI(p1, . . . , pn).

Take summation over all n, we get

K(p′p′′) =
∑

I
qIsI(p′p′′)

=
∑

I

∑
H,J=I

qH,JsH(p′)sJ (p′′)

=
∑

H,J
qHqJsH(p′)sJ(p′′)

=
∑

H
qHsH(p′)

∑
J

qJsJ(p′′)

= K(p′)K(p′′).

This is what we want. Qed.

Remark. Actually we have already proved: Given any even power series Q(x)
begins with 1, there exists an unique multiplicative sequence K such that K(1+x2) =
Q(x). We have proved the existense, for the uniqueness, use a formal decomposition
p =

∏
i(1 + x2

i ), then K(p) =
∏

i Q(xi). This is exactly our construction.

(3.3) We have the following very important lemma. Let f(x) = x/Q(x) = x + · · · ∈
R[[x]], it is clearly invertible. Let g(y) = f−1(y), then:

Lemma. g′(y) =
∑∞

n=0 φQ(Pn(C))yn.

Proof. Strat from p(Pn(C)) = (1 + p1)n+1 (cf. (1.1)), have K(p) = K(1 + p1)n+1 =
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Q(p1)n+1. Thus

φQ(Pn(C)) = Q(p1)n+1[Pn(C)]

= coefficient of xn in Q(x)n+1 =
(

x

f(x)

)n+1

= residue at 0 of
1

f(x)n+1
dx

=
1

2πi

∫

C

1
f(x)n+1

dx =
1

2πi

∫

f(C)

g′(y)
yn+1

dy

= coefficient of yn in g′(y)

Since f(x) = x+ · · ·, when the circle C around 0 is small enough, f(C) is also a curve
around 0 with winding number 1. In fact we even don not need f to be convergent
since the above argument is essentially a sequence of substitution of formal power
seris. This complete the proof. Qed.

This lemma says g′(y) is exactly the generating power seris of φQ! So if we start
from a genus φ, with generating power series Pφ, then we set g =

∫
Pφ with constant

term zero, and set f = g−1, then Q = x/f(x) is the fundamental power series whose
associated multiplicative sequence K defines the genus φQ = φ.

Apply this to the signature σ, since Pσ(y) = 1 + y2 + y4 + · · · = 1/(1 − y2), so
g(y) =

∫
1

1−y2 = tanh−1(y), and then f(x) = tanh(x), finally we get the fundamental
power series Q(x) = x/ tanh(x). Hirzebruch gave the corresponding K =

∑
Kr a

name, the “L polynomials”: L =
∑

Lr, and called signature the “L genus”.

To actually compute the L polynomials Lr’s, we need the Taylor expansion of
x

tanh(x) . It reads

x

tanh(x)
= 1 +

1
3
x2 − 1

45
x4 + · · ·+ (−1)k+1 22kBk

(2k)!
x2k + · · ·

where Bk’s are the Bernouli numbers ([MS] App.B), the first few terms are 1/6, 1/30,
1/42, 1/30, 5/66, 691/2730, · · ·. Then a direct computation gives the L polynomials:

L1(p1) =
1
3
P1

L2(p1, p2) =
1
45

(7p1 − p2
1)

...

Since we will need only L2 in the following sections, we don’t list the higher L

polynomials here.
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As a conclusion, we have already established the

Hirzebrich Signature Theorem: σ(M) = L(M).

(3.4) Remarks (about the theorem.)

(1) Using other Q(x) we can get other interesting genus (cf. [ ]), for example take
Q(x) = x/2

sinh(x/2) , we get the so-called “A-roof genus”, Â(M), which appears in
the Atiyah-Singer Index Theorem.

(2) The Signature Theorem (as well as the Gauss-Bonnet-Chern Theorem and the
Hirzebruch’s Riemann-Roch Theorem) is in fact a special case of a more general
theorem, namely Atiyah-Singer Index Theorem, but historically the Index The-
orem was first proved by a “twisted version” of Hirzebruch Signature Theorem.
Now there are several new methods to prove the Index Theorem without involve
the Signature Theorem, so it is actually a corollary of the Index Theorem.
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§4 An Exotic Seven Sphere.

(4.0) As showed in §1, the Hopf fibrations are typical examples of spheres which
can be realized as a “sphere fibered by sphere”. Milnor in his 1956’ paper ([M1])
described a lot of S3 bundles over S4, with total space the seven sphere, but with
different smooth structures from standard S7. In this section we will describe these
“exotic spheres”. We will see the power of the Signature Theorem. Although we have
already discussed some topological properties of such sphere fibration, we will start
with the most naive way in (4.1) and put the results of §1 into consideration after
(4.6).

(4.1) Let D4
+, D4

− denote the upper and lower hemi-sphere of S4, then any (oriented)
vector bundle on S4 can be described as identifying two trivial vector bundles over
D4

+, D4
− (contractible space!) along their common boundary, the equator S3, this

identification is given by a map f : S3 → SO(4), and this map is unique up to
homotopy.

Now consider fhj : S3 → SO(4) by the rule: (identify R4 = H and using
quaternion multiplication)

fhj(u) · v = uhvuj .

This defines an SO(4) bundle Ehj on S4 with fiber R4, Let ξhj be the sphere bundle
of Ehj , that is, ∂D(Ehj), we will show when h+j = 1, (so h−j = k is odd), the total
spase of ξhj , denoted by M7

k , is a topological seven sphere. (In (1.3) we have already
proved these two numbers h + j, 2(h − j) correspond to e, p1.) Since h + j = 1, k

determines the pair (h, j) uniquely, so in the following we write the lower indices as
k instead of hj.

(4.2) The idea is to construct a “Morse function” f on M7
k with exactly two critical

points. (Recall that a Morse function is a real valued smooth function with discrete
critical points and the hessian of each critical point is a nondegenerate quadratic
form.) Once this is done, since our manifold is compact, this implies the two critical
points, say y0, y1, are exactly the minimal and maximal points of f . We may assume
that f(y0) = 0, f(y1) = 1. By considering the gradient flow:

dx

dt
= ∇f(x).

we know that f−1([0, a]) are all diffeomorphic for 0 < a < 1. When a is small,
by Morse lemma, there exists a coordinate system (x1, · · · , x7) about y0, such that
f(x1, . . . , x7) = x2

1 + · · ·+ x2
7, so f−1([0, a]) is clearly diffeomorphic to the seven disk

D7. By the flow, we conclude that M7
k − y1 = f−1([0, 1)) is diffeomorphic to D7, so

M7
k is a smooth “topological sphere”. (Remark: the above argument surely works

for all dimensions.)
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(4.3) Now we will show M7
k can be realized as an identification of two R4×S3 along

(R4 − 0)× S3 via the diffeorphism g of (R4 − 0)× S3 :

g: (u, v) 7→ (u′, v′) =
(

u

|u|2 ,
uhvuj

|u|
)

this makes sense because (we should verify that v′ ∈ S3)
∣∣∣∣
uhvuj

|u|

∣∣∣∣ =
|u|h|v||u|j

|u| =
|u|h+j

|h| = 1.

Here h + j = 1 is essentially used. The formula u′ = u/|u|2 is nothing but the
coordinate change of the two stereographic projections: S4 → R4, one from the
south and one from the north. It suffices to check this in the 1 dimensional case, and
it is trivially done by the similar triangle rule.

To check the glueing really gives M7
k , we consider the equator S3, that is, |u| =

|u′| = 1, in fact u = u′. The map g restrict on this equator then defines a map
g̃ : S3 → SO(4) by g̃(u)v = uhvuj . which is exactly the map fhj , since any bundle
over S4 is classified by this map as mentioned before, this space is exactly M7

k .

(4.4) To construct the desired function f on M7
k , consider the following two coordi-

nate charts, (u, v) and (u′′, v′), where u′′ = u′(v′)−1. Define f : M7
k → R by

f(x) =
Re(v)√
1 + |u|2 =

Re(u′′)√
1 + |u′′|2

Check equality: later term =

Re(u′(v′)−1)√
1 + |u′|2 =

Re(|u|u′(v′)−1)√
1 + |u|2

(· · ·) = u(|u|v′)−1 = u(uhvuj)−1 = u · u1−jv−1u−h = uhv−1u−h. When we repre-
sent H as 4 × 4 matrix over R, we have Re(x) = 1

4 trace(x), so Re(uhv−1u−h) =
1
4 trace(uhv−1(uh)−1) = 1

4 trace(v−1) = Re(v−1). Since |v| = 1, v−1 = v̄, we have
Re(v−1) = Re(v̄) = Re(v). So left = right.

Now we consider the critical points. From the right expression of f we easily
see that no critical points exists in the chart (u′′, v′): the function x1/

√
1 + |x|2 ↗

in the direction x1, so ∂1f(x) > 0. Hence all critical points lie in the (u, v) chart,
and in fact lie in the set (0, v). But in this set f(x) reduces to be Re(v) (the height
function) on S3, the unit sphere of H. So the critical points are clearly the two points
v = ±1, that is, (0,±1). By (5.2), M7

k is a topological sphere.

(4.5) Now we will show some M7
k are not diffeomorphic to the standard S7. Suppose

M7
k is diffeomorphic to S7, then we can attach an standard 8 dimensional disk D8

22



to the boundary of the total space of the disk bundle D(Ek) along M7
k ' S7 via the

assummed diffeomorphism. Denote the resulting closed 8 dimensional manifold by
W 8

k . We compute the signature σ(W 8
k ) as follows:

We notice W 8
k is nothing but the Thom space T(Ek), by the Thom isomorphism

theorem, we get (by excision and ∪e(Ek)):

Hi(S4) ' H4+i(D(Ek), S(Ek)) ' H4+i(T(Ek), t0).

The integral cohomology groups of W 8
k therefore equal Z in dimension 0, 4, and 8,

and zero in other dimensions. Actually, it is Z ⊕ Ze(Ek) ⊕ Ze(Ek)2. This implies
σ(W 8

k ) = ±1. Choosing an orientation, may assume σ(W 8
k ) = 1. Now apply the

Hirzebruch signature theorem, we have

1 = σ =
7p2 − p2

1

45
.

Thus all we have to do now is to compute the pontryagin classes of W 8
k .

(4.6) Recall the result of (1.3), which says

e(Ehj) = (h + j)u, p1(Ehj) = 2(h− j)u.

In the present case, e(Ek) = u and p1(Ek) = 2ku.

To pass this result to W 8
k , denote by π:Ek → S4 the bundle projection, we always

have TEk ' π∗(TS4) ⊕ π∗(Ek), so apply the Whitney sum formula and naturality
as in (1.1), and p(TS4) = 1, we get p(TEk) = π∗p(Ek) and p1(TEk) = π∗p1(Ek) =
π∗(2ku) = 2ku = 2ke(EK). So p2

1(TW 8
k ) = p2

1(TEk) = 4k2. This is true because of
naturality, the pontryagin classes of Ek are the restriction of Pontryagin classes of
W 8

k which is a smooth closed manifold and only have one more point than Ek, and
so have the same value when evaluted on the fundamental class.

Put it into the signature formula, we get 4k2+45 = 7p2 ≡ 0 (mod 7), (Pontryagin
numbers are integers!) this implies 4(k2 − 1) ≡ 0 (mod 7) and so k ≡ ±1 (mod 7).
But k can be any odd integers! We get a contradiction for those Ek with k 6≡ ±1
(mod 7), that is, the hypothesis in (4.5) is wrong: M7

k is not diffeomorphic to S7!

(4.7) Final remarks.

(1) There is a quick way to prove: E(ξhj) is a topological sphere if and only if
h + j = 1. First, calculate its cohomology by using Gysin sequence as in (1.1),
but then we need Smale’s throrem on the generalized Poincare conjecture to
conclude the result.

(2) There is still something not so good: although there are a lot of exotic seven
spheres, they may be diffeomorphic! For example, Are M7

3 and M7
5 diffeomor-

phic? In Milnor’s original approach, he put everything in the category of man-
ifolds with boundary, and from this he constructed a diffeomorphism invariant
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which is exactly k − 1 (mod 7), in this way he can distinguish some of these
exotic spheres.

(3) But there is still another even more sophesticated question: How many smooth
structures can a topological sphere have? The following section is a summary of
Kervaire and Milnor’s result to this question. I do not include the proofs here.
Instead, I will describe Brieskorn and Hirzebruch’s construction of these exotic
spheres (including higher dimensional exotic spheres) in later sections.
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§5 Summary of Kervaire/Milnor’s results ([ ])

All manifolds are smooth oriented with dimension ≥ 5 and all bundles are smooth
oriented in this section. Two manifolds M1, M2 are said to be h-cobordant if
M1 − M2 = ∂W and M1, M2 are both deformation retracts of W . It defines an
equivalence relation on manifolds.

The connected sum M1 =|| M2 is well defined up to orientation preserving dif-
feomorphism. It is commutative, associative and compatible with the relation of
h-cobordism. All closed n-manifolds form a commutative monoid under =|| , with
identity the standard sphere Sn. We are interested in those closed manifolds which
have the same homotopy type as a sphere, called the homotopy spheres. we have

(5.1) The set of h-cobordant classes of homotopy n-spheres form an abelian group
under connected sum, denoted by Θn.

(5.2) Θn is finite.

By Smale’s h-cobordism theorem, which says “h-cobordant ⇒ diffeomorphic”,
and the truth of generalized Poincare conjecture of dimension ≥ 5, we have

(5.3) Θn is the group of all smooth structures on Sn.

We will not actually use (5.2), (5.3) in the sequal, what we really concern is
a smaller subgroup bPn+1 ⊂ Θn, to define it, we need the concept of parallelizable
manifolds. M is called parallelizable if TM is trivial, and called s-parallelizable if
TM ⊕ ε is trivial, where ε is the trivial line bundle over M .

We need the following basic facts:

(5.4) Lemma. Let ξ be a k plane bundle over Mn, k ≥ n. If ξ ⊕ εr is trivial, then

ξ is trivial.

Proof. Only have to consider the case r = 1. The isomorphism ξ ⊕ ε ∼= εk+1 gives
rise to a bundle map

ξ −→ γk

y y
M

f−→ Sk

where γk is the universal oriented k plane bundle over the oriented grassmannian
G̃(k, k + 1) = Sk. Since k ≥ n, f is null homotopic, so ξ is trivial.

(5.5) Corollary. Let Mn be a submanifold of Sn+k, k ≥ n, then M is s-parallelizable

iff the normal bundle is trivial.

25



Proof. The bundle T ⊕N ⊕ ε is always trivial, where ε is the (trivial) normal bundle
of Sn+k in Rn+k+1. If the normal bundle N is trivial, apply (5.4) to (T ⊕ ε)⊕N , we
get T ⊕ ε is trivial. Conversely, if M is s-parallelizable, apply (5.4) to N ⊕ (T ⊕ ε),
we get that N is trivial.

(5.6) Corollary. A connected manifold with nonempty boundary is s-parallelizable

iff it is parallelizable.

Proof. We need Morse Theory to conclude that a smooth manifold admits a CW
complex structure, and if the boundary is not empty, the dimension of this CW
complex can be choosen to be < n = dim(M). In the proof of Lemma (5.4), we need
only k ≥ the CW complex dimension, so the result follows.

(5.7) Corollary. Any oriented submanifold M of Rn with ∂M 6= ∅ is parallelizable.

Proof. Such manifold has trivial normal bundle. If we take n large, then M becomes
s-parallelizable by (5.5). So it is parallelizable by (5.6).

Now we define the set bPn+1 ⊂ Θn: it consists of those homotopy n-spheres which
bound a parallelizable manifold. This condition depends only on the h-cobordism
class (This is clear if we use h-cobordism theorem). The main property we should
know is that bPn+1 is a finite cyclic group and its members can be classfied by simple
topological invariant. For simplesty we only consider bP4m, (m ≥ 2), the collection
of allparallelizable 4m manifolds with ∂M = (4m − 1)-sphere. The corresponding
signatures σ(M) form a non trivial subgroup of Z, denote it by σmZ where σm ≥ 0.
Then the following structure theorems are known:

(5.8) Let Σ1, Σ2 be two 4m−1 homotopy spheres, ∂Mi = Σi, with Mi parallelizable.
Then Σ1 is h-cobordant to Σ2 if and only if σ(M1) ≡ σ(M2)(mod σm). In another
words, the signature (mod σm) classifies the smooth structures on S4m−1.

So bP4m is a subgroup of Z/σmZ, later we will see that all such parallelizable
manifolds have signatures ≡ 0 (mod 8), so the order of bP4m divides σm/8. In fact
it equals, and its value is also determined by Bernoulli numbers:

(5.9) The determination of bPn is:

(1) bP2k+1 = 0

(2) bP4m−2 = Z/2Z if m 6= 1, 2, 4

(3) bP4m is cyclic of order σm/8, it equals

εm22m−2(22m−1 − 1) numerator
(

4Bm

m

)
.

where εm = 1 if m is odd, = 2 if m is even.
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