Main Reference : Équations Différentielles à Coefficients Polynomiaux hy B. Malgrange.

2/17 8 Singularities of holonomic D-module. X: complex analytic variety of dimension I: $\mathcal{O}_{x}:$ sheaf of holomorphic functions on X $D_{x}:$ sheaf of linear differential operators with coefficient in $\mathcal{O}_{x}:$ M: (left) Dx-module i.e. a sheaf of Dx-module.

cohevent Dx-module i.e. locally of finite presentation. A good filtration on M is a filtration {Mk}kzo of M s.t. M_K ⊆ M : coherent O_X -submodule
 De M_K ⊆ M_{K+le} for all K, l ≥ 0 , "="holds for K ≥ Ko. support on T*X (view it on T*X) M is said holonomic if din M = 1 = din X. Examples E: vector bundle on X with integrable connection ∇ .

 \rightarrow $\mathcal{E}_{k} = \mathcal{E}$ for all $k > 0 \rightarrow car M = 0$ -section of $T^{*}X$

~> E: holonomic.

Nonexample $M = D_X$, car $M = T^*X$ \longrightarrow dim $(D_X) = Z$.

Now, we recall the local theory of ODE: $X\subseteq \mathbb{C}$, $O\in X$, M: holonomic D_X -module s.t. sing $M\subseteq \{0\}$, and $M \simeq \mathcal{O}_{x}(*\{\circ\}) \otimes M$ sheaf of meromorphic functions with possible poles at O. i.e. locally, we have $M \simeq \mathcal{O}_{\mathsf{x}}(\mathsf{x} \{\mathsf{o}\})^\mathsf{T}$ as a free $\mathcal{O}_{\mathsf{x}}(\mathsf{x} \{\mathsf{o}\})$ -module. \overrightarrow{U} : vector with generators as entries $\longrightarrow \frac{d}{dz} \overrightarrow{U} = A(z) \overrightarrow{U}$ Mrxr (Ox (*{0})) Regular singularities If we can choose system of generators { u1,..., ur } of M s.t. ZA(Z) has no pole at 0, then we say 0 is a regular singularity. In this case, there are r linearly independent solutions $\overrightarrow{U}_j = Z^{\lambda_j} \sum_{s=0}^{r-1} \overrightarrow{a}_{j,s}(Z) \left(\log Z\right)^s \quad \text{for } \quad j=1,2,..., r$ $\vec{A}_{j,s}(Z)$: vector of holomorphic functions defined on neighborhood of O. change $\vec{V} = \vec{D}(z) \vec{u}$ to get $z \frac{d}{dz} \vec{v} = \vec{C} \cdot \vec{v}$ for some $\vec{C} \in M_{rxr}(\vec{C})$ GL_r (O_x(*{0})) May assume C: Jordan form. Then, we can read out the structure of $M \simeq \bigoplus_{\text{some } \lambda} D_X (*\{o\}) / D_X (*\{o\}) (z \frac{d}{dz} - \lambda)^{m+1}$ as $D_X - module$

Also,
$$D_X (*{o})$$

$$D_X (*{o}) \left(\frac{1}{2 \cdot \frac{1}{4 \cdot 2}} - \lambda \right)^{m+1}$$
some M

$$\int D_{x} / D_{x} \left(z \frac{d}{dz} - \lambda - k\right)^{m+1}$$
some λ

some m

Also, the local system on X\{0} is

$$L = So|_{X}(M) = \left\{ \vec{u} \in (\mathcal{O}_{X \setminus \{0\}})^{r} \middle| \frac{d}{dz} \vec{u} = A(z) \vec{u} \right\}$$
Solution sheaf $So|_{X}(M) = R \underbrace{Hom}_{D_{X}}(M, \mathcal{Q}_{X})$

L has monodromy exp (zπ J-T·C)

~ L completely determines M.

Irregular singularities

In the irregular case, we have the r linearly independent formal solution $\hat{U}_j = e^{ij(z)} z^{\lambda_j} \sum_{s=0}^{r-1} \vec{Q}_{j,s}(z) \left(\log z\right)^s , \text{ where } \ell_j(z) \in z^{-1/m} C[z^{-1/m}]$

for some
$$m \in \mathbb{Z}_{>0}$$
, $\lambda_j \in \mathbb{C}$, and $\vec{a_{j,s}}(z) = \sum_{n \in \frac{1}{m}} \vec{a_{j,s,n}} \in \mathbb{C}[[z^{m}]]^r$

These formal solutions have the following property:

For any $0, \in \mathbb{R}$, j=1,2,...,r, there exists a neighborhood

 $\mathbb{Z}_{\theta} = \{ \mathbb{Z} = \mathbb{Y} \in \mathbb{Z} \mid |\theta - \theta_{\theta}| < \mathcal{E} \text{ and } 0 < \mathbb{Y} < \mathcal{E} \}$ for some small $\mathcal{E} = \mathcal{E} \in \mathbb{Z}$ and $\mathcal{E} = \mathcal{E} \in \mathbb{Z}$

holomorphic solution $u_j \in \mathcal{O}_X(*\{0\})^Y$ such that $u_j \sim \widehat{u_j}$, i.e.

for any N>0, there exists C>0 s.t. $|y-\hat{y}| \leq C \cdot |z|^{N+\lambda j}$

where $\hat{Q}_{j}^{N} = e^{\hat{Q}_{j}(z)} Z^{\lambda j} \sum_{S=0}^{r-1} Z_{so} Z^{n} (\log Z)^{S}$ is the truncated $n \in N$

formal solution taken branch on Zo.

In D-module language, we have the following theorem:

Theorem M: connection on $\mathbb{C}\{x\}[x^{-1}] = \widehat{K}$. Then, after a change of coordinate $\widehat{K} = K[t]$, $t^P = \chi$, $\widehat{M} = \widehat{K} \otimes M$, we have a decomposition $\widehat{M} = \bigoplus L_{\omega} \otimes M_{\omega}$, where $\omega \in (\widehat{K}) dt$ and M_{ω} : regular singular. rank one connection $<e_{\omega}>$ with $\exists e_{\omega} + \alpha e_{\omega} = 0$.

To prove this, we need to introduce the notion of Newton polygon.

· Newton Polygon.

$$K < 3 > = D[x^{-1}]$$

convergent power series

Proposition M: connection on R of rank m. Then, I ex M s.t.

{e, de, de, de, de} is a basis of M on k.

Then, e has minimal polynomial $(3^m + \sum a_i 3^{m-i}) = :a$

This gives $M \simeq \tilde{K} < \partial > / \tilde{K} < \partial > a$.

 $a \in K < \partial \mathcal{I}$, the Newton polygon of $a = \mathbb{Z} a_{kl} \times a_{kl}^{k}$ is

 $N(a) = convex hall of <math>\bigcup \{u \le k, v \ge l - k\}$ in uv-plane. $a_{kl} \ne 0$

The slopes of a are the slope of non-vertical sides.

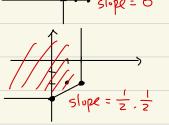
· if the horzontal side is {u = 0}, then we exclude slope 0!

Sometimes, we will say slope of a to be the great slope.

Example (modified Bessel operator) $(z\partial_z)^2 - z^2 = z^2\partial_z^2 + z\partial_z - z^2$

Near 0: $\partial_z^2 + \frac{1}{7} \partial_z - \frac{(l,k)=(0,2),(-1,1),(0,0)}{(k,l-k)=(2,-2),(1,-2),(0,0)}$

Near ∞ : $Z = \frac{1}{\omega}$, $\partial_z = -\omega^2 \partial_\omega \rightarrow \partial_\omega^2 + \frac{1}{\omega} \partial_\omega - \frac{1}{\omega^3}$ (1,6)=(0.2),(-1,1),(-3,0) (K, L-K) = (2,-2), ((,-2), (0,-3)



· Reduce to single slope:

Lemma a E R<d> with slopes 0 = P1 < P2 < ... < P5 < P5+1 < ... < Pr.

Then, I! b, c ∈ R<3> s.t. O a=bc

E) slopes of b are pi--ps, slopes of C are Ps+1,.... pr

3) constant term of C is 1.

Use this to get $0 \longrightarrow \frac{k \cdot \delta}{k \cdot \delta} \longrightarrow \frac{k \cdot \delta}{k \cdot \delta} \longrightarrow \frac{k \cdot \delta}{k \cdot \delta} \longrightarrow 0$ $0 \longrightarrow \frac{k \cdot \delta}{k \cdot \delta} \longrightarrow \frac{k \cdot \delta}{k \cdot \delta} \longrightarrow 0$

Also, use $Ext_{\hat{K}<\partial P}$ $(N,P) = Ext_{\hat{K}<\partial P}$ (P,N) = 0 for i=0,1.

(bacts on P) and (c acts on N) are bijective.

~ M= PON.

Now, we begin to prove our theorem:

proof: M: connection on R. m= rank M. Find a cyclic vector of M

and draw the Newton polygon of the minimal polynomial of it.

Then, use induction on slopes p and m, we may assume p is

Constant.

Case O: p=0, then this is already regular singular.

<u>Casel</u>: PEN say the cyclic vector e EM with $\partial^m e + \sum a_i \partial^{m-i} = 0$.

Since the Newton polygon has slope P, we have

$$\alpha_i = \frac{\alpha_i}{x^{(p+1)i}} + (higher order terms)$$

pole at most (p+1)i

μ^m + Σ α; μ^{m-i} = 0 : characteristic polynomial -> find a root λ with multiplicity

Let $w = \frac{\lambda dx}{x^{p+1}}$. Then, $L_w \otimes M$ has cyclic vector $e_w \otimes e_w$ with

minimal polynomial $\alpha' = \left(3 + \frac{\lambda}{\chi^{p+1}}\right)^{m} + \sum a_{i} \left(3 + \frac{\lambda}{\chi^{p+1}}\right)^{m-i}$

I characteristic polynomial
$$\frac{3^{m}}{2} + \sum \frac{\beta_{i}}{x^{(p+1)i}} \underbrace{2^{m-i}}_{i}$$

- If g=m, then a has slope done!
- , then $\beta_m = \cdots = \beta_{m-g+1} = 0$, $\beta_{m-g} = 0$

 \rightarrow a has slope < p-1 \rightarrow moduction done!

Case 2 p $\in \mathbb{Q}^+$. Write $p = \frac{\mathcal{E}}{r}$. Then, use $t^r = x$ and reduce to

the first case.

· Stokes phenomena

This phenomena is to describe how the solution change on

different sectors.

Choose another small sector Σ_{θ_i} s.t. $\Sigma_{\theta_o} \cap \Sigma_{\theta_i} \neq 0$.

Then, we write $U_j' = \sum_{k} a_{j,k} U_k$ on $\Sigma_{\theta_0} \cap \Sigma_{\theta_1}$.

→ (aj.14) : Stokes matrix.

In formal, we need to introduce the "real blow-up" to explain happen to this phenomena.

· Real blow-up (blow-up of 0 on D) $\stackrel{\sim}{D} \xrightarrow{\pi} D \qquad S = \pi^{-1}(0) \qquad j : D \setminus \{0\} \longrightarrow \stackrel{\sim}{D}$

(p.ei0) → pei0

 $L = Sol_D(M) \Big|_{D\setminus \{0\}}$, $\widetilde{L} = (j*L)|_S : local system on S of rank r.$

From the firmal decomposition, we have $\widehat{M} \otimes \widehat{K} \longrightarrow \widehat{M}' = \bigoplus L_{\alpha} \otimes M_{\alpha}$.

Then, the horizontal section of M' is of the form $\Sigma \in \mathcal{A}$ on solution to M_d

a sector near θ .

II: local system on S defined as follows: On a small sector, it has the from $\sum_{-n}^{\infty} a_k x^{k/p} dx$ (mod pole of order ≤ 1) On Ω , we define a partial order: for $e^{i\theta} \in S$, we write $\alpha \leq_{\theta} \beta$ if $e^{\int \alpha - \beta}$ is modrate growth (i.e. $O(|x|^{-N})$) on small sector near θ . <u>Definition</u> Let V be a local system on S. A <u>Stokes structure</u> (or Ω -filtration) on V is a family of subsheaves $\{V^{\alpha}\}$ s.t. (1) for any $e^{i\theta} \in S$, we have $V_{\theta} = \bigoplus_{\alpha} V_{\alpha, \theta}$ locally constant sheaf constant near a small neighborhood of $e^{i\theta}$ with solution $e^{\int_{\alpha}^{\alpha} f_{\alpha}}$.

(2) for $e^{i\theta}$ near $e^{i\theta}$, we have $V_{\theta'}^{\alpha} = \bigoplus_{\beta \leq e^{i\alpha}} V_{\beta, \theta}$

Theorem (Deligne)

(holonomic D-module M s.t. Sing (M) \subseteq {0}, M \simeq M (\times {0})) $\Sigma : \tau s \text{ an equivalence of categories}$ (local system on S together with Ω -filtrations)