Multiplier Ideal Sheaves and Nadel's Vanishing Theorem

For a singular hermitian metric $h = e^{-\varphi}$ of a holomorphic line bundle L over a complex manifold X, we define its *multiplier ideal sheaf* $\mathcal{J}(h) \subset \mathcal{O}_X$ to be the ideal sheaf of germs of holomorphic functions f such that $|f|^2 e^{-\varphi} \in L^1_{loc}$. Suppose that the curvature current $i\Theta_h(L) = i\partial\overline{\partial}\varphi \geq 0$ (or equivalently, the local weigh function $\varphi \stackrel{a.e.}{=} \phi \in Psh$). In this case, $\mathcal{J}(h)$ has many nice properties, such as coherence and Nadel vanishing.

Hörmander's L^2 estimates for the $\overline{\partial}$ -operator. Let (X, ω) be a weakly pseudoconvex Kähler manifold, L a holomorphic line bundle over X endowed with a smooth hermitian metric $h = e^{-\varphi}$, and $q \in \{1, 2, ..., n = \dim X\}$. Suppose $i\Theta_h(L) = i\partial\overline{\partial}\varphi \ge c\omega$ for some positive constant c. Then for any $g \in L^2(X, \Lambda^{n,q}T^*X \otimes L)$ such that $\overline{\partial} g = 0$, there exists $f \in L^2(X, \Lambda^{n,q-1}T^*X \otimes L)$ such that

$$\overline{\partial} f = g \text{ and } \int_X |f|^2_\omega e^{-\varphi} dV_\omega \leq \frac{1}{qc} \int_X |g|^2_\omega e^{-\varphi} dV_\omega.$$

Proposition 0.1. $\mathcal{J}(h)$ is coherent.

Lemma 0.2 (Strong noetherian property). Let \mathcal{F} be a coherent analytic sheaf over X and let $\mathcal{F}_1 \subset \mathcal{F}_2 \subset ...$ be an increasing sequence of coherent subsheaves of \mathcal{F} . Then the sequence $\{\mathcal{F}_k\}$ is stationary on every compact subset of X.

Lemma 0.3 (Krull's intersection theorem). Let R be a noetherian local ring and let \mathfrak{m} be the maximal ideal of R. Then for every finitely generated R-module F and every submodule E of F,

$$\bigcap_{k=1}^{\infty} E + \mathfrak{m}^k F = E.$$

Lemma 0.4. If the Lelong number

$$\nu(\varphi, x) := \liminf_{z \to x} \frac{\varphi(z)}{\log |z - x|} \le 2(n + k)$$

for some $x \in X$ and $k \in \mathbb{N}$, then $\mathcal{J}(h)_x \subset \mathfrak{m}_x^k$, where \mathfrak{m}_x is the maximal ideal of $\mathcal{O}_{X,x}$.

Theorem 0.5 (Nadel's vanishing theorem). Let X be a compact complex projective algebraic manifold and let L be a holomorphic line bundle over X endowed with a singular hermitian metric $h = e^{-\varphi}$. Suppose $i\Theta_h(L) = i\partial\overline{\partial}\varphi \ge \omega$ for some Kähler form ω on X. Then

$$H^p(X, \mathcal{O}(K_X + L) \otimes \mathcal{J}(h)) = 0 \quad for \ p \ge 1.$$

Lemma 0.6 (Chow's theorem). An analytic subspace of a complex projective space that is closed in the strong topology is closed in the Zariski topology.

Lemma 0.7. Let V be an analytic variety of an open set U in \mathbb{C}^n . Then every f in $L^2(U) \cap \mathcal{O}(U \setminus V)$ is equal to a holomorphic function on U almost everywhere.

Theorem 0.8 (Hörmander, Andreotti-Vesentini, Skoda). Let (X, ω) be a Kähler manifold and let E be a holomorphic vector bundle over X endowed with a hermitian metric h. Fix $q \in \{1, 2, ..., n = \dim X\}$. Let $\Omega \subset \subset X$ be a smoothly bounded domain whose boundary is q-positive with respect to ω . Assume that there is a smooth strictly positive (1, 1)-form γ on X such that $i\Theta_h(E) + Ricci(\omega) - \gamma$ is q-positive with respect to ω . Then for any E-valued (0, q)-form g on Ω such that

$$\overline{\partial} g = 0 \quad and \quad \int_{\Omega} |g|^2_{h,\,\omega;\,\gamma} \, dV_{\omega} < +\infty$$

there exists an E-valued (0, q-1)-form f such that

$$\overline{\partial} f = g \quad and \quad \int_{\Omega} |f|^2_{h,\omega} \, dV_{\omega} \leq \int_{\Omega} |g|^2_{h,\omega;\gamma} \, dV_{\omega}$$