
Ohsawa-Takegoshi L2 extension theorem

In this note, we are going to derive a version of the Ohsawa-Takegoshi extension

theorem [1] that was historically used to prove the invariance of plurigenera [5]. We will

closely follow the arguments in [5] and provide details for the proof.

Our setting is as follows. Let Y be an n-dimensional Kähler manifold. Assume

there exists a holomorphic function w on Y such that supY ∣w∣ ≤ 1 and dw is nonzero at

any point of Z ..= w−1(0). We also assume there exists an analytic hypersurface V in Y

such that Z /⊆ V and Y − V is Stein.

The main example we have in mind is a projective family Y
πÐ→ ∆, in which case

Y ↪ ∆ × Pk by shrinking the base, and V could be taken to be a hyperplane section so

that Y −V is embedded as a closed submanifold of ∆× (Pk −Pk−1) ≅ ∆×Ck, hence Stein.

Theorem. Suppose given a holomorphic line bundle L over Y with a singular hermitian

metric h = e−ϕ such that

(i) the curvature current iΘh(L) ≥ 0 and

(ii) h ∣Z defines a singular hermitian metric on L ∣Z .

Then for every section f of O(KZ +L ∣Z)⊗J (h ∣Z) over Z, f ∧dw extends to a section F

of O(KY +L)⊗J (h) over Y that satisfies the following L2 estimate:

∫
Y

∣F ∣2 e−ϕ ≤ C ∫
Z

∣ f ∣2 e−ϕ

where C = 8πe
√

2 + 1
e .

An important point is that the constant C is universal (i.e., independent of everything).

This is a key factor in proving the invariance of plurigenera [5]. Also, the numerical value

of C given above is not optimal (i.e., minimal), as we will see later.

1. Standard Approximation

Lemma 1.1. There exist

(i) an increasing sequence of Stein domains Ω1 ⋐ ... ⋐ Ων ⋐ Ων+1 ⋐ ... with smooth

strongly pseudoconvex boundaries such that ⋃ν Ων = Y − V.

(ii) a decreasing sequence of psh functions ϕν ∈ C∞(Ων) with
√
−1∂∂ϕν > 0 such that

ϕν ↘ ϕ as ν →∞.



Proof. Recall that the following statements are equivalent for a complex manifold X:

(I) X is Stein (i.e., holomorphically convex and holomorphically separable).

(II) X is biholomorphic to a closed complex submanifold of Cm for some m.

(III) X is strongly pseudoconvex (i.e., there exists ρ ∈ C∞(X,R) such that
√
−1∂∂ρ > 0

and Ω r
..= {x ∈X ∣ρ(x) < r} ⋐X for all r ∈ R).

(IV) Hp(X,F) = 0 for every coherent analytic sheaf F on X and every p ≥ 1.

Choose a function ρ on X = Y − V as in (III). Exponentiating it, we may assume ρ ≥ 0.

Observe that Ωr is itself strongly pseudoconvex (with 1/(r − ρ) being a smooth strictly

psh exhaustion function on Ωr). Moreover, by Sard’s theorem, ∂Ωr = ρ−1(r) is smooth

for almost every r ∈ R. Thus we obtain (i) after reindexing the domains Ωr.

Smooth Regularization of Singular Metrics The singular hermitian metric h on L is given

by ∥ ⋅ ∥2
h = ∣ ⋅ ∣2 e−ϕ, where ϕ ∈ Psh(X) and ∣ ⋅ ∣2 is a fixed smooth hermitian metric on L.

In order to regularize the L1
loc function ϕ, we first embed X into Cm for some m. Invok-

ing a well-known theorem [2]:

Every Stein submanifold X of a complex analytic space V admits

a Stein neighborhood U and a holohorphic retract r ∶ U →X.

we see there exists a Stein open set U ⊂ Cm such that X ⊂ U, and a holomorphic retract

r ∶ U → X. We then use the map r to pull back ϕ and apply the standard convolution

techniques in Cm; let ϕ̃ ..= ϕ ○ r ∈ Psh(U) and {%ε} a family of smoothing kernels, so

%ε(x) ..= 1

ε2m
%1(

x

ε
)

where %1 ∈ C∞(Cm,R) is a radially symmetric function (i.e., %1(x) depends only on ∣x ∣ )
such that

%1 ≥ 0, Supp%1 ∈ B(0,1) and ∫
Cm
%1(x)dV = 1.

Then ϕ̃ ∗ %ε is smooth and psh on U ε ..= {x ∈ U ∣dist(x, ∂U) > ε}, and

ϕ̃ ∗ %ε ↘ ϕ̃ as ε→ 0.
Moreover, √

−1∂∂(ϕ̃ ∗ %ε) = (
√
−1∂∂ϕ̃) ∗ %ε = (r∗

√
−1∂∂ϕ) ∗ %ε > 0.

By the Stein property, there is an exhaustion {Uν} of U by bounded Stein domains Uν .

Hence {Xν
..=X ∩Uν} is an exhaustion of X by relatively compact open subsets. Finally,

consider an exhaustion {Ων} of X as in (i). For each ν, we choose jν and εν such that

Ων ⊂Xjν ⊂ Ujν ⊂ U εν . Then ϕν ..= ϕ̃ ∗ %εν verifies (ii). �
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The proof of the theorem consists of two steps. The first is showing that the result

holds for each pair (Ων , ϕν), and the second is passing to a subsequential limit νj Ð→∞.

Lemma 1.2. Suppose for each ν,

f ∧ dw ∣Zν ..=Z ∩Ων

extends to a section Fν of O(KΩν +L ∣Ων) over Ων that satisfies the estimate:

∫
Ων

∣Fν ∣2 e−ϕν ≤ C ∫
Zν

∣ f ∣2 e−ϕν .

Then the theorem holds true.

Proof. Since

(i) ∫
Ων

∣Fν ∣2 e−ϕν ≤ C ∫
Zν

∣ f ∣2 e−ϕν ≤ C ∫
Z

∣ f ∣2 e−ϕ <∞,

(ii) ∣Fν ∣2 ∈ Psh(Ων) (for
√
−1∂∂∣Fν ∣2 =

√
−1∂Fν ∧ ∂Fν ≥ 0) and

(iii) {e−ϕν} is locally uniformly bounded below (ϕ1 being upper semicontinuous),

the mean value inequality for psh functions implies that the family {Fν} is locally uni-

formly bounded. By Montel’s theorem, there is a subsequence {Fνj} converging to some

F ∈H0(X,KX +L ∣X), where X = ⋃ν Ων = Y − V . Moreover, we have the estimate

∫
X

∣F ∣2 e−ϕ ≤ lim inf
ν→∞ ∫

X
χΩν ∣Fν ∣2 e−ϕν ≤ C ∫

Z
∣ f ∣2 e−ϕ

by Fatou’s lemma. Now since pluripolar sets are removable for L2 holomorphic functions,

we conclude the proof of the theorem. �

2. Preliminaries and

L2 Estimates for ∂

We have therefore reduced the original problem to the case of a smoothly bounded

Stein domain Ω in X and a smooth hermitian metric e−κ on L ∣Ω . � Since Ω is Stein, we

can extend f ∧ dw to an L-valued holomorphic n-form F̃ on Ω. Moreover, by extending

to a Stein neighborhood of Ω, we may also assume that

(1) ∫
Ω

∣ F̃ ∣2 e−κ <∞.

Of course, we have no better estimate of this extension, for it is obtained merely by the

Stein property. In particular, the estimate could degenerate as ν →∞.

� In view of Lemma 1.2, we will henceforth discard the original singular metric, with the notation h = e−ϕ
being saved for later use. We take here Ω = Ων and κ = ϕν for a fixed ν.
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In order to tame the growth of F̃ , we first multiply it by a cutoff function χ(w)
= %(∣w ∣2) which is ≡ 1 on Z ∩Ω. However the resulting extension χF̃ of f ∧ dw may not

be holomorphic. So to get a holomorphic correction, we turn to solve the ∂-equation

∂α = w−1 ∂(χF̃ ).

Then F ..= χF̃ −wα is holomorphic and F ∣{w=0} = f ∧ dw.

Also, to obtain an estimate for F with respect to F ∣{w=0}, we introduce a variable ε

and use the cutoff function χε(w) ..= %(∣w ∣2 / ε2) instead of χ(w). Then F is obtained by

solving the ∂-equations

∂αε = w−1 ∂(χεF̃ ) = ε−2 χ′ F̃ ∂w,

with L2 estimates, setting Fε ..= χε F̃ −wαε and passing to the limit as ε→ 0.

The practical situation is, however, fairly complicated. The main difficult part is to

keep track of the estimates. In fact, to apply the L2 method, we consider

∫
Ω

∣ ε−2 χ′ F̃ ∣2 e−κ,

which is of order ε−2 (because of (1) and that Supp% is compact). To offset this order,

we introduce the weight function log(∣w ∣2 + ε2) so that the additional curvature is

√
−1∂∂ log(∣w ∣2 + ε2) = ε2

(∣w ∣2 + ε2)2

√
−1∂w ∧ ∂w.

The Bochner-Kodaira formula (3) (on page 9) then implies an a priori inequality

∥∂∗u∥2 + ∥∂u∥2 ≥ ∥ ε

∣w ∣2 + ε2
⟨u, dw⟩ ∥2

where ⟨u, dw⟩ = dw(u) is the (n,0)-form obtained by contracting u and dw = ∂w with

respect to the Kähler metric tensor (whose definition can be found on page 8). Applying

the Schwarz inequality, we obtain

∣⟪u, ε−2 χ′ F̃ dw ⟫∣2 = ∣⟪dw(u), ε−2 χ′ F̃ ⟫∣2

≤ ∥ ∣w ∣2 + ε2

ε
ε−2 χ′ F̃ ∥

2

⋅ ∥ ε

∣w ∣2 + ε2
⟨u, dw⟩ ∥

2

≤ ∥ ∣w ∣2 + ε2

ε
ε−2 χ′ F̃ ∥

2

⋅ (∥∂∗u∥2 + ∥∂u∥2)

where (∣w ∣2+ε2)2
ε2 is of order ε2 exactly canceling the unwanted factor ε−2. However, the

introduced weight 1
∣w ∣2+ε2 for the L2 norm ∥ ⋅ ∥ also contributes back a factor ε−2, and

we are back to the beginning. Nevertheless, we see that the ideal situation would be to

get the contribution of curvature without returning any factor. This is impossible for

the Bochner-Kodaira formula, because all norms in the formula are equally weighted.
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Following T. Ohsawa and K. Takegoshi, we can use the twisted Bochner-Kodaira

formula to obtain the a priori inequality

(2) ∫
Ω
(η + γ) ∣∂ ∗ψu ∣2 e−ψ + ∫

Ω
η ∣∂u ∣2 e−ψ ≥ ∫

Ω
−
√
−1∂∂η (u,u) e−ψ,

where ψ = κ + ∣w ∣2, η is the weight we introduce, which produces the right-hand sided

term similar to the curvature term before, and γ is to insure that this inequality holds

so that considering the operators

T = ∂ ○√η + γ and S = √
η ∂,

the left-hand side of (2) reads ∥T ∗u∥2+ ∥Su∥2
and we can use the theory of Hilbert spaces

to solve the equation:

Tα = ε−2 χ′ F̃ ∂w.
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2.2. Unbounded operators on Hilbert spaces. We introduce here some background

in functional analysis. Let Hi be complex Hilbert spaces (i = 1,2,3). By a densely defined

operator T , we shall mean a linear map T whose domain D(T ) is a dense subspace of H1

and whose range R(T ) lies in H2, often denoted by abuse of notation with T ∶H1 Ð→H2.

We are mainly interested in closed and densely defined operators, that is, we assume

in addition that the graph G(T ) = {(x,Tx) ∣x ∈D(T )} of T is closed in H1 ×H2. Such an

operator T has the nice property that its adjoint T ∗ ∶H2 →H1 is also closed and densely

defined, and T comes naturally with the orthogonal decompositions of Hilbert spaces:

H2 = N(T )⊕R(T ∗) and its dual H1 = N(T ∗)⊕R(T ).
The following lemma is of fundamental importance in solving ∂-equations.

Lemma 2.1. Let T ∶ H1 → H2 and S ∶ H2 → H3 be closed and densely defined operators

such that ST = S ○T = 0. Then for every C ≥ 0 and β ∈H2 such that Sβ = 0, the following

two statements are equivalent:

(i) There exists α ∈H1 such that Tα = β and ∥α∥1 ≤ C.

(ii) ∣⟨u,β⟩2∣2 ≤ C2(∥T ∗u∥2
1 + ∥Su∥2

3) for all u ∈D(S) ∩D(T ∗).

Proof. If (i) holds, then ∣⟨u,β⟩2∣ = ∣⟨T ∗u,α⟩1∣ ≤ ∥T ∗u∥1∥α∥1 for every u ∈D(T ∗), hence (ii)

is true. Conversely, suppose (ii) holds. For each u ∈ D(T ∗), we write u = u1 + u2 with

u1 ∈ N(S) and u2 ∈ R(S∗). Then since T ∗S∗ = 0 and β ∈ N(S), we have T ∗u = T ∗u1 and

⟨u,β⟩2 = ⟨u1, β⟩2. Therefore,

∣⟨u,β⟩2∣ = ∣⟨u1, β⟩2∣ ≤ C∥T ∗u1∥1 = C∥T ∗u∥1

for every u ∈ D(T ∗), where the inequality follows from (ii). Thus we have a well defined

continuous linear form T ∗u↦ ⟨u,β⟩2 on D(T ∗) whose norm is ≤ C. By the Hahn-Banach

theorem, it extends to a continuous linear form on H1 with norm ≤ C, which we represent

it as h ↦ ⟨h,α⟩1 where α ∈ H1 and ∥α∥1 ≤ C. In particular, ⟨T ∗u,α⟩1 = ⟨u,β⟩2 for all

u ∈D(T ∗). Hence α ∈D(T ∗∗) =D(T ) and Tα = β. �

In a nutshell, the inequality ∣⟨u,β⟩∣2 ≤ C2(∥T ∗u∥2 + ∥Su∥2) for all u ∈D(S)∩D(T ∗)
is equivalent to the inequality ∣⟨u,β⟩∣ ≤ C∥T ∗u∥ for all u ∈ D(T ∗), which by the Hahn-

Banach theorem and Riesz representation, means that T ∗u ↦ ⟨u,β⟩ can be extended to

h↦ ⟨h,α⟩, hence ⟨T ∗u,α⟩ = ⟨u,β⟩ for all u ∈D(T ∗), and we have Tα = β.
The abstract existence theorem formulates suitable inequalities that will guarantee

the solvability of an equation together with an estimate for the norm of solutions. In our

case, this inequality is carried out by the basic estimate (Lemma 2.2). Before stating it,

we first introduce some preliminaries.

Chehung Huang 6



2.3. Basics in the L2 theory. We briefly review here some background in the L2 theory.

Let (E,h) be a hermitian holomorphic vector bundle over a complex manifold X. The

underlying space where the L2 theory develops is the Hilbert space L2(X,E) of square

integrable global sections of E. For u, v ∈ L2(X,E), we denote the corresponding norm,

resp. inner product, by

∥u∥2 = ∫
X
∣u∣2 dV , resp. ⟪u, v⟫ = ∫

X
⟨u, v⟩dV.

We will consider the spaces

D(X,E) ⊂ L2(X,E) ⊂ D′(X,E)

where D(X,E) denotes the space of testing sections of E (compactly supported smooth

sections) and D′(X,E) denotes the space of distributional (or generalized) sections of E.

Given a linear differential operator P ∶ C∞(X,E)→ C∞(X,F ), it extends to a closed

and densely defined operator PH ∶ L2(X,E) → L2(X,F ) as follows. First, by computing

as distributions, P extends to an operator P̃ ∶ D′(X,E)→ D′(X,F ). Then we set �

Dom(PH) ..= {u ∈ L2(X,E) ∣ P̃ u ∈ L2(X,E)} and PHu ..= P̃ u.

Since D(X,E) is dense in L2(X,E), PH is densely defined. Suppose (uj, vj) is a

sequence in the graph of PH converging to some (u, v) ∈ L2(X,E) × L2(X,F ). Then

uj → u weakly in D′(X,E) and thus vj = PHuj → P̃ u weakly in D′(X,F ). Hence P̃ u = v
and so PH is closed and densely defined.

The adjoint (PH)∗ is constructed as follows. First, Dom((PH)∗) is defined as

{v ∈ L2(X,F ) ∣ ∃C ≥ 0 s.t. ∀u ∈D(PH) ∣∫
X
⟨PHu, v⟩dV ∣

2

≤ C ∫
X
∣u ∣2 dV },

i.e., the domain of (PH)∗ consists of v ∈ L2(X,F ) such that the linear form

Dom(PH) ∋ u↦ ⟪PHu, v⟫

is bounded. Applying the Hahn-Banach theorem and the Riesz representation theorem,

we see that there is w ∈ L2(X,E) such that ⟪u,w⟫ = ⟪PHu, v⟫ for every u ∈ Dom(PH).
Now since Dom(PH) is dense, such an element w is unique, and we set (PH)∗ v ..= w.

The above construction goes in the exactly same way for every closed and densely

defined operator T ∶ H1 → H2. To show that T ∗ is closed and densely defined, we have

H1 ×H2 = G(−T ) ⊕ G(T ∗) by a direct verification. In particular, G(T ∗) is closed, and

each v ∈H2 can be written as v = y + TT ∗y for some y ∈Dom(T ∗). Thus

⟨v, y⟩2 = ∥y∥2
2 + ∥T ∗y∥2

1 implies Dom(T ∗)⊥ = {0}.

Hence T ∗ is closed and densely.

� For greater notational clarity, the domain of an operator T will henceforward be denoted by Dom(T ).
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2.4. Contraction and pairing. For a hermitian vector bundle (E,h) over a complex

manifold X, we associate a (fiberwise) bilinear map

BE( ⋅ , ⋅ ) ∶ Λp,q T ∗X ⊗E × Λr,s T ∗X ⊗ Ē Ð→ Λp+r,q+s T ∗X

by combining the wedge product (α,β) ↦ α ∧ β with h( ⋅ , ⋅̄ ) ∈ C∞(X, (E ⊗ Ē)∗)
as tensor product of bilinear maps. Next we combine BE with E1 × E2

⊗Ð→ E1 ⊗ E2,

and take E = Λ1,0 T ∗X, E1 = C ×X and E2 = L2 being a line bundle, to obtain a map

Λ1,0 T ∗X × Λn,1 T ∗X ⊗L2 Ð→ Λn,0 T ∗X ⊗L2

which we will denote it by (f, g) ↦ f(g), or sometimes by (f, g) ↦ ⟨g, f⟩ following the

notation of [5].

Under local coordinates (z1, ..., zn), suppose gαβ dz
α⊗dzβ is a hermitian metric on X,

ξ = ξα dzα and u = uβ eL2⊗dz∧dzβ, where eL2 is a local frame of L2 and dz = dz1∧ ...∧dzn.
Then

ξ(u) = ξα gαβuβ eL2 ⊗ dz.

Suppose now that L2 is endowed with a smooth hermitian metric hL2 = e−ϕL2 . Then

every ω ∈ C∞(X,Λ1,1 T ∗X) induces a hermitian form ω( ⋅ , ⋅ ) on Λn,1 T ∗X ⊗L2 :

ω(u, v) ..= ⟨
√
−1 ⋅BΛn,0 T ∗X⊗L2

(u, v), ω ⟩.

Locally if ω =
√
−1ωαβ dz

α ∧ dzβ, v = vγ eL2 ⊗ dz ∧ dzγ and ∣eL2 ∣ = 1, then

ω(u, v) = ωαβ (gαγuγ) det(gµν)e−ϕL2 (gβδvδ).

2.5. The basic estimate.

Lemma 2.2. Let Ω and L be as before. Let η and γ be positive smooth functions on Ω.

Fix a smooth hermitian metric h̃ = e−ψ on L ∣Ω, and denote ∂
∗
ψ the Hilbert space adjoint

of ∂ with respect to h̃. Then

∫
Ω
(η + γ) ∣∂ ∗ψu ∣2 e−ψ + ∫

Ω
η ∣∂u ∣2 e−ψ

≥ ∫
Ω
(η

√
−1∂∂ψ −

√
−1∂∂η) (u,u) e−ψ + 2 Re∫

Ω
⟨∂η(u), ∂ ∗ψu⟩ e−ψ + ∫

Ω
γ ∣∂ ∗ψu ∣2 e−ψ

for every (n,1)-form u in Dom(∂ ∗ψ) ∩Dom(∂).
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Proof of Lemma 2.2. As before, ρ is a smooth strictly psh exhaustion function on X that
defines the smooothly bounded Stein domain Ω. Let h = e−ϕ denote a smooth hermitian
metric on L ∣Ω. We begin with the usual Bochner-Kodaira formula for L-valued (n,1)-
forms. Suppose u is such a form that is also smooth in a neighborhood of Ω, and u lies in

the domain of ∂
∗
ϕ on Ω. Then it is a standard result (see e.g. [3]) that:

(3) ∫
Ω
∣∂ ∗ϕu ∣2e−ϕ + ∫

Ω
∣∂u ∣2e−ϕ = ∫

Ω

√
−1∂∂ϕ(u,u) e−ϕ

+∫
Ω

∣∇0,1u ∣2 e−ϕ + ∫
∂Ω

√
−1∂∂ρ(u,u) e−ϕ.

Next we pass to the twisted formula. The main idea is to consider a twist of the
original metric e−ϕ, and use it to define the adjoint of ∂. That is to say, we consider
another metric e−ψ on L ∣Ω. For any such metric, there is a positive smooth function η
such that e−ϕ = η e−ψ, and conversely every η defines a twist of the original metric. Then
we have a relation between the formal adjoints with respect to e−ϕ and e−ψ:

∂
∗
ϕ u = −η−1∂η (u) + ∂ ∗ψ u,

since

∂
∗
ϕ u = −∑

j

eϕ
∂

∂zj
(e−ϕuj̄) eL ⊗ dz

if locally u = uβ eL ⊗ dz ∧ dzβ, where eL is a local frame for L ∣Ω and dz = dz1 ∧ ... ∧ dzn.
Also, we have

∂∂ϕ = ∂∂ψ − η−1∂∂η + η−2∂η ∧ ∂η.

Substitution of these identities into (3) gives:

∫
Ω
∣∂ ∗ψu ∣2 e−ϕ + ∫

Ω
∣∂u ∣2 e−ϕ

= ∫
Ω

√
−1∂∂ϕ (u,u) e−ϕ + 2 Re∫

Ω
⟨ η−1∂η(u), ∂ ∗ψu⟩ e−ϕ − ∫

Ω
∥η−1∂η(u)∥2

e−ϕ

+∫
Ω

∣∇0,1u ∣2 e−ϕ + ∫
∂Ω

√
−1∂∂ρ(u,u) e−ϕ

= ∫
Ω
(
√
−1∂∂ψ −

√
−1 η−1∂∂η) (u,u) e−ϕ + 2 Re∫

Ω
⟨ η−1∂η(u), ∂ ∗ψu⟩ e−ϕ

+∫
Ω

∣∇0,1u ∣2 e−ϕ + ∫
∂Ω

√
−1∂∂ρ(u,u) e−ϕ,

the so-called twisted Bochner-Kodaira formula. Observe that the last two terms are ≥ 0,

hence adding ∫Ω γ ∣∂ ∗ψu ∣2 e−ψ to both sides of the equation yields
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∫
Ω
(η + γ) ∣∂ ∗ψu ∣2 e−ψ + ∫

Ω
η ∣∂u ∣2 e−ψ

≥ ∫
Ω
(η

√
−1∂∂ψ −

√
−1∂∂η) (u,u) e−ψ + 2 Re∫

Ω
⟨∂η(u), ∂ ∗ψu⟩ e−ψ + ∫

Ω
γ ∣∂ ∗ψu ∣2 e−ψ

for every L-valued (n,1)-form u in the domain of ∂
∗
ψ on Ω that is also smooth in neigh-

borhood of Ω. Now it is well-known that such forms are dense in Dom(∂ ∗ψ) ∩Dom(∂)
with respect to the graph norm

u↦ ∥u∥ + ∥∂u∥ + ∥∂ ∗ψu∥,

that is, for each (n,1)-form u ∈Dom(∂ ∗ψ) ∩Dom(∂), we can find a sequence

uj ∈Dom(∂ ∗ψ) ∩Dom(∂)

of smooth (n,1)-forms defined in a neighborhood of Ω, such that

uj → u, ∂uj → ∂u and ∂
∗
ψuj → ∂

∗
ψu in L2(X,E).

We thus conclude the proof of Lemma 2.2. �

Chehung Huang 10



3. Proof of the Theorem

Let

η = log
A

∣w ∣2 + ε2
and γ = 1

∣w ∣2 + ε2

(the motivation has been explained in the previous section), where A > e is a constant.

Whenever ε <
√

A
e − 1, we have η > 1,

∂η = − ω ∂ω

∣w ∣2 + ε2
, ∂η = − ω ∂ω

∣w ∣2 + ε2
and −

√
−1∂∂ η = ε2

(∣w ∣2 + ε2)2

√
−1∂w ∧ ∂w.

We will obtain the a priori inequality (2) from the basic estimate Lemma 2.2. In fact,

taking ψ = ∣w ∣2 + κ in Lemma 2.2, the sum of the last two terms and the term involving

η
√
−1∂∂ψ is ≥ 0 ∶

From η
√
−1∂∂ψ(u,u) ≥

√
−1∂∂ ∣w ∣2(u,u) = ∣⟨u, dw⟩∣2, we deduce that

∫
Ω
η
√
−1∂∂ψ (u,u) e−ψ + ∫

Ω
γ ∣∂ ∗ψu ∣2 e−ψ ≥ ∫

Ω

∣w ∣2
∣w ∣2 + ε2

∣⟨u, dw⟩∣2 e−ψ + ∫
Ω
γ ∣∂ ∗ψu ∣2 e−ψ

≥ 2∫
Ω

∣w ∣
∣w ∣2 + ε2

∣⟨u, dw⟩∣ ∣∂ ∗ψu ∣ e−ψ ≥ ∣2 Re∫
Ω
⟨∂η(u), ∂ ∗ψu⟩ e−ψ ∣,

where the middle inequality follows from a2 + b2 ≥ 2ab and the Hölder inequality. Hence

Lemma 2.2 reduces to

∫
Ω
(η + γ) ∣∂ ∗ψu ∣2 e−ψ + ∫

Ω
η ∣∂u ∣2 e−ψ

≥ ∫
Ω
(η

√
−1∂∂ψ −

√
−1∂∂η) (u,u) e−ψ + 2 Re∫

Ω
⟨∂η(u), ∂ ∗ψu⟩ e−ψ + ∫

Ω
γ ∣∂ ∗ψu ∣2 e−ψ

≥ ∫
Ω
−
√
−1∂∂η (u,u) e−ψ = ∫

Ω

ε2

(∣w ∣2 + ε2)2
∣⟨u, dw⟩∣2 e−ψ.
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As before, we consider

T = ∂ ○√η + γ and S = √
η ∂,

so that ST = 0, and the a priori inequality reads

(4) ∥T ∗u∥2 + ∥Su∥2 ≥ ∥ ε

∣w ∣2 + ε2
⟨u, dw⟩ ∥2

,

where ∥ ⋅ ∥ is the L2 norm over Ω with respect to the weight e−ψ.

3.2. Choice of the cutoff function. Fix 0 < δ < 1, and let 0 ≤ %(x) ≤ 1 be a smooth

function on [0,+∞) such that

% ≡ 1 on [0, δ
2
], % ≡ 0 on [1,+∞) and sup ∣%′ ∣ ≤ 1 + δ.

Such a % exists by smoothing out the piecewise linear function P ∶ [0,+∞)→ [0,1] which

is ≡ 1 on [0, 7δ
12], linear on [ 7δ

12 ,
11δ
12 ] and ≡ 0 on [11δ

12 ,+∞), that is, we set % ..= P ∗% δ
12
, where

{%ε} a family of smoothing kernels on R defined as on page 2 (by replacing C with R and

2m with m).

Let χε(w) ..= %( ∣w ∣2
ε2 ) and

βε ..= w−1 ∂(χε F̃ ) = F̃
ε2
%′( ∣w ∣2

ε2
)dw.

Our goal is to solve Tαε = βε for (n,0)-forms αε using Lemma 2.1. Toward that end,

we apply the Schwarz inequality: for every u ∈Dom(T ∗) ∩Dom(S),

∣⟪u,βε⟫∣2 = ∣∫
Ω

⟨dw(u), F̃
ε2
%′( ∣w ∣2

ε2
)⟩ e−ψ ∣

2

≤ (∫
Ω

∣ F̃
ε2
%′( ∣w ∣2

ε2
) ∣

2 (∣w ∣)2 + ε2

ε2
e−ψ )

⋅ (∫
Ω

∣⟨u, dw⟩∣2 ε2

(∣w ∣2 + ε2)2
e−ψ )

≤ Cε(∥T ∗u∥2 + ∥Su∥2),

where

Cε ..= ∫
Ω

∣ F̃
ε2
%′( ∣w ∣2

ε2
) ∣

2 (∣w ∣)2 + ε2

ε2
e−ψ

Chehung Huang 12



and the last inequality follows from (4). Thus Lemma 2.1 guarantees that the equation

Tαε = ∂(
√
η + γ αε) =

F̃

ε2
%′( ∣w ∣2

ε2
)dw = βε

has a solution αε with ∥αε∥ ≤ Cε.

3.3. Estimate of the constant Cε. Fix p ∈ Ω. Let (zj = xj +
√
−1 yj) be local coor-

dinates on an open set U ⊂X centered at p, and eL a local frame of L on U, such that

(i) zn = w;

(ii) U =D × {r < ε} where r ..= ∣zn∣ and D is an (n − 1)-dimensional polydisc;

(iii) F̃ = F̃ (z1, ..., zn) eL⊗dz1∧ ...∧dzn and f = f(z1, ..., zn−1) eL⊗dz1∧ ...∧dzn−1 on U .

From F̃ ∣
Z ∩Ω

= f ∧ dw, it follows that

F̃ (z1, ..., zn−1,0) = f(z1, ..., zn−1).

Let U = {U1, ..., Uk} be a finite open cover of Ω with each Uj being chosen as U above.

Let {ρ1, ..., ρk} be a partition of unity subordinate to U. Then

Cε ≤ (1 + δ2)
k

∑
j=1
∫
Uj ∩Ω

ρj ∣ F̃ (z1, ..., zn)∣2 (∣ zn ∣2 + ε2)2

ε6
e−κ−∣ z

n∣2dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn.

Now fj(z1, ..., zn) ..= ρj ∣ F̃ (z1, ..., zn)∣2 e−κ−∣ zn ∣2 is smooth on Uj, so since Uj ∩ Ω compact

in Uj, there is a constant M > 0 such that

RRRRRRRRRRR
∫
Uj ∩Ω

ρj ∣ F̃ (z1, ..., zn)∣2 (∣ zn ∣2 + ε2)2

ε6
e−κ+∣ z

n∣2dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn

−∫
Uj ∩Ω

fj(z1, ..., zn−1,0) (∣ zn ∣2 + ε2)2

ε6
dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn

RRRRRRRRRRR

≤ ∫
Uj ∩Ω

M ∣ zn ∣ (∣ z
n ∣2 + ε2)2

ε6
dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn = O(ε).

Hence

Cε ≤ (1 + δ2)
k

∑
j=1
∫
Uj ∩Ω

fj(z1, ..., zn−1,0) (∣ zn ∣2 + ε2)2

ε6
dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn +O(ε).
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Now

∫
Uj ∩Ω

fj(z1, ..., zn−1,0) (∣ zn ∣2 + ε2)2

ε6
dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn

= (∫
2π

0
∫

ε

0

(r2 + ε2)2

ε6
r dr dθ) ⋅ ∫

Uj ∩Ω∩Z
fj(z1, ..., zn−1,0)dx1 ∧ dy1 ∧ ... ∧ dxn−1 ∧ dyn−1

= 7π

3 ∫
Uj ∩Ω∩Z

ρj ∣ f ∣2 e−κ.

Hence

lim sup
ε→0

Cε ≤
7π

3
(1 + δ2)∫

Z ∩Ω
∣ f ∣2 e−κ.

3.4. The Final Step. It has been solved that

∂(√η + γ αε) = w−1∂(χε F̃ ) where ∫
Ω

∣αε ∣2 e−ψ ≤ Cε.

The solution αε is smooth by the ellipticity of ∂, thus

Fε ..= χε F̃ −w√
η + γ αε

is holomorphic and Fε ∣Z ∩Ω = f ∧ dw. Now

lim
ε→0
∫

Ω
∣χε F̃ ∣2 e−κ = 0

by the dominated convergence theorem (because of (1) and that Z∩Ω is of measure zero).

Furthermore, since maxy>0 y log 1
y = 1

e and by assumption supΩ ∣w ∣ ≤ 1, we have

sup
Ω

∣ω√η + γ ∣ ≤ sup
x∈[0,1]

√
x2(logA + log

1

x2 + ε2
+ 1

x2 + ε2
) ≤

√
logA + 1

e
+ 1.
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Finally, the uniform boundedness of {Fε} in the L2 norm ∥ ⋅ ∥ implies the local uni-

form boundedness of {Fε} in the smooth hermitian metric ∣ ⋅ ∣2 (as on page 3). Hence

by Montel’s theorem, we can extract a convergent subsequence {Fεj} whose limit FA,δ
is a holomorphic extension of f ∧ dw ∣Z ∩Ω over Ω such that

∫
Ω

∣FA,δ ∣2 e−κ ≤
√

logA + 1

e
+ 1 ⋅ lim sup

j→∞
∫

Ω
∣αεj ∣2 e−κ ≤

√
logA + 1

e
+ 1 ⋅ e ⋅ lim sup

ε→∞
Cε.

A diagonal process with A → e and δ → 0 then yields a holomorphic extension F of

f ∧ dw ∣Z ∩Ω such that

∫
Ω

∣F ∣2 e−κ ≤ 7π

3
e

√
2 + 1

e ∫Z ∩Ω
∣ f ∣2 e−κ.

The proof is complete.
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