Ohsawa-Takegoshi L^{2} extension theorem

In this note, we are going to derive a version of the Ohsawa-Takegoshi extension theorem [1] that was historically used to prove the invariance of plurigenera [5]. We will closely follow the arguments in [5] and provide details for the proof.

Our setting is as follows. Let Y be an n-dimensional Kähler manifold. Assume there exists a holomorphic function w on Y such that $\sup _{Y}|w| \leq 1$ and $d w$ is nonzero at any point of $Z:=w^{-1}(0)$. We also assume there exists an analytic hypersurface V in Y such that $Z \nsubseteq V$ and $Y-V$ is Stein.

The main example we have in mind is a projective family $Y \xrightarrow{\pi} \Delta$, in which case $Y \leftrightarrow \Delta \times \mathbb{P}^{k}$ by shrinking the base, and V could be taken to be a hyperplane section so that $Y-V$ is embedded as a closed submanifold of $\Delta \times\left(\mathbb{P}^{k}-\mathbb{P}^{k-1}\right) \cong \Delta \times \mathbb{C}^{k}$, hence Stein.

Theorem. Suppose given a holomorphic line bundle L over Y with a singular hermitian metric $h=e^{-\varphi}$ such that
(i) the curvature current $i \Theta_{h}(L) \geq 0$ and
(ii) $\left.h\right|_{Z}$ defines a singular hermitian metric on $\left.L\right|_{Z}$.

Then for every section f of $\mathcal{O}\left(K_{Z}+\left.L\right|_{Z}\right) \otimes \mathcal{J}\left(\left.h\right|_{Z}\right)$ over $Z, f \wedge d w$ extends to a section F of $\mathcal{O}\left(K_{Y}+L\right) \otimes \mathcal{J}(h)$ over Y that satisfies the following L^{2} estimate:

$$
\int_{Y}|F|^{2} e^{-\varphi} \leq C \int_{Z}|f|^{2} e^{-\varphi}
$$

where $C=8 \pi e \sqrt{2+\frac{1}{e}}$.
An important point is that the constant C is universal (i.e., independent of everything). This is a key factor in proving the invariance of plurigenera [5]. Also, the numerical value of C given above is not optimal (i.e., minimal), as we will see later.

1. Standard Approximation

Lemma 1.1. There exist
(i) an increasing sequence of Stein domains $\Omega_{1} \Subset \ldots \Subset \Omega_{\nu} \Subset \Omega_{\nu+1} \Subset \ldots$ with smooth strongly pseudoconvex boundaries such that $\cup_{\nu} \Omega_{\nu}=Y-V$.
(ii) a decreasing sequence of psh functions $\varphi_{\nu} \in C^{\infty}\left(\Omega_{\nu}\right)$ with $\sqrt{-1} \partial \bar{\partial} \varphi_{\nu}>0$ such that $\varphi_{\nu} \downarrow \varphi$ as $\nu \rightarrow \infty$.

Proof. Recall that the following statements are equivalent for a complex manifold X :
(I) X is Stein (i.e., holomorphically convex and holomorphically separable).
(II) X is biholomorphic to a closed complex submanifold of \mathbb{C}^{m} for some m.
(III) X is strongly pseudoconvex (i.e., there exists $\rho \in C^{\infty}(X, \mathbb{R})$ such that $\sqrt{-1} \partial \bar{\partial} \rho>0$ and $\Omega_{r}:=\{x \in X \mid \rho(x)<r\} \Subset X$ for all $\left.r \in \mathbb{R}\right)$.
(IV) $H^{p}(X, \mathcal{F})=0$ for every coherent analytic sheaf \mathcal{F} on X and every $p \geq 1$.

Choose a function ρ on $X=Y-V$ as in (III). Exponentiating it, we may assume $\rho \geq 0$. Observe that Ω_{r} is itself strongly pseudoconvex (with $1 /(r-\rho)$ being a smooth strictly psh exhaustion function on Ω_{r}). Moreover, by Sard's theorem, $\partial \Omega_{r}=\rho^{-1}(r)$ is smooth for almost every $r \in \mathbb{R}$. Thus we obtain (i) after reindexing the domains Ω_{r}.

Smooth Regularization of Singular Metrics The singular hermitian metric h on L is given by $\|\cdot\|_{h}^{2}=|\cdot|^{2} e^{-\varphi}$, where $\varphi \in P \operatorname{sh}(X)$ and $|\cdot|^{2}$ is a fixed smooth hermitian metric on L. In order to regularize the $L_{l o c}^{1}$ function φ, we first embed X into \mathbb{C}^{m} for some m. Invoking a well-known theorem [2]:

> Every Stein submanifold X of a complex analytic space V admits a Stein neighborhood U and a holohorphic retract $r: U \rightarrow X$.
we see there exists a Stein open set $U \subset \mathbb{C}^{m}$ such that $X \subset U$, and a holomorphic retract $r: U \rightarrow X$. We then use the map r to pull back φ and apply the standard convolution techniques in \mathbb{C}^{m}; let $\tilde{\varphi}:=\varphi \circ r \in P \operatorname{sh}(U)$ and $\left\{\varrho_{\varepsilon}\right\}$ a family of smoothing kernels, so

$$
\varrho_{\varepsilon}(x):=\frac{1}{\varepsilon^{2 m}} \varrho_{1}\left(\frac{x}{\varepsilon}\right)
$$

where $\varrho_{1} \in C^{\infty}\left(\mathbb{C}^{m}, \mathbb{R}\right)$ is a radially symmetric function (i.e., $\varrho_{1}(x)$ depends only on $|x|$) such that

$$
\varrho_{1} \geq 0, \quad \operatorname{Supp} \varrho_{1} \in B(0,1) \quad \text { and } \quad \int_{\mathbb{C}^{m}} \varrho_{1}(x) d V=1 .
$$

Then $\tilde{\varphi} * \varrho_{\varepsilon}$ is smooth and psh on $U^{\varepsilon}:=\{x \in U \mid \operatorname{dist}(x, \partial U)>\varepsilon\}$, and

$$
\tilde{\varphi} * \varrho_{\varepsilon} \searrow \tilde{\varphi} \text { as } \varepsilon \rightarrow 0 .
$$

Moreover,

$$
\sqrt{-1} \partial \bar{\partial}\left(\tilde{\varphi} * \varrho_{\varepsilon}\right)=(\sqrt{-1} \partial \bar{\partial} \tilde{\varphi}) * \varrho_{\varepsilon}=\left(r^{*} \sqrt{-1} \partial \bar{\partial} \varphi\right) * \varrho_{\varepsilon}>0
$$

By the Stein property, there is an exhaustion $\left\{U_{\nu}\right\}$ of U by bounded Stein domains U_{ν}. Hence $\left\{X_{\nu}:=X \cap U_{\nu}\right\}$ is an exhaustion of X by relatively compact open subsets. Finally, consider an exhaustion $\left\{\Omega_{\nu}\right\}$ of X as in (i). For each ν, we choose j_{ν} and ε_{ν} such that $\Omega_{\nu} \subset X_{j_{\nu}} \subset U_{j_{\nu}} \subset U^{\varepsilon_{\nu}}$. Then $\varphi_{\nu}:=\tilde{\varphi} * \varrho_{\varepsilon_{\nu}}$ verifies (ii).

The proof of the theorem consists of two steps. The first is showing that the result holds for each pair $\left(\Omega_{\nu}, \varphi_{\nu}\right)$, and the second is passing to a subsequential limit $\nu_{j} \rightarrow \infty$.

Lemma 1.2. Suppose for each ν,

$$
\left.f \wedge d w\right|_{Z_{\nu}:=Z \cap \Omega_{\nu}}
$$

extends to a section F_{ν} of $\mathcal{O}\left(K_{\Omega_{\nu}}+\left.L\right|_{\Omega_{\nu}}\right)$ over Ω_{ν} that satisfies the estimate:

$$
\int_{\Omega_{\nu}}\left|F_{\nu}\right|^{2} e^{-\varphi_{\nu}} \leq C \int_{Z_{\nu}}|f|^{2} e^{-\varphi_{\nu}}
$$

Then the theorem holds true.
Proof. Since

$$
\begin{equation*}
\int_{\Omega_{\nu}}\left|F_{\nu}\right|^{2} e^{-\varphi_{\nu}} \leq C \int_{Z_{\nu}}|f|^{2} e^{-\varphi_{\nu}} \leq C \int_{Z}|f|^{2} e^{-\varphi}<\infty \tag{i}
\end{equation*}
$$

(ii) $\left|F_{\nu}\right|^{2} \in P \operatorname{sh}\left(\Omega_{\nu}\right)$ (for $\left.\sqrt{-1} \partial \bar{\partial}\left|F_{\nu}\right|^{2}=\sqrt{-1} \partial F_{\nu} \wedge \overline{\partial F_{\nu}} \geq 0\right)$ and
(iii) $\left\{e^{-\varphi_{\nu}}\right\}$ is locally uniformly bounded below (φ_{1} being upper semicontinuous),
the mean value inequality for psh functions implies that the family $\left\{F_{\nu}\right\}$ is locally uniformly bounded. By Montel's theorem, there is a subsequence $\left\{F_{\nu_{j}}\right\}$ converging to some $F \in H^{0}\left(X, K_{X}+\left.L\right|_{X}\right)$, where $X=\bigcup_{\nu} \Omega_{\nu}=Y-V$. Moreover, we have the estimate

$$
\int_{X}|F|^{2} e^{-\varphi} \leq \liminf _{\nu \rightarrow \infty} \int_{X} \chi_{\Omega_{\nu}}\left|F_{\nu}\right|^{2} e^{-\varphi_{\nu}} \leq C \int_{Z}|f|^{2} e^{-\varphi}
$$

by Fatou's lemma. Now since pluripolar sets are removable for L^{2} holomorphic functions, we conclude the proof of the theorem.

2. Preliminaries and L^{2} Estimates for $\bar{\partial}$

We have therefore reduced the original problem to the case of a smoothly bounded Stein domain Ω in X and a smooth hermitian metric $e_{\tilde{\sim}}^{-\kappa}$ on $\left.L\right|_{\Omega} \|^{\dagger}$ Since Ω is Stein, we can extend $f \wedge d w$ to an L-valued holomorphic n-form \tilde{F} on Ω. Moreover, by extending to a Stein neighborhood of Ω, we may also assume that

$$
\begin{equation*}
\int_{\Omega}|\tilde{F}|^{2} e^{-\kappa}<\infty . \tag{1}
\end{equation*}
$$

Of course, we have no better estimate of this extension, for it is obtained merely by the Stein property. In particular, the estimate could degenerate as $\nu \rightarrow \infty$.

[^0]In order to tame the growth of \tilde{F}, we first multiply it by a cutoff function $\chi(w)$ $=\varrho\left(|w|^{2}\right)$ which is $\equiv 1$ on $Z \cap \Omega$. However the resulting extension $\chi \tilde{F}$ of $f \wedge d w$ may not be holomorphic. So to get a holomorphic correction, we turn to solve the $\bar{\partial}$-equation

$$
\bar{\partial} \alpha=w^{-1} \bar{\partial}(\chi \tilde{F})
$$

Then $F:=\chi \tilde{F}-w \alpha$ is holomorphic and $\left.F\right|_{\{w=0\}}=f \wedge d w$.
Also, to obtain an estimate for F with respect to $\left.F\right|_{\{w=0\}}$, we introduce a variable ε and use the cutoff function $\chi_{\varepsilon}(w):=\varrho\left(|w|^{2} / \varepsilon^{2}\right)$ instead of $\chi(w)$. Then F is obtained by solving the $\bar{\partial}$-equations

$$
\bar{\partial} \alpha_{\varepsilon}=w^{-1} \bar{\partial}\left(\chi_{\varepsilon} \tilde{F}\right)=\varepsilon^{-2} \chi^{\prime} \tilde{F} \overline{\partial w}
$$

with L^{2} estimates, setting $F_{\varepsilon}:=\chi_{\varepsilon} \tilde{F}-w \alpha_{\varepsilon}$ and passing to the limit as $\varepsilon \rightarrow 0$.
The practical situation is, however, fairly complicated. The main difficult part is to keep track of the estimates. In fact, to apply the L^{2} method, we consider

$$
\int_{\Omega}\left|\varepsilon^{-2} \chi^{\prime} \tilde{F}\right|^{2} e^{-\kappa},
$$

which is of order ε^{-2} (because of (1) and that Supp ϱ is compact). To offset this order, we introduce the weight function $\log \left(|w|^{2}+\varepsilon^{2}\right)$ so that the additional curvature is

$$
\sqrt{-1} \partial \bar{\partial} \log \left(|w|^{2}+\varepsilon^{2}\right)=\frac{\varepsilon^{2}}{\left(|w|^{2}+\varepsilon^{2}\right)^{2}} \sqrt{-1} \partial w \wedge \overline{\partial w}
$$

The Bochner-Kodaira formula (3) (on page 9) then implies an a priori inequality

$$
\left\|\bar{\partial}^{*} u\right\|^{2}+\|\bar{\partial} u\|^{2} \geq\left\|\frac{\varepsilon}{|w|^{2}+\varepsilon^{2}}\langle u, d w\rangle\right\|^{2}
$$

where $\langle u, d w\rangle=d w(u)$ is the ($n, 0$)-form obtained by contracting u and $d w=\partial w$ with respect to the Kähler metric tensor (whose definition can be found on page 8). Applying the Schwarz inequality, we obtain

$$
\begin{aligned}
& \left.\left|\left\langle u, \varepsilon^{-2} \chi^{\prime} \tilde{F} \overline{d w}\right\rangle\right\rangle\right|^{2}=\left|\left\langle\left\langle d w(u), \varepsilon^{-2} \chi^{\prime} \tilde{F}\right\rangle\right\rangle\right|^{2} \\
\leq & \left\|\frac{|w|^{2}+\varepsilon^{2}}{\varepsilon} \varepsilon^{-2} \chi^{\prime} \tilde{F}\right\|^{2} \cdot\left\|\frac{\varepsilon}{|w|^{2}+\varepsilon^{2}}\langle u, d w\rangle\right\|^{2} \\
\leq & \left\|\frac{|w|^{2}+\varepsilon^{2}}{\varepsilon} \varepsilon^{-2} \chi^{\prime} \tilde{F}\right\|^{2} \cdot\left(\left\|\bar{\partial}^{*} u\right\|^{2}+\|\bar{\partial} u\|^{2}\right)
\end{aligned}
$$

where $\frac{\left(|w|^{2}+\varepsilon^{2}\right)^{2}}{\varepsilon^{2}}$ is of order ε^{2} exactly canceling the unwanted factor ε^{-2}. However, the introduced weight $\frac{1}{|w|^{2}+\varepsilon^{2}}$ for the L^{2} norm $\|\cdot\|$ also contributes back a factor ε^{-2}, and we are back to the beginning. Nevertheless, we see that the ideal situation would be to get the contribution of curvature without returning any factor. This is impossible for the Bochner-Kodaira formula, because all norms in the formula are equally weighted.

Following T. Ohsawa and K. Takegoshi, we can use the twisted Bochner-Kodaira formula to obtain the a priori inequality

$$
\begin{equation*}
\int_{\Omega}(\eta+\gamma)\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi}+\int_{\Omega} \eta|\bar{\partial} u|^{2} e^{-\psi} \geq \int_{\Omega}-\sqrt{-1} \partial \bar{\partial} \eta(u, u) e^{-\psi} \tag{2}
\end{equation*}
$$

where $\psi=\kappa+|w|^{2}, \eta$ is the weight we introduce, which produces the right-hand sided term similar to the curvature term before, and γ is to insure that this inequality holds so that considering the operators

$$
T=\bar{\partial} \circ \sqrt{\eta+\gamma} \text { and } S=\sqrt{\eta} \bar{\partial}
$$

the left-hand side of (2) reads $\left\|T^{*} u\right\|^{2}+\|S u\|^{2}$ and we can use the theory of Hilbert spaces to solve the equation:

$$
T \alpha=\varepsilon^{-2} \chi^{\prime} \tilde{F} \overline{\partial w}
$$

2.2. Unbounded operators on Hilbert spaces. We introduce here some background in functional analysis. Let H_{i} be complex Hilbert spaces ($i=1,2,3$). By a densely defined operator T, we shall mean a linear map T whose domain $D(T)$ is a dense subspace of H_{1} and whose range $R(T)$ lies in H_{2}, often denoted by abuse of notation with $T: H_{1} \rightarrow H_{2}$.

We are mainly interested in closed and densely defined operators, that is, we assume in addition that the graph $G(T)=\{(x, T x) \mid x \in D(T)\}$ of T is closed in $H_{1} \times H_{2}$. Such an operator T has the nice property that its adjoint $T^{*}: H_{2} \rightarrow H_{1}$ is also closed and densely defined, and T comes naturally with the orthogonal decompositions of Hilbert spaces: $H_{2}=N(T) \oplus \overline{R\left(T^{*}\right)}$ and its dual $H_{1}=N\left(T^{*}\right) \oplus \overline{R(T)}$.

The following lemma is of fundamental importance in solving $\bar{\partial}$-equations.
Lemma 2.1. Let $T: H_{1} \rightarrow H_{2}$ and $S: H_{2} \rightarrow H_{3}$ be closed and densely defined operators such that $S T=S \circ T=0$. Then for every $C \geq 0$ and $\beta \in H_{2}$ such that $S \beta=0$, the following two statements are equivalent:
(i) There exists $\alpha \in H_{1}$ such that $T \alpha=\beta$ and $\|\alpha\|_{1} \leq C$.
(ii) $\left|\langle u, \beta\rangle_{2}\right|^{2} \leq C^{2}\left(\left\|T^{*} u\right\|_{1}^{2}+\|S u\|_{3}^{2}\right)$ for all $u \in D(S) \cap D\left(T^{*}\right)$.

Proof. If (i) holds, then $\left|\langle u, \beta\rangle_{2}\right|=\left|\left\langle T^{*} u, \alpha\right\rangle_{1}\right| \leq\left\|T^{*} u\right\|_{1}\|\alpha\|_{1}$ for every $u \in D\left(T^{*}\right)$, hence (ii) is true. Conversely, suppose (ii) holds. For each $u \in D\left(T^{*}\right)$, we write $u=u_{1}+u_{2}$ with $u_{1} \in N(S)$ and $u_{2} \in \overline{R\left(S^{*}\right)}$. Then since $T^{*} S^{*}=0$ and $\beta \in N(S)$, we have $T^{*} u=T^{*} u_{1}$ and $\langle u, \beta\rangle_{2}=\left\langle u_{1}, \beta\right\rangle_{2}$. Therefore,

$$
\left|\langle u, \beta\rangle_{2}\right|=\left|\left\langle u_{1}, \beta\right\rangle_{2}\right| \leq C\left\|T^{*} u_{1}\right\|_{1}=C\left\|T^{*} u\right\|_{1}
$$

for every $u \in D\left(T^{*}\right)$, where the inequality follows from (ii). Thus we have a well defined continuous linear form $T^{*} u \mapsto\langle u, \beta\rangle_{2}$ on $D\left(T^{*}\right)$ whose norm is $\leq C$. By the Hahn-Banach theorem, it extends to a continuous linear form on H_{1} with norm $\leq C$, which we represent it as $h \mapsto\langle h, \alpha\rangle_{1}$ where $\alpha \in H_{1}$ and $\|\alpha\|_{1} \leq C$. In particular, $\left\langle T^{*} u, \alpha\right\rangle_{1}=\langle u, \beta\rangle_{2}$ for all $u \in D\left(T^{*}\right)$. Hence $\alpha \in D\left(T^{* *}\right)=D(T)$ and $T \alpha=\beta$.

In a nutshell, the inequality $|\langle u, \beta\rangle|^{2} \leq C^{2}\left(\left\|T^{*} u\right\|^{2}+\|S u\|^{2}\right)$ for all $u \in D(S) \cap D\left(T^{*}\right)$ is equivalent to the inequality $|\langle u, \beta\rangle| \leq C\left\|T^{*} u\right\|$ for all $u \in D\left(T^{*}\right)$, which by the HahnBanach theorem and Riesz representation, means that $T^{*} u \mapsto\langle u, \beta\rangle$ can be extended to $h \mapsto\langle h, \alpha\rangle$, hence $\left\langle T^{*} u, \alpha\right\rangle=\langle u, \beta\rangle$ for all $u \in D\left(T^{*}\right)$, and we have $T \alpha=\beta$.

The abstract existence theorem formulates suitable inequalities that will guarantee the solvability of an equation together with an estimate for the norm of solutions. In our case, this inequality is carried out by the basic estimate (Lemma 2.2). Before stating it, we first introduce some preliminaries.
2.3. Basics in the L^{2} theory. We briefly review here some background in the L^{2} theory. Let (E, h) be a hermitian holomorphic vector bundle over a complex manifold X. The underlying space where the L^{2} theory develops is the Hilbert space $L^{2}(X, E)$ of square integrable global sections of E. For $u, v \in L^{2}(X, E)$, we denote the corresponding norm, resp. inner product, by

$$
\|u\|^{2}=\int_{X}|u|^{2} d V, \text { resp. }\langle\langle u, v\rangle\rangle=\int_{X}\langle u, v\rangle d V
$$

We will consider the spaces

$$
\mathcal{D}(X, E) \subset L^{2}(X, E) \subset \mathcal{D}^{\prime}(X, E)
$$

where $\mathcal{D}(X, E)$ denotes the space of testing sections of E (compactly supported smooth sections) and $\mathcal{D}^{\prime}(X, E)$ denotes the space of distributional (or generalized) sections of E.

Given a linear differential operator $P: C^{\infty}(X, E) \rightarrow C^{\infty}(X, F)$, it extends to a closed and densely defined operator $P_{\mathcal{H}}: L^{2}(X, E) \rightarrow L^{2}(X, F)$ as follows. First, by computing as distributions, P extends to an operator $\widetilde{P}: \mathcal{D}^{\prime}(X, E) \rightarrow \mathcal{D}^{\prime}(X, F)$. Then we set ${ }^{f}$

$$
\operatorname{Dom}\left(P_{\mathcal{H}}\right):=\left\{u \in L^{2}(X, E) \mid \widetilde{P} u \in L^{2}(X, E)\right\} \text { and } P_{\mathcal{H}} u:=\widetilde{P} u .
$$

Since $\mathcal{D}(X, E)$ is dense in $L^{2}(X, E), P_{\mathcal{H}}$ is densely defined. Suppose $\left(u_{j}, v_{j}\right)$ is a sequence in the graph of $P_{\mathcal{H}}$ converging to some $(u, v) \in L^{2}(X, E) \times L^{2}(X, F)$. Then $u_{j} \rightarrow u$ weakly in $\mathcal{D}^{\prime}(X, E)$ and thus $v_{j}=P_{\mathcal{H}} u_{j} \rightarrow \widetilde{P} u$ weakly in $\mathcal{D}^{\prime}(X, F)$. Hence $\widetilde{P} u=v$ and so $P_{\mathcal{H}}$ is closed and densely defined.

The adjoint $\left(P_{\mathcal{H}}\right)^{*}$ is constructed as follows. First, $\operatorname{Dom}\left(\left(P_{\mathcal{H}}\right)^{*}\right)$ is defined as

$$
\left\{v \in L^{2}(X, F) \mid \exists C \geq 0 \text { s.t. } \forall u \in D\left(P_{\mathcal{H}}\right)\left|\int_{X}\left\langle P_{\mathcal{H}} u, v\right\rangle d V\right|^{2} \leq C \int_{X}|u|^{2} d V\right\}
$$

i.e., the domain of $\left(P_{\mathcal{H}}\right)^{*}$ consists of $v \in L^{2}(X, F)$ such that the linear form

$$
\operatorname{Dom}\left(P_{\mathcal{H}}\right) \ni u \mapsto\left\langle\left\langle P_{\mathcal{H}} u, v\right\rangle\right.
$$

is bounded. Applying the Hahn-Banach theorem and the Riesz representation theorem, we see that there is $w \in L^{2}(X, E)$ such that $\left\langle\langle u, w\rangle=\left\langle\left\langle P_{\mathcal{H}} u, v\right\rangle\right.\right.$ for every $u \in \operatorname{Dom}\left(P_{\mathcal{H}}\right)$. Now since $\operatorname{Dom}\left(P_{\mathcal{H}}\right)$ is dense, such an element w is unique, and we set $\left(P_{\mathcal{H}}\right)^{*} v:=w$.

The above construction goes in the exactly same way for every closed and densely defined operator $T: H_{1} \rightarrow H_{2}$. To show that T^{*} is closed and densely defined, we have $H_{1} \times H_{2}=G(-T) \oplus G\left(T^{*}\right)$ by a direct verification. In particular, $G\left(T^{*}\right)$ is closed, and each $v \in H_{2}$ can be written as $v=y+T T^{*} y$ for some $y \in \operatorname{Dom}\left(T^{*}\right)$. Thus

$$
\langle v, y\rangle_{2}=\|y\|_{2}^{2}+\left\|T^{*} y\right\|_{1}^{2} \quad \text { implies } \quad \operatorname{Dom}\left(T^{*}\right)^{\perp}=\{0\}
$$

Hence T^{*} is closed and densely.

[^1]2.4. Contraction and pairing. For a hermitian vector bundle (E, h) over a complex manifold X, we associate a (fiberwise) bilinear map
$$
B_{E}(\cdot, \cdot): \Lambda^{p, q} T^{*} X \otimes E \times \Lambda^{r, s} T^{*} X \otimes \bar{E} \rightarrow \Lambda^{p+r, q+s} T^{*} X
$$
by combining the wedge product $(\alpha, \beta) \mapsto \alpha \wedge \beta$ with $h(\cdot, \cdot \cdot) \in C^{\infty}\left(X,(E \otimes \bar{E})^{*}\right)$ as tensor product of bilinear maps. Next we combine B_{E} with $E_{1} \times E_{2} \xrightarrow{\otimes} E_{1} \otimes E_{2}$, and take $E=\Lambda^{1,0} T^{*} X, E_{1}=\mathbb{C} \times X$ and $E_{2}=L_{2}$ being a line bundle, to obtain a map
$$
\Lambda^{1,0} T^{*} X \times \Lambda^{n, 1} T^{*} X \otimes L_{2} \rightarrow \Lambda^{n, 0} T^{*} X \otimes L_{2}
$$
which we will denote it by $(f, g) \mapsto f(g)$, or sometimes by $(f, g) \mapsto\langle g, f\rangle$ following the notation of [5].

Under local coordinates $\left(z_{1}, \ldots, z_{n}\right)$, suppose $g_{\alpha \bar{\beta}} d z^{\alpha} \otimes d \bar{z}^{\beta}$ is a hermitian metric on X, $\xi=\xi_{\alpha} d z^{\alpha}$ and $u=u_{\bar{\beta}} e_{L_{2}} \otimes d z \wedge d \bar{z}^{\beta}$, where $e_{L_{2}}$ is a local frame of L_{2} and $d z=d z^{1} \wedge \ldots \wedge d z^{n}$. Then

$$
\xi(u)=\xi_{\alpha} g^{\alpha \bar{\beta}} u_{\bar{\beta}} e_{L_{2}} \otimes d z
$$

Suppose now that L_{2} is endowed with a smooth hermitian metric $h_{L_{2}}=e^{-\varphi_{L_{2}}}$. Then every $\omega \in C^{\infty}\left(X, \Lambda^{1,1} T^{*} X\right)$ induces a hermitian form $\omega(\cdot, \cdot)$ on $\Lambda^{n, 1} T^{*} X \otimes L_{2}$:

$$
\omega(u, v):=\left\langle\sqrt{-1} \cdot B_{\Lambda^{n, 0} T^{*} X \otimes L_{2}}(u, \bar{v}), \bar{\omega}\right\rangle .
$$

Locally if $\omega=\sqrt{-1} \omega_{\alpha \bar{\beta}} d z^{\alpha} \wedge d \bar{z}^{\beta}, v=v_{\bar{\gamma}} e_{L_{2}} \otimes d z \wedge d \bar{z}^{\gamma}$ and $\left|e_{L_{2}}\right|=1$, then

$$
\omega(u, v)=\omega_{\alpha \bar{\beta}}\left(g^{\alpha \bar{\gamma}} u_{\bar{\gamma}}\right) \operatorname{det}\left(g^{\mu \bar{\nu}}\right) e^{-\varphi_{L_{2}}} \overline{\left(g^{\beta \bar{\delta}} v_{\bar{\delta}}\right)}
$$

2.5. The basic estimate.

Lemma 2.2. Let Ω and L be as before. Let η and γ be positive smooth functions on Ω. Fix a smooth hermitian metric $\widetilde{h}=e^{-\psi}$ on $\left.L\right|_{\Omega}$, and denote $\bar{\partial}_{\psi}^{*}$ the Hilbert space adjoint of $\bar{\partial}$ with respect to \widetilde{h}. Then

$$
\begin{aligned}
& \int_{\Omega}(\eta+\gamma)\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi}+\int_{\Omega} \eta|\bar{\partial} u|^{2} e^{-\psi} \\
& \geq \int_{\Omega}(\eta \sqrt{-1} \partial \bar{\partial} \psi-\sqrt{-1} \partial \bar{\partial} \eta)(u, u) e^{-\psi}+2 \operatorname{Re} \int_{\Omega}\left\langle\partial \eta(u), \bar{\partial}_{\psi}^{*} u\right\rangle e^{-\psi}+\int_{\Omega} \gamma\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi}
\end{aligned}
$$

for every $(n, 1)$-form u in $\operatorname{Dom}\left(\bar{\partial}_{\psi}^{*}\right) \cap \operatorname{Dom}(\bar{\partial})$.

Proof of Lemma 2.2. As before, ρ is a smooth strictly psh exhaustion function on X that defines the smooothly bounded Stein domain Ω. Let $h=e^{-\varphi}$ denote a smooth hermitian metric on $\left.L\right|_{\Omega}$. We begin with the usual Bochner-Kodaira formula for L-valued ($n, 1$)forms. Suppose u is such a form that is also smooth in a neighborhood of $\bar{\Omega}$, and u lies in the domain of $\bar{\partial}_{\varphi}^{*}$ on Ω. Then it is a standard result (see e.g. [3]) that:

$$
\begin{gather*}
\int_{\Omega}\left|\bar{\partial}_{\varphi}^{*} u\right|^{2} e^{-\varphi}+\int_{\Omega}|\bar{\partial} u|^{2} e^{-\varphi}=\int_{\Omega} \sqrt{-1} \partial \bar{\partial} \varphi(u, u) e^{-\varphi} \tag{3}\\
+\int_{\Omega}\left|\nabla^{0,1} u\right|^{2} e^{-\varphi}+\int_{\partial \Omega} \sqrt{-1} \partial \bar{\partial} \rho(u, u) e^{-\varphi}
\end{gather*}
$$

Next we pass to the twisted formula. The main idea is to consider a twist of the original metric $e^{-\varphi}$, and use it to define the adjoint of $\bar{\partial}$. That is to say, we consider another metric $e^{-\psi}$ on $\left.L\right|_{\Omega}$. For any such metric, there is a positive smooth function η such that $e^{-\varphi}=\eta e^{-\psi}$, and conversely every η defines a twist of the original metric. Then we have a relation between the formal adjoints with respect to $e^{-\varphi}$ and $e^{-\psi}$:

$$
\bar{\partial}_{\varphi}^{*} u=-\eta^{-1} \partial \eta(u)+\bar{\partial}_{\psi}^{*} u
$$

since

$$
\bar{\partial}_{\varphi}^{*} u=-\sum_{j} e^{\varphi} \frac{\partial}{\partial z_{j}}\left(e^{-\varphi} u_{\bar{j}}\right) e_{L} \otimes d z
$$

if locally $u=u_{\bar{\beta}} e_{L} \otimes d z \wedge d \bar{z}^{\beta}$, where e_{L} is a local frame for $\left.L\right|_{\Omega}$ and $d z=d z^{1} \wedge \ldots \wedge d z^{n}$. Also, we have

$$
\partial \bar{\partial} \varphi=\partial \bar{\partial} \psi-\eta^{-1} \partial \bar{\partial} \eta+\eta^{-2} \partial \eta \wedge \bar{\partial} \eta
$$

Substitution of these identities into (3) gives:

$$
\begin{aligned}
& \int_{\Omega}\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\varphi}+\int_{\Omega}|\bar{\partial} u|^{2} e^{-\varphi} \\
&=\int_{\Omega} \sqrt{-1} \partial \bar{\partial} \varphi(u, u) e^{-\varphi}+2 \operatorname{Re} \int_{\Omega}\left\langle\eta^{-1} \partial \eta(u), \bar{\partial}_{\psi}^{*} u\right\rangle e^{-\varphi}-\int_{\Omega}\left\|\eta^{-1} \partial \eta(u)\right\|^{2} e^{-\varphi} \\
&+\int_{\Omega}\left|\nabla^{0,1} u\right|^{2} e^{-\varphi}+\int_{\partial \Omega} \sqrt{-1} \partial \bar{\partial} \rho(u, u) e^{-\varphi} \\
&=\int_{\Omega}(\sqrt{-1} \partial \bar{\partial} \psi\left.-\sqrt{-1} \eta^{-1} \partial \bar{\partial} \eta\right)(u, u) e^{-\varphi}+2 \operatorname{Re} \int_{\Omega}\left\langle\eta^{-1} \partial \eta(u), \bar{\partial}_{\psi}^{*} u\right\rangle e^{-\varphi} \\
&+\int_{\Omega}\left|\nabla^{0,1} u\right|^{2} e^{-\varphi}+\int_{\partial \Omega} \sqrt{-1} \partial \bar{\partial} \rho(u, u) e^{-\varphi}
\end{aligned}
$$

the so-called twisted Bochner-Kodaira formula. Observe that the last two terms are ≥ 0, hence adding $\int_{\Omega} \gamma\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi}$ to both sides of the equation yields

$$
\begin{aligned}
& \int_{\Omega}(\eta+\gamma)\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi}+\int_{\Omega} \eta|\bar{\partial} u|^{2} e^{-\psi} \\
\geq & \int_{\Omega}(\eta \sqrt{-1} \partial \bar{\partial} \psi-\sqrt{-1} \partial \bar{\partial} \eta)(u, u) e^{-\psi}+2 \operatorname{Re} \int_{\Omega}\left\langle\partial \eta(u), \bar{\partial}_{\psi}^{*} u\right\rangle e^{-\psi}+\int_{\Omega} \gamma\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi}
\end{aligned}
$$

for every L-valued $(n, 1)$-form u in the domain of $\bar{\partial}_{\psi}^{*}$ on Ω that is also smooth in neighborhood of $\bar{\Omega}$. Now it is well-known that such forms are dense in $\operatorname{Dom}\left(\bar{\partial}_{\psi}^{*}\right) \cap \operatorname{Dom}(\bar{\partial})$ with respect to the graph norm

$$
u \mapsto\|u\|+\|\bar{\partial} u\|+\left\|\bar{\partial}_{\psi}^{*} u\right\|
$$

that is, for each $(n, 1)$-form $u \in \operatorname{Dom}\left(\bar{\partial}_{\psi}^{*}\right) \cap \operatorname{Dom}(\bar{\partial})$, we can find a sequence

$$
u_{j} \in \operatorname{Dom}\left(\bar{\partial}_{\psi}^{*}\right) \cap \operatorname{Dom}(\bar{\partial})
$$

of smooth ($n, 1$)-forms defined in a neighborhood of $\bar{\Omega}$, such that

$$
u_{j} \rightarrow u, \quad \bar{\partial} u_{j} \rightarrow \bar{\partial} u \text { and } \bar{\partial}_{\psi}^{*} u_{j} \rightarrow \bar{\partial}_{\psi}^{*} u \text { in } L^{2}(X, E) .
$$

We thus conclude the proof of Lemma 2.2.

3. Proof of the Theorem

Let

$$
\eta=\log \frac{A}{|w|^{2}+\varepsilon^{2}} \quad \text { and } \quad \gamma=\frac{1}{|w|^{2}+\varepsilon^{2}}
$$

(the motivation has been explained in the previous section), where $A>e$ is a constant. Whenever $\varepsilon<\sqrt{\frac{A}{e}-1}$, we have $\eta>1$,

$$
\partial \eta=-\frac{\bar{\omega} \partial \omega}{|w|^{2}+\varepsilon^{2}}, \quad \bar{\partial} \eta=-\frac{\omega \overline{\partial \omega}}{|w|^{2}+\varepsilon^{2}} \quad \text { and }-\sqrt{-1} \partial \bar{\partial} \eta=\frac{\varepsilon^{2}}{\left(|w|^{2}+\varepsilon^{2}\right)^{2}} \sqrt{-1} \partial w \wedge \overline{\partial w}
$$

We will obtain the a priori inequality (2) from the basic estimate Lemma 2.2. In fact, taking $\psi=|w|^{2}+\kappa$ in Lemma 2.2, the sum of the last two terms and the term involving $\eta \sqrt{-1} \partial \bar{\partial} \psi$ is ≥ 0 :

From $\eta \sqrt{-1} \partial \bar{\partial} \psi(u, u) \geq \sqrt{-1} \partial \bar{\partial}|w|^{2}(u, u)=|\langle u, d w\rangle|^{2}$, we deduce that

$$
\begin{gathered}
\int_{\Omega} \eta \sqrt{-1} \partial \bar{\partial} \psi(u, u) e^{-\psi}+\int_{\Omega} \gamma\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi} \geq \int_{\Omega} \frac{|w|^{2}}{|w|^{2}+\varepsilon^{2}}|\langle u, d w\rangle|^{2} e^{-\psi}+\int_{\Omega} \gamma\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi} \\
\geq 2 \int_{\Omega} \frac{|w|}{|w|^{2}+\varepsilon^{2}}|\langle u, d w\rangle|\left|\bar{\partial}_{\psi}^{*} u\right| e^{-\psi} \geq\left|2 \operatorname{Re} \int_{\Omega}\left\langle\partial \eta(u), \bar{\partial}_{\psi}^{*} u\right\rangle e^{-\psi}\right|
\end{gathered}
$$

where the middle inequality follows from $a^{2}+b^{2} \geq 2 a b$ and the Hölder inequality. Hence Lemma 2.2 reduces to

$$
\begin{aligned}
& \int_{\Omega}(\eta+\gamma)\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi}+\int_{\Omega} \eta|\bar{\partial} u|^{2} e^{-\psi} \\
\geq & \int_{\Omega}(\eta \sqrt{-1} \partial \bar{\partial} \psi-\sqrt{-1} \partial \bar{\partial} \eta)(u, u) e^{-\psi}+2 \operatorname{Re} \int_{\Omega}\left\langle\partial \eta(u), \bar{\partial}_{\psi}^{*} u\right\rangle e^{-\psi}+\int_{\Omega} \gamma\left|\bar{\partial}_{\psi}^{*} u\right|^{2} e^{-\psi} \\
\geq & \int_{\Omega}-\sqrt{-1} \partial \bar{\partial} \eta(u, u) e^{-\psi}=\int_{\Omega} \frac{\varepsilon^{2}}{\left(|w|^{2}+\varepsilon^{2}\right)^{2}}|\langle u, d w\rangle|^{2} e^{-\psi} .
\end{aligned}
$$

As before, we consider

$$
T=\bar{\partial} \circ \sqrt{\eta+\gamma} \text { and } S=\sqrt{\eta} \bar{\partial},
$$

so that $S T=0$, and the a priori inequality reads

$$
\begin{equation*}
\left\|T^{*} u\right\|^{2}+\|S u\|^{2} \geq\left\|\frac{\varepsilon}{|w|^{2}+\varepsilon^{2}}\langle u, d w\rangle\right\|^{2}, \tag{4}
\end{equation*}
$$

where $\|\cdot\|$ is the L^{2} norm over Ω with respect to the weight $e^{-\psi}$.
3.2. Choice of the cutoff function. Fix $0<\delta<1$, and let $0 \leq \varrho(x) \leq 1$ be a smooth function on $[0,+\infty)$ such that

$$
\varrho \equiv 1 \text { on }\left[0, \frac{\delta}{2}\right], \varrho \equiv 0 \text { on }[1,+\infty) \text { and } \sup \left|\varrho^{\prime}\right| \leq 1+\delta .
$$

Such a ϱ exists by smoothing out the piecewise linear function $P:[0,+\infty) \rightarrow[0,1]$ which is $\equiv 1$ on $\left[0, \frac{7 \delta}{12}\right]$, linear on $\left[\frac{7 \delta}{12}, \frac{11 \delta}{12}\right]$ and $\equiv 0$ on $\left[\frac{11 \delta}{12},+\infty\right)$, that is, we set $\varrho:=P * \varrho_{\frac{\delta}{12}}$, where $\left\{\varrho_{\varepsilon}\right\}$ a family of smoothing kernels on \mathbb{R} defined as on page 2 (by replacing \mathbb{C} with \mathbb{R} and $2 m$ with m).

Let $\chi_{\varepsilon}(w):=\varrho\left(\frac{|w|^{2}}{\varepsilon^{2}}\right)$ and

$$
\beta_{\varepsilon}:=w^{-1} \bar{\partial}\left(\chi_{\varepsilon} \tilde{F}\right)=\frac{\tilde{F}}{\varepsilon^{2}} \varrho^{\prime}\left(\frac{|w|^{2}}{\varepsilon^{2}}\right) \overline{d w} .
$$

Our goal is to solve $T \alpha_{\varepsilon}=\beta_{\varepsilon}$ for ($n, 0$)-forms α_{ε} using Lemma 2.1. Toward that end, we apply the Schwarz inequality: for every $u \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)$,

$$
\begin{aligned}
\left.\left|\left\langle u, \beta_{\varepsilon}\right\rangle\right\rangle\right|^{2}= & \left|\int_{\Omega}\left\langle d w(u), \frac{\tilde{F}}{\varepsilon^{2}} \varrho^{\prime}\left(\frac{|w|^{2}}{\varepsilon^{2}}\right)\right\rangle e^{-\psi}\right|^{2} \\
\leq & \left(\int_{\Omega}\left|\frac{\tilde{F}}{\varepsilon^{2}} \varrho^{\prime}\left(\frac{|w|^{2}}{\varepsilon^{2}}\right)\right|^{2} \frac{(|w|)^{2}+\varepsilon^{2}}{\varepsilon^{2}} e^{-\psi}\right) \\
& \cdot\left(\int_{\Omega}|\langle u, d w\rangle|^{2} \frac{\varepsilon^{2}}{\left(|w|^{2}+\varepsilon^{2}\right)^{2}} e^{-\psi}\right) \\
\leq & C_{\varepsilon}\left(\left\|T^{*} u\right\|^{2}+\|S u\|^{2}\right)
\end{aligned}
$$

where

$$
C_{\varepsilon}:=\int_{\Omega}\left|\frac{\tilde{F}}{\varepsilon^{2}} \varrho^{\prime}\left(\frac{|w|^{2}}{\varepsilon^{2}}\right)\right|^{2} \frac{(|w|)^{2}+\varepsilon^{2}}{\varepsilon^{2}} e^{-\psi}
$$

and the last inequality follows from (4). Thus Lemma 2.1 guarantees that the equation

$$
T \alpha_{\varepsilon}=\bar{\partial}\left(\sqrt{\eta+\gamma} \alpha_{\varepsilon}\right)=\frac{\tilde{F}}{\varepsilon^{2}} \varrho^{\prime}\left(\frac{|w|^{2}}{\varepsilon^{2}}\right) \overline{d w}=\beta_{\varepsilon}
$$

has a solution α_{ε} with $\left\|\alpha_{\varepsilon}\right\| \leq C_{\varepsilon}$.
3.3. Estimate of the constant C_{ε}. Fix $p \in \bar{\Omega}$. Let $\left(z^{j}=x^{j}+\sqrt{-1} y^{j}\right)$ be local coordinates on an open set $U \subset X$ centered at p, and e_{L} a local frame of L on U, such that
(i) $z^{n}=w$;
(ii) $U=D \times\{r<\varepsilon\}$ where $r:=\left|z^{n}\right|$ and D is an ($n-1$)-dimensional polydisc;
(iii) $\tilde{F}=\tilde{F}\left(z^{1}, \ldots, z^{n}\right) e_{L} \otimes d z^{1} \wedge \ldots \wedge d z^{n}$ and $f=f\left(z^{1}, \ldots, z^{n-1}\right) e_{L} \otimes d z^{1} \wedge \ldots \wedge d z^{n-1}$ on U.

From $\left.\tilde{F}\right|_{Z \cap \Omega}=f \wedge d w$, it follows that

$$
\tilde{F}\left(z^{1}, \ldots, z^{n-1}, 0\right)=f\left(z^{1}, \ldots, z^{n-1}\right)
$$

Let $\mathfrak{U}=\left\{U_{1}, \ldots, U_{k}\right\}$ be a finite open cover of $\bar{\Omega}$ with each U_{j} being chosen as U above. Let $\left\{\rho_{1}, \ldots, \rho_{k}\right\}$ be a partition of unity subordinate to \mathfrak{U}. Then

$$
C_{\varepsilon} \leq\left(1+\delta^{2}\right) \sum_{j=1}^{k} \int_{U_{j} \cap \Omega} \rho_{j}\left|\tilde{F}\left(z^{1}, \ldots, z^{n}\right)\right|^{2} \frac{\left(\left|z^{n}\right|^{2}+\varepsilon^{2}\right)^{2}}{\varepsilon^{6}} e^{-\kappa-\left|z^{n}\right|^{2}} d x^{1} \wedge d y^{1} \wedge \ldots \wedge d x^{n} \wedge d y^{n}
$$

Now $f_{j}\left(z^{1}, \ldots, z^{n}\right):=\rho_{j}\left|\tilde{F}\left(z^{1}, \ldots, z^{n}\right)\right|^{2} e^{-\kappa-\left|z^{n}\right|^{2}}$ is smooth on U_{j}, so since $U_{j} \cap \bar{\Omega}$ compact in U_{j}, there is a constant $M>0$ such that

$$
\begin{aligned}
& \left.\left|\int_{U_{j} \cap \Omega} \rho_{j}\right| \tilde{F}\left(z^{1}, \ldots, z^{n}\right)\right|^{2} \frac{\left(\left|z^{n}\right|^{2}+\varepsilon^{2}\right)^{2}}{\varepsilon^{6}} e^{-\kappa+\left|z^{n}\right|^{2}} d x^{1} \wedge d y^{1} \wedge \ldots \wedge d x^{n} \wedge d y^{n} \\
& \left.\quad-\int_{U_{j} \cap \Omega} f_{j}\left(z^{1}, \ldots, z^{n-1}, 0\right) \frac{\left(\left|z^{n}\right|^{2}+\varepsilon^{2}\right)^{2}}{\varepsilon^{6}} d x^{1} \wedge d y^{1} \wedge \ldots \wedge d x^{n} \wedge d y^{n} \right\rvert\, \\
& \quad \leq \int_{U_{j} \cap \Omega} M\left|z^{n}\right| \frac{\left(\left|z^{n}\right|^{2}+\varepsilon^{2}\right)^{2}}{\varepsilon^{6}} d x^{1} \wedge d y^{1} \wedge \ldots \wedge d x^{n} \wedge d y^{n}=O(\varepsilon)
\end{aligned}
$$

Hence

$$
C_{\varepsilon} \leq\left(1+\delta^{2}\right) \sum_{j=1}^{k} \int_{U_{j} \cap \Omega} f_{j}\left(z^{1}, \ldots, z^{n-1}, 0\right) \frac{\left(\left|z^{n}\right|^{2}+\varepsilon^{2}\right)^{2}}{\varepsilon^{6}} d x^{1} \wedge d y^{1} \wedge \ldots \wedge d x^{n} \wedge d y^{n}+O(\varepsilon) .
$$

Now

$$
\begin{aligned}
& \int_{U_{j} \cap \Omega} f_{j}\left(z^{1}, \ldots, z^{n-1}, 0\right) \frac{\left(\left|z^{n}\right|^{2}+\varepsilon^{2}\right)^{2}}{\varepsilon^{6}} d x^{1} \wedge d y^{1} \wedge \ldots \wedge d x^{n} \wedge d y^{n} \\
& =\left(\int_{0}^{2 \pi} \int_{0}^{\varepsilon} \frac{\left(r^{2}+\varepsilon^{2}\right)^{2}}{\varepsilon^{6}} r d r d \theta\right) \cdot \int_{U_{j} \cap \Omega \cap Z} f_{j}\left(z^{1}, \ldots, z^{n-1}, 0\right) d x^{1} \wedge d y^{1} \wedge \ldots \wedge d x^{n-1} \wedge d y^{n-1} \\
& =\frac{7 \pi}{3} \int_{U_{j} \cap \Omega \cap Z} \rho_{j}|f|^{2} e^{-\kappa} .
\end{aligned}
$$

Hence

$$
\limsup _{\varepsilon \rightarrow 0} C_{\varepsilon} \leq \frac{7 \pi}{3}\left(1+\delta^{2}\right) \int_{Z \cap \Omega}|f|^{2} e^{-\kappa}
$$

3.4. The Final Step. It has been solved that

$$
\bar{\partial}\left(\sqrt{\eta+\gamma} \alpha_{\varepsilon}\right)=w^{-1} \bar{\partial}\left(\chi_{\varepsilon} \tilde{F}\right) \text { where } \int_{\Omega}\left|\alpha_{\varepsilon}\right|^{2} e^{-\psi} \leq C_{\varepsilon}
$$

The solution α_{ε} is smooth by the ellipticity of $\bar{\partial}$, thus

$$
F_{\varepsilon}:=\chi_{\varepsilon} \tilde{F}-w \sqrt{\eta+\gamma} \alpha_{\varepsilon}
$$

is holomorphic and $\left.F_{\varepsilon}\right|_{Z \cap \Omega}=f \wedge d w$. Now

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\chi_{\varepsilon} \tilde{F}\right|^{2} e^{-\kappa}=0
$$

by the dominated convergence theorem (because of (1) and that $Z \cap \Omega$ is of measure zero). Furthermore, since $\max _{y>0} y \log \frac{1}{y}=\frac{1}{e}$ and by assumption $\sup _{\Omega}|w| \leq 1$, we have

$$
\sup _{\Omega}|\omega \sqrt{\eta+\gamma}| \leq \sup _{x \in[0,1]} \sqrt{x^{2}\left(\log A+\log \frac{1}{x^{2}+\varepsilon^{2}}+\frac{1}{x^{2}+\varepsilon^{2}}\right)} \leq \sqrt{\log A+\frac{1}{e}+1}
$$

Finally, the uniform boundedness of $\left\{F_{\varepsilon}\right\}$ in the L^{2} norm $\|\cdot\|$ implies the local uniform boundedness of $\left\{F_{\varepsilon}\right\}$ in the smooth hermitian metric $|\cdot|^{2}$ (as on page 3). Hence by Montel's theorem, we can extract a convergent subsequence $\left\{F_{\varepsilon_{j}}\right\}$ whose limit $F_{A, \delta}$ is a holomorphic extension of $\left.f \wedge d w\right|_{Z \cap \Omega}$ over Ω such that

$$
\int_{\Omega}\left|F_{A, \delta}\right|^{2} e^{-\kappa} \leq \sqrt{\log A+\frac{1}{e}+1} \cdot \limsup _{j \rightarrow \infty} \int_{\Omega}\left|\alpha_{\varepsilon_{j}}\right|^{2} e^{-\kappa} \leq \sqrt{\log A+\frac{1}{e}+1} \cdot e \cdot \limsup _{\varepsilon \rightarrow \infty} C_{\varepsilon}
$$

A diagonal process with $A \rightarrow e$ and $\delta \rightarrow 0$ then yields a holomorphic extension F of $\left.f \wedge d w\right|_{Z \cap \Omega}$ such that

$$
\int_{\Omega}|F|^{2} e^{-\kappa} \leq \frac{7 \pi}{3} e \sqrt{2+\frac{1}{e}} \int_{Z \cap \Omega}|f|^{2} e^{-\kappa} .
$$

The proof is complete.

References

[1] T. Ohsawa and K. Takegoshi - On the extension of L^{2} holomorphic funcions, Math. Z. 195 (1987), 197-204.
[2] Y.-T. Siu - Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89-100.
[3] Y.-T. Siu - The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, in Geometric Complex Analysis ed. Junjiro Noguchi et al, World Scientific: Singapore, New Jersey, London, Hong Kong (1996), 577-592.
[4] Y.-T. Siu - Invariance of plurigenera, Inv. Math. 134 (1998), 661-673.
[5] Y.-T. Siu - Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semi-positively twisted plurigenera for manifolds not necessarily of general type, Complex Geometry (Göttingen, 2000), Springer, Berlin, 2002, 223-277.
[6] J. D. McNeal and D. Varolin - Analytic inversion of adjunction: L^{2} extension theorems with gain, Annales de l'institut Fourier 57 no. 3 (2007), 703-718.
[7] J.P. Demailly, C.D. Hacon and M. Păun - Extension theorems, non-vanishing and the existence of good minimal models, arXiv:1012.0493.
[8] C.-Y. Chi, C.-L. Wang and S.-S. Wang - Extensions of multiply twisted pluri-canonical forms, Pure Appl. Math. Quarterly 7 no. 4 (2011), 1129-1164.

[^0]: \dagger In view of Lemma 1.2, we will henceforth discard the original singular metric, with the notation $h=e^{-\varphi}$ being saved for later use. We take here $\Omega=\Omega_{\nu}$ and $\kappa=\varphi_{\nu}$ for a fixed ν.

[^1]: \ddagger For greater notational clarity, the domain of an operator T will henceforward be denoted by $\operatorname{Dom}(T)$.

