Formal Deformation Theory and Examples of Deformation Functors

Kuo Tzu-Ang

0 Notations and basic definitions

Notation 0.1. We work over $k = \bar{k}$; all schemes are over k. Let $\mathcal{A} =$ the category of local artinian k-algebras with residue field k; $\hat{\mathcal{A}} =$ the category of complete local noetherian k-algebras with residue field k; $\mathcal{A}^* =$ the category of local noetherian k-algebras with residue field k. Note $\mathcal{A} \supset \hat{\mathcal{A}} \supset \mathcal{A}^*$. An algebraic schemes means a scheme over k of finite type.

Definition 0.2. Let X be an algebraic scheme. A deformation of X parametrized by S is a fiber product

$$\begin{array}{ccc} X & \longrightarrow & \mathcal{X} \\ \eta : & & & \downarrow_{\pi: flat \ surj} \\ & k & \stackrel{s}{\longrightarrow} & S \end{array}$$

Morphism between deformations is a ϕ making a commutative diagram

We denote a deformation by (S, η) . A deformation is called infinitesimal if S = Spec A for some $A \in A$; it's called first-order if $S = Spec k[\epsilon]$.

Remark 0.3. Let (S, η) be a deformation. A morphism of algebraic schemes $(S', s') \rightarrow (S, s)$ induces a fiber product digram:

in particular (S', η') is a deformation of X over S'. When $S' = k[\epsilon]$, this construction yields a map $\rho: T_{S,s} \to Def_X(k[\epsilon])$. If X is a smooth variety, $Def_X(k[\epsilon])$ coincides with $H^1(X, T_X)$, and in this case we call $\rho: T_{S,s} \to H^1(X, T_X)$ the Kodaira-Spencer map.

Remark 0.4. (cf. Lemma 1.2.3 in [1]) Suppose $Z_0 \subseteq_{C.S.} Z$ and \mathcal{I}_{Z_0} is nilpotent (where "C.S." stands for "closed subscheme"). Then the affineness of Z_0 implies that of Z. Consequently, every infinitesimal deformation of an affine scheme is affine.

Remark 0.5. Suppose $X = Spec B_0$ is affine and we have a morphism between infinitesimal deformation:

Then, $B \otimes_A k \cong B_0 \cong B' \otimes_A k$ and so $\tilde{\phi} : B/\mathfrak{m}_A B \to B'/\mathfrak{m}_A B'$ is an isomorphism. Using flatness and Nakayama lemma, one can show that ϕ is an isomorphism as well.

1 Functor of Artin rings

Notation 1.1. For $\Lambda \in \mathcal{A}^*$, consider the following categories: $\mathcal{A}_{\Lambda} =$ the category of local artinian Λ -algebras with residue field k; $\hat{\mathcal{A}}_{\Lambda} =$ the category of complete local noetherian Λ -algebras with residue field k; $\mathcal{A}^*_{\Lambda} =$ the category of local noetherian Λ -algebras with residue field k.

Definition 1.2. A functor of Artin rings is a covariant functor

 $F: \mathcal{A}_{\Lambda} \to (Sets), where \Lambda \in \mathcal{A}^*.$

We say F is prorepresentable if $F \cong h_{R/\Lambda} : A \mapsto Hom_{\hat{\mathcal{A}}_{\Lambda}}(R, A)$ for some $R \in \hat{\mathcal{A}}_{\Lambda}$. (Of course, a representable functor is prorepresentable.)

Remark 1.3. A fiber product

$$\begin{array}{ccc} A' \times_A A'' \longrightarrow A'' \\ \downarrow & \downarrow \\ A' \longrightarrow A \end{array}$$

in \mathcal{A}_{Λ} induces $\alpha : F(A' \times_A A'') \to F(A') \times_{F(A)} F(A'')$. If F(k) = * and α is bijective when A = kand $A'' = k[\epsilon]$, then $F(k[\epsilon])$ inherits a structure of k-vector space, as follows: The addition $F(k[\epsilon]) \times F(k[\epsilon]) \to F(k[\epsilon])$ is induced by

$$k[\epsilon] \times_k k[\epsilon] \to k[\epsilon]$$
$$(a + b\epsilon, a + b'\epsilon) \mapsto a + (b + b')\epsilon,$$

the multiplication by $c \in k$ is

$$k[\epsilon] \to k[\epsilon]$$
$$a + b\epsilon \mapsto a + (cb)\epsilon,$$

and the zero element 0 is $im(F(k) \to F(k[\epsilon]))$. $F(k[\epsilon]) =: t_F$ is called the tangent space of F. For a natural transformation $f: F \to G$ between such functors, $df: t_F \to t_G$ is called the differential of f. It is k-linear.

Definition 1.4. (formal element) A functor of Artin rings $F : \mathcal{A}_{\Lambda} \to (Sets)$ can be extended to $\hat{F} : \hat{\mathcal{A}}_{\Lambda} \to (Sets)$ by setting

$$\hat{F}(R) = \lim_{\leftarrow} F(R/m_R^{n+1}) \ (n \ge 0)$$

and the morphism $\hat{F}(\varphi)$ is given by $\{F(R/m_R^{n+1}) \to F(R/m_S^{n+1})\}_{n \ge 0}$. An element $\hat{u} = \{u_n \in F(R/m_R^{n+1})\} \in \hat{F}(R)$ is called a formal element.

Proposition 1.5. Let $R \in A_{\Lambda}$. Then there exists a bijection

 $\{\hat{u} \in \hat{F}(R)\} \longleftrightarrow \{\text{natural transformations } h_{R/\Lambda} \to F\}.$

Definition 1.6.

(1) $f: F \to G$ is smooth if \forall surjection $B \to A$, $F(B) \to F(A) \times_{G(A)} G(B)$ is also surjective.

(2) F is smooth if \forall surjection $B \rightarrow A$, $F(B) \rightarrow F(A)$ is surjective (i.e. the natural transformation from F to the trivial functor is smooth).

Definition 1.7. Fix $\hat{u} \in \hat{F}(R)$, where $R \in \hat{\mathcal{A}}_{\Lambda}$. Recall that \hat{u} induces $\hat{u} : h_{R/\Lambda} \to F$.

(1) We call \hat{u} semi-universal if $\hat{u} : h_{R/\Lambda} \to F$ is smooth, and $t_{R/\Lambda} \to t_F$ is bijective (where $t_{R/\Lambda}$ is the tangent space for $h_{R/\Lambda}$).

(2) We call \hat{u} universal if $\hat{u} : h_{R/\Lambda} \to F$ is an isomorphism.

Definition 1.8. Let R be a local k-algebra with residue field k. A small extension of R is a k-extension of R by k:

 $0 \longrightarrow k \longrightarrow R' \longrightarrow R \longrightarrow 0$

such that $k^2 = 0$ in \mathbb{R}' . In this case $k \leq \mathbb{R}'$ can be proved to be principle.

Theorem 1.9. (Schelessinger) Suppose F(k) = *. Recall the notation

$$\alpha: F(A'' \times_A A') \to F(A') \times_{F(A)} F(A'')$$

(1) F has a semi-universal element if and only if the following three conditions hold:

(i) $(\overline{H}) \alpha$ is surjective for every small extension $A'' \to A$.

- (ii) $(H_{\epsilon}) \alpha$ is bijective when A = k and $A'' = k[\epsilon]$.
- (*iii*) $(H_f) \dim_k(t_F) < \infty$.

(2) F has a universal element if and only if, moreover, the following condition (H) holds:

$$F(A' \times_A A') \to F(A') \times_{F(A)} F(A')$$

is surjective for every small extension $A' \to A$.

Example 1.10. For an algebraic scheme X, define

$$\operatorname{Def}_X : \mathcal{A} \to (Sets)$$

 $A \mapsto \{deformation \ of \ X \ over \ A\}/isomorphism$

Then $\operatorname{Def}_X(k) = *$, and Def_X satisfies \overline{H} and H_{ϵ} .

2 Formal/Algebraic deformations

In this section, we discuss when a series of infinitesimal deformation comes from a "true" deformation, that is, a deformation over some $A \in \hat{\mathcal{A}}$.

Definition 2.1. Let X be an algebraic scheme and $A \in \hat{A}$. A formal deformation of X over A is $\hat{\eta} \in \widehat{\text{Def}}_X(A)$, ie.,

$$\hat{\eta} = \left\{ \eta_n : \begin{array}{c} X \xrightarrow{f_n} \mathcal{X}_n \\ \downarrow & \downarrow^{\pi_n} \\ k \xrightarrow{} \operatorname{Spec} A_n \end{array} \right\}_{n \ge 0}$$

where $A_n = A/m_A^{n+1}$, each η_n is a fiber product, and the pullback $\mathcal{X}_n \otimes_{A_n} A_{n-1}$ is isomorphic to \mathcal{X}_{n-1} .

A natural question is, is it true that all these fiber products are pullbacks of some deformation over A? That is, we ask for the existence of a deformation $\pi : \mathcal{X} \to A$, making the fiber product diagram:

Definition 2.2. If such a deformation

exists, we call (A, η_n) effective.

Remark 2.3. (Grothendieck) If X is a proper algebraic scheme, then two such "liftings" must be isomorphic.

Remark 2.4. A formal deformation is the same as giving a morphism of formal schemes

$$\bar{\pi}: \bar{\mathcal{X}} \to \operatorname{Specf}(A)$$

where $\bar{\mathcal{X}} = (X, \lim_{\leftarrow} \mathcal{O}_{\mathcal{X}_n})$ and $\operatorname{Sepcf}(A)$ is a formal spectrum; $\operatorname{Sepcf}(A) = \widehat{\mathcal{O}}_{\operatorname{Spec} A} = (*, \lim_{\leftarrow} \operatorname{Spec}(A/m_A^n)).$

Remark 2.5. A formal deformation is effective is and only if there exists a deformation

such that $\bar{\mathcal{X}}$ is the completion of \mathcal{X} along X, i.e., $\bar{\mathcal{X}} = \hat{\mathcal{X}} = (X, \lim_{\leftarrow} \mathcal{O}_{\mathcal{X}}/\mathcal{I}_X^n)$. For example, for $X = \mathbb{P}^r$,

the formal deformation $\left\{ \eta_n : \bigcup_{k \longrightarrow Spec A_n}^{\mathbb{P}^r} \bigcup_{k \longrightarrow Spec A_n} \right\}$ is effective; the associated formal scheme is the

completion of \mathbb{P}_A^r along \mathbb{P}^r , denoted by $\mathcal{P}_A^r := (\mathbb{P}^r, \lim_{\leftarrow} \mathcal{O}_{\mathbb{P}_{A_n}^r}).$

Theorem 2.6. (Grothendieck) Let X be a projective scheme.

(1) Let $A \in \hat{\mathcal{A}}$ and $\bar{\pi} : \bar{\mathcal{X}} \to \operatorname{Specf}(A)$ be a formal deformation of X over A. Assume $\exists j$ such that the diagram

$$\bar{\mathcal{X}} \xrightarrow{j} \mathcal{P}_{A}^{r}$$

$$\bar{\mathcal{X}} \xrightarrow{\bar{\pi}} \downarrow^{p}$$

$$\operatorname{Specf}(A)$$

is commutative, where p is the projection. Then $\bar{\pi}$ is effective. (2) When $H^2(X, \mathcal{O}_X) = 0$, every formal deformation of X is effective.

3 Obstruction space

We first define the space of extension classes, which inherits a module structure.

Definition 3.1. Given an A-algebra R and an A-module I, the space of isomorphism classes of Aextensions of R by I is denoted by $\text{Ex}_A(R, I)$; we denote an extension

 $0 \longrightarrow I \longrightarrow R' \longrightarrow R \longrightarrow 0$

by (\mathbf{R}', φ) and its class by $[\mathbf{R}', \varphi]$. Here, we always demand $I^2 = 0$.

Definition 3.2. Let F be a functor of Artin rings. An obstruction space for F is a vector space over k, denoted by v(F), such that $\forall A \in \mathcal{A}_{\Lambda}, \forall \zeta \in F(A)$, there is a linear transformation $\zeta_v : \text{Ex}_{\Lambda}(A, k) \rightarrow v(F)$, with

$$\ker \zeta_{v} = \Big\{ [0 \longrightarrow I \longrightarrow \tilde{A} \longrightarrow A \longrightarrow 0] \mid \zeta \in \operatorname{im}(F(\tilde{A}) \to F(A)) \Big\}.$$

Remark 3.3. Take F to be a deformation functor and consider an deformation $\zeta \in F(A)$. Intuitively, the kernel of ζ_v collects all extension classes that lift ζ .

3.1 Module structure on $Ex_A(R, I)$

An extension is called trivial if it has a section, that is, it splits. A trivial extension can be constructed by considering the A-algebra $R \oplus I$, whose module structure is $R \oplus I$, and multiplication is given by $(r, i) \cdot (s, j) := (rs, rj + si)$. With the projection $p : R \oplus I \to R$, $(R \oplus I, p)$ is clearly a trivial extension.

Remark 3.4. In fact, every trivial extension (R', φ) is isomorphic to $(R \oplus I, p)$.

The module structure on $\operatorname{Ex}_A(R, I)$ is based on two operations.

Definition 3.5. (pullback) Given

$$(R',\varphi): \ 0 \longrightarrow I \longrightarrow R' \stackrel{\varphi}{\longrightarrow} R \longrightarrow 0 \ ,$$

and $f: S \to R$ an A-algebra homomorphism, the pullback of (R', φ) by f is the A-extension $f^*(R', \varphi)$:

$$f^*(R', \varphi): 0 \longrightarrow I \longrightarrow R' \times_R S \longrightarrow S \longrightarrow 0 \in \operatorname{Ex}_A(S, I)$$

Definition 3.6. (pushout) Given (R', φ) and $\lambda : I \to J$ an *R*-module homomorphism, the pushout of (R', φ) by λ is the *A*-extension $\lambda_*(R', \varphi)$:

$$\lambda_*(R',\varphi): \ 0 \longrightarrow J \longrightarrow R' \coprod_I J \longrightarrow R \longrightarrow 0 \ \in \operatorname{Ex}(R,J),$$

where

$$R'\coprod_I J := \frac{R' \oplus J}{\{(-\alpha(i), \lambda(i)) \mid i \in I\}}$$

Definition 3.7. Given $[R', \varphi]$ and $[R'', \psi] \in \text{Ex}_A(R, I)$, we have the following diagram:

which defines $(R' \times_R R'', \zeta) : 0 \longrightarrow I \longrightarrow I \longrightarrow R' \times_R R'' \xrightarrow{\zeta} R \longrightarrow 0$. Let $\delta : I \oplus I \to I$ be defined by $(i, j) \mapsto i + j$. Then the addition is

$$[R',\varphi] + [R'',\varphi] := [\delta_* p(R' \times_R R'',\delta)].$$

On the other hand, for $[R', varphi] \in Ex_A(R, I)$, $r \in R$, let $r : I \to I$ be the multiplication by r. Define $r \cdot [R', \varphi] := [r_*(R', \varphi)]$. The identity element in $Ex_A(R, I)$ is the trivial extension $[R \oplus I, p]$.

4 More on Def_{B_0}

Here we give more concrete examples of the deformation functor Def_{B_0} .

Definition 4.1. $\operatorname{Ex}_A(R, R) =: T^1_{R/A}$ is the first cotangent module of R over A.

Definition 4.2. (extension of schemes) Let X be an S-scheme. An extension of X over S is

$$\mathcal{E}: 0 \to I \to \mathcal{O}_{X'} \to \mathcal{O}_X \to 0,$$

where I is an \mathcal{O}_X -module with $I^2 = 0$ and φ is an \mathcal{O}_S -algebra homomorphism. Define $\operatorname{Ex}(X/S, I)$ to be the isomorphism classes of extensions. The trivial extension $\mathcal{O}_X \oplus I$ can be defined similarly as in the module case.

Theorem 4.3. Let X be a finite type S-scheme, and both are algebraic scheme. Suppose I is locally free with finite rank on S, and X is reduced and S-smooth on a dense open set. Then

$$\operatorname{Ex}(X/S, I) \cong \operatorname{Ext}^{1}_{\mathcal{O}_{X}}(\Omega_{X/S}, I)$$

proof. The maps are given by

$$\operatorname{Ex}(X/S, I) \to \operatorname{Ext}^{1}_{\mathcal{O}_{X}}(\Omega_{X/S}, I)$$
$$\left(0 \to I \to \mathcal{O}_{X'} \to \mathcal{O}_{X} \to 0\right) \mapsto \left(0 \to I \to \Omega_{X'/S}|_{X} \to \Omega_{X/S} \to 0\right)$$

and

$$\operatorname{Ext}^{1}_{\mathcal{O}_{X}}(\Omega_{X/S}, I) \to \operatorname{Ex}(X/S, I)$$
$$\left(0 \to I \to \mathcal{A} \to \Omega_{X/S} \to 0\right) \mapsto \left(0 \to I \to \mathcal{A} \times_{\Omega_{X/S}} \mathcal{O}_{X} \to \mathcal{O}_{X} \to 0\right)$$

where, the algebra structure on $\mathcal{A} \times_{\Omega_{X/S}} \mathcal{O}_X$ is $(a, f) \cdot (a', f') := (fa' + f'a, ff')$.

Corollary 4.4. $T_X^1 \cong \operatorname{Ext}^1_{\mathcal{O}_X}(\Omega^1_X, \mathcal{O}_X).$

Proposition 4.5. For a k-algebra B_0 , $\operatorname{Def}_{B_0}(k[\epsilon]) \cong T^1_{B_0}$.

Remark 4.6. Suppose $B_0 = k[x_1, ..., x_d]/J$, with J prime. Then there is an exact sequence:

$$0 \to \operatorname{Hom}(\Omega_{B_0/k}, \Omega_{B_0}) \to \operatorname{Hom}(\Omega_{k[x_1, \dots, x_d]/k} \otimes B_0, B_0) \to \operatorname{Hom}(J/J^2, B_0) \to T^1_{B_0} \to 0,$$

and thus $T^1_{\mathcal{B}_0}$ can be computed. The result is: If J is generated by a regular sequence, then

$$T_{B_0}^1 \cong \frac{k[x_1, ..., x_d]^n}{\left(\begin{pmatrix} \frac{\partial f_1}{\partial x_1} \\ \vdots \\ \frac{\partial f_n}{\partial x_1} \end{pmatrix}, \cdots, \begin{pmatrix} \frac{\partial f_1}{\partial x_d} \\ \vdots \\ \frac{\partial f_n}{\partial x_d} \end{pmatrix} \right)} \otimes_{k[x_1, ..., x_d]} B_0$$

For example,

(1) For hypersurface
$$B_0 = V(f), T^1_{B_0} \cong \frac{k[x_1, ..., x_d]}{(f, \frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_d})}$$

(2) For
$$f = x^2 - y^2$$
, $T_{B_0}^1 \cong \frac{k[x, y]}{(x^2 - y^2, x, y)} \cong k$;
For $f = y^3 - x^2$, $T_{B_0}^1 \cong \frac{k[x, y]}{(y^3 - x^2, y^2, x)} \cong k^2$.

5 Obstruction space for a nonsingular algebraic variety

Proposition 5.1.

(1) For a nonsingular algebraic variety X, H²(X, T_X) is an obstruction space for Def_X.
(2) Let e : 0 → (t) → Ã → A → 0 be a small extension. Then, if o_ξ(e) = 0, there exists a transitive action of H¹(X, T_X) on {liftings to Â}.

Example 5.2.

- (1) Nonsingular curves are unobstructed.
- (2) Let X be nonsingular. Then H¹(X, T_X) = 0 ⇐ X is rigid. Indeed, for the "if" part, note that the first order deformation is trivial and use statement (2) in the proposition.
 In particular, Pⁿ¹ × ··· × P^{nk} is rigid.

6 Second cotangent module and obstructions

In this section we introduce another obstruction space for Def_{B_0} , other than $H^2(X, T_X)$. Let $B_0 = P/J$, where P is a smooth k-algebra. Take

$$\eta: 0 \longrightarrow R \xrightarrow{\iota} F \xrightarrow{J} J \longrightarrow 0,$$

where F is free over P. Define $\lambda : \bigwedge^2 F \to F$ by $x \land y \mapsto (jx)y - (jy)x$, and let $R^{tr} := \operatorname{im}(\lambda)$ be the module of trivial relations. The second cotangent module of B_0 is the B_0 -module defined by the exact sequence:

$$\operatorname{Hom}_{B_0}(J/J^2, B_0) \to \operatorname{Hom}_{B_0}(F \otimes_P B_0, B_0) \to \operatorname{Hom}_{B_0}(R/R^{tr}, B_0) \to T^2_{B_0} \to 0.$$

Example 6.1. If $J = (f_1, ..., f_n)$, and $F = P^n$, then $R/R^{tr} = H_1(K_{\bullet}(f_1, ..., f_n))$, i.e., the first cohomology group of the Koszul complex. Therefore, if J is generated by a regular sequence, then $T_{B_0}^2 = 0$, since $R/R^{tr} = 0$.

Definition 6.2. For an algebraic scheme X, let T_X^2 be the sheaf glued by $T_{B_0}^2$. It's the "second cotangent sheaf".

Proposition 6.3. $T_{B_0}^2$ is an obstruction space for Def_{B_0} .

Remark 6.4. Let $X = \text{Spec } B_0$ and $\dim_k(T^1_{B_0}) < \infty$. By Schlessinger's theorem, there exists a semiuniversal element $(R, \{\eta_n\})$, and in fact we have the inequalities

$$\dim_k(T^1_{B_0}) \ge \dim(R) \ge \dim_k(T^1_{B_0}) - \dim_k(T^2_{B_0}).$$

Moreover, the first is an equality if and only if X_0 is unobstructed; in particular if B_0 is l.c.i., then X is unobstructed.

7 Local Hilbert functor

Let $X \subseteq_{C.S.} Y$ be algebraic schemes. A family of deformations of X in Y, parametrized by S, is a fiber product

$$\begin{array}{cccc} X & \longrightarrow & \mathcal{X} & \longrightarrow & Y \times S \\ \downarrow & & \downarrow^{\pi:flat}_{\pi} \\ k & \longrightarrow & S \end{array}$$

This defines a functor

 $H_X^Y: \mathcal{A} \to (Sets)$

 $A \mapsto \{\text{deformations of } X \text{ in } Y \text{ over } A\}/\text{isomorphisms},$

called the local Hilbert functor of X in Y.

Proposition 7.1.

(1) H_X^Y satisfies H_0 , H_{ϵ} , \bar{H} and H in Schlessinger's theorem. (2) $H_X^Y(k[\epsilon]) = H^0(X, N_{X/Y}).$

Proposition 7.2. If $X \subseteq Y$ is a regular closed embedding, then $H^1(N_{X/Y})$ is an obstruction space for H^Y_X .

8 Deformation of morphism leaving domain and target fixed

In this section we consider the following fiber product:

$$\begin{array}{cccc} X & \longrightarrow & X \times S \\ \downarrow^{f} & \downarrow^{F} \\ Y & \longrightarrow & Y \times S \\ \downarrow & & \downarrow^{\pi: projection} \\ k & \longrightarrow & S \end{array}$$

with $\pi \circ F$ flat. This is a deformation of f wfdat (with fixed domain and target). The associated deformation functor is $\text{Def}_{X/f/Y} : \mathcal{A} \to (Sets)$.

Proposition 8.1. Let $f : X \to Y$ be a morphism between algebraic schemes, with X projective, reduced, and Y nonsingular. Then:

(1) $\operatorname{Def}_{X/f/Y} \cong H_{\Gamma_f}^{X \times Y}$ (2) $\operatorname{Def}_{X/f/Y}(k[\epsilon]) = H^0(X, f^*T_Y)$ (3) $H^1(X, f^*T_Y)$ is an obstruction space for $\operatorname{Def}_{X/f/Y}$.

Remark 8.2. The reducibility and nonsingularity are used only in (2) and (3).

Example 8.3. Suppose $\mathbb{P}^1 \cong R \subseteq S$, S is nonsingular, and $E^2 = -n \leq -1$, i.e. $\deg \mathcal{O}_E(E) = -n$. Consider the SES

 $0 \longrightarrow T_E \longrightarrow T_S|_E \longrightarrow N_{E/S} \longrightarrow 0 \ .$

Note $\operatorname{Ext}_{\mathcal{O}_E}^1(N_{E/S}, T_E) \cong H^1(E, \mathcal{O}_E(2) \oplus \mathcal{O}_E(n)) = 0$, and thus $T_S|_E \cong \mathcal{O}_E(2) \oplus \mathcal{O}_E(-n)$ has $h^0 = 3$. This means, even though E is rigid in S, the inclusion $i : R \to S$ has 3 dimensional family of deformations.

9 Deformation of morphism with target fixed

In this section, the fiber product diagram becomes more general:

again with $\pi \circ F$ flat. This is a deformation of f with target Y. An isomorphism between such two deformations is commutative diagrams

The associated deformation functor is $\text{Def}_{f/Y}$. We say a deformation with target fixed is locally trivial, if the very deformation of X

$$\begin{array}{ccc} X & \longrightarrow & \mathcal{X} \\ \downarrow & & \downarrow \\ k & \longrightarrow & S \end{array}$$

is locally trivial, i.e. there exists an open cover $\mathcal{U} = \{U_i\}_{i \in I}$ such that for all $i, \mathcal{X}|_{U_i}$ is a trivial deformation of U_i . The associated functor is denoted by $\operatorname{Def}'_{f/Y}$.

Definition 9.1. Let $f : X \to Y$ be a morphism between algebraic schemes, with X projective, and let $\mathcal{U} = \{U_i\}_{i \in I}$ be an open affine cover of X. Define

$$D_{X/Y} := \frac{\{(v,t) \in \mathcal{C}^0(\mathcal{U}, f^*T_Y) \times \mathcal{Z}^1(\mathcal{U}, T_X) \mid \delta v = df(t)\}}{(df(w), \delta w) \mid w \in \mathcal{C}^0(\mathcal{U}, T_X)} \text{ and}$$
$$D_{X/Y}^1 := \frac{\{(\zeta, s) \in \mathcal{C}^1(\mathcal{U}, f^*T_Y) \times \mathcal{Z}^2(\mathcal{U}, T_X) \mid \delta \zeta = df(s)\}}{(df(u), \delta u) \mid u \in \mathcal{C}^1(\mathcal{U}, T_X)},$$

where δ is the coboundary map in Cech complex and $d: T_X \to f^*T_Y$.

Theorem 9.2. With the above settings,

- (1) $\operatorname{Def}'_{f/Y}$ has a semiuniversal element.
- (2) $Def_{f/Y}(k[\epsilon]) = D_{X/Y}$; an obstruction space is $D^1_{X/Y}$.

10 Reference

[1] Edoardo Sernesi, Deformations of Algebraic Schemes.