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0 Notations and basic definitions

Notation 0.1. We work over k = k̄; all schemes are over k. Let
A = the category of local artinian k-algebras with residue field k;
Â = the category of complete local noetherian k-algebras with residue field k;
A� = the category of local noetherian k-algebras with residue field k. Note A � Â � A�. An algebraic
schemes means a scheme over k of finite type.

Definition 0.2. Let X be an algebraic scheme. A deformation of X parametrized by S is a fiber product

� :

X X

k S

�:flat surj

s

:

Morphism between deformations is a � making a commutative diagram

X

X Y

S

� :

We denote a deformation by (S; �). A deformation is called infinitesimal if S = Spec A for some A 2 A;
it’s called first-order if S = Spec k[�].

Remark 0.3. Let (S; �) be a deformation. A morphism of algebraic schemes (S 0; s0) ! (S; s) induces
a fiber product digram:

X X �S S
0 X

k S 0 S

�0 �

s0

;

1



in particular (S 0; �0) is a deformation of X over S 0. When S 0 = k[�], this construction yields a map
� : TS;s ! DefX(k[�]). If X is a smooth variety, DefX(k[�]) coincides with H 1(X; TX), and in this case
we call � : TS;s ! H 1(X; TX) the Kodaira-Spencer map.

Remark 0.4. (cf. Lemma 1.2.3 in [1]) Suppose Z0 �C:S: Z and IZ0
is nilpotent (where ”C.S.” stands

for ”closed subscheme”). Then the affineness of Z0 implies that of Z. Consequently, every infinitesimal
deformation of an affine scheme is affine.

Remark 0.5. Suppose X = Spec B0 is affine and we have a morphism between infinitesimal deformation:

B0

B B 0

A

� :

Then, B ˝A k Š B0 Š B 0 ˝A k and so �̃ : B/mAB ! B 0/mAB
0 is an isomorphism. Using flatness and

Nakayama lemma, one can show that � is an isomorphism as well.

1 Functor of Artin rings

Notation 1.1. For Λ 2 A�, consider the following categories:
AΛ = the category of local artinian Λ-algebras with residue field k;
ÂΛ = the category of complete local noetherian Λ-algebras with residue field k;
A�Λ = the category of local noetherian Λ-algebras with residue field k.

Definition 1.2. A functor of Artin rings is a covariant functor

F : AΛ ! (Sets), where Λ 2 A�.

We say F is prorepresentable if F Š hR/Λ : A 7! HomÂΛ
(R;A) for some R 2 ÂΛ.

(Of course, a representable functor is prorepresentable.)

Remark 1.3. A fiber product
A0 �A A

00 A00

A0 A

in AΛ induces ˛ : F (A0 �A A
00) ! F (A0) �F (A) F (A00). If F (k) = � and ˛ is bijective when A = k

and A00 = k[�], then F (k[�]) inherits a structure of k-vector space, as follows: The addition F (k[�]) �

F (k[�]) ! F (k[�]) is induced by

k[�] �k k[�] ! k[�]

(a + b�; a + b0�) 7! a + (b + b0)�;
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the multiplication by c 2 k is

k[�] ! k[�]

a + b� 7! a + (cb)�;

and the zero element 0 is im(F (k) ! F (k[�])). F (k[�]) =: tF is called the tangent space of F . For a
natural transformation f : F ! G between such functors, df : tF ! tG is called the differential of f .
It is k-linear.

Definition 1.4. (formal element) A functor of Artin rings F : AΛ ! (Sets) can be extended to
F̂ : ÂΛ ! (Sets) by setting

F̂ (R) = lim
 
F (R/mn+1

R ) (n � 0)

and the morphism F̂ (') is given by fF (R/mn+1
R ) ! F (R/mn+1

S )gn�0.
An element û = fun 2 F (R/mn+1

R )g 2 F̂ (R) is called a formal element.

Proposition 1.5. Let R 2 AΛ. Then there exists a bijection

fû 2 F̂ (R)g fnatural transformations hR/Λ ! F g:

Definition 1.6.
(1) f : F ! G is smooth if 8 surjection B ! A, F (B) ! F (A) �G(A) G(B) is also surjective.
(2) F is smooth if 8 surjection B ! A, F (B) ! F (A) is surjective (ie. the natural transformation
from F to the trivial functor is smooth).

Definition 1.7. Fix û 2 F̂ (R), where R 2 ÂΛ. Recall that û induces û : hR/Λ ! F .
(1) We call û semi-universal if û : hR/Λ ! F is smooth, and tR/Λ ! tF is bijective (where tR/Λ is the
tangent space for hR/Λ).
(2) We call û universal if û : hR/Λ ! F is an isomorphism.

Definition 1.8. Let R be a local k-algebra with residue field k. A small extension of R is a k-extension
of R by k:

0 k R0 R 0

such that k2 = 0 in R0. In this case k ⊴ R0 can be proved to be principle.

Theorem 1.9. (Schelessinger) Suppose F (k) = �. Recall the notation

˛ : F (A00 �A A
0) ! F (A0) �F (A) F (A00)

.
(1) F has a semi-universal element if and only if the following three conditions hold:

(i) (H̄ ) ˛ is surjective for every small extension A00 ! A.
(ii) (H�) ˛ is bijective when A = k and A00 = k[�].
(iii) (Hf ) dimk(tF ) < 1.

(2) F has a universal element if and only if, moreover, the following condition (H ) holds:

F (A0 �A A
0) ! F (A0) �F (A) F (A0)

is surjective for every small extension A0 ! A.
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Example 1.10. For an algebraic scheme X , define

DefX : A ! (Sets)

A 7! fdeformation of X over Ag/isomorphism

Then DefX(k) = �, and DefX satisfies H̄ and H�.

2 Formal/Algebraic deformations

In this section, we discuss when a series of infinitesimal deformation comes from a ”true” deforma-
tion, that is, a deformation over some A 2 Â.

Definition 2.1. Let X be an algebraic scheme and A 2 Â. A formal deformation of X over A is
�̂ 2 bDefX(A), ie.,

�̂ =

(
�n :

X Xn

k Spec An

fn

�n

)
n�0

;

where An = A/mn+1
A , each �n is a fiber product, and the pullback Xn ˝An

An�1 is isomorphic to Xn�1.

A natural question is, is it true that all these fiber products are pullbacks of some deformation over
A? That is, we ask for the existence of a deformation � : X ! A, making the fiber product diagram:

X � � � Xn�1 Xn � � � X

k � � � Spec An�1 Spec An � � � Spec A

f0

�n�1 �n �

Definition 2.2. If such a deformation

X X

k Spec A

�

exists, we call (A; �n) effective.

Remark 2.3. (Grothendieck) If X is a proper algebraic scheme, then two such ”liftings” must be
isomorphic.

Remark 2.4. A formal deformation is the same as giving a morphism of formal schemes

�̄ : X̄ ! Specf(A)

where X̄ = (X; lim
 

OXn
) and Sepcf(A) is a formal spectrum; Sepcf(A) = bOSpec A = (�; lim

 
Spec(A/mn

A)).

Remark 2.5. A formal deformation is effective is and only if there exists a deformation

X X

k Spec A

4



such that X̄ is the completion of X along X , ie., X̄ = X̂ = (X; lim
 

OX/In
X). For example, for X = Pr ,

the formal deformation
(
�n :

Pr Pr
An

k Spec An

)
is effective; the associated formal scheme is the

completion of Pr
A along Pr , denoted by Pr

A := (Pr ; lim
 

OPr
An
).

Theorem 2.6. (Grothendieck) Let X be a projective scheme.
(1) Let A 2 Â and �̄ : X̄ ! Specf(A) be a formal deformation of X over A. Assume 9j such that the
diagram

X̄ Pr
A

Specf(A)

j

C:S:
�̄

p

is commutative, where p is the projection. Then �̄ is effective.
(2) When H 2(X;OX) = 0, every formal deformation of X is effective.

3 Obstruction space

We first define the space of extension classes, which inherits a module structure.

Definition 3.1. Given an A-algebra R and an A-module I , the space of isomorphism classes of A-
extensions of R by I is denoted by ExA(R; I ); we denote an extension

0 I R0 R 0

by (R0; ') and its class by [R0; ']. Here, we always demand I 2 = 0.

Definition 3.2. Let F be a functor of Artin rings. An obstruction space for F is a vector space over
k, denoted by v(F ), such that 8A 2 AΛ, 8� 2 F (A), there is a linear transformation �v : ExΛ(A; k) !

v(F ), with

ker �v =
n
[ 0 I Ã A 0 ] j � 2 im(F (Ã) ! F (A))

o
:

Remark 3.3. Take F to be a deformation functor and consider an deformation � 2 F (A). Intuitively,
the kernel of �v collects all extension classes that lift �.

3.1 Module structure on ExA(R; I )

An extension is called trivial if it has a section, that is, it splits. A trivial extension can be
constructed by considering the A-algebra R ˜̊ I , whose module structure is R˚ I , and multiplication is
given by (r; i) � (s; j ) := (rs; rj + si). With the projection p : R ˜̊ I ! R, (R ˜̊ I; p) is clearly a trivial
extension.

Remark 3.4. In fact, every trivial extension (R0; ') is isomorphic to (R ˜̊ I; p).
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The module structure on ExA(R; I ) is based on two operations.

Definition 3.5. (pullback) Given

(R0; ') : 0 I R0 R 0
'

;

and f : S ! R an A-algebra homomorphism, the pullback of (R0; ') by f is the A-extension f �(R0; '):

f �(R0; ') : 0 I R0 �R S S 0 2 ExA(S; I )

Definition 3.6. (pushout) Given (R0; ') and � : I ! J an R-module homomorphism, the pushout of
(R0; ') by � is the A-extension ��(R0; '):

��(R
0; ') : 0 J R0

`
I J R 0 2 Ex(R; J );

where
R0
a

I

J :=
R0 ˜̊ J

f(�˛(i); �(i)) j i 2 I g
:

Definition 3.7. Given [R0; '] and [R00;  ] 2 ExA(R; I ), we have the following diagram:

0 0 0

I ˚ I I I

0 I R0 �R R
00 R0 0

0 I R00 R 0

0 0 0

;

which defines (R0�RR
00; �) : 0 I I R0 �R R

00 R 0
� . Let ı : I ˚I ! I

be defined by (i; j ) 7! i + j . Then the addition is

[R0; '] + [R00; '] := [ı�p(R
0
�R R

00; ı)]:

On the other hand, for [R0; varphi ] 2 ExA(R; I ), r 2 R, let r : I ! I be the multiplication by r. Define
r � [R0; '] := [r�(R

0; ')]. The identity element in ExA(R; I ) is the trivial extension [R ˜̊ I; p].

4 More on DefB0

Here we give more concrete examples of the deformation functor DefB0
.

Definition 4.1. ExA(R;R) =: T 1
R/A is the first cotangent module of R over A.
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Definition 4.2. (extension of schemes) Let X be an S-scheme. An extension of X over S is

E : 0 ! I ! OX 0 ! OX ! 0;

where I is an OX -module with I 2 = 0 and ' is an OS -algebra homomorphism.
Define Ex(X/S; I ) to be the isomorphism classes of extensions. The trivial extension OX ˜̊ I can be
defined similarly as in the module case.

Theorem 4.3. Let X be a finite type S-scheme, and both are algebraic scheme. Suppose I is locally
free with finite rank on S , and X is reduced and S-smooth on a dense open set. Then

Ex(X/S; I ) Š Ext1OX
(ΩX/S ; I )

proof. The maps are given by

Ex(X/S; I ) !Ext1OX
(ΩX/S ; I )�

0 ! I ! OX 0 ! OX ! 0
�

7!

�
0 ! I ! ΩX 0/S jX ! ΩX/S ! 0

�
and

Ext1OX
(ΩX/S ; I ) !Ex(X/S; I )�

0 ! I ! A ! ΩX/S ! 0
�

7!

�
0 ! I ! A �ΩX/S

OX ! OX ! 0
�
;

where, the algebra structure on A �ΩX/S
OX is (a; f ) � (a0; f 0) := (fa0 + f 0a; ff 0).

Corollary 4.4. T 1
X Š Ext1OX

(Ω1
X ;OX).

Proposition 4.5. For a k-algebra B0, DefB0
(k[�]) Š T 1

B0
.

Remark 4.6. Suppose B0 = k[x1; :::; xd ]/J , with J prime. Then there is an exact sequence:

0 ! Hom(ΩB0/k;ΩB0
) ! Hom(Ωk[x1;:::;xd ]/k ˝ B0; B0) ! Hom(J /J 2; B0) ! T 1

B0
! 0;

and thus T 1
B0

can be computed. The result is: If J is generated by a regular sequence, then

T 1
B0

Š
k[x1; :::; xd ]

n 0BB@
@f1

@x1

:::
@fn

@x1

1CCA ; � � � ;
0BB@

@f1

@xd

:::
@fn

@xd

1CCA
! ˝k[x1;:::;xd ] B0:

For example,

(1) For hypersurface B0 = V (f ), T 1
B0

Š
k[x1; :::; xd ]

(f; @f

@x1
; :::; @f

@xd
)
.

(2) For f = x2 � y2, T 1
B0

Š
k[x; y]

(x2 � y2; x; y)
Š k;

For f = y3 � x2, T 1
B0

Š
k[x; y]

(y3 � x2; y2; x)
Š k2.
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5 Obstruction space for a nonsingular algebraic variety

Proposition 5.1.
(1) For a nonsingular algebraic variety X , H 2(X; TX) is an obstruction space for DefX .
(2) Let e : 0 ! (t) ! Ã ! A ! 0 be a small extension. Then, if o�(e) = 0, there exists a transitive
action of H 1(X; TX) on fliftings to Ãg.

Example 5.2.

(1) Nonsingular curves are unobstructed.

(2) Let X be nonsingular. Then H 1(X; TX) = 0 ” X is rigid. Indeed, for the ”if” part, note that
the first order deformation is trivial and use statement (2) in the proposition.
In particular, Pn1 � � � � � Pnk is rigid.

6 Second cotangent module and obstructions

In this section we introduce another obstruction space for DefB0
, other than H 2(X; TX).

Let B0 = P /J , where P is a smooth k-algebra. Take

� : 0 R F J 0;� j

where F is free over P . Define � :
V2

F ! F by x ^ y 7! (jx)y � (jy)x, and let Rtr := im(�) be the
module of trivial relations. The second cotangent module of B0 is the B0-module defined by the exact
sequence:

HomB0
(J /J 2; B0) ! HomB0

(F ˝P B0; B0) ! HomB0
(R/Rtr ; B0) ! T 2

B0
! 0:

Example 6.1. If J = (f1; :::; fn), and F = P n, then R/Rtr = H1(K�(f1; :::; fn)), ie., the first coho-
mology group of the Koszul complex. Therefore, if J is generated by a regular sequence, then T 2

B0
= 0,

since R/Rtr = 0.

Definition 6.2. For an algebraic scheme X , let T 2
X be the sheaf glued by T 2

B0
. It’s the ”second cotangent

sheaf”.

Proposition 6.3. T 2
B0

is an obstruction space for DefB0
.

Remark 6.4. Let X = Spec B0 and dimk(T
1
B0
) < 1. By Schlessinger’s theorem, there exists a

semiuniversal element (R; f�ng), and in fact we have the inequalities

dimk(T
1
B0
) � dim(R) � dimk(T

1
B0
) � dimk(T

2
B0
):

Moreover, the first is an equality if and only if X0 is unobstructed; in particular if B0 is l.c.i., then X
is unobstructed.
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7 Local Hilbert functor

Let X �C:S: Y be algebraic schemes. A family of deformations of X in Y , parametrized by S , is a
fiber product

X X Y � S

k S

�:f lat
�

:

This defines a functor

HY
X : A !(Sets)

A 7!fdeformations of X in Y over Ag/isomorphisms;

called the local Hilbert functor of X in Y .

Proposition 7.1.
(1) HY

X satisfies H0, H�, H̄ and H in Schlessinger’s theorem.
(2) HY

X (k[�]) = H 0(X;NX/Y ).

Proposition 7.2. If X � Y is a regular closed embedding, then H 1(NX/Y ) is an obstruction space for
HY

X .

8 Deformation of morphism leaving domain and target fixed

In this section we consider the following fiber product:

X X � S

Y Y � S

k S

f F

�:projection

with � ı F flat. This is a deformation of f wfdat (with fixed domain and target). The associated
deformation functor is DefX/f /Y : A ! (Sets).

Proposition 8.1. Let f : X ! Y be a morphism between algebraic schemes, with X projective, reduced,
and Y nonsingular. Then:
(1) DefX/f /Y Š HX�Y

Γf

(2) DefX/f /Y (k[�]) = H 0(X; f �TY )

(3) H 1(X; f �TY ) is an obstruction space for DefX/f /Y .

Remark 8.2. The reducibility and nonsingularity are used only in (2) and (3).

Example 8.3. Suppose P1 Š R � S , S is nonsingular, and E2 = �n � �1, ie. degOE (E) = �n.
Consider the SES

0 TE TS jE NE/S 0 :
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Note Ext1OE
(NE/S ; TE ) Š H 1(E;OE (2) ˚ OE (n)) = 0, and thus TS jE Š OE (2) ˚ OE (�n) has h0 = 3.

This means, even though E is rigid in S , the inclusion i : R ! S has 3 dimensional family of
deformations.

9 Deformation of morphism with target fixed

In this section, the fiber product diagram becomes more general:

X X

Y Y � S

k S

f F

�:projection

again with � ı F flat. This is a deformation of f with target Y . An isomorphism between such two
deformations is commutative diagrams

X

X X 0

S

� ; and

X

Y � S

X 0

� :

The associated deformation functor is Deff /Y . We say a deformation with target fixed is locally trivial,
if the very deformation of X

X X

k S

is locally trivial, ie. there exists an open cover U = fUigi2I such that for all i , X jUi
is a trivial

deformation of Ui . The associated functor is denoted by Def0
f /Y

.

Definition 9.1. Let f : X ! Y be a morphism between algebraic schemes, with X projective, and let
U = fUigi2I be an open affine cover of X . Define

DX/Y :=
f(v; t) 2 C0(U ; f �TY ) � Z1(U ; TX) j ıv = df (t)g

(df (w); ıw) j w 2 C0(U ; TX)
and

D1
X/Y :=

f(�; s) 2 C1(U ; f �TY ) � Z2(U ; TX) j ı� = df (s)g

(df (u); ıu) j u 2 C1(U ; TX)
;

where ı is the coboundary map in Cech complex and d : TX ! f �TY .

Theorem 9.2. With the above settings,
(1) Def0

f /Y
has a semiuniversal element.

(2) Def0
f /Y

(k[�]) = DX/Y ; an obstruction space is D1
X/Y .
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