Formal Deformation Theory and Examples of Deformation Functors

Kuo Tzu-Ang

0 Notations and basic definitions

Notation 0.1. We work over $k=\bar{k}$; all schemes are over k. Let
$\mathcal{A}=$ the category of local artinian k-algebras with residue field k;
$\hat{\mathcal{A}}=$ the category of complete local noetherian k-algebras with residue field k;
$\mathcal{A}^{*}=$ the category of local noetherian k-algebras with residue field k. Note $\mathcal{A} \supset \hat{\mathcal{A}} \supset \mathcal{A}^{*}$. An algebraic schemes means a scheme over k of finite type.

Definition 0.2. Let X be an algebraic scheme. A deformation of X parametrized by S is a fiber product

Morphism between deformations is a ϕ making a commutative diagram

We denote a deformation by (S, η). A deformation is called infinitesimal if $S=$ Spec A for some $A \in \mathcal{A}$; $i t$'s called first-order if $S=$ Spec $k[\epsilon]$.

Remark 0.3. Let (S, η) be a deformation. A morphism of algebraic schemes $\left(S^{\prime}, s^{\prime}\right) \rightarrow(S, s)$ induces a fiber product digram:

in particular $\left(S^{\prime}, \eta^{\prime}\right)$ is a deformation of X over S^{\prime}. When $S^{\prime}=k[\epsilon]$, this construction yields a map $\rho: T_{S, s} \rightarrow \operatorname{Def}_{X}(k[\epsilon])$. If X is a smooth variety, $\operatorname{Def}_{X}(k[\epsilon])$ coincides with $H^{1}\left(X, T_{X}\right)$, and in this case we call $\rho: T_{S, s} \rightarrow H^{1}\left(X, T_{X}\right)$ the Kodaira-Spencer map.

Remark 0.4. (cf. Lemma 1.2.3 in [1]) Suppose $Z_{0} \subseteq_{\text {c.s. }} Z$ and $\mathcal{I}_{Z_{0}}$ is nilpotent (where "C.S." stands for "closed subscheme"). Then the affineness of Z_{0} implies that of Z. Consequently, every infinitesimal deformation of an affine scheme is affine.

Remark 0.5. Suppose $X=$ Spec B_{0} is affine and we have a morphism between infinitesimal deformation:

Then, $B \otimes_{A} k \cong B_{0} \cong B^{\prime} \otimes_{A} k$ and so $\tilde{\phi}: B / \mathfrak{m}_{A} B \rightarrow B^{\prime} / \mathfrak{m}_{A} B^{\prime}$ is an isomorphism. Using flatness and Nakayama lemma, one can show that ϕ is an isomorphism as well.

1 Functor of Artin rings

Notation 1.1. For $\Lambda \in \mathcal{A}^{*}$, consider the following categories:
$\mathcal{A}_{\Lambda}=$ the category of local artinian Λ-algebras with residue field k;
$\hat{\mathcal{A}}_{\Lambda}=$ the category of complete local noetherian Λ-algebras with residue field k;
$\mathcal{A}_{\Lambda}^{*}=$ the category of local noetherian Λ-algebras with residue field k.
Definition 1.2. A functor of Artin rings is a covariant functor

$$
F: \mathcal{A}_{\Lambda} \rightarrow(\text { Sets }) \text {, where } \Lambda \in \mathcal{A}^{*}
$$

We say F is prorepresentable if $F \cong h_{R / \Lambda}: A \mapsto \operatorname{Hom}_{\hat{\mathcal{A}_{\Lambda}}}(R, A)$ for some $R \in \hat{\mathcal{A}_{\Lambda}}$.
(Of course, a representable functor is prorepresentable.)
Remark 1.3. A fiber product

in \mathcal{A}_{Λ} induces $\alpha: F\left(A^{\prime} \times_{A} A^{\prime \prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime \prime}\right)$. If $F(k)=*$ and α is bijective when $A=k$ and $A^{\prime \prime}=k[\epsilon]$, then $F(k[\epsilon])$ inherits a structure of k-vector space, as follows: The addition $F(k[\epsilon]) \times$ $F(k[\epsilon]) \rightarrow F(k[\epsilon])$ is induced by

$$
\begin{aligned}
k[\epsilon] \times_{k} k[\epsilon] & \rightarrow k[\epsilon] \\
\left(a+b \epsilon, a+b^{\prime} \epsilon\right) & \mapsto a+\left(b+b^{\prime}\right) \epsilon,
\end{aligned}
$$

the multiplication by $c \in k$ is

$$
\begin{gathered}
k[\epsilon] \rightarrow k[\epsilon] \\
a+b \epsilon \mapsto a+(c b) \epsilon,
\end{gathered}
$$

and the zero element 0 is $\operatorname{im}(F(k) \rightarrow F(k[\epsilon])) . F(k[\epsilon])=: t_{F}$ is called the tangent space of F. For a natural transformation $f: F \rightarrow G$ between such functors, $d f: t_{F} \rightarrow t_{G}$ is called the differential of f. It is k-linear.

Definition 1.4. (formal element) A functor of Artin rings $F: \mathcal{A}_{\Lambda} \rightarrow$ (Sets) can be extended to $\hat{F}: \hat{\mathcal{A}_{\Lambda}} \rightarrow($ Sets $)$ by setting

$$
\hat{F}(R)=\lim _{\leftarrow} F\left(R / m_{R}^{n+1}\right)(n \geq 0)
$$

and the morphism $\hat{F}(\varphi)$ is given by $\left\{F\left(R / m_{R}^{n+1}\right) \rightarrow F\left(R / m_{S}^{n+1}\right)\right\}_{n \geq 0}$.
An element $\hat{u}=\left\{u_{n} \in F\left(R / m_{R}^{n+1}\right)\right\} \in \hat{F}(R)$ is called a formal element.
Proposition 1.5. Let $R \in \mathcal{A}_{\Lambda}$. Then there exists a bijection

$$
\{\hat{u} \in \hat{F}(R)\} \longleftrightarrow\left\{\text { natural transformations } h_{R / \Lambda} \rightarrow F\right\} .
$$

Definition 1.6.

(1) $f: F \rightarrow G$ is smooth if \forall surjection $B \rightarrow A, F(B) \rightarrow F(A) \times_{G(A)} G(B)$ is also surjective.
(2) F is smooth if \forall surjection $B \rightarrow A, F(B) \rightarrow F(A)$ is surjective (ie. the natural transformation from F to the trivial functor is smooth).

Definition 1.7. Fix $\hat{u} \in \hat{F}(R)$, where $R \in \hat{\mathcal{A}_{\Lambda}}$. Recall that \hat{u} induces $\hat{u}: h_{R / \Lambda} \rightarrow F$.
(1) We call \hat{u} semi-universal if $\hat{u}: h_{R / \Lambda} \rightarrow F$ is smooth, and $t_{R / \Lambda} \rightarrow t_{F}$ is bijective (where $t_{R / \Lambda}$ is the tangent space for $h_{R / \Lambda}$).
(2) We call \hat{u} universal if $\hat{u}: h_{R / \Lambda} \rightarrow F$ is an isomorphism.

Definition 1.8. Let R be a local k-algebra with residue field k. A small extension of R is a k-extension of R by k :

$$
0 \longrightarrow k \longrightarrow R^{\prime} \longrightarrow R \longrightarrow 0
$$

such that $k^{2}=0$ in R^{\prime}. In this case $k \unlhd R^{\prime}$ can be proved to be principle.
Theorem 1.9. (Schelessinger) Suppose $F(k)=*$. Recall the notation

$$
\alpha: F\left(A^{\prime \prime} \times_{A} A^{\prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime \prime}\right)
$$

(1) F has a semi-universal element if and only if the following three conditions hold:
(i) $(\bar{H}) \alpha$ is surjective for every small extension $A^{\prime \prime} \rightarrow A$.
(ii) $\left(H_{\epsilon}\right) \alpha$ is bijective when $A=k$ and $A^{\prime \prime}=k[\epsilon]$.
(iii) $\left(H_{f}\right) \operatorname{dim}_{k}\left(t_{F}\right)<\infty$.
(2) F has a universal element if and only if, moreover, the following condition (H) holds:

$$
F\left(A^{\prime} \times_{A} A^{\prime}\right) \rightarrow F\left(A^{\prime}\right) \times_{F(A)} F\left(A^{\prime}\right)
$$

is surjective for every small extension $A^{\prime} \rightarrow A$.

Example 1.10. For an algebraic scheme X, define

$$
\begin{aligned}
\operatorname{Def}_{X}: \mathcal{A} & \rightarrow(\text { Sets }) \\
A & \mapsto\{\text { deformation of } X \text { over } A\} / \text { isomorphism }
\end{aligned}
$$

Then $\operatorname{Def}_{X}(k)=*$, and Def_{X} satisfies \bar{H} and H_{ϵ}.

2 Formal/Algebraic deformations

In this section, we discuss when a series of infinitesimal deformation comes from a "true" deformation, that is, a deformation over some $A \in \hat{\mathcal{A}}$.

Definition 2.1. Let X be an algebraic scheme and $A \in \hat{\mathcal{A}}$. A formal deformation of X over A is $\hat{\eta} \in \widehat{\operatorname{Def}}_{X}(A)$, ie.,

$$
\hat{\eta}=\left\{\begin{array}{ccc}
& \begin{array}{l}
X \\
\eta_{n}: \\
\\
\\
k
\end{array} \underset{\operatorname{Spec} A_{n}}{\downarrow_{n}} \mathcal{X}_{n} \\
\boldsymbol{J}_{n}
\end{array}\right\}_{n \geq 0}
$$

where $A_{n}=A / m_{A}^{n+1}$, each η_{n} is a fiber product, and the pullback $\mathcal{X}_{n} \otimes_{A_{n}} A_{n-1}$ is isomorphic to \mathcal{X}_{n-1}.
A natural question is, is it true that all these fiber products are pullbacks of some deformation over A ? That is, we ask for the existence of a deformation $\pi: \mathcal{X} \rightarrow A$, making the fiber product diagram:

Definition 2.2. If such a deformation

exists, we call $\left(A, \eta_{n}\right)$ effective.
Remark 2.3. (Grothendieck) If X is a proper algebraic scheme, then two such "liftings" must be isomorphic.

Remark 2.4. A formal deformation is the same as giving a morphism of formal schemes

$$
\bar{\pi}: \overline{\mathcal{X}} \rightarrow \operatorname{Specf}(A)
$$

where $\overline{\mathcal{X}}=\left(X, \lim _{\leftarrow} \mathcal{O}_{\mathcal{X}_{n}}\right)$ and $\operatorname{Sepcf}(A)$ is a formal spectrum; $\operatorname{Sepcf}(A)=\widehat{\mathcal{O}}_{\operatorname{Spec} A}=\left(*, \lim _{\leftarrow} \operatorname{Spec}\left(A / m_{A}^{n}\right)\right)$.
Remark 2.5. A formal deformation is effective is and only if there exists a deformation

such that $\overline{\mathcal{X}}$ is the completion of \mathcal{X} along X, ie., $\overline{\mathcal{X}}=\hat{\mathcal{X}}=\left(X, \lim _{\leftarrow} \mathcal{O}_{\mathcal{X}} / \mathcal{I}_{X}^{n}\right)$. For example, for $X=\mathbb{P}^{r}$, the formal deformation $\left\{\eta_{n}: \underset{k}{\downarrow} \mathbb{P}^{r} \longrightarrow \mathbb{P}_{A_{n}}^{r} \operatorname{Spec}_{A_{n}}\right\}$ is effective; the associated formal scheme is the completion of \mathbb{P}_{A}^{r} along \mathbb{P}^{r}, denoted by $\mathcal{P}_{A}^{r}:=\left(\mathbb{P}^{r}, \lim _{\leftarrow} \mathcal{O}_{\mathbb{P}_{A_{n}}}\right)$.

Theorem 2.6. (Grothendieck) Let X be a projective scheme.
(1) Let $A \in \hat{\mathcal{A}}$ and $\bar{\pi}: \overline{\mathcal{X}} \rightarrow \operatorname{Specf}(A)$ be a formal deformation of X over A. Assume $\exists j$ such that the diagram

is commutative, where p is the projection. Then $\bar{\pi}$ is effective.
(2) When $H^{2}\left(X, \mathcal{O}_{X}\right)=0$, every formal deformation of X is effective.

3 Obstruction space

We first define the space of extension classes, which inherits a module structure.
Definition 3.1. Given an A-algebra R and an A-module I, the space of isomorphism classes of A extensions of R by I is denoted by $\operatorname{Ex}_{A}(R, I)$; we denote an extension

$$
0 \longrightarrow I \longrightarrow R^{\prime} \longrightarrow R \longrightarrow 0
$$

by $\left(R^{\prime}, \varphi\right)$ and its class by $\left[R^{\prime}, \varphi\right]$. Here, we always demand $I^{2}=0$.
Definition 3.2. Let F be a functor of Artin rings. An obstruction space for F is a vector space over k, denoted by $v(F)$, such that $\forall A \in \mathcal{A}_{\Lambda}, \forall \zeta \in F(A)$, there is a linear transformation $\zeta_{v}: \operatorname{Ex}_{\Lambda}(A, k) \rightarrow$ $v(F)$, with

$$
\operatorname{ker} \zeta_{v}=\{[0 \longrightarrow I \longrightarrow \tilde{A} \longrightarrow A \longrightarrow 0] \mid \zeta \in \operatorname{im}(F(\tilde{A}) \rightarrow F(A))\} .
$$

Remark 3.3. Take F to be a deformation functor and consider an deformation $\zeta \in F(A)$. Intuitively, the kernel of ζ_{v} collects all extension classes that lift ζ.

3.1 Module structure on $\operatorname{Ex}_{A}(R, I)$

An extension is called trivial if it has a section, that is, it splits. A trivial extension can be constructed by considering the A-algebra $R \tilde{\oplus} I$, whose module structure is $R \oplus I$, and multiplication is given by $(r, i) \cdot(s, j):=(r s, r j+s i)$. With the projection $p: R \tilde{\oplus} I \rightarrow R,(R \tilde{\oplus} I, p)$ is clearly a trivial extension.

Remark 3.4. In fact, every trivial extension $\left(R^{\prime}, \varphi\right)$ is isomorphic to $(R \tilde{\oplus} I, p)$.

The module structure on $\operatorname{Ex}_{A}(R, I)$ is based on two operations.
Definition 3.5. (pullback) Given

$$
\left(R^{\prime}, \varphi\right): 0 \longrightarrow I \longrightarrow R^{\prime} \xrightarrow{\varphi} R \longrightarrow 0,
$$

and $f: S \rightarrow R$ an A-algebra homomorphism, the pullback of $\left(R^{\prime}, \varphi\right)$ by f is the A-extension $f^{*}\left(R^{\prime}, \varphi\right)$:

$$
f^{*}\left(R^{\prime}, \varphi\right): 0 \longrightarrow I \longrightarrow R^{\prime} \times_{R} S \longrightarrow S \longrightarrow 0 \in \operatorname{Ex}_{A}(S, I)
$$

Definition 3.6. (pushout) Given $\left(R^{\prime}, \varphi\right)$ and $\lambda: I \rightarrow J$ an R-module homomorphism, the pushout of $\left(R^{\prime}, \varphi\right)$ by λ is the A-extension $\lambda_{*}\left(R^{\prime}, \varphi\right)$:

$$
\lambda_{*}\left(R^{\prime}, \varphi\right): 0 \longrightarrow J \longrightarrow R^{\prime} \bigsqcup_{I} J \longrightarrow R \longrightarrow 0 \in \operatorname{Ex}(R, J),
$$

where

$$
R^{\prime} \coprod_{I} J:=\frac{R^{\prime} \tilde{\oplus} J}{\{(-\alpha(i), \lambda(i)) \mid i \in I\}} .
$$

Definition 3.7. Given $\left[R^{\prime}, \varphi\right]$ and $\left[R^{\prime \prime}, \psi\right] \in \operatorname{Ex}_{A}(R, I)$, we have the following diagram:

which defines $\left(R^{\prime} \times_{R} R^{\prime \prime}, \zeta\right): 0 \longrightarrow I \longrightarrow I \longrightarrow R^{\prime} \times_{R} R^{\prime \prime} \xrightarrow{\zeta} R \longrightarrow 0$ Let $\delta: I \oplus I \rightarrow I$ be defined by $(i, j) \mapsto i+j$. Then the addition is

$$
\left[R^{\prime}, \varphi\right]+\left[R^{\prime \prime}, \varphi\right]:=\left[\delta_{*} p\left(R^{\prime} \times_{R} R^{\prime \prime}, \delta\right)\right] .
$$

On the other hand, for $\left[R^{\prime}\right.$, varphi $] \in \operatorname{Ex}_{A}(R, I), r \in R$, let $r: I \rightarrow I$ be the multiplication by r. Define $r \cdot\left[R^{\prime}, \varphi\right]:=\left[r_{*}\left(R^{\prime}, \varphi\right)\right]$. The identity element in $\operatorname{Ex}_{A}(R, I)$ is the trivial extension $[R \tilde{\oplus} I, p]$.

4 More on $\operatorname{Def}_{B_{0}}$

Here we give more concrete examples of the deformation functor $\operatorname{Def}_{B_{0}}$.
Definition 4.1. $\mathrm{Ex}_{A}(R, R)=: T_{R / A}^{1}$ is the first cotangent module of R over A.

Definition 4.2. (extension of schemes) Let X be an S-scheme. An extension of X over S is

$$
\mathcal{E}: 0 \rightarrow I \rightarrow \mathcal{O}_{X^{\prime}} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

where I is an \mathcal{O}_{X}-module with $I^{2}=0$ and φ is an \mathcal{O}_{S}-algebra homomorphism.
Define $\operatorname{Ex}(X / S, I)$ to be the isomorphism classes of extensions. The trivial extension $\mathcal{O}_{X} \tilde{\oplus} I$ can be defined similarly as in the module case.

Theorem 4.3. Let X be a finite type S-scheme, and both are algebraic scheme. Suppose I is locally free with finite rank on S, and X is reduced and S-smooth on a dense open set. Then

$$
\operatorname{Ex}(X / S, I) \cong \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{X / S}, I\right)
$$

proof. The maps are given by

$$
\begin{aligned}
\operatorname{Ex}(X / S, I) & \rightarrow \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{X / S}, I\right) \\
\left(0 \rightarrow I \rightarrow \mathcal{O}_{X^{\prime}} \rightarrow \mathcal{O}_{X} \rightarrow 0\right) & \mapsto\left(\left.0 \rightarrow I \rightarrow \Omega_{X^{\prime} / S}\right|_{X} \rightarrow \Omega_{X / S} \rightarrow 0\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{X / S}, I\right) & \rightarrow \operatorname{Ex}(X / S, I) \\
\left(0 \rightarrow I \rightarrow \mathcal{A} \rightarrow \Omega_{X / S} \rightarrow 0\right) & \mapsto\left(0 \rightarrow I \rightarrow \mathcal{A} \times_{\Omega_{X / S}} \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} \rightarrow 0\right),
\end{aligned}
$$

where, the algebra structure on $\mathcal{A} \times_{\Omega_{X / S}} \mathcal{O}_{X}$ is $(a, f) \cdot\left(a^{\prime}, f^{\prime}\right):=\left(f a^{\prime}+f^{\prime} a, f f^{\prime}\right)$.
Corollary 4.4. $T_{X}^{1} \cong \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right)$.
Proposition 4.5. For a k-algebra B_{0}, $\operatorname{Def}_{B_{0}}(k[\epsilon]) \cong T_{B_{0}}^{1}$.
Remark 4.6. Suppose $B_{0}=k\left[x_{1}, \ldots, x_{d}\right] / J$, with J prime. Then there is an exact sequence:

$$
0 \rightarrow \operatorname{Hom}\left(\Omega_{B_{0} / k}, \Omega_{B_{0}}\right) \rightarrow \operatorname{Hom}\left(\Omega_{k\left[x_{1}, \ldots, x_{d}\right] / k} \otimes B_{0}, B_{0}\right) \rightarrow \operatorname{Hom}\left(J / J^{2}, B_{0}\right) \rightarrow T_{B_{0}}^{1} \rightarrow 0
$$

and thus $T_{B_{0}}^{1}$ can be computed. The result is: If J is generated by a regular sequence, then

$$
T_{B_{0}}^{1} \cong \frac{k\left[x_{1}, \ldots, x_{d}\right]^{n}}{\left(\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}} \\
\vdots \\
\frac{\partial f_{n}}{\partial x_{1}}
\end{array}\right), \cdots,\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{d}} \\
\vdots \\
\frac{\partial f_{n}}{\partial x_{d}}
\end{array}\right)\right.} \otimes_{k\left[x_{1}, \ldots, x_{d}\right]} B_{0} .
$$

For example,
(1) For hypersurface $B_{0}=V(f), T_{B_{0}}^{1} \cong \frac{k\left[x_{1}, \ldots, x_{d}\right]}{\left(f, \frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{d}}\right)}$.
(2) For $f=x^{2}-y^{2}, T_{B_{0}}^{1} \cong \frac{k[x, y]}{\left(x^{2}-y^{2}, x, y\right)} \cong k$;

For $f=y^{3}-x^{2}, T_{B_{0}}^{1} \cong \frac{k[x, y]}{\left(y^{3}-x^{2}, y^{2}, x\right)} \cong k^{2}$.

5 Obstruction space for a nonsingular algebraic variety

Proposition 5.1.

(1) For a nonsingular algebraic variety $X, H^{2}\left(X, T_{X}\right)$ is an obstruction space for $D e f_{X}$.
(2) Let $e: 0 \rightarrow(t) \rightarrow \tilde{A} \rightarrow A \rightarrow 0$ be a small extension. Then, if $o_{\zeta}(e)=0$, there exists a transitive action of $H^{1}\left(X, T_{X}\right)$ on $\{$ liftings to $\tilde{A}\}$.

Example 5.2.

(1) Nonsingular curves are unobstructed.
(2) Let X be nonsingular. Then $H^{1}\left(X, T_{X}\right)=0 \Longleftrightarrow X$ is rigid. Indeed, for the "if" part, note that the first order deformation is trivial and use statement (2) in the proposition.
In particular, $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}$ is rigid.

6 Second cotangent module and obstructions

In this section we introduce another obstruction space for $\operatorname{Def}_{B_{0}}$, other than $H^{2}\left(X, T_{X}\right)$.
Let $B_{0}=P / J$, where P is a smooth k-algebra. Take

$$
\eta: 0 \longrightarrow R \xrightarrow{\iota} F \xrightarrow{j} J \longrightarrow
$$

where F is free over P. Define $\lambda: \bigwedge^{2} F \rightarrow F$ by $x \wedge y \mapsto(j x) y-(j y) x$, and let $R^{t r}:=\operatorname{im}(\lambda)$ be the module of trivial relations. The second cotangent module of B_{0} is the B_{0}-module defined by the exact sequence:

$$
\operatorname{Hom}_{B_{0}}\left(J / J^{2}, B_{0}\right) \rightarrow \operatorname{Hom}_{B_{0}}\left(F \otimes_{P} B_{0}, B_{0}\right) \rightarrow \operatorname{Hom}_{B_{0}}\left(R / R^{t r}, B_{0}\right) \rightarrow T_{B_{0}}^{2} \rightarrow 0
$$

Example 6.1. If $J=\left(f_{1}, \ldots, f_{n}\right)$, and $F=P^{n}$, then $R / R^{t r}=H_{1}\left(K_{\bullet}\left(f_{1}, \ldots, f_{n}\right)\right)$, ie., the first cohomology group of the Koszul complex. Therefore, if J is generated by a regular sequence, then $T_{B_{0}}^{2}=0$, since $R / R^{t r}=0$.

Definition 6.2. For an algebraic scheme X, let T_{X}^{2} be the sheaf glued by $T_{B_{0}}^{2}$. It's the "second cotangent sheaf".

Proposition 6.3. $T_{B_{0}}^{2}$ is an obstruction space for $\operatorname{Def}_{B_{0}}$.
Remark 6.4. Let $X=\operatorname{Spec} B_{0}$ and $\operatorname{dim}_{k}\left(T_{B_{0}}^{1}\right)<\infty$. By Schlessinger's theorem, there exists a semiuniversal element $\left(R,\left\{\eta_{n}\right\}\right)$, and in fact we have the inequalities

$$
\operatorname{dim}_{k}\left(T_{B_{0}}^{1}\right) \geq \operatorname{dim}(R) \geq \operatorname{dim}_{k}\left(T_{B_{0}}^{1}\right)-\operatorname{dim}_{k}\left(T_{B_{0}}^{2}\right)
$$

Moreover, the first is an equality if and only if X_{0} is unobstructed; in particular if B_{0} is l.c.i., then X is unobstructed.

7 Local Hilbert functor

Let $X \subseteq C . S$. Y be algebraic schemes. A family of deformations of X in Y, parametrized by S, is a fiber product

This defines a functor

$$
\begin{aligned}
H_{X}^{Y}: \mathcal{A} & \rightarrow(\text { Sets }) \\
A & \mapsto\{\text { deformations of } X \text { in Y over } \mathrm{A}\} / \text { isomorphisms }
\end{aligned}
$$

called the local Hilbert functor of X in Y.
Proposition 7.1.
(1) H_{X}^{Y} satisfies $H_{0}, H_{\epsilon}, \bar{H}$ and H in Schlessinger's theorem.
(2) $H_{X}^{Y}(k[\epsilon])=H^{0}\left(X, N_{X / Y}\right)$.

Proposition 7.2. If $X \subseteq Y$ is a regular closed embedding, then $H^{1}\left(N_{X / Y}\right)$ is an obstruction space for H_{X}^{Y}.

8 Deformation of morphism leaving domain and target fixed

In this section we consider the following fiber product:

with $\pi \circ F$ flat. This is a deformation of f wfdat (with fixed domain and target). The associated deformation functor is $\operatorname{Def}_{X / f / Y}: \mathcal{A} \rightarrow($ Sets $)$.

Proposition 8.1. Let $f: X \rightarrow Y$ be a morphism between algebraic schemes, with X projective, reduced, and Y nonsingular. Then:
(1) $\operatorname{Def}_{X / f / Y} \cong H_{\Gamma_{f}}^{X \times Y}$
(2) $\operatorname{Def}_{X / f / Y}(k[\epsilon])=H^{0}\left(X, f^{*} T_{Y}\right)$
(3) $H^{1}\left(X, f^{*} T_{Y}\right)$ is an obstruction space for $\operatorname{Def}_{X / f / Y}$.

Remark 8.2. The reducibility and nonsingularity are used only in (2) and (3).
Example 8.3. Suppose $\mathbb{P}^{1} \cong R \subseteq S, S$ is nonsingular, and $E^{2}=-n \leq-1$, ie. $\operatorname{deg} \mathcal{O}_{E}(E)=-n$. Consider the SES

$$
\left.0 \longrightarrow T_{E} \longrightarrow T_{S}\right|_{E} \longrightarrow N_{E / S} \longrightarrow 0
$$

Note $\operatorname{Ext}_{\mathcal{O}_{E}}^{1}\left(N_{E / S}, T_{E}\right) \cong H^{1}\left(E, \mathcal{O}_{E}(2) \oplus \mathcal{O}_{E}(n)\right)=0$, and thus $\left.T_{S}\right|_{E} \cong \mathcal{O}_{E}(2) \oplus \mathcal{O}_{E}(-n)$ has $h^{0}=3$. This means, even though E is rigid in S, the inclusion $i: R \rightarrow S$ has 3 dimensional family of deformations.

9 Deformation of morphism with target fixed

In this section, the fiber product diagram becomes more general:

again with $\pi \circ F$ flat. This is a deformation of f with target Y. An isomorphism between such two deformations is commutative diagrams

The associated deformation functor is $\operatorname{Def}_{f / Y}$. We say a deformation with target fixed is locally trivial, if the very deformation of X

is locally trivial, ie. there exists an open cover $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ such that for all $i,\left.\mathcal{X}\right|_{U_{i}}$ is a trivial deformation of U_{i}. The associated functor is denoted by $\operatorname{Def}_{f / Y}$.

Definition 9.1. Let $f: X \rightarrow Y$ be a morphism between algebraic schemes, with X projective, and let $\mathcal{U}=\left\{U_{i}\right\}_{i \in I}$ be an open affine cover of X. Define

$$
\begin{aligned}
D_{X / Y} & :=\frac{\left\{(v, t) \in \mathcal{C}^{0}\left(\mathcal{U}, f^{*} T_{Y}\right) \times \mathcal{Z}^{1}\left(\mathcal{U}, T_{X}\right) \mid \delta v=d f(t)\right\}}{(d f(w), \delta w) \mid w \in \mathcal{C}^{0}\left(\mathcal{U}, T_{X}\right)} \text { and } \\
D_{X / Y}^{1} & :=\frac{\left\{(\zeta, s) \in \mathcal{C}^{1}\left(\mathcal{U}, f^{*} T_{Y}\right) \times \mathcal{Z}^{2}\left(\mathcal{U}, T_{X}\right) \mid \delta \zeta=d f(s)\right\}}{(d f(u), \delta u) \mid u \in \mathcal{C}^{1}\left(\mathcal{U}, T_{X}\right)},
\end{aligned}
$$

where δ is the coboundary map in Cech complex and $d: T_{X} \rightarrow f^{*} T_{Y}$.
Theorem 9.2. With the above settings,
(1) $\operatorname{Def}_{f / Y}^{\prime}$ has a semiuniversal element.
(2) $D e f_{f / Y}(k[\epsilon])=D_{X / Y}$; an obstruction space is $D_{X / Y}^{1}$.

10 Reference

[1] Edoardo Sernesi, Deformations of Algebraic Schemes.

