
Note on the Riemann-Hilbert Problem and the Birkhoff
Problem on the Complex Projective Line

李自然 (Speaking date: Dec. 5 & 7, 2016)

This note is based on Chapters IV and V of [Sabbah], C. Sabbah’s book ”Isomon-
odromic Deformations and Frobenius Manifolds: An Introduction.”

1 The Riemann-Hilbert problem on P1

1.1 Statement of the problem
The Riemann-Hilbert problem. Consider Σ = {m0 = ∞,m1, · · · ,mp} ⊂ P1 =
CP1, and give a monodromy representation

ρ : π1(P1 \ Σ, o) = π1(C \ {m1, · · · ,mp}, o)→ GL(d,C).

Recall ρ can be determined by monodromies T1, · · · , Tp ∈ GL(d,C) around m1, · · · ,mp.
The Riemann-Hilbert correspondence gives a meromorphic bundle (M d,∇) on P1 which
has regular singularities at Σ and which associates to ρ. The problem here is: Can we
find a global frame for M so that the 1-form of ∇ takes the form

p∑
k=1

Ak

t−mk

where t is the coordinate of C ⊂ P1 and A1, · · · , Ap ∈M(d,C)?

Remark. If this problem has a solution, in general we do not have Tk = exp(2πiAk).

1.2 Observations
Observation 1.1. The Riemann-Hilbert problem on P1 has a solution if and only if
there is a trivial lattice (E ≃ Od

P1 ,∇) of (M ,∇).

Sketch of proof: Indeed, (E ,∇) has a global connection matrix Ω ∈ Γ(T ∗OP1(Σ))
with logarithmic poles along Σ. We may reduce to the case Ω = scalar 1-form, which
can be verified with the aid of Γ(P1,Ω1

P1(∞)) ≃ Γ(P1,OP1(−1)) = 0. ♢

Observation 1.2. There is a trivial lattice of (M ,∇) if and only if there is a quasi-
trivial lattice (E ,∇) (namely E ≃ OP1(l)⊕d for some l ∈ Z) of (M ,∇).

Proof: If we have a quasi-trivial lattice E ≃ OP1(l)⊕d, OP1(−l · ∞)⊗OP1
E ≃ O⊕d

P1 is
a trivial lattice of M .

Therefore, the Riemann-Hilbert problem on P1 is now equivalent to finding a quasi-
trivial lattice of (M ,∇).
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1.3 Solutions to the Riemann-Hilbert problem
The following theorem gives solutions to the Riemann-Hilbert problem on some

suitable conditions:

Theorem 1.3 ([Sabbah, Thm.IV.2.2]). Consider the following setting:

• (M ,∇) is a meromorphic bundle over P1 having Σ = {m0, · · · ,mp} ⊂ P1 as its
only singularities;

• (E ,∇) ⊂ (M ,∇) is a lattice which is of pole order r1, · · · , rp ≥ 0 at m1, · · · ,mp

respectively, and which is of logarithmic pole at m0 with local connection 1-form
A

dt
t

(A ∈M(d,C)) where t is a local coordinate centered at m0.

Assume moreover that one of the following two conditions is fulfilled:

(a) (Plemelj) A is semi-simple;

(b) (Bolibrukh-Kostov) (M ,∇) is irreducible, say there does not exist 0 ̸= N ( M
such that ∇(N ) ⊂ Ω1

P1 ⊗OP1
N .

Then there is a lattice E ′ ⊂ E which is quasi-trivial, logarithmic at m0 and which is
the same as E when both are restricted to P1 \ {m0}.

Proof: We only prove (a) here. First we take the following lemmas for granted:

Lemma 1.4 (Birkhoff-Grothendieck, [Sabbah, Thm.I.4.4]). For any bundle E
on P1 with rank d, ∃! {a1 ≥ · · · ≥ ad} ⊂ Z such that E ≃ OP1(a1)⊕ · · · ⊕ OP1(ad).

Lemma 1.5 ([Sabbah, Cor.I.4.14]). In the decomposition of Lemma 1.4, let us define
the defect of E to be δ(E) :=

∑d
k=1(a1 − ak) ≥ 0. If L0 ⊂ Em0 (m0 ∈ P1) is NOT

contained in OP1(a1)m0 (via E ≃ ⊕d
k=1OP1(ak)), then δ(E(L0m0)) = δ(E) − 1. (Here

E (L0m0) is a subsheaf of E (m0) whose germ at m ̸= m0 is the same of that of E (m0),
and whose germ at m0 is modified as the set of meromorphic sections of Em0 having at
most a simple pole at m0 with the residue at m0 lying in L0.)

Now we come back to prove (a):

• ∇ = A
dt
t

(A = diag (α1, · · · , αd)) locally ⇒ there is a local basis e1, · · · , ed such

that ∇ek =
αk

t
ek.

• There is a line L0 ⊂ Em0 passing through ek(m0) for some k such that L0 ̸⊂
OP1(α1)m0 . Now may assume L0 = C · ed(m0). Then {e1, · · · , ed−1,

ed
t
} is a

local basis for (E (L0m0),∇ = diag (α1, · · · , αd−1, αd − 1)); also, ∇(ed/t) = (αd −
1/t)(ed/t). So δ(E(L0m0)) < δ(E).
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• Inductively, we get a zero defect lattice E ′′ ⊂ E (δ(E)). Then the desired E ′ may
be taken as E ′ = E ′′(−δ(E)).

Corollary 1.5.1 ([Sabbah, Cor.IV.2.6]). In Theorem 1.3, the two conditions (a)
and (b) can be replaced by the following conditions (a’) and (b’) respectively, such that
Theorem 1.3 is still valid:

(a’) (Plemelj) The monodromy at m0 is semi-simple;

(b’) (Bolibrukh-Kostov) ρ : π1(P1\Σ)→ GL(d,C) associated to (M ,∇) is irreducible.

2 The Birkhoff problem on P1

2.1 Statement of the problem
Three equivalent Birkhoff problems.

(a) Local analytic version: Assume τ ∈ D ⊂ C local coordinate, (D: the unit disc),
A(τ): d× d meromorphic square matrix of pole order (Poincaré rank) r at τ = 0.
Does there exist a change of variables P (τ) ∈ GL(d,O0) such that

B(τ) := P−1AP + P−1P ′ =
B−(r+1)

τ r+1
+ · · ·+ B−1

τ

for some constant matrices B−(r+1), · · · , B−1?

(b) Sheaf version: Assume (M d,∇) is a meromorphic bundle on P1 which has regular
singularity at ∞ and which has a pole of order r ≥ 1 at 0 with a specified
local lattice E 0. Does there exist a lattice (E ,∇) of (M ,∇) such that (E ,∇) is
logarithmic at ∞, equal to E 0 near 0, and trivial?

(c) Algebraic version: Assume (M,∇) ≃ C[τ, τ−1]d has poles at 0 and ∞ only where
∞ is regular. Also assume E0 ⊂ M is a lattice of order r ≥ 1 and a free C[τ ]-
module. Does there exist a lattice E∞ ⊂ M on U∞ (a chart around ∞) which is
logarithmic at ∞ and which satisfies E0 = (E0 ∩ E∞)⊕ τE0?

2.2 Solutions to the Birkhoff problems
Theorem 2.1 ([Sabbah, Cor.IV.5.7]). If (M ,∇) is irreducible or if the monodromy
of its restriction to C× is semi-simple, then the Birkhoff problems are solvable.

Proof: Utilize the results of Theorem 1.3 and Corollary 1.5.1.

Theorem 2.2 (M. Saito’s criterion, [Sabbah, Thm.IV.5.9 & Lem.IV.5.10]).
Consider the following setting:
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• τ, τ ′ are coordinates around 0,∞ ∈ P1 respectively such that ττ ′ = 1;

• M ′(= M∞) = M∞;

• V ′ is a Deligne (logarithmic) lattice of (M ′,∇) such that Re(Spec(ResV ′∇)) ⊂
(−1, 0] ⊂ R;

• V′ is the C[τ ′]-submodule of M whose analytic germ at∞, defined as C{τ ′}⊗C[τ ′]
V′, is V ′;

• H ′ := V ′/τ ′V ′ = V′/τ ′V′ is equipped with the monodromy T ′ = exp(2πiResV ′∇);

• G′
• :=

V′ ∩ τ
′•E0

(τ ′V′) ∩ τ ′•E0

is an increasing exhaustive filtration on H ′.

Then Birkhoff problem (c) has a solution if and only if one of the following equivalent
conditions holds:

• H ′ = ⊕p∈ZH
′
p such that T ′(H ′

p) ⊂ H ′
p ⊕H ′

p+1 ⊕ · · · for any p and G′
k = ⊕H ′

p for
any k;

• There is an exhaustive decreasing filtration H
′• of H ′ which is stable by T ′ (i.e.

T ′(H
′•) = H

′•) and which is opposite to G′
• (i.e. for all k ̸= l, H

′l ∩ G′
k =

(H
′l+1 ∩G′

k) + (H
′l ∩G′

k−1)).

3 The Fourier-Laplace transform

3.1 The 1-variable Weyl algebra and its modules
The Weyl algebra in a variable t is defined as

C⟨t, ∂t⟩ := {The free C-algebra generated by two variables t and ∂t}/([∂t, t] = 1).

One can regard ∂t is the Weyl algebra as ”differentiation with respect to t.” The Weyl
algebra C⟨t, ∂t⟩ contains C[t] and C[∂t] as sub-algebras, and is itself a left and right
Noetherian ring (as can be verified with reference to the proof of the Hilbert basis
theorem for polynomial rings).

We would like to mention the following properties and definitions for modules over
the Weyl algebra C⟨t, ∂t⟩:

• Any right C⟨t, ∂t⟩-module M is endowed with a canonical left C⟨t, ∂t⟩-module
structure via P ·m = m · P T for m ∈M and P ∈ C⟨t, ∂t⟩, and vice versa.

• We define the holonomic C⟨t, ∂t⟩-modules to be those C⟨t, ∂t⟩-module M of
rank 1, i.e. those M isomorphic to(

C⟨t, ∂t⟩
(P )

)/
(torsion submodule)

for some P ∈ C⟨t, ∂t⟩ \ C.
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• A lattice E of a C⟨t, ∂t⟩-module M is defined as a C[t]-submodule of M for which
M = C⟨t, ∂t⟩ ⊗C[t] E.

• The singularities of a holonomic C⟨t, ∂t⟩-module M at t = 0 (for example) is
defined to be the same as that of the analytic germ M := C{t}[t−1]⊗C[t] M of M
at t = 0.

• M =
C⟨t, ∂t⟩
(P )

has a regular singularity at t = 0 if and only if P ∈ C⟨t, ∂t⟩ is.

3.2 The Fourier-Laplace transform
Consider the following ”Fourier-Laplace transform” between the t-plane and the

τ ′-plane:
C⟨t, ∂t⟩

∼←→ C⟨τ ′, ∂τ ′⟩

t ←→ −∂τ ′
∂t ←→ τ ′

P ∈ C⟨t, ∂t⟩ ←→ P̂ ∈ C⟨τ ′, ∂τ ′⟩
M : C⟨t, ∂t⟩-module ←→ M̂ : C⟨τ ′, ∂τ ′⟩-module.

Proposition 3.1 ([Sabbah, Prop.V.2.2]). Assume the C⟨t, ∂t⟩-holonomic module

M =
C⟨t, ∂t⟩
(P )

has a singularity at t =∞ (it might have other singularities). Then:

(a) M̂ has singularities ONLY at τ ′ = 0 (regular singularity) and τ ′ = ∞ (Poincaré
rank ≤ 1);

(b) The left action ∂t : M → M has the following properties: dim ker ∂t < ∞,

dim coker ∂t <∞, and dim coker ∂t − dim ker ∂t = rank M̂ = rank M.
In particular, if M = M[∂−1

t ] := C[∂t, ∂−1
t ]⊗C[∂t] M, then rank M̂ = rank M.

Proof: We only prove (a) here. Using the relation [∂t, t] = 1, we may write P =∑d
k=0 ∂

k
t ak(t) where ak(t) ∈ C[t] with k̂ := deg ak(t) and ad(t) ̸≡ 0. Then, set ak(t) =∑k̂

j=0 akjt
j, and then we get

P = add̂∂
d
t t

d̂ +
∑

j<d̂, k≤d

akj∂
k
t t

j (add̂ ̸= 0)

and therefore, via τ := 1/τ ′ and ∂τ ′ = −τ 2∂τ ,

P̂ = add̂τ
′d(−∂τ ′)d̂+

∑
j<d̂, k≤d

akjτ
′k(−∂τ ′)j = add̂τ

−d(τ 2∂τ )
d̂+

∑
j<d̂, k≤d

akjτ
−k(τ 2∂τ )

j. (1)

Now, from equality (1), we derive the following:
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• Since add̂ ̸= 0, the leading term add̂τ
′d(−∂τ ′)d̂ in (1) shows that M̂ does not have

any singularity away from τ ′ = 0,∞;

• We can use Fuchs condition on the equality in τ ′ in (1) to show M̂ has a regular
singularity at τ ′ = 0;

• The equality in τ in (1) implies furthermore

τ dP̂ == add̂τ
−d(τ 2∂τ )

d̂ +
∑

j<d̂, k≤d

akjτ
d−k(τ 2∂τ )

j, (2)

so that M̂[τ ′−1] =
C⟨τ, τ−1, ∂τ ⟩

(P̂ )
≃ C[τ, τ−1]⊕d̂ with the free basis β = {(τ 2∂τ )j :

0 ≤ j < d̂}; also, from (2) and the basis β we see that

[τ 2∂τ ]β = A(τ) ∈M(d̂,C)[τ ]⇒ [∂τ ]β =
1

τ 2
A(τ);

that is, M̂ has Poincaré rank ≤ 1 at τ ′ =∞.

3.3 Relations of the Riemann-Hilbert problem and the Birkhoff problem
via the Fourier-Laplace transform

The following proposition provides a way to comprehend the Riemann-Hilbert prob-
lem and the Birkhoff problem as dualities through the Fourier-Laplace transform:

Proposition 3.2 ([Sabbah, Prop.V.2.10]). Let Ê ≃ C[τ ]⊕d̂ be equipped with a
meromorphic connection ∇̂ having singularities ONLY at τ = 0 (Poincaré rank ≤ 1)
and τ = ∞ (regular singularity). Suppose furthermore Ê has a basis e so that in this
basis the matrix of ∇̂ is

[∇̂]e =

(
B0

τ
+B∞

)
dτ
τ

where B∞ has no eigenvalue in Z≥0. We may extend ∇̂ to τ =∞ on the trivial bundle
Ê on P̂1, and consider the inverse Fourier transform E of Ê which is defined as follows:

• As sets E := Ê;

• Actions on E: t := τ 2∇̂∂τ , ∇∂t = ∂t := τ−1.

Then the module (E,∇) has the following properties:

(a) E ≃ C[t]⊕d with d = d̂;

(b) [∇]e = (B∞ − I)(tI − B0)
−1dt; therefore, (E,∇) is logarithmic if and only if B0

has distinct eigenvalues.
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Proof:

(b) Since t = τ 2∂τ , τ−1t = tτ−1+1, so ∂t = τ−1 is indeed a (meromorphic) connection

on E. From ∂τe =

(
BT

0

τ
+BT

∞

)
1

τ
e we get

∂te = τ−1e = (t−BT
0 )

−1(BT
∞ − 1)e (3)

and therefore [∂t]e = (B∞ − 1)(t−B0)
−1dt.

(a) First we show rank E = d̂. Utilize τ−1t = tτ−1 + 1 and induction, we get τnt =
tτn − nτn+1 for all n ∈ Z. Therefore by applying τn−1· on the assumption te =
BT

0 e +BT
∞τe and substituting (3), we derive

((B∞)T + (n− 1)I)τne = (tI −BT
0 )τ

n−1e. (4)

Use (4) and the initial conditions τe = (BT
∞)−1(tI − BT

0 )e and τ−1e = (t −
BT

0 )
−1(BT

∞ − 1)e, we get:

τ ke =
k−1∏
l=0

[(BT
∞ + l)−1(t−BT

0 )]e (k ≥ 1); (5)

τ−ke =
−1∏

l=−k

[(t−BT
0 )

−1(B∞ + l)]e (k ≥ 1). (6)

From (5) we see E is generated by e over C[t]; from (6) we see that for M̂ := Ê[τ−1],
M ⊂ C(t)⊗C[t] E. Therefore C(t)⊗C[t] M = C(t)⊗C[t] E and hence with the aid of
Proposition 3.1 (noting that M = M[∂−1

t ]),

rank E = dimC(t)(C(t)⊗C[t]E = C(t)⊗C[t]M) = rank M = (Prop. 3.1) rank M̂ = d̂.

Next, we derive E ≃ C[t]⊕d̂. Since rank E = d̂ as shown above, we can use e to
get a surjective map φ : C[t]⊕d̂ � E, which induces an isomorphism

C(t)⊕d̂ ≃ C(t)⊗C[t] C[t]⊕d̂ 1⊗φ−−→
∼

C(t)⊗C[t] E.

For x ∈ kerφ, (1⊗ φ)(1⊗ x) = 0, so 1⊗ x = 0 ∈ C(t)⊗C[t] C[t]⊕d̂; via C(t)⊕d̂ ≃
C(t) ⊗C[t] C[t]⊕d̂, the counterpart of 0 = 1 ⊗ x ∈ C(t) ⊗C[t] C[t]⊕d̂ in C(t)⊕d̂ is x,
so that x = 0. Consequently kerφ = 0 and then φ is an isomorphism.

4 Reference
[Sabbah] C. Sabbah, Isomonodromic Deformations and Frobenius Manifolds: An In-

troduction, Springer, 2008.

7


	The Riemann-Hilbert problem on P1
	Statement of the problem
	Observations
	Solutions to the Riemann-Hilbert problem

	The Birkhoff problem on P1
	Statement of the problem
	Solutions to the Birkhoff problems

	The Fourier-Laplace transform
	The 1-variable Weyl algebra and its modules
	The Fourier-Laplace transform
	Relations of the Riemann-Hilbert problem and the Birkhoff problem via the Fourier-Laplace transform

	Reference

