Note on The Riemann-Hilbert Correspondence and **Deformation of Lattices**

李自然 (Speaking date: Nov.21, 2016)

This note is based on Chapters II and III of [Sabbah], C. Sabbah's book "Isomonodromic Deformations and Frobenius Manifolds: An Introduction."

1 Introduction: Sheaves and their non-abelian cohomologies

Consider the system of linear differential equations on $t \in \mathbb{C}$:

$$\frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t} + A(t)\mathbf{s} = 0,\tag{1}$$

where $\mathbf{s} = [s_1(t), \cdots, s_d(t)]^T$ and A(t) is a $d \times d$ (holomorphic or meromorphic) matrix function on \mathbb{C} .

We can use the language of connections and sheaves to rewrite the equation (1):

- Linear differential equation $(1) \Rightarrow$ Bundles with connections:
 - $-M := \mathbb{C};$
 - $-E := M \times \mathbb{C}^d$ trivial bundle over M;
 - Connection ∇ on E with connection 1-form A(t)dt with respect to the canonical frame e_1, \dots, e_d of this trivial bundle.
- Sheafify E (in fact a general process for any vactor bundle E over M):
 - $E \rightsquigarrow \mathscr{E}, \mathscr{E}(U) := \Gamma(U, E)$ for open subsets $U \subset M$; thus get a sheaf \mathscr{E} over M, the sheafification of E;
 - The induced connection ∇ on \mathscr{E} : a sheaf morphism

- $\begin{array}{ll} \nabla:\mathscr{E}\to\Omega^1_M\otimes_{\mathscr{O}_M}\mathscr{E} & (\text{holomorphic})\\ \text{or} & \nabla:\mathscr{E}\to\Omega^1_M(*Z)\otimes_{\mathscr{O}_M}\mathscr{E} & (\text{meromorphic with poles along } Z\subset M). \end{array}$
- Solutions to equation (1) \Leftrightarrow Horizontal sections of ∇ :
 - $E^{\nabla} := \ker[\nabla : \mathscr{E} \to \Omega^1_M \otimes_{\mathscr{O}_M} \mathscr{E}]$ (a sheaf over M); sections of E^{∇} are called horizontal sections with respect to ∇ ;

$$-\mathbf{s} = \sum_{i=1}^{d} s_i e_i \in E^{\nabla}(M) \Leftrightarrow \nabla \mathbf{s} = \sum_{i,j} (\mathrm{d}s_i + A_{ij}s_j \mathrm{d}t) \otimes e_i = 0 \Leftrightarrow \frac{\mathrm{d}\mathbf{s}}{\mathrm{d}t} + A(t)\mathbf{s} = 0.$$

• The gauge transformation $\mathbf{s} = P\tilde{\mathbf{s}}$ in (1) corresponds to the base change $[\tilde{e_1}\cdots\tilde{e_d}] =$ $[e_1 \cdots e_d] P$ of the connection 1-form of ∇ .

1.1 The 1st nonabelian cohomology

Let M be a complex analytic manifold, \mathscr{G} a sheaf of groups (not necessarily abelian) over M, and \mathcal{U} an open cover of M. We define the following two objects:

- 1-cocycles: those $(\psi_{UV} \in \Gamma(U \cap V, \mathscr{G}))$ satisfying the cocycle condition $\psi_{UV}\psi_{VW} = \psi_{UW}$ for all $U, V, W \in \mathcal{U}$;
- 1-coboundaries: those $(\eta_U \eta_V^{-1} \in \Gamma(U \cap V, \mathscr{G}))$ where $\eta_U \in \Gamma(U, \mathscr{G})$ for each $U \in \mathcal{U}$.

Then we define the 1st nonabelian cohomology of \mathscr{G} relative to \mathcal{U} as

$$H^1(\mathcal{U},\mathscr{G}) := \{1\text{-cocycles}\}/\sim$$

where $\psi \sim \psi' \Leftrightarrow$ there is a 1-coboundary η such that $\psi'_{UV} = \eta_U \psi_{UV} \eta_V^{-1}$ on $U \cap V$.

Finally, we define the 1st nonabelian cohomology of ${\mathscr G}$ as

$$H^{1}(M,\mathscr{G}) := \varinjlim_{\mathcal{U}} H^{1}(\mathcal{U},\mathscr{G}) \text{ (in fact } = \bigcup_{\mathcal{U}} H^{1}(\mathcal{U},\mathscr{G}));$$

note that each $H^1(\mathcal{U}, \mathscr{G}) \hookrightarrow H^1(M, \mathscr{G})$.

2 The Riemann-Hilbert correspondence for regular singularities on a Riemann surface

2.1 The monodromy representation

Consider the following setting:

$$\begin{array}{ccc} \gamma^{-1}\mathscr{F} & \longrightarrow \mathscr{F} \\ \downarrow & & \downarrow \text{locally constant sheaf} \\ ([0,1],0) & \stackrel{\gamma}{\longrightarrow} (X,o). \end{array}$$

Define the monodromy $T_{\gamma}^{\mathscr{F}}$ as:

$$\begin{array}{cccc} T_{\gamma}^{\mathscr{F}}: & \mathscr{F}_{o} = (\gamma^{-1}\mathscr{F})_{0} & \longrightarrow & (\gamma^{-1}\mathscr{F})_{1} = \mathscr{F}_{0} \\ & s_{0} & \longmapsto & s(1) & (\exists ! \ s \in \Gamma([0,1],\gamma^{-1}\mathscr{F}) \text{ such that } s(0) = s_{0}). \end{array}$$

We find that $T_{\gamma}^{\mathscr{F}}$ remains invariant when γ varies in the same homotopy class in $\pi_1(X, o)$. Thus we get a monodromy representation

$$T^{\mathscr{F}}: \pi_1(X, o) \to \mathrm{GL}(\mathscr{F}_o).$$

2.2 The main theorem

Theorem 2.1 (The Riemann-Hilbert correspondence for regular singularities, [Sabbah, Sec.II.3.a]). Let M be a (connected) Riemann surface and let Σ be a discrete subset of points of M (to be the regular singularities). Consider the following three categories:

- \mathfrak{S} : the category of locally constant sheaves of \mathbb{C} -vector spaces on $M \setminus \Sigma$;
- \mathfrak{R} : the category of finite-dimensional representations of $\pi_1(M \setminus \Sigma)$.

They are equivalent categories via the following identification:

Sketch of proof: We take $\mathfrak{S} \simeq \mathfrak{R}$ for granted. Let us show $\mathfrak{B} \simeq \mathfrak{S}$. First we consider this problem locally, and then may assume $\Sigma = \{p\}$ a point, and assume M is a disc centered at p, so that $\pi_1(M \setminus \{p\}) = \mathbb{Z}$. Then given any finite-dimensional representation of $\pi_1(M \setminus \{p\}) = \mathbb{Z}$ is equivalent to give any $T \in \operatorname{GL}(d, \mathbb{C})$ $(d := \dim M)$. If we are given a $T \in \operatorname{GL}(d, \mathbb{C})$, we may use the technique in §1 and consult the theory of linear differential equations with regular singularities to produce a differential equation so that the associated horizontal bundle has monodromy T (one may need the fact exp : $M(d, \mathbb{C}) \to \operatorname{GL}(d, \mathbb{C})$ is surjective). The global problem follows from gluing the local horizontal bundles and then tensoring the global bundle with $\mathscr{O}_M(*\Sigma)$.

3 The Riemann-Hilbert correspondence for irregular singularities via the Stokes sheaf

In this section X is a complex analytic manifold, and D is the unit disc in \mathbb{C} .

- 3.1 The sheaf \mathscr{A}
 - Polar coordinate $\begin{array}{ccc} \pi : & \tilde{D} := [0, r^0) \times S^1 & \longrightarrow & D\\ & (r, e^{i\theta}) & \longmapsto & t = re^{i\theta}. \end{array}$ (We call \tilde{D} the real blow-up of D at the origin.)
 - $\mathscr{C}^{\infty}_{\tilde{D}\times X} := i^{-1}\mathscr{C}^{\infty}_{(-\varepsilon,r^0)\times S^1\times X}$ via the inclusion $\tilde{D}\times X \hookrightarrow (-\varepsilon,r^0)\times S^1\times X$.
 - $\mathscr{A}_{\tilde{D}\times X}$ is defined to be the intersection

$$\ker\left(\overline{t}\frac{\partial}{\partial\overline{t}} = \frac{1}{2}\left(r\frac{\partial}{\partial r} + i\frac{\partial}{\partial\theta}\right) \in \operatorname{End}(\mathscr{C}^{\infty}_{\tilde{D}\times X})\right) \cap \left(\bigcap_{j} \ker\left(\frac{\partial}{\partial\overline{x^{j}}} \in \operatorname{End}(\mathscr{C}^{\infty}_{\tilde{D}\times X})\right)\right).$$

3.2The good model

A "good model" is a meromorphic bundle $\mathscr{M}^{\text{good}}$ over $D \times X$ equipped with a flat connection ∇^{good} with poles along $\{0\} \times X$, such that the following property holds: For all $x^0 \in X$, there are $\varphi_1, \dots, \varphi_p \in t^{-1}\mathcal{O}_{X,x^0}[t^{-1}]$ and nonzero bundles $\mathscr{R}_{\varphi_1}, \dots, \mathscr{R}_{\varphi_p}$ with regular singularities along $\{0\} \times X$, such that:

• $\mathscr{M}^{\text{good}} \simeq \bigoplus_k (\mathscr{E}^{\varphi_k} \otimes \mathscr{R}_{\varphi_k})$ in a neighborhood of x^0 (here $\mathscr{E}^{\varphi} = \mathbb{C}\{t, x\}[t^{-1}]$ with connection 1-form $-d\varphi$);

• $\operatorname{ord}_{t=0}(\varphi_k - \varphi_l)(t, x)$ does not depend on x in a neighborhood of x^0 for all $k \neq l$.

This good model also induces the following sheaves of bundles that will be used later:

•
$$\mathscr{M}^{\text{good}} := \mathscr{A}_{\tilde{D} \times X} \otimes_{\mathscr{O}_{D \times X}} \mathscr{M}^{\text{good}};$$

•
$$\widehat{\mathscr{M}}^{\mathrm{good}} := \widehat{\mathscr{O}}_{D \times X} \otimes_{\mathscr{O}_{D \times X}} \mathscr{M}^{\mathrm{good}};$$

• $\operatorname{Aut}^{<X}(\widetilde{\mathscr{M}}^{\operatorname{good}}) := \operatorname{ker}\left(\operatorname{Aut}(\widetilde{\mathscr{M}}^{\operatorname{good}}|_{S^1 \times X}) \to \operatorname{Aut}(\widehat{\mathscr{M}}^{\operatorname{good}}|_{S^1 \times X})\right)$ where the automorphisms on the right hand side are required to be compatible with connections. Its local sections are "Stokes matrices."

3.3The Stokes sheaf and the sheaf \mathscr{H}_X

From now on, till the end of this section, we will FIX a good model ($\mathscr{M}^{\text{good}}, \nabla^{\text{good}}$). Now we introduce two additional sheaves and a morphism between them, which will be the main objects in this section:

• The Stokes sheaf \mathbf{St}_X over X is defined by

$$\mathbf{St}_X(U) := H^1(S^1 \times U, \operatorname{Aut}^{< X}(\widetilde{\mathscr{M}}^{\operatorname{good}}))$$
 for open subsets $U \subset X$.

Here we use the 1st nonabelian cohomology introduced in §1.1.

• The sheaf \mathscr{H}_X over X is defined by

$$\mathscr{H}_X(U) := \frac{\{(\mathscr{M}, \nabla, \hat{f}) \text{ on } D \times U | \hat{f} : (\widehat{M}, \widehat{\nabla})|_{\{0\} \times U} \xrightarrow{\sim} (\widehat{\mathscr{M}}^{\text{good}}, \widehat{\nabla}^{\text{good}})|_{\{0\} \times U}\}}{(\mathscr{M}, \nabla, \hat{f}) \sim (\mathscr{M}', \nabla', \hat{f}') \Leftrightarrow \exists g : (\mathscr{M}, \nabla) \xrightarrow{\sim} (\mathscr{M}', \nabla') \text{ with } \hat{f} = \hat{f}' \circ \hat{g}}}$$
for any open subset $U \subset X$

for any open subset $U \subset X$.

The morphism $\Phi : \mathscr{H}_X \to \mathbf{St}_X$ is defined as follows: for any open subset $U \subset X$, define

$$\Phi(U): \quad \mathscr{H}_X(U) \longrightarrow \mathbf{St}_X(U) \\ [(\mathscr{M}, \nabla, \hat{f})] \longmapsto [(f_j f_i^{-1}|_{W_{ij}})_{i,j}]$$

where (W_i) is an open cover of $S^1 \times U$ and $f_i : (\widetilde{\mathscr{M}}, \widetilde{\nabla})|_{W_i} \xrightarrow{\sim} (\widetilde{\mathscr{M}}^{\text{good}}, \widetilde{\nabla}^{\text{good}})|_{W_i}$ such that $\hat{f}_i = \hat{f}$ (the existence of W_i and f_i is guaranteed by [Sabbah, Thm. II.5.12]).

One may use the definition of the 1st nonabelian cohomology to check that $\Phi(U)$ is well-defined.

3.4 The main theorem

Theorem 3.1 (Classification of meromorphic connections with fixed formal type; the Riemann-Hilbert correspondence for irregular singularities, [Sabbah, Thm.II.6.3]). The morphism $\Phi : \mathscr{H}_X \to \operatorname{St}_X$ is an isomorphism of sheaves of sets over X.

Proof: It suffices to show that this is a germ-wise isomorphism, namely to show that for every $x^0 \in X$, if $i: S^1 \times \{x^0\} \hookrightarrow S^1 \times X$ is the inclusion, then $\Phi_{x^0}: \mathscr{H}_{X,x^0} \to H^1(S^1, i^{-1}\operatorname{Aut}^{<X}(\widetilde{\mathscr{M}}^{good}))$ is an isomorphism.

Injectivity of Φ_{x0}: Suppose (M, ∇, f̂), (M', ∇', f̂') ∈ ℋ_{X,x0} such that there images under Φ_{x0} are both λ ∈ H¹(S¹, i⁻¹Aut^{<X}(M̃^{good})). To make this more precise, may assume there is a finite cover (I_i) of S¹ and an open neighborhood x⁰ ∈ V ⊂ X such that f_i : M̃ → M̃^{good}, f'_i : M̃' → M̃^{good} associated to f̂, f̂' are defined over I_i × V and make λ = [(f_jf⁻¹_i)] = [(f'_jf'⁻¹_i)]. Then, by definition of the 1st nonabelian cohomology, there exist g_i ∈ Γ(I_i ×

Then, by definition of the 1st nonabelian cohomology, there exist $g_i \in \Gamma(I_i \times V, \operatorname{Aut}^{<X}(\widetilde{\mathscr{M}}^{\text{good}}))$ such that on $I_{ij} \times V = (I_i \cap I_j) \times V, f'_j f'^{-1}_i = g_j f_j f_i^{-1} g_i^{-1}$ or

$$f_i^{-1}g_i^{-1}f_i' = f_j^{-1}g_j^{-1}f_j'.$$
(2)

So we may set $\sigma_i := f_i^{-1} g_i^{-1} f'_i$ which are compatible with connections, and which glue to $\sigma \in \Gamma(S^1 \times V, \underline{\operatorname{Hom}}(\widetilde{\mathscr{M}'}, \widetilde{\mathscr{M}}))$ by (2). Now $\hat{f}' = \hat{f} \circ \hat{\sigma}$ (since $\hat{g}_i = 1$), which implies $(M, \nabla, \hat{f}) \sim (M', \nabla', \hat{f}')$.

• Surjectivity of Φ_{x^0} : Suppose $\lambda \in H^1(S^1, i^{-1}\operatorname{Aut}^{<X}(\widetilde{\mathscr{M}}^{good}))$. Choose an open cover (I_i) of S^1 such that $\lambda = (\lambda_{ij}) \in \Gamma(I_{ij}, i^{-1}\operatorname{Aut}^{<X}(\widetilde{\mathscr{M}}^{good})) = \operatorname{GL}_d^{<X}(i^{-1}\mathscr{A}_{\widetilde{D}\times X})$. Then

$$\lambda_{ij}\lambda_{jk} = \lambda_{ik}; \quad \lambda_{ij} = \mathrm{id}_{\mathbb{C}^d}$$

so that by [Sibuya, Thm. 6.4.1], λ is a coboundary with value in Aut^{<X}($\widetilde{\mathscr{M}}^{good}$), i.e. $\lambda = f_j f_i^{-1}$ for some $f_i \in \Gamma(I_i, i^{-1}\operatorname{Aut}(\widetilde{\mathscr{M}}^{good}))$. Now we construct the desired object which maps to λ via Φ_{x^0} . Since $\lambda_{ij} = f_j f_i^{-1}$ is compatible with $\nabla^{good}, \nabla^{good}(\lambda_{ij}s) = \lambda_{ij}(\nabla^{good}s)$ for all s, so that

$$f_j^{-1} \nabla^{\text{good}} f_j = f_i^{-1} \nabla^{\text{good}} f_i \text{ over } I_{ij}.$$
(3)

On I_i consider $(\widetilde{\mathscr{M}}^{\text{good}}, f_i^{-1} \nabla^{\text{good}} f_i)$; by (3) they glue to $(\widetilde{\mathscr{M}}^{\text{good}}, \nabla)$ with $\nabla|_{I_i} = f_i^{-1} \nabla^{\text{good}} f_i$. Similarly (\widehat{f}_i) glue to $\widehat{f} : (\widehat{\mathscr{M}}^{\text{good}}, \nabla) \to (\widehat{\mathscr{M}}^{\text{good}}, \nabla^{\text{good}})$. Thus the image of $(\widehat{\mathscr{M}}^{\text{good}}, \nabla, \widehat{f})$ under Φ is λ .

The proof is now complete.

3.5 Remarks on the Stokes sheaf

- $\mathbf{St}_X = \mathbf{St}_X(\mathscr{M}^{\text{good}})$ is a locally constant sheaf of (pointed) sets.
- Therefore, via the isomorphism $\Phi : \mathscr{H}_X \xrightarrow{\sim} \mathbf{St}_X$, we find \mathscr{H}_X is also a locally constant sheaf.

4 The rigidity of logarithmic lattices

Theorem 4.1 (Rigidity of deformation of logarithmic lattices, [Sabbah, Prop. III.1.19]). Suppose we are given the following objects:

- A vector bundle E⁰ over the unit disc D ⊂ C equipped with a flat connection ∇ having only a logarithmic pole at 0 ∈ D;
- A simply connected complex analytic manifold X and a specified point $x^0 \in X$.

Then there exists, unique up to isomorphism, a vector bundle E over $D \times X$ equipped with a flat connection ∇ having only logarithmic poles along $\{0\} \times X \subset D \times X$, such that the restriction of (E, ∇) to $D \times \{x^0\} \subset D \times X$ is (E^0, ∇^0) .

Sketch of proof: Consider the canonical projection $p: D \times X \to D$ and put $(E, \nabla) = p^*(E^0, \nabla^0)$.

5 Deformation of lattices with connections of pole order 1

In this section, D is the unit disc on \mathbb{C} , and X is a connected complex analytic manifold of dimension n with a base point $x^0 \in X$. We say a connection is of pole order 1 along some singularities if it has Poincaré rank 1 there.

5.1 The rank 1 case: local classification

Theorem 5.1 ([Sabbah, Prop.III.2.11]). Suppose \mathscr{E} is a holomorphic *line bundle* over $D \times X$ equipped with a flat connection ∇ having only poles of order 1 along $\{0\} \times X$. Define $(E, \nabla) := (\mathscr{E}, \nabla)_{(0,x^0)}$. Then:

- (a) There exist unique $\lambda(x) \in \mathscr{O}(X)$ and $\mu \in \mathbb{C}$ such that in any local basis of E, the polar part of ∇ is $\omega_{\text{pol}} = -d\left(\frac{\lambda(x)}{t}\right) + \mu \frac{dt}{t}$.
- (b) (E, ∇) admits a non-identically zero holomorphic horizontal section if and only if $\lambda \equiv 0, \mu \in \mathbb{Z}_{\leq 0}$.

5.2 The formal decomposition

Consider the following assumption which will be used later:

Assumption 5.2. $\lambda_1, \dots, \lambda_d : X \to \mathbb{C}$ are holomorphic functions, and $\lambda_1^0, \dots, \lambda_d^0 \in \mathbb{C}$, such that

- For all $i \neq j$, $\lambda_i \lambda_j$ is non-vanishing on X;
- For all i, $\lambda_i(x^0) = \lambda_i^0$.

Theorem 5.3 (The formal decomposition of a lattice of order 1, [Sabbah, Thm.III.2.15]). Suppose that

- *E* is a holomorphic vector bundle over $D \times X$ (we use (t, x) to denote coordinates on $D \times X$) endowed with a flat connection ∇ having only poles of order 1 along $\{0\} \times X$;
- The "second residue" $R_0(x)$ of ∇ , namely the residue of $t\nabla$, has eigenvalues $\lambda_i(x)$ that satisfy Assumption 5.2.

Then there exists a unique formal decomposition

$$(\widehat{\mathscr{E}},\widehat{\nabla})\simeq \bigoplus_{i=1}^d (\widehat{\mathscr{E}}_i,\widehat{\nabla})$$

subjected to the condition that the second residue of $(\widehat{\mathscr{E}}_i, \widehat{\nabla})$ is $\lambda_i(x)$ for all *i*.

5.3 The main theorem

Theorem 5.4 (Rigidity of deformation of lattices having pole-order 1, [Sabbah, Thm.III.2.10]). Suppose that

- E^0 is a vector bundle over the unit disc $D \subset \mathbb{C}$ equipped with a flat connection ∇ having only a order-1 pole at $0 \in D$;
- The second residue R_0^0 of ∇^0 has eigenvalues $\lambda_1^0, \cdots, \lambda_d^0$;
- The parameter space X is simply-connected.

Then there exists, unique up to isomorphism, a holomorphic bundle (E, ∇) over $D \times X$ such that

- The second residue $R_0(x)$ of ∇ has eigenvalues $\lambda_i(x)$ satisfying Assumption 5.2;
- The restriction of (E, ∇) to $D \times \{x^0\}$ is isomorphic to (E^0, ∇^0) .

Sketch of proof:

- Construction of the good formal model: Let $\mathscr{M}^{\text{good}}$ be the trivial bundle on $D \times X$ equipped with a connection ∇^{good} having connection 1-form $\text{diag}(\omega_1, \cdots, \omega_d)$ with $(\omega_i)_{\text{pol}} = -d\left(\frac{\lambda_i(x)}{t}\right) + \mu_i \frac{dt}{t}$ where μ_i are determined by (E^0, ∇^0) . Then we get the good formal model $(\widehat{\mathscr{M}^{\text{good}}}, \widehat{\nabla}^{\text{good}})$.
- Construction of the meromorphic bundle: Since X is simply-connected, by §3.5, \mathbf{St}_X is a constant sheaf and so is \mathscr{H}_X . So there is a unique section σ of \mathscr{H}_X such that $\sigma_{x^0} = (M^0, \nabla^0, \hat{f}^0) \in \mathscr{H}_{X,x^0}$ (M^0 is induced by E^0). This σ corresponds to ($\mathscr{M}, \nabla, \hat{f}$) whose restriction to $D \times \{x^0\}$ is isomorphic to (M^0, ∇^0, \hat{f}^0).
- Construction of (E, ∇) : Take $(\mathscr{E}, \nabla) = (\widehat{\mathscr{E}} \cap \mathscr{M}, \nabla)$ and then we get the corresponding (E, ∇) .

The uniqueness of (E, ∇) can be deduced by appropriately using the local constancy of $\operatorname{Aut}(\widehat{E}^{\text{good}}, \widehat{\nabla}^{\text{good}})$ and the constancy of \mathscr{H}_X .

6 Reference

- [Sabbah] C. Sabbah, Isomonodromic Deformations and Frobenius Manifolds: An Introduction, Springer, 2008.
- [Sibuya] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, American Mathematical Society, 1990.