Note on The Riemann－Hilbert Correspondence and Deformation of Lattices

李自然（Speaking date：Nov．21，2016）
This note is based on Chapters II and III of［Sabbah］，C．Sabbah＇s book＂Isomon－ odromic Deformations and Frobenius Manifolds：An Introduction．＂

1 Introduction：Sheaves and their non－abelian cohomologies

Consider the system of linear differential equations on $t \in \mathbb{C}$ ：

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{s}}{\mathrm{~d} t}+A(t) \mathbf{s}=0 \tag{1}
\end{equation*}
$$

where $\mathbf{s}=\left[s_{1}(t), \cdots, s_{d}(t)\right]^{T}$ and $A(t)$ is a $d \times d$（holomorphic or meromorphic）matrix function on \mathbb{C} ．

We can use the language of connections and sheaves to rewrite the equation（1）：
－Linear differential equation $(\mathbb{1}) \Rightarrow$ Bundles with connections：
$-M:=\mathbb{C}$ ；
－$E:=M \times \mathbb{C}^{d}$ trivial bundle over M ；
－Connection ∇ on E with connection 1－form $A(t) \mathrm{d} t$ with respect to the canon－ ical frame e_{1}, \cdots, e_{d} of this trivial bundle．
－Sheafify E（in fact a general process for any vactor bundle E over M ）：
$-E \rightsquigarrow \mathscr{E}, \mathscr{E}(U):=\Gamma(U, E)$ for open subsets $U \subset M$ ；thus get a sheaf \mathscr{E} over M ，the sheafification of E ；
－The induced connection ∇ on \mathscr{E} ：a sheaf morphism

$$
\nabla: \mathscr{E} \rightarrow \Omega_{M}^{1} \otimes_{\mathscr{O}_{M}} \mathscr{E} \quad \text { (holomorphic) }
$$

or $\quad \nabla: \mathscr{E} \rightarrow \Omega_{M}^{1}(* Z) \otimes_{\mathscr{O}_{M}} \mathscr{E} \quad$（meromorphic with poles along $\left.Z \subset M\right)$ ．
－Solutions to equation $(\mathbb{1}) \Leftrightarrow$ Horizontal sections of ∇ ：
$-E^{\nabla}:=\operatorname{ker}\left[\nabla: \mathscr{E} \rightarrow \Omega_{M}^{1} \otimes_{\mathscr{O}_{M}} \mathscr{E}\right]$（a sheaf over M ）；sections of E^{∇} are called horizontal sections with respect to ∇ ；
$-\mathbf{s}=\sum_{i=1}^{d} s_{i} e_{i} \in E^{\nabla}(M) \Leftrightarrow \nabla \mathbf{s}=\sum_{i, j}\left(\mathrm{~d} s_{i}+A_{i j} s_{j} \mathrm{~d} t\right) \otimes e_{i}=0 \Leftrightarrow \frac{\mathrm{~d} \mathbf{s}}{\mathrm{~d} t}+A(t) \mathbf{s}=$ 0 ．
－The gauge transformation $\mathbf{s}=P \tilde{\mathbf{s}}$ in（11）corresponds to the base change $\left[\tilde{e_{1}} \cdots \tilde{e}_{d}\right]=$ $\left[e_{1} \cdots e_{d}\right] P$ of the connection 1－form of ∇ ．

1.1 The 1st nonabelian cohomology

Let M be a complex analytic manifold, \mathscr{G} a sheaf of groups (not necessarily abelian) over M, and \mathcal{U} an open cover of M. We define the following two objects:

- 1-cocycles: those $\left(\psi_{U V} \in \Gamma(U \cap V, \mathscr{G})\right)$ satisfying the cocycle condition $\psi_{U V} \psi_{V W}=$ $\psi_{U W}$ for all $U, V, W \in \mathcal{U}$;
- 1-coboundaries: those $\left(\eta_{U} \eta_{V}^{-1} \in \Gamma(U \cap V, \mathscr{G})\right)$ where $\eta_{U} \in \Gamma(U, \mathscr{G})$ for each $U \in \mathcal{U}$.

Then we define the 1 st nonabelian cohomology of \mathscr{G} relative to \mathcal{U} as

$$
H^{1}(\mathcal{U}, \mathscr{G}):=\{1 \text {-cocycles }\} / \sim
$$

where $\psi \sim \psi^{\prime} \Leftrightarrow$ there is a 1-coboundary η such that $\psi_{U V}^{\prime}=\eta_{U} \psi_{U V} \eta_{V}^{-1}$ on $U \cap V$.
Finally, we define the 1st nonabelian cohomology of \mathscr{G} as
note that each $H^{1}(\mathcal{U}, \mathscr{G}) \hookrightarrow H^{1}(M, \mathscr{G})$.

2 The Riemann-Hilbert correspondence for regular singularities on a Riemann surface

2.1 The monodromy representation

Consider the following setting:

Define the monodromy $T_{\gamma}^{\mathscr{F}}$ as:

$$
\begin{aligned}
& T_{\gamma}^{\mathscr{F}}: \mathscr{F}_{o}=\left(\gamma^{-1} \mathscr{F}\right)_{0} \longrightarrow \\
& s_{0} \longmapsto \\
&\left(\gamma^{-1} \mathscr{F}\right)_{1}=\mathscr{F}_{0} \\
& s(1)
\end{aligned}\left(\exists!s \in \Gamma\left([0,1], \gamma^{-1} \mathscr{F}\right) \text { such that } s(0)=s_{0}\right) .
$$

We find that $T_{\gamma}^{\mathscr{F}}$ remains invariant when γ varies in the same homotopy class in $\pi_{1}(X, o)$. Thus we get a monodromy representation

$$
T^{\mathscr{F}}: \pi_{1}(X, o) \rightarrow \operatorname{GL}\left(\mathscr{F}_{o}\right) .
$$

2.2 The main theorem

Theorem 2.1 (The Riemann-Hilbert correspondence for regular singularities, [Sabbah, Sec.II.3.a]). Let M be a (connected) Riemann surface and let Σ be a discrete subset of points of M (to be the regular singularities). Consider the following three categories:

- \mathfrak{B} : the category of meromorphic bundles with connections having regular singularities along Σ;
- \mathfrak{S} : the category of locally constant sheaves of \mathbb{C}-vector spaces on $M \backslash \Sigma$;
- \mathfrak{R} : the category of finite-dimensional representations of $\pi_{1}(M \backslash \Sigma)$.

They are equivalent categories via the following identification:

$$
\begin{array}{rllll}
\mathfrak{B} & \stackrel{\sim}{\mathfrak{G}} & \stackrel{\sim}{\mathfrak{S}} & \mathfrak{R} \\
(\mathscr{M}, \nabla) & \longmapsto & \left.\left(\mathscr{M}^{\nabla}\right)\right|_{M \backslash \Sigma} & & \\
& & \mathscr{F}^{\mathscr{F}} & \longmapsto & T^{\mathscr{F}} .
\end{array}
$$

Sketch of proof: We take $\mathfrak{S} \simeq \mathfrak{R}$ for granted. Let us show $\mathfrak{B} \simeq \mathfrak{S}$. First we consider this problem locally, and then may assume $\Sigma=\{p\}$ a point, and assume M is a disc centered at p, so that $\pi_{1}(M \backslash\{p\})=\mathbb{Z}$. Then given any finite-dimensional representation of $\pi_{1}(M \backslash\{p\})=\mathbb{Z}$ is equivalent to give any $T \in \operatorname{GL}(d, \mathbb{C})(d:=\operatorname{dim} M)$. If we are given a $T \in \mathrm{GL}(d, \mathbb{C})$, we may use the technique in $\S 1$ and consult the theory of linear differential equations with regular singularities to produce a differential equation so that the associated horizontal bundle has monodromy T (one may need the fact $\exp : M(d, \mathbb{C}) \rightarrow \operatorname{GL}(d, \mathbb{C})$ is surjective $)$. The global problem follows from gluing the local horizontal bundles and then tensoring the global bundle with $\mathscr{O}_{M}(* \Sigma)$.

3 The Riemann-Hilbert correspondence for irregular singularities via the Stokes sheaf

In this section X is a complex analytic manifold, and D is the unit disc in \mathbb{C}.

3.1 The sheaf \mathscr{A}

- Polar coordinate $\pi: \tilde{D}:=\left[0, r^{0}\right) \times S^{1} \longrightarrow D$

$$
\left(r, e^{i \theta}\right) \longmapsto t=r e^{i \theta}
$$

(We call \tilde{D} the real blow-up of D at the origin.)

- $\mathscr{C}_{\tilde{D} \times X}^{\infty}:=i^{-1} \mathscr{C}_{\left(-\varepsilon, r^{0}\right) \times S^{1} \times X}^{\infty}$ via the inclusion $\tilde{D} \times X \hookrightarrow\left(-\varepsilon, r^{0}\right) \times S^{1} \times X$.
- $\mathscr{A}_{\tilde{D} \times X}$ is defined to be the intersection

$$
\operatorname{ker}\left(\bar{t} \frac{\partial}{\partial \bar{t}}=\frac{1}{2}\left(r \frac{\partial}{\partial r}+i \frac{\partial}{\partial \theta}\right) \in \operatorname{End}\left(\mathscr{C}_{\bar{D} \times X}^{\infty}\right)\right) \cap\left(\bigcap_{j} \operatorname{ker}\left(\frac{\partial}{\partial \overline{x^{j}}} \in \operatorname{End}\left(\mathscr{C}_{\tilde{D} \times X}^{\infty}\right)\right)\right) .
$$

3.2 The good model

A "good model" is a meromorphic bundle $\mathscr{M}^{\text {good }}$ over $D \times X$ equipped with a flat connection $\nabla^{\text {good }}$ with poles along $\{0\} \times X$, such that the following property holds: For all $x^{0} \in X$, there are $\varphi_{1}, \cdots, \varphi_{p} \in t^{-1} \mathscr{O}_{X, x^{0}}\left[t^{-1}\right]$ and nonzero bundles $\mathscr{R}_{\varphi_{1}}, \cdots, \mathscr{R}_{\varphi_{p}}$ with regular singularities along $\{0\} \times X$, such that:

- $\mathscr{M}^{\text {good }} \simeq \oplus_{k}\left(\mathscr{E}^{\varphi_{k}} \otimes \mathscr{R}_{\varphi_{k}}\right)$ in a neighborhood of x^{0} (here $\mathscr{E}^{\varphi}=\mathbb{C}\{t, x\}\left[t^{-1}\right]$ with connection 1-form $-\mathrm{d} \varphi$);
- $\operatorname{ord}_{t=0}\left(\varphi_{k}-\varphi_{l}\right)(t, x)$ does not depend on x in a neighborhood of x^{0} for all $k \neq l$. This good model also induces the following sheaves of bundles that will be used later:
- $\widetilde{\mathscr{M}}^{\text {good }}:=\mathscr{A}_{\tilde{D} \times X} \otimes_{\mathscr{O}_{D \times X}} \mathscr{M}^{\text {good }} ;$
- $\widehat{\mathscr{M}}^{\text {good }}:=\widehat{\mathscr{O}}_{D \times X} \otimes_{\mathscr{O}_{D \times X}} \mathscr{M}^{\text {good }} ;$
- $\operatorname{Aut}^{<X}\left(\widetilde{\mathscr{M}^{\text {good }}}\right):=\operatorname{ker}\left(\operatorname{Aut}\left(\left.\widetilde{\mathscr{M}^{\text {good }}}\right|_{S^{1} \times X}\right) \rightarrow \operatorname{Aut}\left(\left.\widehat{\mathscr{M}}^{\text {good }}\right|_{S^{1} \times X}\right)\right)$ where the automorphisms on the right hand side are required to be compatible with connections. Its local sections are "Stokes matrices."

3.3 The Stokes sheaf and the sheaf \mathscr{H}_{X}

From now on, till the end of this section, we will FIX a good model ($\left.\mathscr{M}^{\text {good }}, \nabla^{\text {good }}\right)$.
Now we introduce two additional sheaves and a morphism between them, which will be the main objects in this section:

- The Stokes sheaf $\mathbf{S t}_{X}$ over X is defined by

$$
\mathbf{S t}_{X}(U):=H^{1}\left(S ^ { 1 } \times U , \text { Aut } ^ { < X } \left(\widetilde{\left.\left.\mathscr{M}^{\text {good }}\right)\right) \text { for open subsets } U \subset X . . . ~}\right.\right.
$$

Here we use the 1st nonabelian cohomology introduced in §1.1.

- The sheaf \mathscr{H}_{X} over X is defined by
$\mathscr{H}_{X}(U):=\frac{\left\{(\mathscr{M}, \nabla, \hat{f}) \text { on } D \times\left. U|\hat{f}:(\widehat{M}, \widehat{\nabla})|_{\{0\} \times U} \xrightarrow{\sim}\left(\widehat{\mathscr{M}}^{\text {good }}, \widehat{\nabla}^{\text {good }}\right)\right|_{\{0\} \times U}\right\}}{(\mathscr{M}, \nabla, \hat{f}) \sim\left(\mathscr{M}^{\prime}, \nabla^{\prime}, \hat{f}^{\prime}\right) \Leftrightarrow \exists g:(\mathscr{M}, \nabla) \xrightarrow{\sim}\left(\mathscr{M}^{\prime}, \nabla^{\prime}\right) \text { with } \hat{f}=\hat{f}^{\prime} \circ \hat{g}}$.
for any open subset $U \subset X$.
- The morphism $\Phi: \mathscr{H}_{X} \rightarrow \mathbf{S t}_{X}$ is defined as follows: for any open subset $U \subset X$, define

$$
\begin{aligned}
\Phi(U): & \mathscr{H}_{X}(U) \\
{[(\mathscr{M}, \nabla, \hat{f})] } & \longmapsto \mathbf{S t}_{X}(U) \\
& \longmapsto\left[\left(\left.f_{j} f_{i}^{-1}\right|_{W_{i j}}\right)_{i, j}\right]
\end{aligned}
$$

where $\left(W_{i}\right)$ is an open cover of $S^{1} \times U$ and $f_{i}:\left.\left.(\widetilde{\mathscr{M}}, \widetilde{\nabla})\right|_{W_{i}} \xrightarrow{\sim}\left(\widetilde{\mathscr{M} \text { good }}, \widetilde{\nabla}^{\text {good }}\right)\right|_{W_{i}}$ such that $\hat{f}_{i}=\hat{f}$ (the existence of W_{i} and f_{i} is guaranteed by [Sabbah, Thm. II.5.12]).

One may use the definition of the 1st nonabelian cohomology to check that $\Phi(U)$ is well-defined.

3.4 The main theorem

Theorem 3.1 (Classification of meromorphic connections with fixed formal type; the Riemann-Hilbert correspondence for irregular singularities, [Sabbah, Thm.II.6.3]). The morphism $\Phi: \mathscr{H}_{X} \rightarrow \mathbf{S t}_{X}$ is an isomorphism of sheaves of sets over X.

Proof: It suffices to show that this is a germ-wise isomorphism, namely to show that for every $x^{0} \in X$, if $i: S^{1} \times\left\{x^{0}\right\} \hookrightarrow S^{1} \times X$ is the inclusion, then $\Phi_{x^{0}}: \mathscr{H}_{X, x^{0}} \rightarrow$ $H^{1}\left(S^{1}, i^{-1}\right.$ Aut $\left.^{<X}\left(\widetilde{\mathscr{M}^{\text {good }}}\right)\right)$ is an isomorphism.

- Injectivity of $\Phi_{x^{0}}$: Suppose $(M, \nabla, \hat{f}),\left(M^{\prime}, \nabla^{\prime}, \hat{f}^{\prime}\right) \in \mathscr{H}_{X, x^{0}}$ such that there images under $\Phi_{x^{0}}$ are both $\lambda \in H^{1}\left(S^{1}, i^{-1} \operatorname{Aut}^{<X}\left(\widetilde{\mathscr{M}^{\text {good }}}\right)\right)$. To make this more precise, may assume there is a finite cover $\left(I_{i}\right)$ of S^{1} and an open neighborhood $x^{0} \in V \subset X$ such that $f_{i}: \widetilde{\mathscr{M}} \rightarrow \widetilde{\mathscr{M}}^{\text {ood }}, f_{i}^{\prime}: \widetilde{\mathscr{M}}^{\prime} \rightarrow \widetilde{\mathscr{M}}^{\text {good }}$ associated to $\hat{f}, \hat{f}^{\prime}$ are defined over $I_{i} \times V$ and make $\lambda=\left[\left(f_{j} f_{i}^{-1}\right)\right]=\left[\left(f_{j}^{\prime} f_{i}^{\prime-1}\right)\right]$.
Then, by definition of the 1st nonabelian cohomology, there exist $g_{i} \in \Gamma\left(I_{i} \times\right.$ $V, \operatorname{Aut}^{<X}\left(\widetilde{\left.\mathscr{M}^{\text {good }}\right)}\right)$ such that on $I_{i j} \times V=\left(I_{i} \cap I_{j}\right) \times V, f_{j}^{\prime} f_{i}^{\prime-1}=g_{j} f_{j} f_{i}^{-1} g_{i}^{-1}$ or

$$
\begin{equation*}
f_{i}^{-1} g_{i}^{-1} f_{i}^{\prime}=f_{j}^{-1} g_{j}^{-1} f_{j}^{\prime} . \tag{2}
\end{equation*}
$$

So we may set $\sigma_{i}:=f_{i}^{-1} g_{i}^{-1} f_{i}^{\prime}$ which are compatible with connections, and which glue to $\sigma \in \Gamma\left(S^{1} \times V, \underline{\operatorname{Hom}}\left(\widetilde{\mathscr{M}^{\prime}}, \widetilde{\mathscr{M}}\right)\right.$ by (2). Now $\hat{f}^{\prime}=\hat{f} \circ \hat{\sigma}\left(\right.$ since $\hat{g}_{i}=1$), which implies $(M, \nabla, \hat{f}) \sim\left(\overline{M^{\prime}, \nabla^{\prime}}, \hat{f}^{\prime}\right)$.

- Surjectivity of $\Phi_{x^{0}}$: Suppose $\lambda \in H^{1}\left(S^{1}, i^{-1}\right.$ Aut $\left.{ }^{<X}\left(\widetilde{\mathscr{M}^{\text {ood }}}\right)\right)$. Choose an open $\operatorname{cover}\left(I_{i}\right)$ of S^{1} such that $\lambda=\left(\lambda_{i j}\right) \in \Gamma\left(I_{i j}, i^{-1} \operatorname{Aut}^{<X}\left(\widetilde{\mathscr{M}^{\text {sood }}}\right)\right)=\mathrm{GL}_{d}^{<X}\left(i^{-1} \mathscr{A}_{\tilde{D} \times X}\right)$. Then

$$
\lambda_{i j} \lambda_{j k}=\lambda_{i k} ; \quad \hat{\lambda}_{i j}=\mathrm{id}_{\mathbb{C}^{d}} ;
$$

so that by [Sibuya, Thm. 6.4.1], λ is a coboundary with value in $\mathrm{Aut}^{<X}\left(\widetilde{\mathcal{M}^{\text {good }}}\right.$), i.e. $\lambda=f_{j} f_{i}^{-1}$ for some $f_{i} \in \Gamma\left(I_{i}, i^{-1} \operatorname{Aut}\left(\widetilde{\mathscr{M}^{\text {good }}}\right)\right)$.

Now we construct the desired object which maps to λ via $\Phi_{x^{0}}$. Since $\lambda_{i j}=f_{j} f_{i}^{-1}$ is compatible with $\nabla^{\text {good }}, \nabla^{\text {good }}\left(\lambda_{i j} s\right)=\lambda_{i j}\left(\nabla^{\text {good }} s\right)$ for all s, so that

$$
\begin{equation*}
f_{j}^{-1} \nabla^{\text {good }} f_{j}=f_{i}^{-1} \nabla^{\text {good }} f_{i} \text { over } I_{i j} \tag{3}
\end{equation*}
$$

On I_{i} consider $\left(\widetilde{\mathscr{M}^{\text {good }}}, f_{i}^{-1} \nabla^{\text {good }} f_{i}\right)$; by (3) they glue to $\left(\widetilde{\mathscr{M}}{ }^{\text {good }}, \nabla\right)$ with $\left.\nabla\right|_{I_{i}}=$ $f_{i}^{-1} \nabla^{\text {good }} f_{i}$. Similarly $\left(\hat{f}_{i}\right)$ glue to $\hat{f}:\left(\widehat{\mathscr{M}}^{\text {good }}, \nabla\right) \rightarrow\left(\widehat{\mathscr{M}}^{\text {good }}, \nabla^{\text {good }}\right)$. Thus the image of $\left(\widehat{\mathscr{M}}^{\text {good }}, \nabla, \hat{f}\right)$ under Φ is λ.

The proof is now complete.

3.5 Remarks on the Stokes sheaf

- $\mathbf{S t}_{X}=\mathbf{S t}_{X}\left(\mathscr{M}^{\text {good }}\right)$ is a locally constant sheaf of (pointed) sets.
- Therefore, via the isomorphism $\Phi: \mathscr{H}_{X} \xrightarrow{\sim} \mathbf{S t}_{X}$, we find \mathscr{H}_{X} is also a locally constant sheaf.

4 The rigidity of logarithmic lattices

Theorem 4.1 (Rigidity of deformation of logarithmic lattices, [Sabbah, Prop. III.1.19]). Suppose we are given the following objects:

- A vector bundle E^{0} over the unit disc $D \subset \mathbb{C}$ equipped with a flat connection ∇ having only a logarithmic pole at $0 \in D$;
- A simply connected complex analytic manifold X and a specified point $x^{0} \in X$.

Then there exists, unique up to isomorphism, a vector bundle E over $D \times X$ equipped with a flat connection ∇ having only logarithmic poles along $\{0\} \times X \subset D \times X$, such that the restriction of (E, ∇) to $D \times\left\{x^{0}\right\} \subset D \times X$ is $\left(E^{0}, \nabla^{0}\right)$.

Sketch of proof: Consider the canonical projection $p: D \times X \rightarrow D$ and put $(E, \nabla)=$ $p^{*}\left(E^{0}, \nabla^{0}\right)$.

5 Deformation of lattices with connections of pole order 1

In this section, D is the unit disc on \mathbb{C}, and X is a connected complex analytic manifold of dimension n with a base point $x^{0} \in X$. We say a connection is of pole order 1 along some singularities if it has Poincaré rank 1 there.

5.1 The rank 1 case: local classification

Theorem 5.1 ([Sabbah, Prop.III.2.11]). Suppose \mathscr{E} is a holomorphic line bundle over $D \times X$ equipped with a flat connection ∇ having only poles of order 1 along $\{0\} \times X$. Define $(E, \nabla):=(\mathscr{E}, \nabla)_{\left(0, x^{0}\right)}$. Then:
(a) There exist unique $\lambda(x) \in \mathscr{O}(X)$ and $\mu \in \mathbb{C}$ such that in any local basis of E, the polar part of ∇ is $\omega_{\mathrm{pol}}=-\mathrm{d}\left(\frac{\lambda(x)}{t}\right)+\mu \frac{\mathrm{d} t}{t}$.
(b) (E, ∇) admits a non-identically zero holomorphic horizontal section if and only if $\lambda \equiv 0, \mu \in \mathbb{Z}_{\leq 0}$.

5.2 The formal decomposition

Consider the following assumption which will be used later:
Assumption 5.2. $\lambda_{1}, \cdots, \lambda_{d}: X \rightarrow \mathbb{C}$ are holomorphic functions, and $\lambda_{1}^{0}, \cdots, \lambda_{d}^{0} \in \mathbb{C}$, such that

- For all $i \neq j, \lambda_{i}-\lambda_{j}$ is non-vanishing on X;
- For all $i, \lambda_{i}\left(x^{0}\right)=\lambda_{i}^{0}$.

Theorem 5.3 (The formal decomposition of a lattice of order 1, [Sabbah, Thm.III.2.15]). Suppose that

- E is a holomorphic vector bundle over $D \times X$ (we use (t, x) to denote coordinates on $D \times X$) endowed with a flat connection ∇ having only poles of order 1 along $\{0\} \times X$;
- The "second residue" $R_{0}(x)$ of ∇, namely the residue of $t \nabla$, has eigenvalues $\lambda_{i}(x)$ that satisfy Assumption 5.2.

Then there exists a unique formal decomposition

$$
(\widehat{\mathscr{E}}, \widehat{\nabla}) \simeq \bigoplus_{i=1}^{d}\left(\widehat{\mathscr{E}}_{i}, \widehat{\nabla}\right)
$$

subjected to the condition that the second residue of $\left(\widehat{\mathscr{E}}_{i}, \widehat{\nabla}\right)$ is $\lambda_{i}(x)$ for all i.

5.3 The main theorem

Theorem 5.4 (Rigidity of deformation of lattices having pole-order 1, [Sabbah, Thm.III.2.10]). Suppose that

- E^{0} is a vector bundle over the unit disc $D \subset \mathbb{C}$ equipped with a flat connection ∇ having only a order- 1 pole at $0 \in D$;
- The second residue R_{0}^{0} of ∇^{0} has eigenvalues $\lambda_{1}^{0}, \cdots, \lambda_{d}^{0}$;
- The parameter space X is simply-connected.

Then there exists, unique up to isomorphism, a holomorphic bundle (E, ∇) over $D \times X$ such that

- The second residue $R_{0}(x)$ of ∇ has eigenvalues $\lambda_{i}(x)$ satisfying Assumption 5.2;
- The restriction of (E, ∇) to $D \times\left\{x^{0}\right\}$ is isomorphic to $\left(E^{0}, \nabla^{0}\right)$.

Sketch of proof:

- Construction of the good formal model: Let $\mathscr{M}^{\text {good }}$ be the trivial bundle on $D \times X$ equipped with a connection $\nabla^{\text {good }}$ having connection 1-form $\operatorname{diag}\left(\omega_{1}, \cdots, \omega_{d}\right)$ with $\left(\omega_{i}\right)_{\mathrm{pol}}=-\mathrm{d}\left(\frac{\lambda_{i}(x)}{t}\right)+\mu_{i} \frac{\mathrm{~d} t}{t}$ where μ_{i} are determined by $\left(E^{0}, \nabla^{0}\right)$. Then we get the good formal model ($\left.\widehat{\mathscr{M}}^{\text {good }}, \widehat{\nabla}^{\text {good }}\right)$.
- Construction of the meromorphic bundle: Since X is simply-connected, by $\S 3.5$, St_{X} is a constant sheaf and so is \mathscr{H}_{X}. So there is a unique section σ of \mathscr{H}_{X} such that $\sigma_{x^{0}}=\left(M^{0}, \nabla^{0}, \hat{f^{0}}\right) \in \mathscr{H}_{X, x^{0}}\left(M^{0}\right.$ is induced by $\left.E^{0}\right)$. This σ corresponds to $(\mathscr{M}, \nabla, \hat{f})$ whose restriction to $D \times\left\{x^{0}\right\}$ is isomorphic to $\left(M^{0}, \nabla^{0}, \hat{f}^{0}\right)$.
- Construction of (E, ∇) : Take $(\mathscr{E}, \nabla)=(\widehat{\mathscr{E}} \cap \mathscr{M}, \nabla)$ and then we get the corresponding (E, ∇).

The uniqueness of (E, ∇) can be deduced by appropriately using the local constancy of $\operatorname{Aut}\left(\widehat{E}^{\text {good }}, \widehat{\nabla}^{\text {good }}\right)$ and the constancy of \mathscr{H}_{X}.

6 Reference

[Sabbah] C. Sabbah, Isomonodromic Deformations and Frobenius Manifolds: An Introduction, Springer, 2008.
[Sibuya] Y. Sibuya, Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, American Mathematical Society, 1990.

