
THE MODULI SPACE OF STABLE CURVES

YOU-CHENG CHOU

We introduce the proof of the groupoid of stable, n-pointed, genus g
curves as a Deligne-Mumford stack in three stages. First, as a quotient
groupoid, we show that it is isomorphic to the Hilbert scheme of ν-log-
canonically embedded, stable, n-pointed genus g curves quotient the pro-
jective general linear group. Then we briefly recall the Grothendiecks de-
scent theory for quasi-coherent sheaves and use it to show that the moduli
groupoid is a stack and, finally, Deligne-Mumford stack.

1. HILBERT SCHEME

Let (C; p1, . . . , pn) be a stable, n-pointed, genus g curves and let D =
∑n

i=1 pi. We have the following fact:

Fact 1.1. (wC(D))ν is very ample if ν ≥ 3, where wC denotes the dualizing sheaf
of C.

We embeds C in Pr via (wC(D))ν, where r = (2νt− 1)(g− 1) + νn− 1.
Its Hilbert polynomial is

pν(t) = (2νt− 1)(g− 1) + νnt.

The embedding given by (wC(D))ν is called the ν-log canonical embed-
ding.

Definition 1.2. We define Hν,g,n as the Hilbert scheme of stable, n-pointed, genus
g curve given by the ν-log canonical embedding.

Remark 1.3. Hν,g,n is a smooth locally closed subsheme of the product

Hilbpν(t)
Pr × (Pr)n of dimension 3g− 3+ n + (r + 1)2− 1. The natural action

of PGL(r + 1) on this product restricts to the action on Hν,g,n.

2. GROUPOID

Let S be a scheme and consider the category Sch/S of schemes over S.
From now on, the scheme will implicitly assumed to be of finite type over
C.

Definition 2.1. A category fibered in groupoids over Sch/S or, more simply, a
groupoid over S, is a pair (CM, pM), where CM is a category, and

pM : CM → Sch/S

is a functor safistying the following two conditions:
1
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(A) Let f : T → T′ be a morphism in Sch/S, and let η ∈ Ob(CM) such that
pM(η) = T′. Then there exists (not necessary unique) ξ ∈ CM and a
morphism φ : ξ → η in CM with pM(φ) = f .

(B) Every morphism φ : ξ → η is cartesian in the following sense. Given
other arrow φ′ : ξ ′ → η and a morphism h : pM(ξ)→ pM(ξ ′) such that
pM(φ′)h = pM(φ), there exists a unique morphism ψ : ξ → ξ ′ such
that pM(ψ) = h and φ′ψ = φ.

A morphism α :M→M′ of groupoids over Sch/S is a functor α : CM → CM′

such that pM′α = pM. When α is an equivalence of categories, we say that it is
an isomorphism of groupoids.

Example 2.2.

(1) Let X be a scheme. We will consider X as a groupoid X = (CX, pX),
where the objects of CX are pairs (T, f ) with f : T → X a morphism
of schemes. The morphism φ : (T, f ) → (T′, f ′) are the morphisms
h : T → T′ such that f ′h = f . Finally, the functor pX is defined by
pX(T, f ) = T.

(2) Let C be the category in which the objects are the families

X
ξ
��

T
of smooth (resp. stable, n-pointed) curves of genus g and in which
a morphism

φ : ξ ′ → ξ

bwtween two families ξ ′ : X ′ → T′ and ξ : X → T is a cartesian
product

X ′ //

ξ ′

��

X
ξ
��

T′
f
// T

The functor p assigns to a family ξ : X → T its parameter space
T: p(ξ) = T. For the morphism, we set p(φ) = f . It is not hard to
check that the pair (C, p) is a groupoid.

We denoteMg,n (resp. Mg,n) the groupoid of smooth (resp. stable), n-
pointed, genus g curves.

Definition 2.3 (The categoryM(T)). Given a groupoidM = (C, p), denote
byM(T) the category whose objects are objects ξ ∈ C with p(ξ) = T and whose
morphisms are morphisms φ in C with p(φ) = idT. The condition (B) tells us
that a morphism φ in C is an isomorphism if and only if p(φ) is. HenceM(T) is
a groupoid in the sense that all morphisms are isomorphisms. The categoryM(T)
is called the category of sections of M over T.
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It is important to check whether two groupoids (CM, pM) and (CM′ , pM′)
are isomorphic. As we already mentioned before, there must exist an equiv-
alence of categories F : CM → CM′ such that pM′F = pM. It is well-known
that the functor F is equivalence if and only if the following conditions
hold:

(i) F is fully faithful in the following sense, for any ξ, ξ ′ ∈ Ob(CM), the
induced map

HomCM(ξ, ξ ′)→ HomCM′ (F(ξ), F(ξ ′))

is bijective.
(ii) F is essentially surjective, meaning that every η ∈ Ob(M′) is iso-

morphic to F(ξ) for some ξ ∈ M.

For groupoids, we have the following lemma.

Lemma 2.4. A morphism F : M → M′ of groupoids over Sch/S is an iso-
morphism if and only if for every T in Sch/S, the induced functor on fibers
FT :M(T)→M′(T) is an equivalence of categories.

Suppose that a group scheme G acts on a scheme X. Then one can form
the quotient groupoid

[X/G] = (PG,X, P),

where PG,X is the category whose objects are pairs (π, σπ), where π : E→ T
is a principal G-bundle, and σ(π) : E → X is a G-equivariant map. A
morphism between (π, σπ) and (π′, σ′π) is a pair of commutative diagrams

E′
φ
//

π′
��

E

π
��

E′
φ
//

σπ′ ��

E

σπ

��
T′

f
// T X

where the first one is cartesian. At last, the functor p : PG,X → Sch is given
by (π, σπ) → T. Hence PG,X(T) is the category of principal G-bundle over
T, equipped with a G-equivariant map from their total space to X.

Example 2.5. For X = {pt}, we have [{pt}/G] = BG.

Theorem 2.6. The moduli groupoidMg,n is isomorphic to the quotient groupoid
[Hν,g,n/PGL(N)].

Proof. We first define a morphism

Φ :Mg,n → [Hν,g,n/PGL(N)].

Let ξ : X → T be a family of stable n-pointed genus g curves, which is
an object of Mg,n. Φ(ξ) must consist of a G-bundle π : E → T and a
G-equivariant map σπ : E→ Hν,g,n.
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First let π : E→ T be the principal G-bundle associated to the projective
bundle Pξ := P(ξ∗(wν

ξ(νD))) → T. Consider the cononically trivialized
G-bundle

π∗Pξ → E

and the pull-back family

η : Z = X ×π E→ E

There is a canonical isomorphism

Pη
∼= π∗Pξ .

We can therefore view Z → E as a family of ν-log canonically embedded
curves via the canonical trivialization of Pη . This gives a G-equivariant
morphism σπ : E→ Hν,g,n. This completes the definition of Φ.

To show Φ is an isomorphism of groupoid, we use Lemma (2.4). We must
show that ΦT is fully faithful and essentially surjective for every scheme T.

For the first part, since any two objects ofMg,n(T) are isomorphism, we
only need to prove that ΦT incuces a bijection

HomMg,n(T)(ξ, ξ)
∼ // HomP(T)(Φ(ξ), Φ(ξ)).

It is equivalent to the statement that the automorphism of a family of sta-
ble, n-pointed, genus g curves ξ : X → T and the automorphisms of the
projective bundle P∗ξ → T determine each other. Let γ be the automor-
phism of the family ξ : X → T. Then γ induces an automorphism of
P(H0(wν

ξ(νD))) and therefore induces the automorphism of P∗ξ → T. For
the other direction, we observe that any non-trivial element φ ∈ PGL(r+ 1)
which leaves a ν-log canonically embedded curve C ↪→ Pr invariant must
act non-trivial on C, since C does not lies in the proper linear subspace,
the fixed locus of φ. Hence any non-trivial automorphism of P∗ξ → T will
induce an non-trivial automorphism of ξ : X → T.

For the essential surjectivity part, let (π, σπ) ∈ Ob(P), so that π : E → T
is a principal G-bundle, and σπ : E → Hν,g,n is a G-equivariant map. Now
we consider the universal family Y → Hν,g,n and the following cartesian
diagram

Z //

η

��

Y

��
E

σπ // Hν,g,n

The group G acts equivariantly and freely on E and Z . We can then induce
the quotient family

ξ : Z/G = X → T = E/G.

The last part is to check that ΦT(ξ) is isomorphic to (π, σπ). We left it to the
reader. �
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3. THE THEORY OF DESCENT FOR QUASI-COHERENT SHEAVES

Consider a morphism of schemes X → Y, and a quasicoherent OX-
module F . Let p1 and p2 be the fist and second projection of X×Y X → X,
p12, p13, and p23 to indicate the projections of X ×Y X ×Y X → X ×Y X
by omitting the third, second, and first components, respectively, and q1,
q2, q3 to indicate the three projections of X ×Y X ×Y X → X. Notice that
p1 p12 = q1 = p1 p13, p2 p12 = q2 = p1 p23, and p2 p13 = q3 = p2 p23. The
descent data for F relative to X → Y is an isomorphism φ : F1 → F2 such
that the following diagram commutes:

p∗12F2 p∗23F1
p∗23φ

$$
p∗12F1

p∗12φ
::

p∗23F2

p∗13F1
p∗13φ
// p∗13F2

, where F1 = p∗1F and F2 = p∗2F We will call this the cocycle condition.
When F is the pullback of a quasicoherent OY-module, there is a canon-

ical isomorphism between F1 and F2 with descent data. We are inter-
ested in the convered part, that is, whether a quasicoherent OX-module
with descent data comes from an OY-module. Similar problem can be
asked on the morphism of quasicoherent OX-modules. Here we introduce
Grothendieck’s descent theory:

Theorem 3.1. Let π : X → Y be a faithfully flat and quasi-compact morphism of
schemes. Then the pullback functor

{ quasicoherent OY-modules }→
{

quasicoherent OX-modules with
descent data relative to π

}
is an equivalence of categories.

4. MODULI SPACE OF CURVE AS A STACK

LetM = (C, p) be a groupoid, T be a scheme, ξ be an object ofM(U),
and f : U → T be an étale surjective morphism. As before, we denote p12,
p13, and p23 to be the projections of U×T U×T U to U×T U by omitting the
third, second, and the first component, respectively and q1, q2, q3 to indicate
the three projections of U ×T U ×T U to U so that p1 p12 = q1 = p1 p13,
p2 p12 = q2 = p1 p23, and p2 p13 = q3 = p2 p23. A descent datum for ξ,
relative to f : U → T, is an isomorphism φ : p∗1ξ → p∗2ξ such that the
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following diagram commutes:

p∗12 p∗2ξ p∗23 p∗1ξ
p∗23φ

$$
p∗12 p∗1ξ

p∗12φ
::

p∗23 p∗2ξ

p∗13 p∗1ξ
p∗13φ
// p∗13 p∗2ξ

A descent datum for ξ relative to f , is said to be effective if there exist an
object η ∈ T and an isomorphism ψ : f ∗(η)→ ξ such that

ψ = (p∗2ψ) ◦ (p∗1ψ)−1

Now we are ready to define a stack in groupoids for the étale topology
or, more simply, a stack. A stack is a groupoid M = (C, p) having the
following two properties.

(1) Every descent datum is effective.
(2) Given a scheme S and objects ξ and η inM(S), the functor

IsomS(ξ, η) : Sch/S→ Sets

which associates to a morphism f : T → S the set of isomorphisms
inM(T) between f ∗(ξ) and f ∗(η) is a sheaf in the étale topology.

A contravariant functor F : Sch/S → Sets is a sheaf in the étale topology if
for every étale surjective morphism f : U → T of S-schemes, the diagram

F(T)
F( f )
// F(U)

F(p1)//

F(p2)
// F(U ×T U)

is exact. We recall the following theorem due to Grothendieck.

Theorem 4.1. Let S be a scheme. Let F : Sch/S → Sets be a contravariant,
representable functor. Then F is a sheaf for the étale topology.

Theorem 4.2. The groupoisMg,n andMg,n are stacks.

Proof. We consider Mg,n case only. The case of Mg,n is similar. We deal
with the condition (2) in the definition of stack first. Given two families of
stable curves ξ : X → S and η : Y → S, objects in Mg,n(S), the functor
IsomS(ξ, η) is represented by the scheme IsomS(X, Y), where IsomS(X, Y)
represents the functor which associates to each scheme T over S the set of
all isomorphisms, as schemes over T, from X×S T to Y×S T.

The turn to condition (1). Let T → T′ be a surjective étale morphism,
and let

ξ : X → T
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be a family of stable curves with descent data φ : p∗1(ξ)→ p∗2(ξ),

p∗1(X) = T ×T′ X
φ

//

p∗1(ξ) ((

X×T′ T = p∗2(X)

p∗2(ξ)vv
T ×T′ T

To check the effectiveness, we need to produce a family of stable curves
η : Y → T′ such that ξ = π∗(η). This construction is a typical descent
construction and will be reduced to the theory of descent of quasicoherent
sheaves. This reduction has two steps

We first give some notation. Consider the family ξ : X → T. We consider
the dual direct image bundle Eξ = ξ∗(w3

ξ(3D))∗. The total space X of the
family ξ can be viewed as embedded in P(Eξ):

X ⊂ P(Eξ)

ξ

��
T

Step 1. From the descent data for ξ we deduce descent data for the vector
bundle (or better, locally free sheaf) Eξ . From the theory of descent
on QCoh, we get a vector bundle E′ over T′ with π∗(E′) = E.

Step 2. We consider the following diagram

P = P(Eξ)
q
//

��

P(E′) = P′

��
T π // T′

The descent data for ξ : X → T relative to the étale cover π : T → T′
determine descent data for the ideal sheaf IX ⊂ OP with respect to
the étale cover q : P → P′. Using the theory of descent for QCoh,
we get the subscheme Y ⊂ P′ and the family η : Y → T′.

Before proving the two steps, we have some preparation. Given a mor-
phism S→ S′ and a cartasian diagram of families of stable curves

Z h //

α
��

Z′

β
��

S
f
// S′

We have the canonical isomorphisms:

σh, f : h∗(Lβ)
∼ // Lα,

τh, f : f ∗(Eβ)
∼ // Eα .



8 YOU-CHENG CHOU

Given two composable cartesian squares of families of stable curves

Z h //

α
��

Z′ k //

β
��

Z′′

γ
��

S
f
// S′

g
// S′′

one can check the follwoing equalities:

σkh,g f = σh, f h∗(σk,g) : (kh)∗ (Lγ)
∼ // Lα,

τkh,g f = τh, f f ∗(τk,g) : (g f )∗ (Eγ)
∼ // Eα.

(4.1)

We trturn to the étale cover π : T → T′ and to the descent datum φ :
p∗1(X)→ p∗2(X) for the family ξ : X → T. We consider the diagram:

X

ξ

��

p∗1(X)
p1oo

p∗1(ξ)
��

φ
// p∗2(X)

p∗2(ξ)
��

p2 // X

ξ

��
T T ×T′ T

p1oo T ×T′ T
p2 // T

Using (4.1), we can see that the isomorphism

φξ = τ−1
p2,p2

τ−1
φ,idτp1,p1 : p∗1Eξ → p∗2Eξ

satisfies the cocycle condition for the étale cover π : T → T′, therefore
defining descent data for the coherent OT-module Eξ . From the theory of
descent on QCoh, we get a quasicoherent OT′-module E′ such that Eξ =
π∗(E′). The remaining part is to show that E′ is locally free. We can easily
see that by recalling a well-known lemma :

Lemma 4.3. Let A → A′ be a faithfully flat ring homomorphism. Then an A-
module M is finitely generated (resp. free) if and onlly if M ⊗A A′ is finitely
generated (resp. free) A′-module.

For the second step, as we already mentioned, the descent data for ξ :
X → T, relative to the étale cover π : T → T′, determine descent data for
the ideal sheaf IX ⊂ OP with respect to the étale cover q : P → P′. By
descent theorem in QCoh, we get an OP′-module G such that q∗(G) = IX.
As q is étale, and hence faithfully flat, the previous lemma follows that G is
a sheaf of ideals in OP′ . This sheaf of ideals defines a subscheme Y ⊂ P′

such that X ∼= q∗(Y) = Y×P′ P. We also have

X ∼= Y×P′ P = Y×P′ ×T′T ∼= Y×T′ T.

We then get a cartesian square

X //

ξ
��

Y

η
��

T π // T′
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Since π is étale, η : Y → T′ is a family of stable curves, as wanted. �

We define the fiber products of stacks. Let α : M → P and β : N → P
are morphisms of stacks. ThenM×P N is the groupoid whose objects are
defined by

(M×P N )(T) = {(ξ, η, φ) : (ξ, η) ∈ M(T)×N (T), φ ∈ IsomT(α(ξ), β(η))},

for every scheme T. A morphism between two object (ξ, η, φ) and (ξ ′, η′, φ′)
is a pair (ψ1, ψ2), where ψ1 : ξ → ξ ′ is a morphism inM and ψ2 : η → η′

is a morphism in N , with pM(ψ1) = pN (ψ2) and φ′α(ψ1) = β(ψ1)φ. It can
be checked that such a groupoid is actually a stack.

5. MODULI SPACE OF CURVE AS A DELIGNE-MUMFORD STACK

As we already seen in example (2.2), we may view scheme S as a stack,
by considering the stack associated to the functor of points of S. We will
talk about morphisms bwtween schemes and stacks. A morphism f from a
scheme S to a stackM is equivalent to given an object ξ ∈ M(S); indeed,
ξ = f (idS). We say a stack is represented by a scheme if it is isomorphic to
a scheme.

Example 5.1. Given a groupoidM, a scheme S, and a morphism S → M,
the groupoidM×M S is represented by S.

A morphism of stacks f : M → N is said to be representable if for
every scheme S and every morphism S → N , the fibre product M×N S
is a scheme. The following lemma explains what the representability of
diagonal morphism of stack means.

Lemma 5.2.
bigtriangleup : M → M×M is representable if and only if every morphism
from a scheme toM is.

Let P be a property of morphisms of schemes which is stable under
base change. For example, flat, étale, unramified, separated, or of finite
gype. Then a representable morphism f : M → N satisfies P if for ev-
ery morphism S → M, where S is a scheme, the morphism of schemes
M×N S→ S satisfies P.

A Deligne-Mumford stack is a stackM having the following two prober-
ties.

(1) The diagonal 4 : M → M×M is representable, quasi-compact,
and separated.

(2) There exist a scheme X and an étale surjective morphism α : X →
M.

The morphism α is also called an atlas forM.

Theorem 5.3. Mg,n andMg,n ar Deligne-Mumford stack.
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Proof. Again, we prove the theorem forMg,n, the proof forMg,n is similar.
SetM = Mg,n. We first prove the representability of 4 : M → M×M
is straightforward. Let h : S →M×M be a morphism. It is equivalent to
giving two families of stable pointed curves ξ : X → S and η : Y → S in
M(S). We observe that

(M×M×M S)(T) = {( f , α)| f : T → S, α ∈ IsomT( f ∗ξ, f ∗η)}
= {( f , β)| f : T → S, β ∈ HomS(T, IsomS(ξ, η))}
= Hom(T, IsomS(ξ, η)).

(5.2)

Therefore, M×M×M S is represented by IsomS(ξ, η), which is separated
and quasi-compact. Hence we prove condition (1). For the second condi-
tion, we observe that, given two morphisms f : S → M and g : T → M,
where S and T are schemes, or equivalently given two families of stable
curves, ξ : X → S inM(S) and η : Y → T inM(T) inM(T), we get

S×M T = IsomS×T(p∗1ξ, p∗2η),

where p1 : S×T → S and p2 : S×T → T are two projections. We recall that
there is a smooth variety X which is the disjoint union of a finite number
of ”slices”, X1, . . . , XN , in the Hilbert scheme Hν,g,n. Each slice is a smooth
affine (3g− 3 + n)-dimensional subvariety of Hν,g,n which is transversal to
the orbits of G = PGL(N). We sketch of the construction of X. First we
introduce the following theorem of Kuranishi family:

Definition 5.4. Let (C; p1, . . . , pn) be a n-pointed nodal curve. A deformation

C
φ
��

(B, b0)

σi , i=1,...,n

OO

χ : (C; p1, . . . , pn)→̃(φ−1(b0); σ1(b0), . . . , σn(b0))

of (C; p1, . . . , pn) is said to be a Kuranishi family for (C; p1, . . . , pn) if it satisfies
the following condition:

• For any deformation ψ : D → (E, e0) of (C; p1, . . . , pn) and for any suffi-
ciently small connected neighborhood U of e0, there is a unique morphism
of deformations of n-pointed curves

DU
F //

��

C
φ
��

(U, e0)
f
// (B, b0)

Theorem 5.5. Let ν ≥ 3 be an integer. Let (C; p1, . . . , pn) ⊂ Pr be a stable
n-pointed genus g curve, embedded in Pr, r = (2ν− 1)(g− 1) + νn− 1, via the
ν-fold log-canonical system. Let x0 ∈ Hν,g,n be the corresponding Hilbert point,
and let Aut(C; p1, . . . , pn) = Gx0 ⊂ G = PGL(r + 1) be the stabilizer of x0.
Then there is a locally closed (3g− 3 + n)-dimensional smooth subscheme X0 of
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Hν,g,n passing through x0 such that the restriction of X to the universal family
over Hν,g,n is a Kuranishi family for all of its fibers and hence, in particular, a
Kuranishi family for (C; p1, . . . , pn). In addition, one can choose an X0 with the
following properties:

(a) X0 is affine;
(b) the family is Kuranishi at every point of X0;
(c) the action of the group Gx0 on the central fiber extends to compatible ac-

tions on C and X0;
(d) for every y ∈ X, the automorphism group Gy is equal to the stabilizer of y

in Gx0 . In particular, Gy is a subgroup of Gx0 ;
(e) for every y ∈ X, there is a Gy-invariant neighborhood U of y in X0, for

the analytic topology, such that any isomorphism (of n− pointed curves)
between fibers over U is induced by an element of Gy.

Such an X0 can be obtained as follows. Consider the orbit O(x0) ⊂ H
of x0 under G; this is a smooth subvariety of H of dimension (r + 1)2 − 1
passing through x0. Since the linear subspace T of PM tangent to O(x0) at
x0 is obviously Gx0 invariant, there is a Gx0-invariant linear subspace L of
PM of the complementary dimension such that L ∩ T = {x0}. Now X0 is
obtained by a Zariski-open neighborhood of x0 in H ∩ L.

We go back to the construction of X. By compactness we can cover Hν,g,n

with finitely many sets of the type G×Xi, i = 1, . . . , N. We set X = äN
i=1 Xi.

The restriction to X of the universal family over Hν,g,n gives a family of
stable curves ξ : C → X and hence a morphism

α→M

The remaining part is to show that α is étale and surjective. By definition,
we must prove that, for every morphism f from a scheme S to M, the
induced morphism

X×M S = IsomX×S(p∗1ξ, p∗2η)→ S

is étale and surjective. Let η : χ → S be the family corresponding to the
morphism f : S → M. Since being étale is a local property and since,
locally on S, the family η is the pullback of the family ξ : C → X, we are
reduced to showing that the natural projections

X×M X = IsomX×X(p∗1ξ, p∗2ξ)→ X

are étale and surjective.
Recall, from property (e) of Theorem (5.5), that every point y in X pos-

sesses a Gy-invariant neighborhood U such that {γ ∈ G|γU ∩U 6= 0} ⊂
Gy = Aut(Cy). Let α : CU → U be the restriction to U of the family ξ over
X. The following lemma gives a local description of the two maps q and q1.
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Lemma 5.6. Consider the Kuranishi family α : CU → U. Let p1 and p2 be the
two projections from U ×U to U. Consider the natural diagram

IsomU×U(p∗1α, p∗2α)
q1 //

q
��

U

U ×U

Let C = Cu0 be the central fiber of α. Let H = Aut(C). Then there is an iso-
morphism χ : H × U → IsomU×U(p∗1α, p∗2α) such that q1χ(g, u) = u and
qχ(g, u) = (gu, u). In particular, q1 is étale and surjective.

Set I = IsomU×U(p∗1α, p∗2α). Define χ : H ×U → I by setting

χ(g, u) = {g−1 : Cgu → Cu}.
Since every isomorphism between two fibers of α is uniquely induced by an
element of H, the morphism χ is set-theoretically, a bijection. Set k = |H|.
We then have a decomposition of I= I1 ∪ I2 · · · ∪ Ik. We also have induced
bijective morphisms χ : U → Ii having the property that q1χ = idU . But
then χ is unramified. Thus Ii must be smooth and χ is an isomorphism.
This proves the lemma.

The proof of the theorem now follows directly from the lemma. �
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