THE MODULI SPACE OF STABLE CURVES

YOU-CHENG CHOU

We introduce the proof of the groupoid of stable, n-pointed, genus g curves as a Deligne-Mumford stack in three stages. First, as a quotient groupoid, we show that it is isomorphic to the Hilbert scheme of v-logcanonically embedded, stable, n-pointed genus g curves quotient the projective general linear group. Then we briefly recall the Grothendiecks descent theory for quasi-coherent sheaves and use it to show that the moduli groupoid is a stack and, finally, Deligne-Mumford stack.

1. Hilbert scheme

Let $\left(C ; p_{1}, \ldots, p_{n}\right)$ be a stable, n-pointed, genus g curves and let $D=$ $\sum_{i=1}^{n} p_{i}$. We have the following fact:

Fact 1.1. $\left(w_{C}(D)\right)^{v}$ is very ample if $v \geq 3$, where w_{C} denotes the dualizing sheaf of C.

We embeds C in \mathbb{P}^{r} via $\left(w_{C}(D)\right)^{v}$, where $r=(2 v t-1)(g-1)+v n-1$. Its Hilbert polynomial is

$$
p_{v}(t)=(2 v t-1)(g-1)+v n t .
$$

The embedding given by $\left(w_{C}(D)\right)^{v}$ is called the v-log canonical embedding.

Definition 1.2. We define $H_{v, g, n}$ as the Hilbert scheme of stable, n-pointed, genus g curve given by the v-log canonical embedding.
Remark 1.3. $H_{v, g, n}$ is a smooth locally closed subsheme of the product $\operatorname{Hilb}_{\mathbb{P}^{r}}^{p_{p}(t)} \times\left(\mathbb{P}^{r}\right)^{n}$ of dimension $3 g-3+n+(r+1)^{2}-1$. The natural action of $\operatorname{PGL}(r+1)$ on this product restricts to the action on $H_{v, g, n}$.

2. Groupoid

Let S be a scheme and consider the category $S c h / S$ of schemes over S. From now on, the scheme will implicitly assumed to be of finite type over C.

Definition 2.1. A category fibered in groupoids over Sch/S or, more simply, a groupoid over S, is a pair $\left(C_{\mathcal{M}}, p_{\mathcal{M}}\right)$, where $C_{\mathcal{M}}$ is a category, and

$$
p_{\mathcal{M}}: C_{\mathcal{M}} \rightarrow S c h / S
$$

is a functor safistying the following two conditions:
(A) Let $f: T \rightarrow T^{\prime}$ be a morphism in $S c h / S$, and let $\eta \in O b\left(C_{\mathcal{M}}\right)$ such that $p_{\mathcal{M}}(\eta)=T^{\prime}$. Then there exists (not necessary unique) $\xi \in C_{\mathcal{M}}$ and a morphism $\phi: \xi \rightarrow \eta$ in $C_{\mathcal{M}}$ with $p_{\mathcal{M}}(\phi)=f$.
(B) Every morphism $\phi: \xi \rightarrow \eta$ is cartesian in the following sense. Given other arrow $\phi^{\prime}: \xi^{\prime} \rightarrow \eta$ and a morphism $h: p_{\mathcal{M}}(\xi) \rightarrow p_{\mathcal{M}}\left(\xi^{\prime}\right)$ such that $p_{\mathcal{M}}\left(\phi^{\prime}\right) h=p_{\mathcal{M}}(\phi)$, there exists a unique morphism $\psi: \xi \rightarrow \xi^{\prime}$ such that $p_{\mathcal{M}}(\psi)=h$ and $\phi^{\prime} \psi=\phi$.
A morphism $\alpha: \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ of groupoids over Sch/S is a functor $\alpha: C_{\mathcal{M}} \rightarrow C_{\mathcal{M}^{\prime}}$ such that $p_{\mathcal{M}^{\prime}} \alpha=p_{\mathcal{M}}$. When α is an equivalence of categories, we say that it is an isomorphism of groupoids.

Example 2.2.
(1) Let X be a scheme. We will consider X as a groupoid $X=\left(C_{X}, p_{X}\right)$, where the objects of C_{X} are pairs (T, f) with $f: T \rightarrow X$ a morphism of schemes. The morphism $\phi:(T, f) \rightarrow\left(T^{\prime}, f^{\prime}\right)$ are the morphisms $h: T \rightarrow T^{\prime}$ such that $f^{\prime} h=f$. Finally, the functor p_{X} is defined by $p_{X}(T, f)=T$.
(2) Let C be the category in which the objects are the families

of smooth (resp. stable, n-pointed) curves of genus g and in which a morphism

$$
\phi: \xi^{\prime} \rightarrow \xi
$$

bwtween two families $\xi^{\prime}: \mathcal{X}^{\prime} \rightarrow T^{\prime}$ and $\xi: \mathcal{X} \rightarrow T$ is a cartesian product

The functor p assigns to a family $\xi: \mathcal{X} \rightarrow T$ its parameter space $T: p(\xi)=T$. For the morphism, we set $p(\phi)=f$. It is not hard to check that the pair (C, p) is a groupoid.
We denote $\mathcal{M}_{g, n}\left(\right.$ resp. $\left.\overline{\mathcal{M}}_{g, n}\right)$ the groupoid of smooth (resp. stable), n pointed, genus g curves.

Definition 2.3 (The category $\mathcal{M}(T)$). Given a groupoid $\mathcal{M}=(C, p)$, denote by $\mathcal{M}(T)$ the category whose objects are objects $\xi \in C$ with $p(\xi)=T$ and whose morphisms are morphisms ϕ in C with $p(\phi)=i d_{T}$. The condition (B) tells us that a morphism ϕ in C is an isomorphism if and only if $p(\phi)$ is. Hence $\mathcal{M}(T)$ is a groupoid in the sense that all morphisms are isomorphisms. The category $\mathcal{M}(T)$ is called the category of sections of M over T.

It is important to check whether two groupoids $\left(C_{\mathcal{M}}, p_{\mathcal{M}}\right)$ and $\left(C_{\mathcal{M}^{\prime}}, p_{\mathcal{M}^{\prime}}\right)$ are isomorphic. As we already mentioned before, there must exist an equivalence of categories $F: C_{\mathcal{M}} \rightarrow C_{\mathcal{M}^{\prime}}$ such that $p_{\mathcal{M}^{\prime}} F=p_{\mathcal{M}}$. It is well-known that the functor F is equivalence if and only if the following conditions hold:
(i) F is fully faithful in the following sense, for any $\xi, \xi^{\prime} \in O b\left(C_{\mathcal{M}}\right)$, the induced map

$$
\operatorname{Hom}_{\mathcal{C}_{\mathcal{M}}}\left(\xi, \xi^{\prime}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}_{\mathcal{M}^{\prime}}}\left(F(\xi), F\left(\xi^{\prime}\right)\right)
$$

is bijective.
(ii) F is essentially surjective, meaning that every $\eta \in O b\left(\mathcal{M}^{\prime}\right)$ is isomorphic to $F(\xi)$ for some $\xi \in \mathcal{M}$.
For groupoids, we have the following lemma.
Lemma 2.4. A morphism $F: \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ of groupoids over Sch/S is an isomorphism if and only if for every T in $S c h / S$, the induced functor on fibers $F_{T}: \mathcal{M}(T) \rightarrow \mathcal{M}^{\prime}(T)$ is an equivalence of categories.

Suppose that a group scheme G acts on a scheme X. Then one can form the quotient groupoid

$$
[X / G]=\left(P_{G, X}, P\right),
$$

where $P_{G, X}$ is the category whose objects are pairs $\left(\pi, \sigma_{\pi}\right)$, where $\pi: E \rightarrow T$ is a principal G-bundle, and $\sigma(\pi): E \rightarrow X$ is a G-equivariant map. A morphism between $\left(\pi, \sigma_{\pi}\right)$ and $\left(\pi^{\prime}, \sigma_{\pi}^{\prime}\right)$ is a pair of commutative diagrams

where the first one is cartesian. At last, the functor $p: P_{G, X} \rightarrow$ Sch is given by $\left(\pi, \sigma_{\pi}\right) \rightarrow T$. Hence $P_{G, X}(T)$ is the category of principal G-bundle over T, equipped with a G-equivariant map from their total space to X.

Example 2.5. For $X=\{p t\}$, we have $[\{p t\} / G]=B G$.
Theorem 2.6. The moduli groupoid $\overline{\mathcal{M}}_{g, n}$ is isomorphic to the quotient groupoid $\left[H_{v, g, n} / P G L(N)\right]$.

Proof. We first define a morphism

$$
\Phi: \overline{\mathcal{M}}_{g, n} \rightarrow\left[H_{v, g, n} / P G L(N)\right] .
$$

Let $\xi: \mathcal{X} \rightarrow T$ be a family of stable n-pointed genus g curves, which is an object of $\overline{\mathcal{M}}_{g, n} . \Phi(\tilde{\xi})$ must consist of a G-bundle $\pi: E \rightarrow T$ and a G-equivariant map $\sigma_{\pi}: E \rightarrow H_{\nu, g, n}$.

First let $\pi: E \rightarrow T$ be the principal G-bundle associated to the projective bundle $\mathbb{P}_{\xi}:=\mathbb{P}\left(\xi_{*}\left(w_{\tilde{\zeta}}^{v}(v D)\right)\right) \rightarrow T$. Consider the cononically trivialized G-bundle

$$
\pi^{*} \mathbb{P}_{\xi} \rightarrow E
$$

and the pull-back family

$$
\eta: \mathcal{Z}=\mathcal{X} \times_{\pi} E \rightarrow E
$$

There is a canonical isomorphism

$$
\mathbb{P}_{\eta} \cong \pi^{*} \mathbb{P}_{\xi}
$$

We can therefore view $\mathcal{Z} \rightarrow E$ as a family of v-log canonically embedded curves via the canonical trivialization of \mathbb{P}_{η}. This gives a G-equivariant morphism $\sigma_{\pi}: E \rightarrow H_{v, g, n}$. This completes the definition of Φ.

To show Φ is an isomorphism of groupoid, we use Lemma (2.4). We must show that Φ_{T} is fully faithful and essentially surjective for every scheme T.

For the first part, since any two objects of $\overline{\mathcal{M}}_{g, n}(T)$ are isomorphism, we only need to prove that Φ_{T} incuces a bijection

$$
\operatorname{Hom}_{\overline{\mathcal{M}}_{g, n}(T)}(\xi, \xi) \xrightarrow{\sim} \operatorname{Hom}_{P(T)}(\Phi(\xi), \Phi(\xi)) .
$$

It is equivalent to the statement that the automorphism of a family of stable, n-pointed, genus g curves $\xi: \mathcal{X} \rightarrow T$ and the automorphisms of the projective bundle $\mathbb{P}_{\xi}^{*} \rightarrow T$ determine each other. Let γ be the automorphism of the family $\xi: \mathcal{X} \rightarrow T$. Then γ induces an automorphism of $\mathbb{P}\left(H^{0}\left(w_{\xi}^{v}(v D)\right)\right)$ and therefore induces the automorphism of $\mathbb{P}_{\xi}^{*} \rightarrow T$. For the other direction, we observe that any non-trivial element $\phi \in P G L(r+1)$ which leaves a v-log canonically embedded curve $C \hookrightarrow \mathbb{P}^{r}$ invariant must act non-trivial on C, since C does not lies in the proper linear subspace, the fixed locus of ϕ. Hence any non-trivial automorphism of $\mathbb{P}_{\xi}^{*} \rightarrow T$ will induce an non-trivial automorphism of $\xi: \mathcal{X} \rightarrow T$.

For the essential surjectivity part, let $\left(\pi, \sigma_{\pi}\right) \in O b(P)$, so that $\pi: E \rightarrow T$ is a principal G-bundle, and $\sigma_{\pi}: E \rightarrow H_{v, g, n}$ is a G-equivariant map. Now we consider the universal family $\mathcal{Y} \rightarrow H_{v, g, n}$ and the following cartesian diagram

The group G acts equivariantly and freely on E and \mathcal{Z}. We can then induce the quotient family

$$
\xi: \mathcal{Z} / G=\mathcal{X} \rightarrow T=E / G .
$$

The last part is to check that $\Phi_{T}(\xi)$ is isomorphic to $\left(\pi, \sigma_{\pi}\right)$. We left it to the reader.

3. THE THEORY OF DESCENT FOR QUASI-COHERENT SHEAVES

Consider a morphism of schemes $X \rightarrow Y$, and a quasicoherent $\mathcal{O}_{X^{-}}$ module \mathcal{F}. Let p_{1} and p_{2} be the fist and second projection of $X \times_{Y} X \rightarrow X$, p_{12}, p_{13}, and p_{23} to indicate the projections of $X \times_{Y} X \times_{Y} X \rightarrow X \times_{Y} X$ by omitting the third, second, and first components, respectively, and q_{1}, q_{2}, q_{3} to indicate the three projections of $X \times_{Y} X \times_{Y} X \rightarrow X$. Notice that $p_{1} p_{12}=q_{1}=p_{1} p_{13}, p_{2} p_{12}=q_{2}=p_{1} p_{23}$, and $p_{2} p_{13}=q_{3}=p_{2} p_{23}$. The descent data for \mathcal{F} relative to $X \rightarrow Y$ is an isomorphism $\phi: \mathcal{F}_{1} \rightarrow \mathcal{F}_{2}$ such that the following diagram commutes:

, where $\mathcal{F}_{1}=p_{1}^{*} \mathcal{F}$ and $\mathcal{F}_{2}=p_{2}^{*} \mathcal{F}$ We will call this the cocycle condition.
When \mathcal{F} is the pullback of a quasicoherent \mathcal{O}_{Y}-module, there is a canonical isomorphism between \mathcal{F}_{1} and \mathcal{F}_{2} with descent data. We are interested in the convered part, that is, whether a quasicoherent \mathcal{O}_{X}-module with descent data comes from an \mathcal{O}_{Y}-module. Similar problem can be asked on the morphism of quasicoherent \mathcal{O}_{X}-modules. Here we introduce Grothendieck's descent theory:

Theorem 3.1. Let $\pi: X \rightarrow Y$ be a faithfully flat and quasi-compact morphism of schemes. Then the pullback functor

$$
\left\{\text { quasicoherent } \mathcal{O}_{Y} \text {-modules }\right\} \rightarrow\left\{\begin{array}{c}
\text { quasicoherent } \mathcal{O}_{X} \text {-modules with } \\
\text { descent data relative to } \pi
\end{array}\right\}
$$

is an equivalence of categories.

4. Moduli space of curve as a stack

Let $\mathcal{M}=(C, p)$ be a groupoid, T be a scheme, ξ be an object of $\mathcal{M}(U)$, and $f: U \rightarrow T$ be an étale surjective morphism. As before, we denote p_{12}, p_{13}, and p_{23} to be the projections of $U \times_{T} U \times_{T} U$ to $U \times_{T} U$ by omitting the third, second, and the first component, respectively and q_{1}, q_{2}, q_{3} to indicate the three projections of $U \times_{T} U \times_{T} U$ to U so that $p_{1} p_{12}=q_{1}=p_{1} p_{13}$, $p_{2} p_{12}=q_{2}=p_{1} p_{23}$, and $p_{2} p_{13}=q_{3}=p_{2} p_{23}$. A descent datum for ξ, relative to $f: U \rightarrow T$, is an isomorphism $\phi: p_{1}^{*} \xi \rightarrow p_{2}^{*} \xi$ such that the
following diagram commutes:

A descent datum for ξ relative to f, is said to be effective if there exist an object $\eta \in \mathcal{T}$ and an isomorphism $\psi: f^{*}(\eta) \rightarrow \xi$ such that

$$
\psi=\left(p_{2}^{*} \psi\right) \circ\left(p_{1}^{*} \psi\right)^{-1}
$$

Now we are ready to define a stack in groupoids for the étale topology or, more simply, a stack. A stack is a groupoid $\mathcal{M}=(C, p)$ having the following two properties.
(1) Every descent datum is effective.
(2) Given a scheme S and objects ξ and η in $\mathcal{M}(S)$, the functor

$$
\operatorname{Isom}_{S}(\xi, \eta): \operatorname{Sch} / S \rightarrow \text { Sets }
$$

which associates to a morphism $f: T \rightarrow S$ the set of isomorphisms in $\mathcal{M}(T)$ between $f^{*}(\xi)$ and $f^{*}(\eta)$ is a sheaf in the étale topology.
A contravariant functor $F: S c h / S \rightarrow$ Sets is a sheaf in the étale topology if for every étale surjective morphism $f: U \rightarrow T$ of S-schemes, the diagram

$$
F(T) \xrightarrow{F(f)} F(U) \underset{F\left(p_{2}\right)}{\stackrel{F\left(p_{1}\right)}{\rightleftarrows}} F\left(U \times_{T} U\right)
$$

is exact. We recall the following theorem due to Grothendieck.
Theorem 4.1. Let S be a scheme. Let $F: S c h / S \rightarrow$ Sets be a contravariant, representable functor. Then F is a sheaf for the étale topology.

Theorem 4.2. The groupois $\mathcal{M}_{g, n}$ and $\overline{\mathcal{M}}_{g, n}$ are stacks.
Proof. We consider $\overline{\mathcal{M}}_{g, n}$ case only. The case of $\mathcal{M}_{g, n}$ is similar. We deal with the condition (2) in the definition of stack first. Given two families of stable curves $\xi: X \rightarrow S$ and $\eta: Y \rightarrow S$, objects in $\overline{\mathcal{M}}_{g, n}(S)$, the functor $\operatorname{Isom}_{S}(\xi, \eta)$ is represented by the scheme $\operatorname{Isom}_{S}(X, Y)$, where $\operatorname{Isom}_{S}(X, Y)$ represents the functor which associates to each scheme T over S the set of all isomorphisms, as schemes over T, from $X \times{ }_{S} T$ to $Y \times_{S} T$.

The turn to condition (1). Let $T \rightarrow T^{\prime}$ be a surjective étale morphism, and let

$$
\xi: X \rightarrow T
$$

be a family of stable curves with descent data $\phi: p_{1}^{*}(\xi) \rightarrow p_{2}^{*}(\xi)$,

To check the effectiveness, we need to produce a family of stable curves $\eta: Y \rightarrow T^{\prime}$ such that $\xi=\pi^{*}(\eta)$. This construction is a typical descent construction and will be reduced to the theory of descent of quasicoherent sheaves. This reduction has two steps

We first give some notation. Consider the family $\xi: X \rightarrow T$. We consider the dual direct image bundle $E_{\xi}=\xi_{*}\left(w_{\xi}^{3}(3 D)\right)^{*}$. The total space X of the family ξ can be viewed as embedded in $\mathbb{P}\left(E_{\xi}\right)$:

Step 1. From the descent data for ξ we deduce descent data for the vector bundle (or better, locally free sheaf) E_{ζ}. From the theory of descent on $Q C o h$, we get a vector bundle E^{\prime} over T^{\prime} with $\pi^{*}\left(E^{\prime}\right)=E$.
Step 2. We consider the following diagram

The descent data for $\xi: X \rightarrow T$ relative to the étale cover $\pi: T \rightarrow T^{\prime}$ determine descent data for the ideal sheaf $\mathcal{I}_{X} \subset \mathcal{O}_{\mathbb{P}}$ with respect to the étale cover $q: \mathbb{P} \rightarrow \mathbb{P}^{\prime}$. Using the theory of descent for QCoh, we get the subscheme $Y \subset \mathbb{P}^{\prime}$ and the family $\eta: Y \rightarrow T^{\prime}$.
Before proving the two steps, we have some preparation. Given a morphism $S \rightarrow S^{\prime}$ and a cartasian diagram of families of stable curves

We have the canonical isomorphisms:

$$
\begin{aligned}
& \sigma_{h, f}: h^{*}\left(L_{\beta}\right) \xrightarrow{\sim} L_{\alpha} \\
& \tau_{h, f}: f^{*}\left(E_{\beta}\right) \xrightarrow{\sim} E_{\alpha}
\end{aligned}
$$

Given two composable cartesian squares of families of stable curves

one can check the follwoing equalities:

$$
\begin{align*}
& \sigma_{k h, g f}=\sigma_{h, f} h^{*}\left(\sigma_{k, g}\right):(k h)^{*}\left(L_{\gamma}\right) \xrightarrow{\sim} L_{\alpha} \tag{4.1}\\
& \tau_{k h, g f}=\tau_{h, f} f^{*}\left(\tau_{k, g}\right):(g f)^{*}\left(E_{\gamma}\right) \xrightarrow{\sim} E_{\alpha} .
\end{align*}
$$

We trturn to the étale cover $\pi: T \rightarrow T^{\prime}$ and to the descent datum $\phi:$ $p_{1}^{*}(X) \rightarrow p_{2}^{*}(X)$ for the family $\xi: X \rightarrow T$. We consider the diagram:

Using (4.1), we can see that the isomorphism

$$
\phi_{\xi}=\tau_{p_{2}, p_{2}}^{-1} \tau_{\phi, i d}^{-1} \tau_{p_{1}, p_{1}}: p_{1}^{*} E_{\xi} \rightarrow p_{2}^{*} E_{\tilde{\xi}}
$$

satisfies the cocycle condition for the étale cover $\pi: T \rightarrow T^{\prime}$, therefore defining descent data for the coherent \mathcal{O}_{T}-module E_{ζ}. From the theory of descent on $Q C o h$, we get a quasicoherent $\mathcal{O}_{T^{\prime}}$-module E^{\prime} such that $E_{\tilde{\xi}}=$ $\pi^{*}\left(E^{\prime}\right)$. The remaining part is to show that E^{\prime} is locally free. We can easily see that by recalling a well-known lemma :
Lemma 4.3. Let $A \rightarrow A^{\prime}$ be a faithfully flat ring homomorphism. Then an A module M is finitely generated (resp. free) if and onlly if $M \otimes_{A} A^{\prime}$ is finitely generated (resp. free) A^{\prime}-module.

For the second step, as we already mentioned, the descent data for ξ : $X \rightarrow T$, relative to the étale cover $\pi: T \rightarrow T^{\prime}$, determine descent data for the ideal sheaf $\mathcal{I}_{X} \subset \mathcal{O}_{\mathbb{P}}$ with respect to the étale cover $q: \mathbb{P} \rightarrow \mathbb{P}^{\prime}$. By descent theorem in $Q C o h$, we get an $\mathcal{O}_{\mathbb{P}^{\prime}}$-module \mathcal{G} such that $q^{*}(\mathcal{G})=\mathcal{I}_{X}$. As q is étale, and hence faithfully flat, the previous lemma follows that \mathcal{G} is a sheaf of ideals in $\mathcal{O}_{\mathbb{P}^{\prime}}$. This sheaf of ideals defines a subscheme $Y \subset \mathbb{P}^{\prime}$ such that $X \cong q^{*}(Y)=Y \times_{\mathbb{P}^{\prime}} \mathbb{P}$. We also have

$$
X \cong Y \times_{\mathbb{P}^{\prime}} \mathbb{P}=Y \times_{\mathbb{P}^{\prime}} \times_{T^{\prime}} T \cong Y \times_{T^{\prime}} T .
$$

We then get a cartesian square

Since π is étale, $\eta: Y \rightarrow T^{\prime}$ is a family of stable curves, as wanted.
We define the fiber products of stacks. Let $\alpha: \mathcal{M} \rightarrow \mathcal{P}$ and $\beta: \mathcal{N} \rightarrow \mathcal{P}$ are morphisms of stacks. Then $\mathcal{M} \times{ }_{\mathcal{P}} \mathcal{N}$ is the groupoid whose objects are defined by
$\left(\mathcal{M} \times{ }_{\mathcal{P}} \mathcal{N}\right)(T)=\left\{(\xi, \eta, \phi):(\xi, \eta) \in \mathcal{M}(T) \times \mathcal{N}(T), \phi \in \operatorname{Isom}_{T}(\alpha(\xi), \beta(\eta))\right\}$, for every scheme T. A morphism between two object (ξ, η, ϕ) and $\left(\xi^{\prime}, \eta^{\prime}, \phi^{\prime}\right)$ is a pair $\left(\psi_{1}, \psi_{2}\right)$, where $\psi_{1}: \xi \rightarrow \xi^{\prime}$ is a morphism in \mathcal{M} and $\psi_{2}: \eta \rightarrow \eta^{\prime}$ is a morphism in \mathcal{N}, with $p_{\mathcal{M}}\left(\psi_{1}\right)=p_{\mathcal{N}}\left(\psi_{2}\right)$ and $\phi^{\prime} \alpha\left(\psi_{1}\right)=\beta\left(\psi_{1}\right) \phi$. It can be checked that such a groupoid is actually a stack.

5. Moduli space of curve as a Deligne-Mumford stack

As we already seen in example (2.2), we may view scheme S as a stack, by considering the stack associated to the functor of points of S. We will talk about morphisms bwtween schemes and stacks. A morphism f from a scheme S to a stack \mathcal{M} is equivalent to given an object $\xi \in \mathcal{M}(S)$; indeed, $\xi=f\left(\mathrm{id}_{\mathcal{S}}\right)$. We say a stack is represented by a scheme if it is isomorphic to a scheme.

Example 5.1. Given a groupoid \mathcal{M}, a scheme S, and a morphism $S \rightarrow \mathcal{M}$, the groupoid $\mathcal{M} \times{ }_{\mathcal{M}} S$ is represented by S.

A morphism of stacks $f: \mathcal{M} \rightarrow \mathcal{N}$ is said to be representable if for every scheme S and every morphism $S \rightarrow \mathcal{N}$, the fibre product $\mathcal{M} \times_{\mathcal{N}} S$ is a scheme. The following lemma explains what the representability of diagonal morphism of stack means.

Lemma 5.2.

bigtriangleup : $\mathcal{M} \rightarrow \mathcal{M} \times \mathcal{M}$ is representable if and only if every morphism from a scheme to \mathcal{M} is.

Let \mathbf{P} be a property of morphisms of schemes which is stable under base change. For example, flat, étale, unramified, separated, or of finite gype. Then a representable morphism $f: \mathcal{M} \rightarrow \mathcal{N}$ satisfies \mathbf{P} if for every morphism $S \rightarrow \mathcal{M}$, where S is a scheme, the morphism of schemes $\mathcal{M} \times_{\mathcal{N}} S \rightarrow S$ satisfies \mathbf{P}.

A Deligne-Mumford stack is a stack \mathcal{M} having the following two proberties.
(1) The diagonal $\triangle: \mathcal{M} \rightarrow \mathcal{M} \times \mathcal{M}$ is representable, quasi-compact, and separated.
(2) There exist a scheme X and an étale surjective morphism $\alpha: X \rightarrow$ \mathcal{M}.
The morphism α is also called an atlas for \mathcal{M}.
Theorem 5.3. $\mathcal{M}_{g, n}$ and $\overline{\mathcal{M}}_{g, n}$ ar Deligne-Mumford stack.

Proof. Again, we prove the theorem for $\overline{\mathcal{M}}_{g, n}$, the proof for $\mathcal{M}_{g, n}$ is similar. Set $\mathcal{M}=\overline{\mathcal{M}}_{g, n}$. We first prove the representability of $\triangle: \mathcal{M} \rightarrow \mathcal{M} \times \mathcal{M}$ is straightforward. Let $h: S \rightarrow \mathcal{M} \times \mathcal{M}$ be a morphism. It is equivalent to giving two families of stable pointed curves $\xi: X \rightarrow S$ and $\eta: Y \rightarrow S$ in $\mathcal{M}(S)$. We observe that

$$
\begin{align*}
\left(\mathcal{M} \times_{\mathcal{M} \times \mathcal{M}} S\right)(T) & =\left\{(f, \alpha) \mid f: T \rightarrow S, \alpha \in \operatorname{Isom}_{T}\left(f^{*} \xi, f^{*} \eta\right)\right\} \\
& =\left\{(f, \beta) \mid f: T \rightarrow S, \beta \in \operatorname{Hom}_{S}\left(T, \operatorname{Isom}_{S}(\xi, \eta)\right)\right\} \tag{5.2}\\
& =\operatorname{Hom}\left(T, \operatorname{Isom}_{S}(\xi, \eta)\right) .
\end{align*}
$$

Therefore, $\mathcal{M} \times{ }_{\mathcal{M} \times \mathcal{M}} S$ is represented by $\operatorname{Isom}_{S}(\xi, \eta)$, which is separated and quasi-compact. Hence we prove condition (1). For the second condition, we observe that, given two morphisms $f: S \rightarrow \mathcal{M}$ and $g: T \rightarrow \mathcal{M}$, where S and T are schemes, or equivalently given two families of stable curves, $\xi: X \rightarrow S$ in $\mathcal{M}(S)$ and $\eta: Y \rightarrow T$ in $\mathcal{M}(T)$ in $\mathcal{M}(T)$, we get

$$
S \times_{\mathcal{M}} T=\operatorname{Isom}_{S \times T}\left(p_{1}^{*} \xi, p_{2}^{*} \eta\right),
$$

where $p_{1}: S \times T \rightarrow S$ and $p_{2}: S \times T \rightarrow T$ are two projections. We recall that there is a smooth variety X which is the disjoint union of a finite number of "slices", X_{1}, \ldots, X_{N}, in the Hilbert scheme $H_{v, g, n}$. Each slice is a smooth affine $(3 g-3+n)$-dimensional subvariety of $H_{v, g, n}$ which is transversal to the orbits of $G=P G L(N)$. We sketch of the construction of X. First we introduce the following theorem of Kuranishi family:
Definition 5.4. Let $\left(C ; p_{1}, \ldots, p_{n}\right)$ be a n-pointed nodal curve. A deformation

$$
\begin{aligned}
& \stackrel{\mathcal{C}}{\phi}{ }_{\downarrow}{ }_{\mid \sigma_{i}, i=1, \ldots, n} \\
& \left(B, b_{0}\right) \quad \chi:\left(C ; p_{1}, \ldots, p_{n}\right) \underset{\rightarrow}{\rightarrow}\left(\phi^{-1}\left(b_{0}\right) ; \sigma_{1}\left(b_{0}\right), \ldots, \sigma_{n}\left(b_{0}\right)\right)
\end{aligned}
$$

of $\left(C ; p_{1}, \ldots, p_{n}\right)$ is said to be a Kuranishi family for $\left(C ; p_{1}, \ldots, p_{n}\right)$ if it satisfies the following condition:

- For any deformation $\psi: \mathcal{D} \rightarrow\left(E, e_{0}\right)$ of $\left(C ; p_{1}, \ldots, p_{n}\right)$ and for any sufficiently small connected neighborhood U of e_{0}, there is a unique morphism of deformations of n-pointed curves

Theorem 5.5. Let $v \geq 3$ be an integer. Let $\left(C ; p_{1}, \ldots, p_{n}\right) \subset \mathbb{P}^{r}$ be a stable n-pointed genus g curve, embedded in $\mathbb{P}^{r}, r=(2 v-1)(g-1)+v n-1$, via the v-fold log-canonical system. Let $x_{0} \in H_{v, g, n}$ be the corresponding Hilbert point, and let $\operatorname{Aut}\left(C ; p_{1}, \ldots, p_{n}\right)=\mathbb{G}_{x_{0}} \subset \mathbb{G}=\operatorname{PGL}(r+1)$ be the stabilizer of x_{0}. Then there is a locally closed $(3 g-3+n)$-dimensional smooth subscheme X_{0} of
$H_{v, g, n}$ passing through x_{0} such that the restriction of X to the universal family over $H_{v, g, n}$ is a Kuranishi family for all of its fibers and hence, in particular, a Kuranishi family for $\left(C ; p_{1}, \ldots, p_{n}\right)$. In addition, one can choose an X_{0} with the following properties:
(a) X_{0} is affine;
(b) the family is Kuranishi at every point of X_{0};
(c) the action of the group $\mathbb{G}_{x_{0}}$ on the central fiber extends to compatible actions on \mathcal{C} and X_{0};
(d) for every $y \in X$, the automorphism group \mathbb{G}_{y} is equal to the stabilizer of y in $\mathbb{G}_{x_{0}}$. In particular, \mathbb{G}_{y} is a subgroup of $\mathbb{G}_{x_{0}}$;
(e) for every $y \in X$, there is a G_{y}-invariant neighborhood U of y in X_{0}, for the analytic topology, such that any isomorphism (of $n-$ pointed curves) between fibers over U is induced by an element of G_{y}.

Such an X_{0} can be obtained as follows. Consider the orbit $O\left(x_{0}\right) \subset H$ of x_{0} under \mathbb{G}; this is a smooth subvariety of H of dimension $(r+1)^{2}-1$ passing through x_{0}. Since the linear subspace T of \mathbb{P}^{M} tangent to $O\left(x_{0}\right)$ at x_{0} is obviously $\mathrm{G}_{x_{0}}$ invariant, there is a $\mathbb{G}_{x_{0}}$-invariant linear subspace L of \mathbb{P}^{M} of the complementary dimension such that $L \cap T=\left\{x_{0}\right\}$. Now X_{0} is obtained by a Zariski-open neighborhood of x_{0} in $H \cap L$.

We go back to the construction of X. By compactness we can cover $H_{v, g, n}$ with finitely many sets of the type $G \times X_{i}, i=1, \ldots, N$. We set $X=\coprod_{i=1}^{N} X_{i}$.

The restriction to X of the universal family over $H_{v, g, n}$ gives a family of stable curves $\xi: \mathcal{C} \rightarrow X$ and hence a morphism

$$
\alpha \rightarrow \mathcal{M}
$$

The remaining part is to show that α is étale and surjective. By definition, we must prove that, for every morphism f from a scheme S to \mathcal{M}, the induced morphism

$$
X \times_{\mathcal{M}} S=\operatorname{Isom}_{X \times S}\left(p_{1}^{*} \xi, p_{2}^{*} \eta\right) \rightarrow S
$$

is étale and surjective. Let $\eta: \chi \rightarrow S$ be the family corresponding to the morphism $f: S \rightarrow \mathcal{M}$. Since being étale is a local property and since, locally on S, the family η is the pullback of the family $\xi: \mathcal{C} \rightarrow X$, we are reduced to showing that the natural projections

$$
X \times_{\mathcal{M}} X=\operatorname{Isom}_{X \times X}\left(p_{1}^{*} \xi, p_{2}^{*} \xi\right) \rightarrow X
$$

are étale and surjective.
Recall, from property (e) of Theorem (5.5), that every point y in X possesses a \mathbb{G}_{y}-invariant neighborhood U such that $\{\gamma \in G \mid \gamma U \cap U \neq 0\} \subset$ $\mathrm{G}_{y}=\operatorname{Aut}\left(\mathcal{C}_{y}\right)$. Let $\alpha: \mathcal{C}_{U} \rightarrow U$ be the restriction to U of the family ξ over X. The following lemma gives a local description of the two maps q and q_{1}.

Lemma 5.6. Consider the Kuranishi family $\alpha: \mathcal{C}_{U} \rightarrow U$. Let p_{1} and p_{2} be the two projections from $U \times U$ to U. Consider the natural diagram

Let $C=C_{u_{0}}$ be the central fiber of α. Let $H=\operatorname{Aut}(C)$. Then there is an isomorphism $\chi: H \times U \rightarrow \operatorname{Isom}_{U \times U}\left(p_{1}^{*} \alpha, p_{2}^{*} \alpha\right)$ such that $q_{1} \chi(g, u)=u$ and $q \chi(g, u)=(g u, u)$. In particular, q_{1} is étale and surjective.

Set $\mathbf{I}=\operatorname{Isom}_{U \times U}\left(p_{1}^{*} \alpha, p_{2}^{*} \alpha\right)$. Define $\chi: H \times U \rightarrow \mathbf{I}$ by setting

$$
\chi(g, u)=\left\{g^{-1}: C_{g u} \rightarrow C_{u}\right\} .
$$

Since every isomorphism between two fibers of α is uniquely induced by an element of H, the morphism χ is set-theoretically, a bijection. Set $k=|H|$. We then have a decomposition of $\mathbf{I}=I_{1} \cup I_{2} \cdots \cup I_{k}$. We also have induced bijective morphisms $\chi: U \rightarrow I_{i}$ having the property that $q_{1} \chi=\mathrm{id}_{U}$. But then χ is unramified. Thus I_{i} must be smooth and χ is an isomorphism. This proves the lemma.

The proof of the theorem now follows directly from the lemma.

References

[1] Enrico Arbarello, maurizio Cornalba, Pillip A. Griffiths: Geometry of Algebraic Curves, vol. 2, chap. 9-12.

