THE MODULI SPACE OF STABLE CURVES

YOU-CHENG CHOU

We introduce the proof of the groupoid of stable, *n*-pointed, genus *g* curves as a Deligne-Mumford stack in three stages. First, as a quotient groupoid, we show that it is isomorphic to the Hilbert scheme of ν -log-canonically embedded, stable, *n*-pointed genus *g* curves quotient the projective general linear group. Then we briefly recall the Grothendiecks descent theory for quasi-coherent sheaves and use it to show that the moduli groupoid is a stack and, finally, Deligne-Mumford stack.

1. HILBERT SCHEME

Let $(C; p_1, ..., p_n)$ be a stable, *n*-pointed, genus *g* curves and let $D = \sum_{i=1}^{n} p_i$. We have the following fact:

Fact 1.1. $(w_C(D))^{\nu}$ is very ample if $\nu \ge 3$, where w_C denotes the dualizing sheaf of *C*.

We embeds *C* in \mathbb{P}^r via $(w_C(D))^{\nu}$, where $r = (2\nu t - 1)(g - 1) + \nu n - 1$. Its Hilbert polynomial is

$$p_{\nu}(t) = (2\nu t - 1)(g - 1) + \nu nt.$$

The embedding given by $(w_C(D))^{\nu}$ is called the ν -log canonical embedding.

Definition 1.2. We define $H_{\nu,g,n}$ as the Hilbert scheme of stable, *n*-pointed, genus *g* curve given by the *v*-log canonical embedding.

Remark 1.3. $H_{\nu,g,n}$ is a smooth locally closed subsheme of the product $\operatorname{Hilb}_{\mathbb{P}^r}^{p_\nu(t)} \times (\mathbb{P}^r)^n$ of dimension $3g - 3 + n + (r+1)^2 - 1$. The natural action of PGL(r+1) on this product restricts to the action on $H_{\nu,g,n}$.

2. GROUPOID

Let *S* be a scheme and consider the category Sch/S of schemes over *S*. From now on, the scheme will implicitly assumed to be of finite type over \mathbb{C} .

Definition 2.1. A category fibered in groupoids over Sch/S or, more simply, a groupoid over S, is a pair (C_M, p_M) , where C_M is a category, and

$$p_{\mathcal{M}}: C_{\mathcal{M}} \to Sch/S$$

is a functor safistying the following two conditions:

YOU-CHENG CHOU

- (A) Let $f : T \to T'$ be a morphism in Sch/S, and let $\eta \in Ob(C_{\mathcal{M}})$ such that $p_{\mathcal{M}}(\eta) = T'$. Then there exists (not necessary unique) $\xi \in C_{\mathcal{M}}$ and a morphism $\phi : \xi \to \eta$ in $C_{\mathcal{M}}$ with $p_{\mathcal{M}}(\phi) = f$.
- (B) Every morphism $\phi : \xi \to \eta$ is cartesian in the following sense. Given other arrow $\phi' : \xi' \to \eta$ and a morphism $h : p_{\mathcal{M}}(\xi) \to p_{\mathcal{M}}(\xi')$ such that $p_{\mathcal{M}}(\phi')h = p_{\mathcal{M}}(\phi)$, there exists a unique morphism $\psi : \xi \to \xi'$ such that $p_{\mathcal{M}}(\psi) = h$ and $\phi'\psi = \phi$.

A morphism $\alpha : \mathcal{M} \to \mathcal{M}'$ of groupoids over Sch/S is a functor $\alpha : C_{\mathcal{M}} \to C_{\mathcal{M}'}$ such that $p_{\mathcal{M}'}\alpha = p_{\mathcal{M}}$. When α is an equivalence of categories, we say that it is an isomorphism of groupoids.

Example 2.2.

- (1) Let *X* be a scheme. We will consider *X* as a groupoid $X = (C_X, p_X)$, where the objects of C_X are pairs (T, f) with $f : T \to X$ a morphism of schemes. The morphism $\phi : (T, f) \to (T', f')$ are the morphisms $h : T \to T'$ such that f'h = f. Finally, the functor p_X is defined by $p_X(T, f) = T$.
- (2) Let *C* be the category in which the objects are the families

$$\mathcal{X} \mid_{\xi} \mathcal{T}$$

of smooth (resp. stable, *n*-pointed) curves of genus *g* and in which a morphism

$$\phi:\xi' o\xi$$

bwtween two families $\xi' : \mathcal{X}' \to T'$ and $\xi : \mathcal{X} \to T$ is a cartesian product

$$\begin{array}{ccc} \mathcal{X}' \longrightarrow \mathcal{X} \\ \xi' & & & & \\ \xi' & & & & \\ T' \stackrel{f}{\longrightarrow} T \end{array}$$

The functor *p* assigns to a family $\xi : \mathcal{X} \to T$ its parameter space *T*: $p(\xi) = T$. For the morphism, we set $p(\phi) = f$. It is not hard to check that the pair (C, p) is a groupoid.

We denote $\mathcal{M}_{g,n}$ (resp. $\overline{\mathcal{M}}_{g,n}$) the groupoid of smooth (resp. stable), *n*-pointed, genus *g* curves.

Definition 2.3 (The category $\mathcal{M}(T)$). Given a groupoid $\mathcal{M} = (C, p)$, denote by $\mathcal{M}(T)$ the category whose objects are objects $\xi \in C$ with $p(\xi) = T$ and whose morphisms are morphisms ϕ in C with $p(\phi) = id_T$. The condition (B) tells us that a morphism ϕ in C is an isomorphism if and only if $p(\phi)$ is. Hence $\mathcal{M}(T)$ is a groupoid in the sense that all morphisms are isomorphisms. The category $\mathcal{M}(T)$ is called the category of sections of M over T.

It is important to check whether two groupoids (C_M, p_M) and $(C_{M'}, p_{M'})$ are isomorphic. As we already mentioned before, there must exist an equivalence of categories $F : C_M \to C_{M'}$ such that $p_{M'}F = p_M$. It is well-known that the functor F is equivalence if and only if the following conditions hold:

(i) *F* is fully faithful in the following sense, for any $\xi, \xi' \in Ob(C_M)$, the induced map

$$\operatorname{Hom}_{\mathcal{C}_{\mathcal{M}}}(\xi,\xi') \to \operatorname{Hom}_{\mathcal{C}_{\mathcal{M}'}}(F(\xi),F(\xi'))$$

is bijective.

(ii) *F* is essentially surjective, meaning that every $\eta \in Ob(\mathcal{M}')$ is isomorphic to $F(\xi)$ for some $\xi \in \mathcal{M}$.

For groupoids, we have the following lemma.

Lemma 2.4. A morphism $F : \mathcal{M} \to \mathcal{M}'$ of groupoids over Sch/S is an isomorphism if and only if for every T in Sch/S, the induced functor on fibers $F_T : \mathcal{M}(T) \to \mathcal{M}'(T)$ is an equivalence of categories.

Suppose that a group scheme *G* acts on a scheme *X*. Then one can form the quotient groupoid

$$[X/G] = (P_{G,X}, P),$$

where $P_{G,X}$ is the category whose objects are pairs (π, σ_{π}) , where $\pi : E \to T$ is a principal *G*-bundle, and $\sigma(\pi) : E \to X$ is a *G*-equivariant map. A morphism between (π, σ_{π}) and (π', σ'_{π}) is a pair of commutative diagrams

where the first one is cartesian. At last, the functor $p : P_{G,X} \to Sch$ is given by $(\pi, \sigma_{\pi}) \to T$. Hence $P_{G,X}(T)$ is the category of principal *G*-bundle over *T*, equipped with a *G*-equivariant map from their total space to *X*.

Example 2.5. For $X = \{pt\}$, we have $[\{pt\}/G] = BG$.

Theorem 2.6. The moduli groupoid $\overline{\mathcal{M}}_{g,n}$ is isomorphic to the quotient groupoid $[H_{\nu,g,n}/PGL(N)]$.

Proof. We first define a morphism

$$\Phi: \overline{\mathcal{M}}_{g,n} \to [H_{\nu,g,n}/PGL(N)].$$

Let $\xi : \mathcal{X} \to T$ be a family of stable *n*-pointed genus *g* curves, which is an object of $\overline{\mathcal{M}}_{g,n}$. $\Phi(\xi)$ must consist of a *G*-bundle $\pi : E \to T$ and a *G*-equivariant map $\sigma_{\pi} : E \to H_{\nu,g,n}$. First let $\pi : E \to T$ be the principal *G*-bundle associated to the projective bundle $\mathbb{P}_{\xi} := \mathbb{P}(\xi_*(w_{\xi}^{\nu}(\nu D))) \to T$. Consider the cononically trivialized *G*-bundle

$$\pi^* \mathbb{P}_{\xi} \to E$$

and the pull-back family

$$\eta: \mathcal{Z} = \mathcal{X} \times_{\pi} E \to E$$

There is a canonical isomorphism

$$\mathbb{P}_{\eta} \cong \pi^* \mathbb{P}_{\tilde{c}}.$$

We can therefore view $\mathcal{Z} \to E$ as a family of ν -log canonically embedded curves via the canonical trivialization of \mathbb{P}_{η} . This gives a *G*-equivariant morphism $\sigma_{\pi} : E \to H_{\nu,g,n}$. This completes the definition of Φ .

To show Φ is an isomorphism of groupoid, we use Lemma (2.4). We must show that Φ_T is fully faithful and essentially surjective for every scheme *T*.

For the first part, since any two objects of $\overline{\mathcal{M}}_{g,n}(T)$ are isomorphism, we only need to prove that Φ_T incuces a bijection

$$\operatorname{Hom}_{\overline{\mathcal{M}}_{g,n}(T)}(\xi,\xi) \xrightarrow{\sim} \operatorname{Hom}_{P(T)}(\Phi(\xi),\Phi(\xi)).$$

It is equivalent to the statement that the automorphism of a family of stable, *n*-pointed, genus g curves $\xi : \mathcal{X} \to T$ and the automorphisms of the projective bundle $\mathbb{P}^*_{\xi} \to T$ determine each other. Let γ be the automorphism of the family $\xi : \mathcal{X} \to T$. Then γ induces an automorphism of $\mathbb{P}(H^0(w^v_{\xi}(vD)))$ and therefore induces the automorphism of $\mathbb{P}^*_{\xi} \to T$. For the other direction, we observe that any non-trivial element $\phi \in PGL(r+1)$ which leaves a ν -log canonically embedded curve $C \hookrightarrow \mathbb{P}^r$ invariant must act non-trivial on C, since C does not lies in the proper linear subspace, the fixed locus of ϕ . Hence any non-trivial automorphism of $\mathbb{P}^*_{\xi} \to T$ will induce an non-trivial automorphism of $\xi : \mathcal{X} \to T$.

For the essential surjectivity part, let $(\pi, \sigma_{\pi}) \in Ob(P)$, so that $\pi : E \to T$ is a principal *G*-bundle, and $\sigma_{\pi} : E \to H_{\nu,g,n}$ is a *G*-equivariant map. Now we consider the universal family $\mathcal{Y} \to H_{\nu,g,n}$ and the following cartesian diagram

The group *G* acts equivariantly and freely on *E* and \mathcal{Z} . We can then induce the quotient family

$$\xi: \mathcal{Z}/G = \mathcal{X} \to T = E/G.$$

The last part is to check that $\Phi_T(\xi)$ is isomorphic to (π, σ_π) . We left it to the reader.

3. THE THEORY OF DESCENT FOR QUASI-COHERENT SHEAVES

Consider a morphism of schemes $X \to Y$, and a quasicoherent \mathcal{O}_X module \mathcal{F} . Let p_1 and p_2 be the fist and second projection of $X \times_Y X \to X$, p_{12} , p_{13} , and p_{23} to indicate the projections of $X \times_Y X \times_Y X \to X \times_Y X$ by omitting the third, second, and first components, respectively, and q_1 , q_2 , q_3 to indicate the three projections of $X \times_Y X \times_Y X \to X$. Notice that $p_1p_{12} = q_1 = p_1p_{13}$, $p_2p_{12} = q_2 = p_1p_{23}$, and $p_2p_{13} = q_3 = p_2p_{23}$. The descent data for \mathcal{F} relative to $X \to Y$ is an isomorphism $\phi : \mathcal{F}_1 \to \mathcal{F}_2$ such that the following diagram commutes:

, where $\mathcal{F}_1 = p_1^* \mathcal{F}$ and $\mathcal{F}_2 = p_2^* \mathcal{F}$ We will call this the cocycle condition.

When \mathcal{F} is the pullback of a quasicoherent \mathcal{O}_Y -module, there is a canonical isomorphism between \mathcal{F}_1 and \mathcal{F}_2 with descent data. We are interested in the conversed part, that is, whether a quasicoherent \mathcal{O}_X -module with descent data comes from an \mathcal{O}_Y -module. Similar problem can be asked on the morphism of quasicoherent \mathcal{O}_X -modules. Here we introduce Grothendieck's descent theory:

Theorem 3.1. Let $\pi : X \to Y$ be a faithfully flat and quasi-compact morphism of schemes. Then the pullback functor

{ quasicoherent
$$\mathcal{O}_{Y}$$
-modules } \rightarrow { quasicoherent \mathcal{O}_{X} -modules with descent data relative to π }

is an equivalence of categories.

4. MODULI SPACE OF CURVE AS A STACK

Let $\mathcal{M} = (C, p)$ be a groupoid, *T* be a scheme, ξ be an object of $\mathcal{M}(U)$, and $f: U \to T$ be an étale surjective morphism. As before, we denote p_{12} , p_{13} , and p_{23} to be the projections of $U \times_T U \times_T U$ to $U \times_T U$ by omitting the third, second, and the first component, respectively and q_1, q_2, q_3 to indicate the three projections of $U \times_T U \times_T U$ to *U* so that $p_1p_{12} = q_1 = p_1p_{13}$, $p_2p_{12} = q_2 = p_1p_{23}$, and $p_2p_{13} = q_3 = p_2p_{23}$. A descent datum for ξ , relative to $f: U \to T$, is an isomorphism $\phi: p_1^*\xi \to p_2^*\xi$ such that the following diagram commutes:

A descent datum for ξ relative to f, is said to be effective if there exist an object $\eta \in \mathcal{T}$ and an isomorphism $\psi : f^*(\eta) \to \xi$ such that

$$\psi = (p_2^*\psi) \circ (p_1^*\psi)^{-1}$$

Now we are ready to define a stack in groupoids for the étale topology or, more simply, a stack. A stack is a groupoid $\mathcal{M} = (C, p)$ having the following two properties.

- (1) Every descent datum is effective.
- (2) Given a scheme *S* and objects ξ and η in $\mathcal{M}(S)$, the functor

$$Isom_S(\xi,\eta):Sch/S \to Sets$$

which associates to a morphism $f : T \to S$ the set of isomorphisms in $\mathcal{M}(T)$ between $f^*(\xi)$ and $f^*(\eta)$ is a sheaf in the étale topology.

A contravariant functor $F : Sch/S \rightarrow Sets$ is a sheaf in the étale topology if for every étale surjective morphism $f : U \rightarrow T$ of *S*-schemes, the diagram

$$F(T) \xrightarrow{F(f)} F(U) \xrightarrow{F(p_1)} F(U \times_T U)$$

is exact. We recall the following theorem due to Grothendieck.

Theorem 4.1. Let *S* be a scheme. Let $F : Sch/S \rightarrow Sets$ be a contravariant, representable functor. Then *F* is a sheaf for the étale topology.

Theorem 4.2. *The groupois* $\mathcal{M}_{g,n}$ *and* $\overline{\mathcal{M}}_{g,n}$ *are stacks.*

Proof. We consider $\mathcal{M}_{g,n}$ case only. The case of $\mathcal{M}_{g,n}$ is similar. We deal with the condition (2) in the definition of stack first. Given two families of stable curves $\xi : X \to S$ and $\eta : Y \to S$, objects in $\overline{\mathcal{M}}_{g,n}(S)$, the functor $Isom_S(\xi,\eta)$ is represented by the scheme $Isom_S(X,Y)$, where $Isom_S(X,Y)$ represents the functor which associates to each scheme T over S the set of all isomorphisms, as schemes over T, from $X \times_S T$ to $Y \times_S T$.

The turn to condition (1). Let $T \rightarrow T'$ be a surjective étale morphism, and let

$$\xi: X \to T$$

be a family of stable curves with descent data $\phi : p_1^*(\xi) \to p_2^*(\xi)$,

$$p_1^*(X) = T \times_{T'} X \xrightarrow{\phi} X \times_{T'} T = p_2^*(X)$$

$$p_1^*(\xi) \xrightarrow{p_2^*(\xi)} T \times_{T'} T$$

To check the effectiveness, we need to produce a family of stable curves $\eta : Y \to T'$ such that $\xi = \pi^*(\eta)$. This construction is a typical descent construction and will be reduced to the theory of descent of quasicoherent sheaves. This reduction has two steps

We first give some notation. Consider the family $\xi : X \to T$. We consider the dual direct image bundle $E_{\xi} = \xi_*(w_{\xi}^3(3D))^*$. The total space *X* of the family ξ can be viewed as embedded in $\mathbb{P}(E_{\xi})$:

- **Step 1.** From the descent data for ξ we deduce descent data for the vector bundle (or better, locally free sheaf) E_{ξ} . From the theory of descent on *QCoh*, we get a vector bundle *E'* over *T'* with $\pi^*(E') = E$.
- Step 2. We consider the following diagram

The descent data for $\xi : X \to T$ relative to the étale cover $\pi : T \to T'$ determine descent data for the ideal sheaf $\mathcal{I}_X \subset \mathcal{O}_{\mathbb{P}}$ with respect to the étale cover $q : \mathbb{P} \to \mathbb{P}'$. Using the theory of descent for *QCoh*, we get the subscheme $Y \subset \mathbb{P}'$ and the family $\eta : Y \to T'$.

Before proving the two steps, we have some preparation. Given a morphism $S \rightarrow S'$ and a cartasian diagram of families of stable curves

$$\begin{array}{c|c} Z & \xrightarrow{h} & Z \\ & & & \\ \alpha & & & \beta \\ S & \xrightarrow{f} & S' \end{array}$$

We have the canonical isomorphisms:

$$\sigma_{h,f}: h^*(L_\beta) \xrightarrow{\sim} L_\alpha,$$

$$\tau_{h,f}: f^*(E_\beta) \xrightarrow{\sim} E_\alpha$$

Given two composable cartesian squares of families of stable curves

$$\begin{array}{c|c} Z \xrightarrow{h} Z' \xrightarrow{k} Z'' \\ \alpha \\ \downarrow & \beta \\ S \xrightarrow{f} S' \xrightarrow{g} S'' \end{array}$$

one can check the following equalities:

(4.1)

$$\sigma_{kh,gf} = \sigma_{h,f}h^*(\sigma_{k,g}) : (kh)^* (L_{\gamma}) \xrightarrow{\sim} L_{\alpha},$$

$$\tau_{kh,gf} = \tau_{h,f}f^*(\tau_{k,g}) : (gf)^* (E_{\gamma}) \xrightarrow{\sim} E_{\alpha}.$$

We trun to the étale cover $\pi : T \to T'$ and to the descent datum $\phi : p_1^*(X) \to p_2^*(X)$ for the family $\xi : X \to T$. We consider the diagram:

$$\begin{array}{c|c} X \xleftarrow{p_1} p_1^*(X) \xrightarrow{\phi} p_2^*(X) \xrightarrow{p_2} X \\ \xi & & \downarrow & p_1^*(\xi) \\ T \xleftarrow{p_1} T \times_{T'} T = T \times_{T'} T \xrightarrow{p_2} T \end{array}$$

Using (4.1), we can see that the isomorphism

$$\phi_{\xi} = au_{p_2, p_2}^{-1} au_{\phi, id}^{-1} au_{p_1, p_1} : p_1^* E_{\xi} \to p_2^* E_{\xi}$$

satisfies the cocycle condition for the étale cover $\pi : T \to T'$, therefore defining descent data for the coherent \mathcal{O}_T -module E_{ξ} . From the theory of descent on *QCoh*, we get a quasicoherent $\mathcal{O}_{T'}$ -module E' such that $E_{\xi} = \pi^*(E')$. The remaining part is to show that E' is locally free. We can easily see that by recalling a well-known lemma :

Lemma 4.3. Let $A \to A'$ be a faithfully flat ring homomorphism. Then an *A*-module *M* is finitely generated (resp. free) if and only if $M \otimes_A A'$ is finitely generated (resp. free) A'-module.

For the second step, as we already mentioned, the descent data for ξ : $X \to T$, relative to the étale cover $\pi : T \to T'$, determine descent data for the ideal sheaf $\mathcal{I}_X \subset \mathcal{O}_{\mathbb{P}}$ with respect to the étale cover $q : \mathbb{P} \to \mathbb{P}'$. By descent theorem in *QCoh*, we get an $\mathcal{O}_{\mathbb{P}'}$ -module \mathcal{G} such that $q^*(\mathcal{G}) = \mathcal{I}_X$. As q is étale, and hence faithfully flat, the previous lemma follows that \mathcal{G} is a sheaf of ideals in $\mathcal{O}_{\mathbb{P}'}$. This sheaf of ideals defines a subscheme $Y \subset \mathbb{P}'$ such that $X \cong q^*(Y) = Y \times_{\mathbb{P}'} \mathbb{P}$. We also have

$$X \cong Y \times_{\mathbb{P}'} \mathbb{P} = Y \times_{\mathbb{P}'} \times_{T'} T \cong Y \times_{T'} T.$$

We then get a cartesian square

Since π is étale, $\eta : Y \to T'$ is a family of stable curves, as wanted.

We define the fiber products of stacks. Let $\alpha : \mathcal{M} \to \mathcal{P}$ and $\beta : \mathcal{N} \to \mathcal{P}$ are morphisms of stacks. Then $\mathcal{M} \times_{\mathcal{P}} \mathcal{N}$ is the groupoid whose objects are defined by

$$(\mathcal{M} \times_{\mathcal{P}} \mathcal{N})(T) = \{(\xi, \eta, \phi) : (\xi, \eta) \in \mathcal{M}(T) \times \mathcal{N}(T), \phi \in \operatorname{Isom}_{T}(\alpha(\xi), \beta(\eta))\},\$$

for every scheme *T*. A morphism between two object (ξ, η, ϕ) and (ξ', η', ϕ') is a pair (ψ_1, ψ_2) , where $\psi_1 : \xi \to \xi'$ is a morphism in \mathcal{M} and $\psi_2 : \eta \to \eta'$ is a morphism in \mathcal{N} , with $p_{\mathcal{M}}(\psi_1) = p_{\mathcal{N}}(\psi_2)$ and $\phi' \alpha(\psi_1) = \beta(\psi_1)\phi$. It can be checked that such a groupoid is actually a stack.

5. MODULI SPACE OF CURVE AS A DELIGNE-MUMFORD STACK

As we already seen in example (2.2), we may view scheme *S* as a stack, by considering the stack associated to the functor of points of *S*. We will talk about morphisms bwtween schemes and stacks. A morphism *f* from a scheme *S* to a stack \mathcal{M} is equivalent to given an object $\xi \in \mathcal{M}(S)$; indeed, $\xi = f(id_S)$. We say a stack is represented by a scheme if it is isomorphic to a scheme.

Example 5.1. Given a groupoid \mathcal{M} , a scheme S, and a morphism $S \to \mathcal{M}$, the groupoid $\mathcal{M} \times_{\mathcal{M}} S$ is represented by S.

A morphism of stacks $f : \mathcal{M} \to \mathcal{N}$ is said to be representable if for every scheme *S* and every morphism $S \to \mathcal{N}$, the fibre product $\mathcal{M} \times_{\mathcal{N}} S$ is a scheme. The following lemma explains what the representability of diagonal morphism of stack means.

Lemma 5.2.

bigtriangleup : $\mathcal{M} \to \mathcal{M} \times \mathcal{M}$ *is representable if and only if every morphism from a scheme to* \mathcal{M} *is.*

Let **P** be a property of morphisms of schemes which is stable under base change. For example, flat, étale, unramified, separated, or of finite gype. Then a representable morphism $f : \mathcal{M} \to \mathcal{N}$ satisfies **P** if for every morphism $S \to \mathcal{M}$, where *S* is a scheme, the morphism of schemes $\mathcal{M} \times_{\mathcal{N}} S \to S$ satisfies **P**.

A Deligne-Mumford stack is a stack \mathcal{M} having the following two proberties.

- (1) The diagonal $\triangle : \mathcal{M} \to \mathcal{M} \times \mathcal{M}$ is representable, quasi-compact, and separated.
- (2) There exist a scheme *X* and an étale surjective morphism $\alpha : X \to \mathcal{M}$.

The morphism α is also called an atlas for \mathcal{M} .

Theorem 5.3. $\mathcal{M}_{g,n}$ and $\overline{\mathcal{M}}_{g,n}$ ar Deligne-Mumford stack.

Proof. Again, we prove the theorem for $\mathcal{M}_{g,n}$, the proof for $\mathcal{M}_{g,n}$ is similar. Set $\mathcal{M} = \overline{\mathcal{M}}_{g,n}$. We first prove the representability of $\triangle : \mathcal{M} \to \mathcal{M} \times \mathcal{M}$ is straightforward. Let $h : S \to \mathcal{M} \times \mathcal{M}$ be a morphism. It is equivalent to giving two families of stable pointed curves $\xi : X \to S$ and $\eta : Y \to S$ in $\mathcal{M}(S)$. We observe that

$$(\mathcal{M} \times_{\mathcal{M} \times \mathcal{M}} S)(T) = \{(f, \alpha) | f : T \to S, \alpha \in \operatorname{Isom}_{T}(f^{*}\xi, f^{*}\eta)\}$$

(5.2)
$$= \{(f, \beta) | f : T \to S, \beta \in \operatorname{Hom}_{S}(T, \operatorname{Isom}_{S}(\xi, \eta))\}$$
$$= \operatorname{Hom}(T, \operatorname{Isom}_{S}(\xi, \eta)).$$

Therefore, $\mathcal{M} \times_{\mathcal{M} \times \mathcal{M}} S$ is represented by **Isom**_{*S*}(ξ, η), which is separated and quasi-compact. Hence we prove condition (1). For the second condition, we observe that, given two morphisms $f : S \to \mathcal{M}$ and $g : T \to \mathcal{M}$, where *S* and *T* are schemes, or equivalently given two families of stable curves, $\xi : X \to S$ in $\mathcal{M}(S)$ and $\eta : Y \to T$ in $\mathcal{M}(T)$ in $\mathcal{M}(T)$, we get

$$S \times_{\mathcal{M}} T = \mathbf{Isom}_{S \times T}(p_1^*\xi, p_2^*\eta),$$

where $p_1 : S \times T \to S$ and $p_2 : S \times T \to T$ are two projections. We recall that there is a smooth variety *X* which is the disjoint union of a finite number of "slices", X_1, \ldots, X_N , in the Hilbert scheme $H_{\nu,g,n}$. Each slice is a smooth affine (3g - 3 + n)-dimensional subvariety of $H_{\nu,g,n}$ which is transversal to the orbits of G = PGL(N). We sketch of the construction of *X*. First we introduce the following theorem of Kuranishi family:

Definition 5.4. Let $(C; p_1, ..., p_n)$ be a *n*-pointed nodal curve. A deformation

$$C$$

$$\phi \downarrow \uparrow \sigma_i, i=1,...,n$$

$$(B, b_0) \qquad \chi: (C; p_1, \ldots, p_n) \tilde{\rightarrow} (\phi^{-1}(b_0); \sigma_1(b_0), \ldots, \sigma_n(b_0))$$

of $(C; p_1, ..., p_n)$ is said to be a Kuranishi family for $(C; p_1, ..., p_n)$ if it satisfies the following condition:

• For any deformation $\psi : \mathcal{D} \to (E, e_0)$ of $(C; p_1, \dots, p_n)$ and for any sufficiently small connected neighborhood U of e_0 , there is a unique morphism of deformations of n-pointed curves

Theorem 5.5. Let $\nu \ge 3$ be an integer. Let $(C; p_1, \ldots, p_n) \subset \mathbb{P}^r$ be a stable *n*-pointed genus *g* curve, embedded in \mathbb{P}^r , $r = (2\nu - 1)(g - 1) + \nu n - 1$, via the *v*-fold log-canonical system. Let $x_0 \in H_{\nu,g,n}$ be the corresponding Hilbert point, and let Aut $(C; p_1, \ldots, p_n) = \mathbb{G}_{x_0} \subset \mathbb{G} = PGL(r+1)$ be the stabilizer of x_0 . Then there is a locally closed (3g - 3 + n)-dimensional smooth subscheme X_0 of

 $H_{\nu,g,n}$ passing through x_0 such that the restriction of X to the universal family over $H_{\nu,g,n}$ is a Kuranishi family for all of its fibers and hence, in particular, a Kuranishi family for $(C; p_1, ..., p_n)$. In addition, one can choose an X_0 with the following properties:

- (a) X_0 is affine;
- (b) the family is Kuranishi at every point of X_0 ;
- (c) the action of the group G_{x_0} on the central fiber extends to compatible actions on C and X_0 ;
- (d) for every $y \in X$, the automorphism group \mathbb{G}_y is equal to the stabilizer of y in \mathbb{G}_{x_0} . In particular, \mathbb{G}_y is a subgroup of \mathbb{G}_{x_0} ;
- (e) for every $y \in X$, there is a \mathbb{G}_y -invariant neighborhood U of y in X_0 , for the analytic topology, such that any isomorphism (of n pointed curves) between fibers over U is induced by an element of \mathbb{G}_y .

Such an X_0 can be obtained as follows. Consider the orbit $O(x_0) \subset H$ of x_0 under \mathbb{G} ; this is a smooth subvariety of H of dimension $(r + 1)^2 - 1$ passing through x_0 . Since the linear subspace T of \mathbb{P}^M tangent to $O(x_0)$ at x_0 is obviously \mathbb{G}_{x_0} invariant, there is a \mathbb{G}_{x_0} -invariant linear subspace L of \mathbb{P}^M of the complementary dimension such that $L \cap T = \{x_0\}$. Now X_0 is obtained by a Zariski-open neighborhood of x_0 in $H \cap L$.

We go back to the construction of *X*. By compactness we can cover $H_{\nu,g,n}$ with finitely many sets of the type $G \times X_i$, i = 1, ..., N. We set $X = \coprod_{i=1}^N X_i$.

The restriction to *X* of the universal family over $H_{\nu,g,n}$ gives a family of stable curves $\xi : C \to X$ and hence a morphism

$$\alpha \to \mathcal{M}$$

The remaining part is to show that α is étale and surjective. By definition, we must prove that, for every morphism *f* from a scheme *S* to \mathcal{M} , the induced morphism

$$X \times_{\mathcal{M}} S = \mathbf{Isom}_{X \times S}(p_1^*\xi, p_2^*\eta) \to S$$

is étale and surjective. Let $\eta : \chi \to S$ be the family corresponding to the morphism $f : S \to M$. Since being étale is a local property and since, locally on *S*, the family η is the pullback of the family $\xi : C \to X$, we are reduced to showing that the natural projections

$$X \times_{\mathcal{M}} X = \mathbf{Isom}_{X \times X}(p_1^*\xi, p_2^*\xi) \to X$$

are étale and surjective.

Recall, from property (e) of Theorem (5.5), that every point *y* in *X* possesses a \mathbb{G}_y -invariant neighborhood *U* such that $\{\gamma \in G | \gamma U \cap U \neq 0\} \subset \mathbb{G}_y = \operatorname{Aut}(\mathcal{C}_y)$. Let $\alpha : \mathcal{C}_U \to U$ be the restriction to *U* of the family ξ over *X*. The following lemma gives a local description of the two maps *q* and *q*₁.

Lemma 5.6. Consider the Kuranishi family $\alpha : C_U \to U$. Let p_1 and p_2 be the two projections from $U \times U$ to U. Consider the natural diagram

Let $C = C_{u_0}$ be the central fiber of α . Let $H = \operatorname{Aut}(C)$. Then there is an isomorphism $\chi : H \times U \to \operatorname{Isom}_{U \times U}(p_1^* \alpha, p_2^* \alpha)$ such that $q_1 \chi(g, u) = u$ and $q\chi(g, u) = (gu, u)$. In particular, q_1 is étale and surjective.

Set $\mathbf{I} = \mathbf{Isom}_{U \times U}(p_1^*\alpha, p_2^*\alpha)$. Define $\chi : H \times U \to \mathbf{I}$ by setting $\chi(g, u) = \{g^{-1} : C_{gu} \to C_u\}.$

Since every isomorphism between two fibers of α is uniquely induced by an element of H, the morphism χ is set-theoretically, a bijection. Set k = |H|. We then have a decomposition of $\mathbf{I} = I_1 \cup I_2 \cdots \cup I_k$. We also have induced bijective morphisms $\chi : U \to I_i$ having the property that $q_1\chi = \mathrm{id}_U$. But then χ is unramified. Thus I_i must be smooth and χ is an isomorphism. This proves the lemma.

The proof of the theorem now follows directly from the lemma.

References

[1] Enrico Arbarello, maurizio Cornalba, Pillip A. Griffiths: Geometry of Algebraic Curves, vol. 2, chap. 9-12.