KONTSEVICH'S PROOF OF WITTEN'S CONJECTURE

YOU-CHENG CHOU

0.1. **Combinatorial Model.** Let *X* be a compact Riemann surface and ρ be a meromorphic quadratic differential on *X*. Locally, $\rho = \phi(z)(dz)^2$, where $\rho(z)$ is a meromorphic function. In our case, we assume ρ has only simple or double poles.

We define the horizontal line field as

 $\{\nu \in TX \mid \phi(z)(dz(\nu))^2 > 0\}.$

For a generic quadratic differential, a generic trajectory of the horizontal line field is non closed. However, there exist special quadratic differential such that all horizontal trajectories except for a finite set are closed and we defined it below.

Definition 0.1. *A Jenkins-Strebel quadratic differential is a quadratic differential with all horizontal trajectory except for a finite set are closed.*

By a local analysis, we can see that if z_0 is a *d*-tuple zero of ρ , then there are d + 2 horizontal trajectories issuing from z_0 . If z_0 is a simple pole, then there is a unique horizontal trajectory issuing from z_0 . Finally, if z_0 is a double pole with negative residue, then z_0 is surrounded by closed horizontal trajectories. We further list some properties of Jenkins-Strebel quadratic differential that we will need later.

Proposition 0.2. 1. The connected component of $X \setminus \{\text{graph of nonclosed horizontal trajectory}\}$ is either open annulus or open disk.

2. All closed horizontal trajectory in the same connected component have the same length. (We use the metric $dl^2 = |\phi(z)||dz|^2$.)

3. If the length of closed trajectory associated to a double pole is p_i , then ρ can be written as $-(\frac{p_i dz}{2\pi z})^2$ at the neighborhood of the pole.

Theorem 0.3. (*Strebel*) Let 2g - 2 + n > 0. Then for any 2n + 1-tuples

 $(X; x_1, ..., x_n, p_1, ..., n)$, where X is a Riemann surface of finite type, x_i are distinct point of X, and $p_i > 0$. Then there exists a unique Jenkins-Strebel quadratic differential with double pole at x_i and no other poles such that the connected component of X graph of nonclosed horizontal trajectory are open disks, and the length of closed trajectory associated to the *i*-th pole is p_i .

We call the unique Jenkins-Strebel quadratic differential defined above the canonical Jenkins-Strebel quadratic differential.

Conversely, given an embedded graph with each valencies of vertex \geq 3, face marked by { $x_1, ..., x_n$ }, and fixed lengths of its edges. There exists

unique complex structure such that its corresponding canonical Jenkins-Strebel differential determines the given embedded graph.

Now, we define $M_{g,n}^{comb} := \{$ the space of genus *g* connected embedded graphs with *n*-marked points with all vertices of valencies ≥ 3 and endowed with a metric. $\}$

Theorem 0.4. $M_{g,n} \times \mathbb{R}^n_+ \cong M_{g,n}^{comb}$ as real orbifolds.

We can further generalize the above discussion to stable curve.

Definition 0.5. *A Jenkins-Strebel differential on the stable curve is a quadratic differential such that*

1. It has double poles at the marked points and at worst simple poles at the nodal points, and no other poles.

2. $\phi \equiv 0$ on the unmarked components.

3. ϕ is the Jenkins-Strebel quadratic differential on the puntured marked components.

 $\overline{M}_{g,n}^{comb} := \{ \text{ the space of stable genus } g \text{ embedded graphs with } n\text{-marked points, with vertices of valencies } 2 \text{ on smooth points, with at most one valency on nodal points and endowed with metric.} \}$

To determine the relation between $\overline{M}_{g,n}$ and $\overline{M}_{g,n}^{comb}$, we introduce the equivalent relation as follows: Let *C* be a stable curve with genus *g* and *n* marked points. We can canonically decompose *C* as the union of two curves $C = C^+ \cup C^0$, where C^+ is the union of all the components of *C* containing marked points, and C^0 is the union of those containing no marked points. Let ξ_1, \ldots, ξ_u be the points that C^+ has in common with C^0 . We say that $[(C; x_1, \ldots, x_n)]$ is equivalent to $[(C', x'_1, \ldots, x'_n)]$ if there is a family of nodal curves $\{C_s^0\}_{s \in S}$ over a connected base *S*, together with sections of smooth points τ_1, \ldots, τ_u , with the property that $(C; x_1, \ldots, x_n)$ (resp., (C', x'_1, \ldots, x'_n)) can be obtained from C^+ and C_s^0 (resp., $C_{s'}^0$) by identifying ξ_i with $\tau_i(s)$ (resp., $\tau_i(s')$) for $i = 1, \ldots, u$.

It is easy to check that what we just defined is an equivalence relation. We let

$$Q: \bar{M}_{g,n} \to \bar{M}'_{g,n}$$

denote the projection via the equivalence relation. Now we can state the similar identifications for stable curves:

Theorem 0.6. $H: \overline{M}'_{g,n} \times \mathbb{R}^n_+ \to \overline{M}^{comb}_{g,n}$ is an homeomorphism.

0.2. Matrix Integral Model. Let $\Lambda = (\Lambda_i)_{1 \le i \le N}$ be a diagonal matrix with positive entries and $H = (h_{ij}) = (x_{ij} + iy_{ij})$ be a Hermitian matrix. We consider the following measure on the space of Hermitian matrices

$$d\mu_{\Lambda}(H) = C_{\Lambda,N} e^{e^{\frac{1}{2}H^2\Lambda}} \prod_{i=1}^N dx_{ii} \prod_{i< j} dx_{ij} dy_{ij},$$

2

where $C_{\Lambda,N}$ is chosen such that

$$\int_{\mathcal{H}_N} d\mu_\Lambda(H) = 1.$$

By direct computation, we have $C_{\Lambda,N} = (2\pi)^{-\frac{N^2}{2}} \prod_{i=1}^N \Lambda_i^{\frac{1}{2}} \prod_{i < j} (\Lambda_i + \Lambda_j)$. Now we introduce the Kontsevich Model:

$$\log \int_{\mathcal{H}_N} e^{\frac{i}{6}tr(H^3)} d\mu_{\Lambda}(H).$$

Before explaining the meaning of this model, we recall some facts about matrix integral.

Let *B* be a $n \times n$ positive definite symmetric matrix. We consider the integral

$$c\int_{\mathbb{R}^n}e^{-\frac{1}{2}(Bx,x)}\prod_{i=1}^n dx_i,$$

where *c* is chosen such that the integral equals 1. With this normalization we have

$$< x_i x_j > := c \int_{\mathbb{R}^n} x_i x_j e^{-\frac{1}{2}} (Bx, x) \prod_{i=1}^n dx_i = (B^{-1})_{ij}.$$

We can further generalized this computation.

Theorem 0.7 (Wick's formula). Let f_1, \ldots, f_{2k} be linear functions of x_1, \ldots, x_n . Then

$$< f_1 f_2 \cdots f_{2k} > = \sum_{\substack{p_1 < \cdots < p_k \\ q_1 < \cdots < q_k}} < f_{p_1} f_{q_1} > \cdots < f_{p_k} f_{q_k} > .$$

Go back to our case, in coordinated x_{ii}, x_{ij}, y_{ij} , we can write $tr(H^2\Lambda) =$ (Bx, x), where

We compute $\langle x_{ii}^2 \rangle = \frac{1}{\Lambda_1}, \langle x_{ij}^2 \rangle = \langle y_{ij}^2 \rangle = \frac{1}{\Lambda_i + \Lambda_j}$. Also, we have $< h_{ij}h_{ji} >= \frac{2}{\Delta_i + \Delta_j}$ and $< h_{ij}h_{kl} >= 0$ if $(i, j) \neq (l, k)$. Now we compute

$$\int_{\mathcal{H}_N} e^{\frac{i}{6}tr(H^3)} d\mu_{\Lambda}(H) = \int_{\mathcal{H}_N} \left(1 - \frac{1}{2!} \frac{1}{6^2} (tr(H^3))^2 + \frac{1}{4!} \frac{1}{6^4} (tr(H^3))^4) - \dots \right) d\mu_{\Lambda}(H).$$

By Wick's formula, the right hand side can be presented as the monomial of $\langle h_{i_n j_n} h_{i_m k_m} \rangle$. Notice that each term can correspond to the gluing of 3-stars.

In this case an edge of the gluing corresponds to a pair $\langle h_{i_n j_n} h_{i_m k_m} \rangle$. We define the weight of an gluing is the product

$$\prod \frac{2}{\Lambda_i + \Lambda_j}$$

taken over all edges of the gluing.

Now the meaning of Kontsevich model, $\int_{\mathcal{H}_N} e^{\frac{i}{6}tr(H^3)} d\mu_{\Lambda}(H)$, can be express as the sum of the weight of all the gluing of 3-stars. Taking log means the enumeration of connected gluings.

0.3. Witten's Conjecture.

We fix some notation first. Let L_i be the *i*-th point bundle on $\overline{M}_{g,n}$ and $\psi_i := c_1(L_i)$. The intersection number is defined by

$$< au_{d_1}\cdots au_{d_n}>:=\int_{ar{M}_{g,n}}\psi_1^{d_1}\cdots \psi_n^{d_n}$$
 ,

where $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle = 0$ if $d_1 + \cdots + d_n \neq 3g - 3 + n$. Finally, the generating series for intersection numbers is the formal power series

$$F(t_0, t_1, \dots) = \sum_{d_1 \ge 0, \dots, d_n \ge 0} \frac{1}{n!} < \tau_{d_1} \cdots \tau_{d_n} > t_{d_1} \cdots t_{d_n}.$$

We also recall the KdV-hierarchy. Let $U(t_0, t_1, ...)$ be a formal power series. We say U satisfies KdV if and only if

$$\frac{\partial U}{\partial t_i} = \frac{\partial}{\partial t_0} R_i[U],$$

where $R_0 = U$ and $\frac{\partial R_{n+1}}{\partial t_0} = \frac{1}{2n+1} \left(\frac{\partial U}{\partial t_0} + 2U \frac{\partial}{\partial t_0} + \frac{1}{4} \frac{\partial^3}{\partial t_0^3} \right) R_n$. The formal power series $\tau(t_0, t_1, \dots)$ is a τ -function for KdV-hierarchy if

$$2\frac{\partial^2}{\partial t_0^2}\log\tau(t_0,\dots)=U(t_0,\dots)$$

Theorem 0.8 (Witten's Conjecture). e^F is the τ -function for KdV with respect to variables $T_{2i+1} = \frac{t_i}{(2i+1)!!}$

4

The first step of the proof is to give a combinatorial formula for ψ_i . Let $\pi S^1(L_i) \to \overline{M}_{g,n}$. We want to find a closed 2-form w_i on $\overline{M}_{g,n}$ such that $\pi^*(w_i) = d\phi$ and $\int_{S^1} \phi|_{\text{fiber}} = 1$.

Fix $r = (r_1, ..., r_n) \in \mathbb{R}^n_+$, we have the commutative diagram:

By the way Q was constructed, the line bundle L_i restricts to a trivial line bundle on the fibers of Q and therefore drops to a well-defined line bundle L'_i on $\bar{M}'_{g,n}$ with $Q^*(L'_i) = L_i$. Let L^{comb}_i be the pullback of L'_i via h^{-1} , so that

$$h^*(L_i^{comb}) = L_i', f^*(l_i^{comb}) = L_i.$$

Now our goal becomes giving the combinatorial expression for its first Chern class.

We recall a few facts about piecewise linear forms. Let *K* be a simplicial complex.

$$\sigma: \triangle_n \to |K|$$

be the *n*-simplex. A PL-form ϕ of degree ν on |K| is a collection

$$\phi = \{\phi_{\sigma}\}_{\sigma \in K},$$

where

$$\phi_{\sigma} = \sum \phi_{i_1...i_{\nu}}, 0 \le i_k \le \dim \sigma$$

is a ν -form on the hyperplane $\sum t_i = 1$ in $\mathbb{R}^{\dim \sigma + 1}$, having as polynomials in the t_i with rational coefficients, and such that

$$|\phi_{\sigma}|_{\tau} = \phi_{\tau}$$

whenever τ is a face of σ . We can then define the complex of PL-forms on *K*. Its cohomology is denoted by $H_{PL}^*(K)$. We have an important fact that

$$H^*_{PL}(K) \cong H^*(K, \mathbb{Q}).$$

Now we use PL-forms on $\bar{M}_{g,n}^{comb}$ to compute the first Chern class of L_i^{comb} .

Let $|a|/\Gamma_a$ be an orbicell of $\overline{M}_{g,n}^{comb}(r)$, where *a* corresponds to an embedded graph $(G_a; x_1, \ldots, x_n)$ whose *i*-th half-perimeter is equal to r_i and $\Gamma_a = Aut((G_a; x_1, \ldots, x_n))$. The coordinates relative to the cell |a| are the lengths

$$\{l_e\}_{e\in E(G_a)}$$

of the edges of G_a . At each point x_i , we consider a cyclically ordered set of oriented edges of G_a

$$(\overrightarrow{e_1},\ldots,\overrightarrow{e_{\nu}})$$

with possible repetitions. A repetition happens when the edge in question bounds, on both sides, the same boundary component of G_a . We set

$$(w_i)_a = \sum_{1 < s < t \le \nu - 1} d\left(\frac{l_{e_s}}{r_i}\right) \wedge \left(\frac{l_{e_t}}{r_i}\right)$$

One can check that

$$w_i = \{(w_i)_a\}_{|a| \subset \bar{M}_{g,n}^{comb}(r)}$$

is a PL-form on $\overline{M}_{g,n}^{comb}(r)$.

Lemma 0.9. For each x_i and $r \in \mathbb{R}^n_+$,

$$[w_i] = c_1(L_i^{comb}) \in H^2_{PL}(\bar{M}^{comb}_{g,n}(r))$$

In particular,

$$[f^*(w_i)] = c_i(L_i) \in H^2(\bar{M}_{g,n}, \mathbb{Q}).$$

Now we can rewrite the intersection number

$$< au_{d_1},\ldots, au_{d_n}>=\int_{ar{M}_{g,n}}\psi_1^{d_1}\cdots\psi_n^{d_n}=\int_{ar{M}_{g,n}^{comb}(r)}w_1^{d_1}\cdots w_n^{d_n}\ =\int_{M_{g,n}^{comb}(r)}w_1^{d_1}\cdots w_n^{d_n}$$

The last equality is true since the boundary is measure zero.

Let $\Omega = \sum_{i=1}^{n} r_i^2 w_i$.

$$\int_{\mathbb{R}^n_{\geq 0}} e^{-\sum \lambda_i r_i} \Big(\int_{M^{comb}_{g,n}(r)} \frac{\Omega^d}{d!} \Big) dr_1 \cdots dr_n$$
$$= \sum_{d_1 + \cdots + d_n = d} < \tau_{d_1} \cdots \tau_{d_n} > \prod_{i=1}^n \frac{2d_i!}{d_i!} \lambda_i^{-2(d_i+1)} = (1),$$

where $\operatorname{Re}(\lambda_i) > 0$ and d = 3g - 3 + n.

We use the combinatorial theorem due to Kontsevich.

Theorem 0.10. $\frac{\Omega^d}{d!} dr_1 \wedge \cdots \wedge dr_n = 2^{2n+5g-5} dl_{e_1} \wedge \cdots \wedge dl_{e_{6g-6+3n}}$.

We have

$$(1) = \int_{\mathbb{R}^{n}_{\geq 0}} e^{-\sum \lambda_{i} r_{i}} \left(\int_{M_{g,n}^{comb}(r)} 2^{2n+5g-5} dl_{e_{1}} \wedge \dots \wedge dl_{e_{6g-6+3n}} \right)$$
$$= \sum_{G \in \mathcal{G}^{3,c}_{g,n}} \frac{2^{n+5g-5}}{|AutG|} \int_{|a(G)|} e^{-\sum \lambda_{i} r_{i}} dl_{e_{1}} \wedge \dots \wedge dl_{e_{6g-6+3n}},$$

where $\mathcal{G}_{g,n}^{3,c}$ is the isomorphism class of connected 3-valent embedded graph with genus *g* and *n*-marked points. We further do some change of variables.

$$\sum_{i=1}^n \lambda_i r_i = \sum_{e \in E(G)} (\lambda_e + \lambda'_e) l_e,$$

where λ_e and λ'_e are the perimeter of the two faces adjacent to the edge *e*.

Now we have the relation (*)

$$\sum_{\mathcal{G}_{g,n}^{3,c}} \frac{2^{-|V(G)|}}{|Aut(G)|} \prod_{e \in E(G)} \frac{2}{\lambda_e + \lambda'_e} = \sum_{d_1 + \dots + d_n = d} < \tau_{d_1} \dots \tau_{d_n} > \prod_{i=1}^n \frac{(2d_i - 1)!!}{\lambda_i^{2d_i + 1}}.$$

Theorem 0.11. Let $F(t_0, t_1, \dots) = \sum_{n \ge 0} \sum_{d_1, \dots, d_n \ge 0} \frac{1}{n!} < \tau_{d_1} \cdots \tau_{d_n} > t_{d_1} \cdots t_{d_n}$. Set $\Lambda = diag(\Lambda_1, \dots, \Lambda_N)$ with $Re(\Lambda_i) > 0$ and $t_i(\Lambda) = -(2i-1)!!Tr\Lambda^{-2i+1}$. Then

$$F(t_0(\Lambda), t_1(\Lambda), \dots) = \sum_{G \in \bar{\mathcal{G}}^{3,c,N}} \frac{\left(\frac{\sqrt{-1}}{2}\right)^{|V(G)|}}{|Aut(G)|} \prod_{e \in E(G)} \frac{2}{\Lambda_e + \Lambda'_e},$$

where $\bar{\mathcal{G}}^{3,c,N}$ is the isomorphism class of connected 3-valent embedded graph with genus g and N-colored boundary component.

Notice that this theorem and the relation (*) are similar except for the constant $\frac{1}{n!}$. This is because we sum over the graph with *n* marked points in relation (*), but we are not in the theorem.

On the other hand, we consider the Kontsevich model:

$$\begin{split} \int_{\mathcal{H}_N} e^{\frac{\sqrt{-1}}{6}tr(H^3)} d\mu_{\Lambda}(H) &= \sum_{i=1}^{\infty} (\frac{\sqrt{-1}}{2})^i \frac{1}{i!3!} \int_{\mathcal{H}_N} (tr(H^3))^i d\mu_{\Lambda}(H) \\ &= \sum_{G \in \bar{\mathcal{G}}^{3,N}} \frac{(\frac{\sqrt{-1}}{2})^{|V(G)|}}{|AutG|} \prod_{e \in E(G)} \frac{2}{\Lambda_e + \Lambda'_e} \end{split}$$

The last equality is the special case of the following proposition.

Proposition 0.12.

$$\int_{\mathcal{H}_N} (trH)^{\alpha_1} \cdots (tr(H^k))^{\alpha_k} d\mu_\Lambda(H)$$

= $\alpha_1! \cdots \alpha_k! 2^{\alpha_2} \cdots k^{\alpha_k} \sum_{G \in \bar{G}^{3,N}} \frac{1}{|AutG|} \prod_{e \in E(G)} \frac{2}{\Lambda_e + \Lambda'_e}.$

Now we get the important relation between intersection number and Kontsevich model.

$$e^{F(t_0(\Lambda),\dots)} = < e^{\frac{\sqrt{-1}}{6}tr(H^3)} >_{\Lambda,N}$$

Here we recall some properties of Airy function. We first study its asymptotic behaviour by the stationary phase method. The asymptotic expansion for A(y) as $y \rightarrow \infty$ is the sum of terms corresponding to the critical points of the function $\frac{x^3}{3} - xy$.

$$\begin{split} A(y) &= \int_{\infty}^{\infty} e^{\sqrt{-1}(\frac{x^3}{3} - xy)} dx \\ &\sim \int_{U(\sqrt{y})} e^{\sqrt{-1}(\frac{x^3}{3} - xy)} dx + \int_{U(\sqrt{-y})} e^{\sqrt{-1}(\frac{x^3}{3} - xy)} dx \\ &\sim \sum_{\pm \sqrt{y}} \operatorname{const} \cdot y^{\frac{-3}{4}} e^{-\frac{2\sqrt{-1}}{3}y^{\frac{3}{2}}} f_1(y^{-\frac{1}{2}}). \end{split}$$

Also we have

$$A^{j-1}(y) \sim \sum_{\pm \sqrt{y}} \text{const} \cdot y^{\frac{-3}{4}} e^{-\frac{2\sqrt{-1}}{3}y^{\frac{3}{2}}} f_j(y^{-\frac{1}{2}}),$$

where $f_j(y) = y^{-j}(1 + o(1))$.

We can obtain the relation between the Kontsevich's model and matrix Airy function by substitute Λ by $2\sqrt{-1}Y^{1/2}$

$$A(Y) = \int_{\mathcal{H}_N} e^{\sqrt{-1}(\frac{X^3}{3} - XY)} dX$$

 $\sim \operatorname{const} Y_i^{-\frac{1}{4}} \prod_{i < j} (Y_i^{\frac{1}{2}} + Y_j^{\frac{1}{2}})^{-\frac{1}{2}} \sum_{Y^{\frac{1}{2}}} e^{-\frac{2\sqrt{-1}}{3}} tr Y^{3/2} e^{F(\tilde{t_0}(Y^{1/2}), \dots)} - (1),$

where $\tilde{t}_i(\Upsilon^{1/2}) = 2^{-(2i+1)/3}(2i-1)!!tr\Upsilon^{-i-1/2}$. We can express matrix Airy function in another form.

Lemma 0.13. If Φ is a conjugacy invariant function on \mathcal{H}_N , then for any diagonal real matrix Y,

$$\int_{\mathcal{H}_N} \Phi(X) e^{-\sqrt{-1}trXY} dX$$

= $\frac{(-2\pi\sqrt{-1})^{N(N-1)/2}}{detY_i^{j-1}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Phi(D) e^{-\sqrt{-1}trDY} detD_i^{j-1} dD_1 \cdots dD_N$

Now we have

$$A(Y) = \frac{(-2\pi\sqrt{-1})^{N(N-1)/2}}{detY_i^{j-1}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_i e^{\sqrt{-1}\frac{D_i^3}{3} - D_iY_i} det D_i^{j-1} dD_1 \cdots dD_N$$

$$\sim \text{const} \cdot \sum_{Y^{\frac{1}{2}}} e^{-\frac{2\sqrt{-1}}{3}} trY^{3/2} \prod_{i=1}^N Y_i^{-\frac{3}{4}} \frac{detf_j(Y_i^{-1/2})}{detY_i^{j-1}} - (2).$$

We can compare (1) and (2). Then we get

$$e^{F(t_0(\Lambda),\dots)} \sim rac{det \tilde{f}_j(-2^{(2i+1)/3}\Lambda_i)}{det(-2^{(2i+1/3)\Lambda_i})^{-j}}$$

We further introduce some properties for the τ -functions of the KdV hierarchy.

8

We say a Sato subspace in $\mathbb{C}((z))$ is an infinite dimensional vector subspace possessing a basis f_1, f_2, \ldots such that $g_j(z) = z^{-j}(1 + o(1))$ for all j. We then define the τ -function associated to the Sato subspace W as the fraction

$$\tau_W(T_1, T_2, \dots) = \frac{\cdots \wedge Mg_2 \wedge Mg_1 \wedge z^0 \wedge \dots}{\cdots \wedge z^{-2} \wedge z^{-1} \wedge z^0 \wedge \dots}$$

Lemma 0.14. Let W be a Sato subspace generated by $f_i = z^i(1 + o(1))$. Then for any $N \ge 0$,

$$\frac{det(f_i(z_j))}{detz_j^{-i}} = \tau_W(T_1(z_*), T_2(z_*), \dots),$$

where $T_k(z_*) := \frac{1}{k} \sum_{i=1}^{N} z_i^k$.

Lemma 0.15. Let W be a Sato space such that $z^{-2}W \subset W$. Then we have (1) $\tau_W(T_1, T_2, ...)$ does not depend on T_{2i} for i > 0. (2) $2\frac{\partial^2}{\partial T_1^2} \log \tau_W(T_1, T_3, ...)$ satisfies KdV hierarchy w.r.t. variables $T_1, T_3, ...$

By using the above two lemmas, we can see that $e^{F(t_0(\Lambda),...)}$ is a τ -function of KdV hierarchy with respect to variables $T_{2i+1} = \frac{2^{(2i+1)/3}t_i}{(2i+1)!!}$. One can check that it is also a τ -function for KdV hierarchy w.r.t. variables $T_{2i+1} = \frac{t_i}{(2i+1)!!}$ and this proves the Witten's Conjecture.

Remark 0.16. The $F(t_0, t_1, ...)$ is completely determined by $F(t_0, 0, 0, ...) = \frac{1}{6}t_0^3$, KdV-hierarchy, string equation and dilaton equation.

REFERENCES

- Enrico Arbarello, maurizio Cornalba, Pillip A. Griffiths: Geometry of Algebraic Curves, vol. 2, chap. 20.
- [2] S. K. Lando, A.K. Zvonkin: Graphs on Surfaces and their Applications, chap.3, 4.
- [3] M. Kontsevich: Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function.