KONTSEVICH’S PROOF OF WITTEN’S CONJECTURE

YOU-CHENG CHOU

0.1. Combinatorial Model. Let X be a compact Riemann surface and p be
a meromorphic quadratic differential on X. Locally, p = ¢(z)(dz)?, where
p(z) is a meromorphic function. In our case, we assume p has only simple
or double poles.

We define the horizontal line field as

{veTX|¢(z)(dz(v))* > 0}.

For a generic quadratic differential, a generic trajectory of the horizontal
line field is non closed. However, there exist special quadratic differential
such that all horizontal trajectories except for a finite set are closed and we
defined it below.

Definition 0.1. A Jenkins-Strebel quadratic differential is a quadratic differential
with all horizontal trajectory except for a finite set are closed.

By a local analysis, we can see that if zg is a d-tuple zero of p, then there
are d + 2 horizontal trajectories issuing from zy. If zg is a simple pole, then
there is a unique horizontal trajectory issuing from z¢. Finally, if zg is a dou-
ble pole with negative residue, then zj is surrounded by closed horizontal
trajectories. We further list some properties of Jenkins-Strebel quadratic
differential that we will need later.

Proposition 0.2. 1. The connected component of X\ {graph of nonclosed hori-
zontal trajectory} is either open annulus or open disk.

2. All closed horizontal trajectory in the same connected component have the same
length. (We use the metric dI*> = |¢(z)||dz|?.)

3. If the length of closed trajectory associated to a double pole is p;, then p can be

written as — (%22 at the neighborhood of the pole.

Theorem 0.3. (Strebel) Let 2¢ — 2 +n > 0. Then for any 2n + 1-tuples
(X;x1,.-.,Xn, p1,...,-n), where X is a Riemann surface of finite type, x; are
distinct point of X, and p; > 0. Then there exists a unique Jenkins-Strebel qua-
dratic differential with double pole at x; and no other poles such that the connected
component of X\ graph of nonclosed horizontal trajectory are open disks, and the
length of closed trajectory associated to the i-th pole is p;.

We call the unique Jenkins-Strebel quadratic differential defined above
the canonical Jenkins-Strebel quadratic differential.
Conversely, given an embedded graph with each valencies of vertex > 3,
face marked by {x1,...,x,}, and fixed lengths of its edges. There exists
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unique complex structure such that its corresponding canonical Jenkins-
Strebel differential determines the given embedded graph.

Now, we define Mg‘/’,’fb := {the space of genus g connected embedded
graphs with n-marked points with all vertices of valencies > 3 and en-
dowed with a metric.}

Theorem 0.4. M, x R} = Mg‘,’,’[lb as real orbifolds.
We can further generalize the above discussion to stable curve.

Definition 0.5. A Jenkins-Strebel differential on the stable curve is a quadratic
differential such that

1. It has double poles at the marked points and at worst simple poles at the nodal
points, and no other poles.

2. ¢ = 0 on the unmarked components.

3. ¢ is the Jenkins-Strebel quadratic differential on the puntured marked compo-
nents.

Mg‘/’,’fb := { the space of stable genus ¢ embedded graphs with n-marked
points, with vertices of valencies > 3 on smooth points, with at most one
valency on nodal points and endowed with metric.}

To determine the relation between Mg,n and M;‘,’,Tb, we introduce the
equivalent relation as follows: Let C be a stable curve with genus ¢ and
n marked points. We can canonically decompose C as the union of two
curves C = CT UCY where CT is the union of all the components of
C containing marked points, and C° is the union of those containing no
marked points. Let ¢3,...,¢, be the points that C* has in common with
CP. We say that [(C;xy,...,x,)] is equivalent to [(C’,x},...,x},)] if there is
a family of nodal curves {C0};cs over a connected base S, together with
sections of smooth points 7, ..., T, with the property that (C;x1,...,xy)
(resp.,(C’,x},...,x],)) can be obtained from C* and CY (resp.,Cg,) by identi-
fying &; with 7;(s) (resp.,7;(s')) fori =1,...,u.

It is easy to check that what we just defined is an equivalence relation.
We let

Q: Mg,n — Mé,n

denote the projection via the equivalence relation. Now we can state the
similar identifications for stable curves:

Theorem 0.6. H : My, x R". — M is an homeomorphism.

0.2. Matrix Integral Model. Let A = (A;);1<i<n be a diagonal matrix with
positive entries and H = (h;;) = (x;; +iy;;) be a Hermitian matrix. We
consider the following measure on the space of Hermitian matrices

N
d}/lA(H) = CA,NEE%HZA deii deijdyij/

i=1 i<j
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where C AN is chosen such that
d ua(H) =1.
/ y A( )

2 1
By direct computation, we have Cp ny = (271)_NT TN, A? [Tici(Ai + A).
Now we introduce the Kontsevich Model:

log/ dyA H).

Before explaining the meaning of this model, we recall some facts about
matrix integral.

Let B be a n x n positive definite symmetric matrix. We consider the
integral

n
1
c/ e 2(Bx¥) [ dx;,
IR i=1

where c is chosen such that the integral equals 1. With this normalization
we have

n
_1 1
< xixj >i= c/”xixje 2(Bx,x) [ [dxi = (B7')yj.
i=1
We can further generalized this computation.

Theorem 0.7 (Wick’s formula). Let fi, ..., for be linear functions of x1, . .., Xp.

Then
<fiferfu>= ), < fofa > <fofu>

P1<---<pk
< <q

Go back to our case, in coordinated x;;, Xij, Yij, We can write tr(HzA) =
(Bx, x), where

Aq

A+ Ay

An-1+ AN
A1+ Ap

AN—1+ AN

1

AR Also, we have

We compute < x}; >= 3, < 1 >=< yi >=
< hjjhji >= A+A and < hjihy >=0if (i,) # (L k).

Now we Compute

[ e auat) = [ (1= 5 g r )P + g (r(H)) = )aa ().
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By Wick’s formula, the right hand side can be presented as the monomial
of < hj,;,hi,k, > Notice that each term can correspond to the gluing of
3-stars.

il Il J2 2 20 Jon

ki | 1 ky | i2 kon | i2n

i h

nln

In this case an edge of the gluing corresponds to a pair < h;
define the weight of an gluing is the product

2
A,‘—I—A]'

taken over all edges of the gluing.

ky = We

Im

Now the meaning of Kontsevich model, [;, es'"H) gy, (H), can be ex-

press as the sum of the weight of all the gluing of 3-stars. Taking log means
the enumeration of connected gluings.

0.3. Witten’s Conjecture.
We fix some notation first. Let L; be the i-th point bundle on Mg, and
P; := c1(L;). The intersection number is defined by

L d d
< le e Td” >i= /M lpll v nn,
ra

where < 14, - - - 14, >= 0if dy + - - - +d, # 3¢ — 3 + n.Finally, the generat-
ing series for intersection numbers is the formal power series

1
P(to,tl,...): Z E<Td1”'Tdn>td1"'tdn'
d1>0,...,d,>0 "7°

We also recall the KdV-hierarchy. Let U(fo, t1, ... ) be a formal power series.
We say U satisfies KdV if and only if

ou d
3~ a1
B ORp1 1 ou J 193
where Ry = U and oty 2 i1 (aTLO + ZUBTO + ZBTS)R,,. The formal
power series T(fg, t1,...) is a T-function for KdV-hierarchy if
82
Za—%logr(to,...) = U(to,...)

Theorem 0.8 (Witten’s Conjecture). e’ is the T-function for KdV with respect

to variables Tp; 1 = ﬁ
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The first step of the proof is to give a combinatorial formula for ;. Let
7S (L;) — Mg,. We want to find a closed 2-form w; on M, such that
7 (w;) = dgp and [g; ¢lgiper = 1.

Fixr = (r1,...,7,) € R, we have the commutative diagram:

Mg
2N
h
Mgy —————— Mg (1)

By the way Q was constructed, the line bundle L; restricts to a trivial line
bundle on the fibers of Q and therefore drops to a well-defined line bundle
L;on My, with Q*(L}) = L;. Let L& be the pullback of L] via h™!, so that

B (L) = L, () = L

Now our goal becomes giving the combinatorial expression for its first
Chern class.

We recall a few facts about piecewise linear forms. Let K be a simplicial
complex.

o: A, — K]

be the n-simplex. A PL-form ¢ of degree v on |K] is a collection

(P = {(PU}U'EK/
where
(‘ba = E¢i1...i1//0 S ik S dlch

is a v-form on the hyperplane ) t; = 1in Rdime+1 having as polynomials
in the t; with rational coefficients, and such that

47(7‘1’ = (PT

whenever 7 is a face of . We can then define the complex of PL-forms on
K. Its cohomology is denoted by H}; (K). We have an important fact that

Hpr(K) = H*(K, Q).

Now we use PL-forms on Mg,‘,’;”b to compute the first Chern class of L&,

Let |a|/T,; be an orbicell of Mg?,ﬁ”b(r), where a corresponds to an em-
bedded graph (Gg; x1, ..., x,) whose i-th half-perimeter is equal to r; and
Iy, = Aut((Gg;x1,...,%,)). The coordinates relative to the cell |a| are the
lengths

{le}ec(cy)

of the edges of G,. At each point x;, we consider a cyclically ordered set of
oriented edges of G,
(ef,.... &)
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with possible repetitions. A repetition happens when the edge in question
bounds, on both sides, the same boundary component of G,. We set

= T a()n(2)

I<s<t<v—1
One can check that
wi = {(wi)aha\cMg,;ﬂb(r)
is a PL-form on M, (r).
Lemma 0.9. Foreach x; and r € R",,
[wi] = 1 (L") € Hp (Mg ().
In particular,
[f* (w)] = ei(Li) € H? (Mg, Q).

Now we can rewrite the intersection number

di dy d

< Ty, Ty >_/ n:/ wh .t
v o Mg, lpl ¢n Mi,%ﬂb(r) 1 "

= wi . gt

J Mg (r) !

The last equality is true since the boundary is measure zero.
Let Q = Y, rw;.

Qd
— LAt el .
/IR ‘ (/ M) d! Jars:dry

no2d:N o
— Z < le e Tdn > dl' /\Z 2(d1+1) — (1)’
di+---dy=d i=1 v
where Re(A;)> 0and d =3¢ —3 +n.
We use the combinatorial theorem due to Kontsevich.

Theorem 0.10. %ddrl Ao Ndry =228, A - Adl

We have
= — LAt 2n+5¢—5

(1) = /]R e r (/M%b(r)z 58Sl A /\dle6gf6+3n>

2n+5g—5

_ — L Air
= i e TATidl, A - Adl
gege [AMGl Jue)

n
>0

€6g—6+3n"

n
>0

€6g—6+3n7

where g;;fz is the isomorphism class of connected 3-valent embedded graph
with genus ¢ and n—marked points. We further do some change of vari-
ables.

n

YoAri= ) (Aet+ Al
i=1 e€E(G)

where A, and A/, are the perimeter of the two faces adjacent to the edge e.
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Now we have the relation (*)

2_|V(G)‘ 2 zd B 1
Z TAut(C)] H = Z < Ty T4, > H
gg:f, ‘Aut(G)‘ e€E(G) Ae + /\é di+--+d,=d ! Zd i+1
1
Theorem 0.11. Let F(to,t1, ) = Z Z — < Ty Ty, > bg ety

1>0dy,.dy>0 1! ‘
Set A = diag(Aq, ... AN) with Re(A;) > 0and t;(A) = —(2i — 1) TrA=2+1,
Then

Fla(A)n(A),..) = 3 LTI 2
to(A), 1 (A),...) = ) 2
0 1 Geg'&aN |Aut(G)| EEE(G) Ae + Aé

where G3N is the isomorphism class of connected 3-valent embedded graph with
genus g and N-colored boundary component.

Notice that this theorem and the relation (x) are similar except for the
constant .. This is because we sum over the graph with 7 marked points
in relation ( ), but we are not in the theorem.

On the other hand, we consider the Kontsevich model:

T (1) = S [ ) e

Hn i=1
y ()N 2
o 1AuGl L A+ AL

The last equality is the special case of the following proposition.

Proposition 0.12.
[ (rEs (e (HY) Sy (B)
HN

Gg3N

1 2
[AutGl H VAt AL

Now we get the important relation between intersection number and
Kontsevich model.

eFo(N)) — o Vet (H) 5 o

Here we recall some properties of Airy function. We first study its as-

ymptotic behaviour by the stationary phase method. The asymptotic ex-

pansion for A(y) as y — oo is the sum of terms corresponding to the critical
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points of the function %3 — xy.

y)= [ e i

~ / F Vdx +/ **xy)dx
~ L Cor‘st'yTE‘Tyzfl(y‘f).
VY
Also we have
' - — 3
A]_l(?/) ~ Z Const-y%e—gyzfj(y—%)’
VY

where f;(y) =y /(1 +o(1)).
We can obtain the relation between the Kontsevich’s model and matrix
Airy function by substitute A by 2y/—1Y1/2

AY) = [ /15X x
Hy

1
~ const-Y; *[](Y;

NI

1 N
P TEY e Y2 PR ) (),
i<j v}

where £;(Y1/2) = 2= 241)/3(2§ — 1)11trY~~1/2, We can express matrix Airy
function in another form.

Lemma 0.13. If ® is a conjugacy invariant function on Hy, then for any diagonal
real matrix 'Y,

/ (D(X)ef\/jlh’XYdX
HN

N 1 /2
_ (2mvi- e~V WDY 4ot DI NAD, - dDy
detY] !

Now we have

/ (N-1)/2
A(Y) ( an Y3 1 / / H€F3 DY’detD] 1dD1 -dDy
et

_adetf;(Y; 12
~ const- ) e~ 2 trY3/2HY Ll) —(2).
We can compare (1) and (2). Then we get
detf;(—22+D/3A,))

eF(to(A),...) ~ ‘ -
det(_2(21+1/3)A,-)—]

We further introduce some properties for the T-functions of the KdV hier-
archy.
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We say a Sato subspace in C((z)) is an infinite dimensional vector sub-
space possessing a basis f1, f2,... such that gj(z) = z7/(1+ o(1)) for all
j. We then define the T-function associated to the Sato subspace W as the

fraction
o AMg AMgI AZOA L.

e ANzT2AzZTEAZOA L
Lemma 0.14. Let W be a Sato subspace generated by f; = z'(1+ o(1)). Then for

any N > 0,
det(fi(z;))
detzj’i

where Ty (z,) = L YN, 2K,

Tw(Tl, Tz,. . ) =

= Tw(Tl(Z*), Tz(Z*), v ),

Lemma 0.15. Let W be a Sato space such that z—>W C W. Then we have
(1) tw(Th, Ty, . . . ) does not depend on Ty; for i > 0.

(2) Zaa—;z log tw(Ty, T, . . . ) satisfies KAV hierarchy w.r.t. variables Ty, Ts, . ...
1

By using the above two lemmas, we can see that ef (0(A)) is a T-function
202i+1)/34,
@i+

that it is also a T-function for KdV hierarchy w.r.t. variables T; 11 = W

of KdV hierarchy with respect to variables T; 1 = . One can check

and this proves the Witten’s Conjecture.

Remark 0.16. The F(to, t1,...) is completely determined by F(t(,0,0,...) =
%t3, KdV-hierarchy, string equation and dilaton equation.
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