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0.1. Combinatorial Model. Let X be a compact Riemann surface and ρ be
a meromorphic quadratic differential on X. Locally, ρ = φ(z)(dz)2, where
ρ(z) is a meromorphic function. In our case, we assume ρ has only simple
or double poles.

We define the horizontal line field as

{ν ∈ TX | φ(z)(dz(ν))2 > 0}.
For a generic quadratic differential, a generic trajectory of the horizontal
line field is non closed. However, there exist special quadratic differential
such that all horizontal trajectories except for a finite set are closed and we
defined it below.

Definition 0.1. A Jenkins-Strebel quadratic differential is a quadratic differential
with all horizontal trajectory except for a finite set are closed.

By a local analysis, we can see that if z0 is a d-tuple zero of ρ, then there
are d + 2 horizontal trajectories issuing from z0. If z0 is a simple pole, then
there is a unique horizontal trajectory issuing from z0. Finally, if z0 is a dou-
ble pole with negative residue, then z0 is surrounded by closed horizontal
trajectories. We further list some properties of Jenkins-Strebel quadratic
differential that we will need later.

Proposition 0.2. 1. The connected component of X\ {graph of nonclosed hori-
zontal trajectory} is either open annulus or open disk.
2. All closed horizontal trajectory in the same connected component have the same
length. (We use the metric dl2 = |φ(z)||dz|2.)
3. If the length of closed trajectory associated to a double pole is pi, then ρ can be
written as −( pidz

2πz )
2 at the neighborhood of the pole.

Theorem 0.3. (Strebel) Let 2g− 2 + n > 0. Then for any 2n + 1-tuples
(X; x1, . . . , xn, p1, . . . , n), where X is a Riemann surface of finite type, xi are
distinct point of X, and pi > 0. Then there exists a unique Jenkins-Strebel qua-
dratic differential with double pole at xi and no other poles such that the connected
component of X\ graph of nonclosed horizontal trajectory are open disks, and the
length of closed trajectory associated to the i-th pole is pi.

We call the unique Jenkins-Strebel quadratic differential defined above
the canonical Jenkins-Strebel quadratic differential.

Conversely, given an embedded graph with each valencies of vertex≥ 3,
face marked by {x1, . . . , xn}, and fixed lengths of its edges. There exists
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unique complex structure such that its corresponding canonical Jenkins-
Strebel differential determines the given embedded graph.

Now, we define Mcomb
g,n := {the space of genus g connected embedded

graphs with n-marked points with all vertices of valencies ≥ 3 and en-
dowed with a metric.}

Theorem 0.4. Mg,n ×Rn
+
∼= Mcomb

g,n as real orbifolds.

We can further generalize the above discussion to stable curve.

Definition 0.5. A Jenkins-Strebel differential on the stable curve is a quadratic
differential such that
1. It has double poles at the marked points and at worst simple poles at the nodal
points, and no other poles.
2. φ ≡ 0 on the unmarked components.
3. φ is the Jenkins-Strebel quadratic differential on the puntured marked compo-
nents.

M̄comb
g,n := { the space of stable genus g embedded graphs with n-marked

points, with vertices of valencies ≥ 3 on smooth points, with at most one
valency on nodal points and endowed with metric.}

To determine the relation between M̄g,n and M̄comb
g,n , we introduce the

equivalent relation as follows: Let C be a stable curve with genus g and
n marked points. We can canonically decompose C as the union of two
curves C = C+ ∪ C0, where C+ is the union of all the components of
C containing marked points, and C0 is the union of those containing no
marked points. Let ξ1, . . . , ξu be the points that C+ has in common with
C0. We say that [(C; x1, . . . , xn)] is equivalent to [(C′, x′1, . . . , x′n)] if there is
a family of nodal curves {C0

s }s∈S over a connected base S, together with
sections of smooth points τ1, . . . , τu, with the property that (C; x1, . . . , xn)
(resp.,(C′, x′1, . . . , x′n)) can be obtained from C+ and C0

s (resp.,C0
s′) by identi-

fying ξi with τi(s) (resp.,τi(s′)) for i = 1, . . . , u.
It is easy to check that what we just defined is an equivalence relation.

We let
Q : M̄g,n → M̄′g,n

denote the projection via the equivalence relation. Now we can state the
similar identifications for stable curves:

Theorem 0.6. H : M̄′g,n ×Rn
+ → M̄comb

g,n is an homeomorphism.

0.2. Matrix Integral Model. Let Λ = (Λi)1≤i≤N be a diagonal matrix with
positive entries and H = (hij) = (xij + iyij) be a Hermitian matrix. We
consider the following measure on the space of Hermitian matrices

dµΛ(H) = CΛ,Nee 1
2 H2Λ

N

∏
i=1

dxii ∏
i<j

dxijdyij,
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where CΛ,N is chosen such that∫
HN

dµΛ(H) = 1.

By direct computation, we have CΛ,N = (2π)−
N2
2 ∏N

i=1 Λ
1
2
i ∏i<j(Λi + Λj).

Now we introduce the Kontsevich Model:

log
∫
HN

e
i
6 tr(H3)dµΛ(H).

Before explaining the meaning of this model, we recall some facts about
matrix integral.

Let B be a n × n positive definite symmetric matrix. We consider the
integral

c
∫

Rn
e−

1
2 (Bx,x)

n

∏
i=1

dxi,

where c is chosen such that the integral equals 1. With this normalization
we have

< xixj >:= c
∫

Rn
xixje−

1
2 (Bx, x)

n

∏
i=1

dxi = (B−1)ij.

We can further generalized this computation.

Theorem 0.7 (Wick’s formula). Let f1, . . . , f2k be linear functions of x1, . . . , xn.
Then

< f1 f2 · · · f2k >= ∑
p1<···<pk
q1<···<qk

< fp1 fq1 > · · · < fpk fqk > .

Go back to our case, in coordinated xii, xij, yij, we can write tr(H2Λ) =
(Bx, x), where

B =



Λ1
. . .

ΛN
Λ1 + Λ2

. . .
ΛN−1 + ΛN

Λ1 + Λ2
. . .

ΛN−1 + ΛN


.

We compute < x2
ii >= 1

Λ1
, < x2

ij >=< y2
ij >= 1

Λi+Λj
. Also, we have

< hijhji >= 2
Λi+Λj

and < hijhkl >= 0 if (i, j) 6= (l, k).
Now we compute∫
HN

e
i
6 tr(H3)dµΛ(H) =

∫
HN

(
1− 1

2!
1
62 (tr(H3))2 +

1
4!

1
64 (tr(H3))4)− . . .

)
dµΛ(H).
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By Wick’s formula, the right hand side can be presented as the monomial
of < hin jn himkm >. Notice that each term can correspond to the gluing of
3-stars.

i1k1

j1j1
i1k1

i2k2

j2j2
i2k2

i2nk2n

j2nj2n

i2nk2n

. . .

In this case an edge of the gluing corresponds to a pair < hin jn himkm >. We
define the weight of an gluing is the product

∏
2

Λi + Λj

taken over all edges of the gluing.
Now the meaning of Kontsevich model,

∫
HN

e
i
6 tr(H3)dµΛ(H), can be ex-

press as the sum of the weight of all the gluing of 3-stars. Taking log means
the enumeration of connected gluings.

0.3. Witten’s Conjecture.
We fix some notation first. Let Li be the i-th point bundle on M̄g,n and
ψi := c1(Li). The intersection number is defined by

< τd1 · · · τdn >:=
∫

M̄g,n

ψd1
1 · · ·ψ

dn
n ,

where < τd1 · · · τdn >= 0 if d1 + · · ·+ dn 6= 3g− 3 + n.Finally, the generat-
ing series for intersection numbers is the formal power series

F(t0, t1, . . . ) = ∑
d1≥0,...,dn≥0

1
n!

< τd1 · · · τdn > td1 · · · tdn .

We also recall the KdV-hierarchy. Let U(t0, t1, . . . ) be a formal power series.
We say U satisfies KdV if and only if

∂U
∂ti

=
∂

∂t0
Ri[U],

where R0 = U and
∂Rn+1

∂t0
=

1
2n + 1

(
∂U
∂t0

+ 2U
∂

∂t0
+

1
4

∂3

∂t3
0
)Rn. The formal

power series τ(t0, t1, . . . ) is a τ-function for KdV-hierarchy if

2
∂2

∂t2
0

log τ(t0, . . . ) = U(t0, . . . )

Theorem 0.8 (Witten’s Conjecture). eF is the τ-function for KdV with respect
to variables T2i+1 = ti

(2i+1)!!
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The first step of the proof is to give a combinatorial formula for ψi. Let
π̄S1(Li) → M̄g,n. We want to find a closed 2-form wi on M̄g,n such that
π̄∗(wi) = dφ and

∫
S1 φ|fiber = 1.

Fix r = (r1, . . . , rn) ∈ Rn
+, we have the commutative diagram:

M̄g,n

Q

||

f

$$
M̄′g,n

h
∼ // M̄comb

g,n (r)

By the way Q was constructed, the line bundle Li restricts to a trivial line
bundle on the fibers of Q and therefore drops to a well-defined line bundle
L′i on M̄′g,n with Q∗(L′i) = Li. Let Lcomb

i be the pullback of L′i via h−1, so that

h∗(Lcomb
i ) = L′i, f ∗(lcomb

i ) = Li.

Now our goal becomes giving the combinatorial expression for its first
Chern class.

We recall a few facts about piecewise linear forms. Let K be a simplicial
complex.

σ : 4n → |K|
be the n-simplex. A PL-form φ of degree ν on |K| is a collection

φ = {φσ}σ∈K,

where
φσ = ∑ φi1...iν

, 0 ≤ ik ≤ dimσ

is a ν-form on the hyperplane ∑ ti = 1 in Rdimσ+1, having as polynomials
in the ti with rational coefficients, and such that

φσ|τ = φτ

whenever τ is a face of σ. We can then define the complex of PL-forms on
K. Its cohomology is denoted by H∗PL(K). We have an important fact that

H∗PL(K) ∼= H∗(K, Q).

Now we use PL-forms on M̄comb
g,n to compute the first Chern class of Lcomb

i .
Let |a|/Γa be an orbicell of M̄comb

g,n (r), where a corresponds to an em-
bedded graph (Ga; x1, . . . , xn) whose i-th half-perimeter is equal to ri and
Γa = Aut((Ga; x1, . . . , xn)). The coordinates relative to the cell |a| are the
lengths

{le}e∈E(Ga)

of the edges of Ga. At each point xi, we consider a cyclically ordered set of
oriented edges of Ga

(−→e1 , . . . ,−→eν )
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with possible repetitions. A repetition happens when the edge in question
bounds, on both sides, the same boundary component of Ga. We set

(wi)a = ∑
1<s<t≤ν−1

d
( les

ri

)
∧
( let

ri

)
One can check that

wi = {(wi)a}|a|⊂M̄comb
g,n (r)

is a PL-form on M̄comb
g,n (r).

Lemma 0.9. For each xi and r ∈ Rn
+,

[wi] = c1(Lcomb
i ) ∈ H2

PL(M̄comb
g,n (r)).

In particular,
[ f ∗(wi)] = ci(Li) ∈ H2(M̄g,n, Q).

Now we can rewrite the intersection number

< τd1 , . . . , τdn >=
∫

M̄g,n

ψd1
1 · · ·ψ

dn
n =

∫
M̄comb

g,n (r)
wd1

1 · · ·w
dn
n

=
∫

Mcomb
g,n (r)

wd1
1 · · ·w

dn
n

The last equality is true since the boundary is measure zero.
Let Ω = ∑n

i=1 r2
i wi.∫

Rn
≥0

e−∑ λiri
( ∫

Mcomb
g,n (r)

Ωd

d!

)
dr1 · · · drn

= ∑
d1+···dn=d

< τd1 · · · τdn >
n

∏
i=1

2di!
di!

λ
−2(di+1)
i = (1),

where Re(λi)> 0 and d = 3g− 3 + n.
We use the combinatorial theorem due to Kontsevich.

Theorem 0.10. Ωd

d! dr1 ∧ · · · ∧ drn = 22n+5g−5dle1 ∧ · · · ∧ dle6g−6+3n .

We have

(1) =
∫

Rn
≥0

e−∑ λiri
( ∫

Mcomb
g,n (r)

22n+5g−5dle1 ∧ · · · ∧ dle6g−6+3n

)
= ∑

G∈G3,c
g,n

2n+5g−5

|AutG|

∫
|a(G)|

e−∑ λiri dle1 ∧ · · · ∧ dle6g−6+3n ,

where G3,c
g,n is the isomorphism class of connected 3-valent embedded graph

with genus g and n−marked points. We further do some change of vari-
ables.

n

∑
i=1

λiri = ∑
e∈E(G)

(λe + λ′e)le,

where λe and λ′e are the perimeter of the two faces adjacent to the edge e.
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Now we have the relation (∗)

∑
G3,c

g,n

2−|V(G)|

|Aut(G)| ∏
e∈E(G)

2
λe + λ′e

= ∑
d1+···+dn=d

< τd1 · · · τdn >
n

∏
i=1

(2di − 1)!!

λ2di+1
i

.

Theorem 0.11. Let F(t0, t1, · · · ) = ∑
n≥0

∑
d1,...,dn≥0

1
n!

< τd1 · · · τdn > td1 · · · tdn .

Set Λ = diag(Λ1, . . . ΛN) with Re(Λi) > 0 and ti(Λ) = −(2i− 1)!!TrΛ−2i+1.
Then

F(t0(Λ), t1(Λ), . . . ) = ∑
G∈Ḡ3,c,N

(
√
−1
2 )|V(G)|

|Aut(G)| ∏
e∈E(G)

2
Λe + Λ′e

,

where Ḡ3,c,N is the isomorphism class of connected 3-valent embedded graph with
genus g and N-colored boundary component.

Notice that this theorem and the relation (∗) are similar except for the
constant 1

n! . This is because we sum over the graph with n marked points
in relation (∗), but we are not in the theorem.

On the other hand, we consider the Kontsevich model:∫
HN

e
√
−1
6 tr(H3)dµΛ(H) =

∞

∑
i=1

(

√
−1
2

)i 1
i!3!

∫
HN

(tr(H3))idµΛ(H)

= ∑
G∈Ḡ3,N

(
√
−1
2 )|V(G)|

|AutG| ∏
e∈E(G)

2
Λe + Λ′e

The last equality is the special case of the following proposition.

Proposition 0.12.∫
HN

(trH)α1 · · · (tr(Hk))αk dµΛ(H)

= α1! · · · αk!2α2 · · · kαk ∑
G∈Ḡ3,N

1
|AutG| ∏

e∈E(G)

2
Λe + Λ′e

.

Now we get the important relation between intersection number and
Kontsevich model.

eF(t0(Λ),··· ) =< e
√
−1
6 tr(H3) >Λ,N

Here we recall some properties of Airy function. We first study its as-
ymptotic behaviour by the stationary phase method. The asymptotic ex-
pansion for A(y) as y→ ∞ is the sum of terms corresponding to the critical
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points of the function x3

3 − xy.

A(y) =
∫ ∞

∞
e
√
−1( x3

3 −xy)dx

∼
∫

U(
√

y)
e
√
−1( x3

3 −xy)dx +
∫

U(
√−y)

e
√
−1( x3

3 −xy)dx

∼ ∑
±√y

const·y−3
4 e−

2
√
−1

3 y
3
2 f1(y−

1
2 ).

Also we have

Aj−1(y) ∼ ∑
±√y

const·y−3
4 e−

2
√
−1

3 y
3
2 f j(y−

1
2 ),

where f j(y) = y−j(1 + ◦(1)).
We can obtain the relation between the Kontsevich’s model and matrix

Airy function by substitute Λ by 2
√
−1Y1/2

A(Y) =
∫
HN

e
√
−1( X3

3 −XY)dX

∼ const·Y−
1
4

i ∏
i<j

(Y
1
2

i + Y
1
2

j )
− 1

2 ∑
Y

1
2

e−
2
√
−1

3 trY3/2eF(t̃0(Y1/2),... ) − (1),

where t̃i(Y1/2) = 2−(2i+1)/3(2i− 1)!!trY−i−1/2. We can express matrix Airy
function in another form.

Lemma 0.13. If Φ is a conjugacy invariant function onHN , then for any diagonal
real matrix Y,∫
HN

Φ(X)e−
√
−1trXYdX

=
(−2π

√
−1)N(N−1)/2

detY j−1
i

∫ ∞

−∞
· · ·

∫ ∞

−∞
Φ(D)e−

√
−1trDYdetDj−1

i dD1 · · · dDN

Now we have

A(Y) =
(−2π

√
−1)N(N−1)/2

detY j−1
i

∫ ∞

−∞
· · ·

∫ ∞

−∞
∏

i
e
√
−1

D3
i

3 −DiYi detDj−1
i dD1 · · · dDN

∼ const·∑
Y

1
2

e−
2
√
−1

3 trY3/2
N

∏
i=1

Y−
3
4

i
det f j(Y−1/2

i )

detY j−1
i

− (2).

We can compare (1) and (2). Then we get

eF(t0(Λ),... ) ∼
det f̃ j(−2(2i+1)/3Λi)

det(−2(2i+1/3)Λi)−j .

We further introduce some properties for the τ-functions of the KdV hier-
archy.
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We say a Sato subspace in C((z)) is an infinite dimensional vector sub-
space possessing a basis f1, f2, . . . such that gj(z) = z−j(1 + ◦(1)) for all
j. We then define the τ-function associated to the Sato subspace W as the
fraction

τW(T1, T2, . . . ) =
· · · ∧Mg2 ∧Mg1 ∧ z0 ∧ . . .
· · · ∧ z−2 ∧ z−1 ∧ z0 ∧ . . .

Lemma 0.14. Let W be a Sato subspace generated by fi = zi(1+ ◦(1)). Then for
any N ≥ 0,

det( fi(zj))

detz−i
j

= τW(T1(z∗), T2(z∗), . . . ),

where Tk(z∗) := 1
k ∑N

i=1 zk
i .

Lemma 0.15. Let W be a Sato space such that z−2W ⊂W. Then we have
(1) τW(T1, T2, . . . ) does not depend on T2i for i > 0.
(2) 2 ∂2

∂T2
1

log τW(T1, T3, . . . ) satisfies KdV hierarchy w.r.t. variables T1, T3, . . . .

By using the above two lemmas, we can see that eF(t0(Λ),...) is a τ-function
of KdV hierarchy with respect to variables T2i+1 = 2(2i+1)/3ti

(2i+1)!! . One can check

that it is also a τ-function for KdV hierarchy w.r.t. variables T2i+1 = ti
(2i+1)!!

and this proves the Witten’s Conjecture.

Remark 0.16. The F(t0, t1, . . . ) is completely determined by F(t0, 0, 0, . . . ) =
1
6 t3

0, KdV-hierarchy, string equation and dilaton equation.
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