
Chapter 2

RINGS

We intend to classify simple rings R using their (left) modules. For
irreducible (left) R-modules M, J = annR M is an ideal in R hence J = 0.
Moreover, Schur’s Lemma implies that ∆ = R′ := End R M is a division
ring and M can be regarded as a left vector space over ∆. The embedding
ρ : R ↪→ End M then factors as

ρ : R ↪→ R′′ := End∆ M ↪→ End M,

with the left one being an embedding ι : R ↪→ R′′ into ∆-linear maps.
To further investigate ι, the major tools we will develop is a kind of

“density theorems” or “approximation theorems” for ring homomorphisms
into certain endomorphism rings. For this purpose we first study some re-
lated and more flexible notions called (semi-)primitivity so that results on
(completely reducible) modules in the previous chapter can be applied.

The major result is the classification theorem of (semi-)simple rings due
to Wedderburn and Artin, under suitable finiteness assumption. More pre-
cisely, simple artinian rings are nothing but the matrix rings Mn(∆) and
semi-simple artinian rings are simply finite product of them.

Instead of giving the original proof, the proof via (semi-)primitivity and
density presented here was due to Jacobson. The proof on Jacobson’s den-
sity theorem was later simplified by Bourbaki via a version on density the-
orem on completely reducible modules. This later density theorem turns
out to be powerful in other applications.

1. Semi-primitivity and the radical

Definition 2.1. Let R be a ring and by R-modules we mean left R-modules.

(1) R is (left) primitive if it admits a faithful irreducible module M.
(2) R is (left) semi-primitive (s.p.) if every a ∈ R \ {0} acts non-

trivially on some R-modules, i.e. ρ(a) 6= 0 for some ρ.
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10 2. RINGS

Clearly simple rings R are primitive: take M = R/I for a maximal left
ideal I and notice that annR M = 0. Also primitive implies semi-primitive.
Semi-primitivity is more flexible to work with due to the following fact:

Proposition 2.2. The following are equivalent:

(1) R is semi-primitive.
(2) R has a faithful completely reducible module M =

⊕
Mi.

(3) R is sub-direct product of primitive rings Ri’s, namely

R �
� ι //

!! !!

∏ Ri

πi
��

Ri

PROOF. (1)⇒ (2): Take M =
⊕

a 6=0 Ma where ρa(a) 6= 0 on Ma.
(2)⇒ (3): M is faithful means 0 = annR M =

⋂
annR Mi, hence

R ↪→∏ R/annR Mi =: ∏ Ri.

Ri is primitive since it is faithful on Mi. Also R � Ri clearly.
(3)⇒ (1): Denote ρi : Ri ↪→ End Mi. Let a ∈ R. If ρiπiι(a) = 0 for all i

then a ∈ ⋂ ker ρiπiι =
⋂

ker πiι =
⋂

ker πi = {0}. �

Recall that for any left ideal I ⊂ R,

annRR/I = (I : R) := { a ∈ R | aR ⊂ I } ⊂ I,

which is the largest ideal contained in I. Also any irreducible R-module M
is isomorphic to R/I for a maximal left ideal I. Hence

Corollary 2.3. (1) R is primitive⇐⇒ (I : R) = 0 for some maximal left ideal I.
(2) R is s.p.⇐⇒ ⋂

I(I : R) = 0 among all maximal left ideals.

Corollary 2.4. Let R be commutative. Then (1) R is primitive if and only it is a
field, (2) R is s.p. if and inly if it is a sub-direct product of fields.

Example 2.5. (1) For a division ring ∆, the matrix ring Mn(∆) is simple.
(2) Primitive rings might not be simple. Let V be an infinite dimensional

vector space over ∆, L = End∆V and F ⊂ L be those linear maps f ∈ L
with dim∆ f (V) < ∞. Then F is a non-trivial proper ideal and hence
L is not simple. But V is clearly irreducible as L-modules, hence L is
primitive.

(3) Z is s.p. by Z ↪→ ∏p Z/(p) (since
⋂

p(p) = 0 over all primes).
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Definition 2.6. The Jacobson radical is the ideal

J(R) ≡ rad R :=
⋂

I:max left
(I : R).

Proposition 2.7. For any maximal left ideal I, the ideal (I : R) is the intersection
of all maximal left ideals I ′ with R/I′ ∼= R/I. In particular,

J(R) =
⋂

I:max left
I.

PROOF. By definition, for any R-module M,

annR M =
⋂

x∈M
annR x.

Moreover, M is irreducible (M ∼= R/I for a maximal left I) implies that

M = Rx ∼= R/Ix

for any 0 6= x ∈ M and Ix := annR x is a maximal left ideal. Clearly
(Ix : R) = annR M = (I : R). This implies that

⋂
(I : R) ⊃ ⋂ I. Notice also

that any f : R/I′ ∼= R/I leads to I′ = Ix with x = f (1̄).
The reverse direction

⋂
(I : R) ⊂ ⋂ I follows by definition. �

Definition 2.8. An ideal P ⊂ R is primitive if R̄ := R/P is a primitive ring.

Corollary 2.9. P ⊂ R is a primitive ideal if and only if P = (I : R) for some
maximal left ideal I. In particular J(R) =

⋂
P among primitive ideals.

PROOF. If P = (I : R) = annR M with M = R/I, then M is also a
R̄ := R/P-module with annR̄ M = P/P = 0. Conversely, let M be a faithful
irreducible R̄-module. By viewing M as a R-module via R � R̄, M is also
irreducible with annR M = P. But then M ∼= R/I for some maximal left
ideal I and hence P = (I : R). The last statement on J(R) follows from
Proposition 2.7. �

Remark 2.10. In Proposition 2.7, one might wonder if (I : R) is indeed the
intersection of all I′ with (I′ : R) = (I : R). This is equivalent to ask if
the primitive ring R̄ := R/(I : R) has a unique faithful irreducible module
M up to isomorphisms. This fails already for simple rings “without any
finiteness assumptions”. Classification of all irreducible modules of a sim-
ple ring is one the fundamental problems in ring theory. We will see shortly
that the uniqueness does hold for simple (left) artinian rings.

Exercise 2.1. Following Example 2.5 (2), show that the ring L/F is simple
which admits more than one irreducible modules.
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Notice that the notion of primitivity of a ring depends on the left/right
choices while the simplicity of a ring does not. The first example of a left
primitive ring which is not right primitive was constructed by Bergman
when he was an undergraduate (published in Proceedings AMS 1964).

On the contrary, we will now show that semi-primitivity on one side
implies semi-simplicity on the other side. In fact we have

Theorem 2.11. The left and right Jacobson radicals coincide:

Jleft(R) =
⋂

max left
I =

⋂
max right

I = Jright(R).

The proof is based on the notion of quasi-regularity:
Definition 2.12. Let R be a ring. An element a ∈ R is called (left, right)
quasi-regular if 1− a has a (left, right) inverse.

Nilpotent elements are clearly quasi-regular: if an = 0 then w(1− a) =
(1− a)w = 1 for w := 1 + a + . . . + an−1.

Lemma 2.13. Let I be a left/right ideal such that every a ∈ I is left/right quasi-
regular. Then all elements in I are quasi-regular.

PROOF. We prove the left case. The right case is similar. If w(1− a) = 1,
write w = 1− a′ then 1− a− a′ + a′a = 1, hence

a′ = a− a′a ∈ I.

By assumption we have (1− a′′)(1− a′) = 1 for some a′′ ∈ R. This implies
that 1− a′′ = 1− a and a′′ = a ∈ I. In particular 1− a is invertible. �

Definition 2.14. By Lemma 2.13, a left/right ideal consisting of (left/right)
quasi-regular elements are referred as a quasi-regular left/right ideal.

Proposition 2.15. J(R) is the largest quasi-regular left ideal. In particular,

J(R) = { a ∈ R | 1− ba has a left inverse for all b ∈ R }.

PROOF. We first prove that J(R) is a quasi-regular left ideal. If a ∈
J(R) is not left quasi-regular, then the left ideal R(1− a) 6= R and hence
R(1− a) ⊂ I for some maximal left I. But a ∈ J(R) ⊂ I and 1− a ∈ I then
leads to the contradiction 1 ∈ I.

Next we prove that any quasi-regular left ideal Q is contained in J(R).
If not, then Q 6⊂ I for some maximal left I. Then I + Q = R and we have
1 = a + q for some a ∈ I and q ∈ Q. But then a = 1− q is invertible which
leads to the contradiction I = R.
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Fro the last statement, a ∈ J(R) ⇒ ba ∈ Ra ⊂ J(R) which implies
that a lies in the RHS. Conversely a lies in the RHS implies that Ra is a
quasi-regular left ideal. Hence a ∈ Ra ⊂ J(R). �

PROOF OF THEOREM 2.11. Jleft(R) is the largest quasi-regular left ideal.
However from its original definition we know that Jleft(R) is an ideal. Thus
Jleft(R) is also a quasi-regular right ideal. Proposition 2.15 then implies that
Jleft(R) ⊂ Jright(R). Similarly we have Jright(R) ⊂ Jleft(R). �

From now on, there is no need to distinguish left/right quasi-regular
ideals as well as left/right J(R).

Corollary 2.16. A ring R is left semi-primitive⇐⇒ J(R) = 0 ⇐⇒ R is right
semi-primitive.

2. Density theorems

Let R be s ring and M = R M be a R-module with ax = ρ(a)(x) under
ρ : R → End M. By definition R′ := End R M ⊂ End M consists of group
endomorphisms f commuting with the R-action

f (ax) = a f (x), a ∈ R, x ∈ M.

Then M is naturally a R′-module R′M.
Again let R′′ := End R′M ⊂ End M be those group endomorphisms

commuting with the R′-action. Then it is clear that

ρ(R) ⊂ R′′

and it is an immediate question to ask if they are equal. If we keep on
defining R′′′ := End R′′M ⊂ End M, then we have the trivial identity

R′′′ = R′.

Indeed R′ ⊂ (R′)′′ = R′′′. Also a ∈ R′′′ means a commutes with the R′′ ⊃ R
action. Thus a ∈ R”.
Example 2.17. (1) For M = R M =

⊕n R a free module of finite rank. By presenting
M as row vectors we had seen in last chapter that R′ ∼= Mn(R)op (right multiplica-
tion by matrices) and R′′ ∼= R as scalar multiplications on the left. Thus ρ(R) = R′′.
The essential formula used is

f (vj) = f (vieij) = f (vi)eij ∈ Rvj.

(2) The procedure also shows that (1) holds if the rank is infinite. Let M =⊕N R. Then R′ consists of row-finite infinite matrices.
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Now let S ⊂ R′ ⊂ M∞(R)op be the subring consisting of

aI∞ + A f , a ∈ R,

where A f is a “finite n× n matrix” in M∞(R) for some n ∈ N. (If we put a = 0
then we get an ideal as in Example 2.5-(2).)

By viewing M = S M (matrix multiplication on right), the same procedure
shows that S′ ∼= R as left scalar multiplications. Hence S′′ ∼= R′ which is strictly
larger than S.

Nevertheless, we do have the “finite approximation property” for the imbed-
ding S ↪→ S′′: for any x1, . . . , xn ∈ M and s′′ ∈ S′′, there exists s ∈ S such that

sxi = s′′xi 1 ≤ i ≤ n.

(3) For R = Z, M :=
⊕

p:prime Z/(p), we have

R′ = homZ(
⊕

p
Z/(p),

⊕
q

Z/(q)) ∼= ∏ Z/(p)

since all cross terms vanish. Then R′′ = EndR′M ∼= ∏ Z/(p) since the action on
M by R′ is component-wise. The embedding R ↪→ R′′:

Z ↪→∏ Z/(p)

is not surjective. But the “finite approximation” as in (2) holds by the Chinese
Remainder Theorem: for any x1, . . . , xn ∈ M and a′′ ∈ R′′, there are only a finite
number of primes T such that a′′xi 6= 0 for all i ∈ [1, n]. Over T we may solve
a ∈ Z with a ≡ a′′p (mod p) for p ∈ T. Then clearly

axi = a′′xi, 1 ≤ i ≤ n.

For a full endomorphism ring S = R′ = End R M, we have seen that
S = S′′. This, together with Example 2.17, suggests the following notion:

Definition 2.18. A subring S ⊂ End R M is dense if for every f ∈ End R M
and x1, . . . , xn ∈ M there is a s ∈ S such that s(xi) = f (xi) for all i.

Remark 2.19. If R = ∆ is a division ring, M is then a vector space over ∆ and
the condition is equivalent to: for every linearly independent v1, . . . , vn ∈
M and any y1, . . . , yn ∈ M, there is a s ∈ S such that s(vi) = yi for all i.

Also if n = dim∆ M < ∞, then it is clear that the only dense subring
S ⊂ End ∆ M ∼= Mn(∆)op is the full matrix ring.

Here is a useful density theorem in the spirit of Example 2.17-(3):

Theorem 2.20 (Bourbaki). Let M = R M be completely reducible, R′ := End R M,
R′′ := End R′M. Then R ↪→ R′′ is dense.



2. DENSITY THEOREMS 15

PROOF. Step 1. Any submodule N ⊂ R M is a R′′-submodule:
Indeed, the complete reducibility of M implies that M = N ⊕ P for

some P ⊂ R M. Let e ∈ R′ be the corresponding projection onto N. Then for
a′′ ∈ R′′,

a′′N = a′′e(N) = e(a′′M) ⊂ e(M) = N.

Step 2. Denote R M⊕n =
⊕n

i=1 R M ei and let R′n := End(R M⊕n). Then
a′′ ∈ R′′ determines a map a′′(n) ∈ End(R′n M⊕n):

Indeed any ` ∈ R′n is determined by `(u) = ∑n
i=1 `(uiei) where

`(uiei) =
n

∑
j=1

a′ij(ui) ej, a′ij ∈ R′.

Now a′′ ∈ R′′ gives a map on R M⊕n by a′′(n)u := ∑n
i=1 a′′ui ei. Then

`(a′′(n)u) =
n

∑
i,j=1

a′ij(a′′ui) ej =
n

∑
i,j=1

a′′a′ij(ui) ej = a′′(n) `(u)

for all ` ∈ R′n. This proves the claim.
Step 3. Proof of the theorem:
For n = 1, let N := Rx1 ⊂ R M, then Step 1 implies that N ⊂ R′′M.

Hence a′′ ∈ R′′ ⇒ a′′x1 ∈ N = Rx1. That is, a′′x1 = ax1 for some a ∈ R.
For general n ∈ N, M⊕n is also completely reducible. By Step 2, we

may apply the result for n = 1 to a′′(n) and M⊕n with x = ∑n
i=1 xi ei ∈ M⊕n.

Namely there exists a ∈ R such that ax = a′′(n)x. This means axi = a′′xi for
1 ≤ i ≤ n as expected. �

As the first application, we derive “Jacobson’s density theorem”:

Theorem 2.21 (Jacobson). A ring R is primitive⇐⇒ R is isomorphic to a dense
subring of End∆ M where M is a vector space over a division ring ∆.

PROOF. Given a faithful irreducible R-module ρ : R ↪→ EndR M, Schur’s
Lemma implies that ∆ := R′ = EndR M is a division ring and M is a ∆ vec-
tor space. Theorem 2.20 then implies that R ⊂ R′′ = End ∆ M is dense.

Conversely, if R ⊂ End ∆ M is dense then for any x 6= 0 and y in M there
exists a ∈ R such that ax = y. This implies that M = R M is irreducible and
thus R is primitive. �

If it happens that dim∆ M < ∞ then in fact R ∼= End∆ M. This is the
starting point of the Wedderburn–Artin theorem on (semi-)simple (left) ar-
tinian rings discussed in the next section.
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Exercise 2.2. Investigate how Bourbaki’s formal proof of the density theo-
rem recovers the Chinese Remainder Theorem as in Example 2.17-(3).

It is clear that Theorem 2.20 does not take care of the phenomenon ex-
plained in Example 2.17 (1) and (2) if R is not a division ring. This suggests
the existence of a more general density theorem beyond the completely re-
ducible case. A hint towards this generalization is to investigate the case
for finitely generated modules over a p.i.d..

Now we impose the artinian property as our “finiteness condition”.

Theorem 2.22 (Wedderburn–Artin). The following are equivalent:

(1) R is simple and left artinian.
(2) R is (left) primitive and left artinian.
(3) R ∼= End∆ M where ∆ is a division ring and dim∆ M < ∞.

PROOF. (1) =⇒ (2) since simple implies primitive.
(2) =⇒ (3): let ρ : R ↪→ End M be faithful irreducible, then ∆ := R′ =

End R M is a division ring and ρ(R) ⊂ R′′ = End ∆ M is dense by Theorem
2.20. (So far this is exactly the content of Jacobson’s density theorem.) It
remain to prove dim∆ M < ∞ to conclude the equality.

Suppose the contrary and let xi ∈ M, i ∈ N be linearly independent
over ∆. Then Ij := annRxj is a left ideal of R and I(n) :=

⋂n
j=1 Ij is the left

ideal annihilating all xj, 1 ≤ j ≤ n for every n ∈ N. Now ρ(R) ⊂ End ∆ M
is dense implies that for 0 6= y ∈ M there exists a ∈ R with

ax1 = 0, . . . , axn = 0, axn+1 = y 6= 0.

Hence I(1) ⊃ I(2) ⊃ . . . is an infinite strictly decreasing chain which violates
the left artinian assumption.

(3) =⇒ (1): End ∆ M is anti-isomorphic to a full matrix ring Mn(∆)
which is simple—since its ideals are of the form Mn(I) where I is an ideal
of ∆ which must be 0. Also dim∆ Mn(∆) = n2, which shows that any left
ideal chain has length at most n2. In particular R is left artinian (and also
left noetherian). �

3. Semi-simple artinian rings and their modules

To extend the classification to the (not yet defined) “semi-simple” case,
the principal goal is to find the exact conditions on a ring to characterize it
as a finite direct sum of matrix rings.
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Definition 2.23. A left ideal I is nilpotent if Ik = 0 for some k ∈N. I is nil if
every element a ∈ I is nilpotent: ak = 0 for some k = ka ∈N.

It is clear that I is nilpotent⇒ I is nil⇒ I is quasi-regular. In general
the reverse direction fails. However we have

Proposition 2.24. Let R be a left artinian ring. Then J(R) is nilpotent.
In particular J(R) = the largest nilpotent ideal = the largest nil ideal = the

largest quasi-regular ideal.

PROOF. Let J(R) =: J ⊃ J2 ⊃ . . . ⊃ Jk = Jk+1 = . . . =: P. Then J is
nilpotent if and only if P = 0. If P 6= 0 then we consider the set

S := { I : a left ideal in P | PI 6= 0 }.

Then P ∈ S since PP = P2 = J2k = P 6= 0. Let I be a minimal element in S.
Then PI 6= 0 implies that there is a b ∈ I with the left ideal Pb 6= 0. Since
Pb ⊂ I and P(Pb) = P2b = Pb 6= 0, we must have I = Pb. Then

b = zb

for some z ∈ P and hence (1− z)b = 0. But z ∈ P ⊂ J implies that 1− z is
invertible. Hence we get b = 0 which is a contradiction.

The second statement follows from Proposition 2.15 that J(R) is the
largest quasi-regular ideal. �

Inspired by Proposition 2.2 on semi-primitivity, we introduce

Definition 2.25. A ring is semi-simple if it is a subdirect product of simple
rings.

Lemma 2.26. Let M be a left artinian module which is a subdirect product of
irreducible modules Mi. Then M is a finite direct sum of some Mj’s.

PROOF. Let f : M ↪→ ∏ Mi be a subdirect product. For each component
we have fi : M � Mi. Let Ni := ker fi. Then

⋂
Ni = ker f = 0. The

artinian property implies that there is a minimal element among all finite
intersections of Ni’s. Denote this element by N = N1 ∩ . . . ∩ Nm. Then
N ⊂ Ni for all i for otherwise N ∩Ni ⊂ N will be smaller. This then implies
that N ⊂ ⋂Ni = 0 and we get an embeeding

M ↪→
⊕m

i=1
Mi.

Since
⊕m

i=1 Mi is completely reducible, we conclude that M is also com-
pletely reducible and equal to a sum

⊕
j∈J Mj for some J ⊂ { 1, . . . , m }. �
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Proposition 2.27. Let R be a semi-simple ring whose ideals satisfy the DCC con-
dition (i.e. artinian for two-sided ideals), then R =

⊕n
i=1 Ri where the ideals

Ri ⊂ R are themselves simple rings.

PROOF. In order to apply the above lemma, we need to introduce a
mechanism to transform ideals into left modules.

Consider the ring M(R) = R× Rop ↪→ End RZ which acts on R by

(a, b)r := arb.

Then submodules of M(R)R corresponds to ideals of R.
Now R is a semi-simple ring means that R ⊂ ∏i Ri as a subdirect prod-

uct of simple rings Ri. The surjective map R � Ri gives Ri a left M(R)-
module structure which is irreducible since N ⊂ M(R)Ri corresponds to
an ideal of Ri which must then be trivial. Lemma 2.26 then implies that
R =

⊕n
i=1 Ri. Notice that Ri ⊂ R is an ideal (instead of a subring). �

Remark 2.28. Later (in next section) we will define the enveloping algebra
Re = R⊗F Rop for an F-algebra R to replace M(R).

Now we are ready to prove the fundamental structure theorem for semi-
simple left artinian rings:

Theorem 2.29 (Wedderburn–Artin, Jacobson). The following are equivalent:

(1) R is left artinian without non-trivial nilpotent ideals.
(2) R is left artinian and left semi-primitive.
(3) R is left artinian and semi-simple.
(4) RR is completely reducible (necessarily a finite direct sum).
(5) R ∼=

⊕n
i=1 Ri with Ri simple left artinian, i.e. Ri

∼= End ∆i Mi.

PROOF. (1) ⇔ (2): since they are both equivalent to left artinian and
J(R) = 0 by Proposition 2.24.

(2) ⇔ (3): since the primitive/simple factors Ri appeared in the sub-
direct product are also left artinian (as indued from the surjective map
R � Ri), and then primitivity is equivalent to simplicity by Theorem 2.22.

(2)⇔ (4): for⇒, 0 = J(R) =
⋂

max left I implies R ↪→ ∏max left R/I. Since
R is left artinian, Lemma 2.26 then gives R =

⊕n
i=1 R/Ii.

For⇐, let RR =
⊕

Mi with Mi ⊂ R being irreducible R-modules. This
means that Mi = Ii is a minimal left ideal of R. Then

1R = e1 + . . . + ek, ei ∈ Ii.
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In particular a = ae1 + . . . + aek and a 6= 0 implies aej 6= 0 for some j. So R
is semi-primitive.

Moreover, R = I1 + . . .+ Ik and then R =
⊕

Ij over a subset of {1, . . . , k}.
By reordering let this subset be {1, . . . , m}. Then

RR =
⊕m

j=1
Ij ⊃

⊕m−1

j=1
Ij ⊃ . . . ⊃ I1 ⊃ 0

is a composition series for RR. Hence R is left artinian (and noetherian).
Since (1)–(4) are all equivalent, it suffices to show (3)⇒ (5)⇒ (2).
(3)⇒ (5): left artinian implies artinian (DCC on ideals), Proposition 2.27

then gives R =
⊕s

i=1 Ri with the simple ring Ri ⊂ R being an ideal. Now
RiRj ⊂ Ri ∩ Rj = 0 for i 6= j, hence any left ideal of Ri is also a left ideal
of R and this shows that Ri is left artinian. The statement Ri

∼= End δ Mi

follows from the case for simple artinian rings in Theorem 2.22.
(5) ⇒ (2): simple implies primitive so R =

⊕n
i=1 Ri is semi-primitive.

Also Ri is left artinian for 1 ≤ i ≤ n implies R is left artinian. �

Remark 2.30. The above decomposition R =
⊕n

i=1 Ri into simple compo-
nents (ideals) is unique. In fact we only need to require that Ri are inde-
composable ideals to get the uniqueness.

Next we study the structure of modules over semi-simple artinian rings.

Lemma 2.31. Let R be simple (left) artinian, then R has a unique irreducible
module up to isomorphism. A representative is given by a minimal left ideal. In
particular all minimal left ideals are isomorphic.

PROOF. Minimal left ideals 0 6= I ⊂ R exist by the artinian property.
By definition I is also an irreducible R-module. For any other irreducible
R-module M, R is simple implies that annR M = 0. In particular Ix 6= 0 for
some x ∈ M. Schur’s Lemma then implies I •x−→M is an isomorphism. The
argument holds for all choices of M, hence the uniqueness. �

Example 2.32. We recall that a maximal left ideal is a maximal element among all
proper left ideals I ( R while a minimal left ideal, which is the dual notion, is a
minimal element among all non-zero left ideals 0 ( I.

(1) For a division ring ∆, the maximal left is 0, the minimal left is ∆.
(2) One may see Lemma 2.31 directly by noticing that for R = Mn(∆), ∆ a

division ring, 1 = ∑n
i=1 eii with eii being orthogonal idempotents. Hence RR =⊕n

i=1 Reii and left ideals I ⊂ R (submodule of RR) are precisely partial sums: J ⊂
{ 1, . . . , n },

IJ =
⊕

j∈J
Mn(∆)ejj
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as a column spaces over ∆ with indices from J.
Thus IJ is left maximal ⇐⇒ |J| = n − 1 and I is left minimal ⇐⇒ |J| = 1.

Notice that R = IJ ⊕ IJc and R/IJ ∼= IJc . It is unusual that a quotient module
can also be understood as a submodule. Nevertheless this does happen for simple
(left) artinian rings.

We will see below that this holds for all semi-simple artinian rings by showing
that all their modules are completely reducible.

(3) Consider the group algebra R = F[G] for a finite group G over a field F
such that p = char F divides |G|. R is artinian. Let z = ∑g∈G g then hz = z = zh
for all h ∈ G, hence Fz ⊂ R is an ideal. Also z2 = z ∑ g = |G|z = 0 in R, hence Fz
is a nilpotent ideal and R is not semi-simple. We will see later that F[G] is indeed
semi-simple if p 6 | |G|.

Exercise 2.3. Show that the Weyl algebra W = C[x, ∂] of polynomial dif-
ferential operators is simple but not left artinian. Show that there are more
than one, in fact infinitely many, irreducible left W-modules.

Theorem 2.33. If g : R1
∼→ R2 is a ring isomorphism between simple left artinian

rings Ri = End ∆i Mi, then there is an isomorphism s : M1 → M2 such that

g(A) = sAs−1. for A ∈ R1.

Moreover s is semi-linear in the sense that there is an isomorphism on the coeffi-
cients σ : ∆1

∼= ∆2 such that s(ax) = σ(a)s(x) for a ∈ ∆1, x ∈ M1.

PROOF. M1 is an irreducible left R1-module. M2 can also be viewed as
an irreducible left R1-module via the map g : R1 → R2. That is, for A ∈ R1,
y ∈ M2, Ay := g(A)y. Lemma 2.31 then implies that there is an R1-module
isomorphism s : M1 → M2. This means

s(Ax) = g(A)s(x), ∀x ∈ M1,

hence g(A) = sAs−1. Now s induces a group isomorphism g̃ : End M1 →
End M2 via B 7→ g̃(B) := sBs−1 which restricts to g on R1. Also ∆i can be
identified as CEnd Mi(Ri) with left scalar multiplications, hence g̃ restricts to
σ : ∆1

∼= ∆2. The above formula for A = a ∈ ∆1 gives the result. �

Corollary 2.34. Denote by G the group of semi-linear transformations on a finite
dimensional vector space M over ∆, then there is a short exact sequence

1→ ∆× → G I→Aut(End ∆ M)→ 1,

where I(s)(A) := sAs−1.
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PROOF. If s ∈ ker I then sA = As for all A ∈ End ∆ M. But then s is an
invertible scalar multiplication as expected. �

Theorem 2.35. Let R be a left artinian ring.

(1) If R is semi-simple then any left/right R-module is completely reducible.
(2) There is an one to one correspondence between the isomorphism classes of

irreducible left/right R-modules and the simple components of R/J(R)

PROOF. First we assume that R is semi-simple. By Theorem 2.29 R is
a finite direct sum of matrix rings over division rings. Hence the left case
implies the right case by taking Rop.

For (1), Theorem 2.29 implies that R = ∑i∈Λ Ii where each Ii is a min-
imal left ideal (contained in some simple component of R). Let M be a
R-module and 0 6= x ∈ M. Then x ∈ ∑ Iix with Iix = 0 or Iix ∼= Ii by
Schur’s Lemma. Hence M = ∑x∈M Rx = ∑i∈Λ, x∈M Iix as a sum of irre-
ducible modules. Hence M is completely reducible.

(2) follows from Lemma 2.31 since Ii is a minimal left ideal in a simple
component Ri of R.

If R is only left artinian, then R̄ := R/J(R) is left semi-primitive and
left artinian since J(R̄) =

⋂
max left Ī = J(R) = 0. Then Theorem 2.29 shows

that R̄ is also semi-simple. Now (2) follows from the semi-simple case since
any irreducible R-module M satisfies J(R)M = 0 and hence M is also an
irreducible R̄-module. �

Of course (1) fails if R is not semi-simple by Theorem 2.29. Hence in
general there are interesting non-completely reducible modules for left ar-
tinian rings which is not semi-simple.

4. Finite dimensional central simple algebras

In order to classify simple artinian rings R = Mn(∆), it is equivalent to
classify division rings ∆. Notice that the center F = C(R) of a simple ring
is necessarily a field: for c ∈ F \ {0}, Rc = cR ⊂ R is an ideal hence Rc = R
and bc = cb = 1 for some b ∈ R. Thus R and ∆ are vector spaces over F.

In general a ring R is called an algebra over a commutative ring S (an
S-algebra) if S ⊂ C(A). R is central over S if S = C(A). Thus every simple
ring R is a central simple algebra (CSA) over its center field F.
Definition 2.36. Let R be a CSA/F. R is centrally finite if dimF R < ∞. In this
case R is called a finite dimensional CSA. Otherwise it is centrally infinite.
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Centrally finite implies artinian trivially, but not the converse: if R is
artinian, R ∼= Mn(∆) for a division F-algebra ∆. Hence R is centrally finite
⇐⇒ dimF ∆ < ∞.

Thus it is a good idea to start with some classical results on division
F-algebras A with n = dimF A < ∞. For a ∈ A, 1, a, a2, . . . , an are linearly
dependent over F, hence there is a polynomial relation f (a) = 0 for some
f (x) ∈ F[x]. The monic minimal polynomial fa(x) ∈ F[x] exists since F[x]
is a p.i.d., also fa(x) is irreducible over F since A is a division ring.
Example 2.37. (1) If F = F̄ (algebraically closed, e.g. Q̄, C), then fa(x) is linear
which implies a ∈ F. Hence A = F.

(2) Next we consider the case F = R:

Theorem 2.38 (Frobenius). A finite dimensional division R-algebra A is isomorphic to
R, C or H.

PROOF. If F = R, then R[
√
−1] is algebraically closed implies fa(x) = x − a

(a ∈ R) or fa(x) = x2 + px + q ∈ R[x] with p2 − 4q < 0 (a 6∈ R).
In the second case we set b = a + p/2 6∈ R and get

b2 = r ∈ R<0, where r = p2/4− q.

Inspired by Hamilton’s quaternion H = R⊕ (Ri⊕Rj⊕Rk), we define

A′ := { b ∈ A | b2 ∈ R≤0 }.

Claim 2.39. A′ ⊂ A is vector subspace over R. Hence A = R⊕ A′.

It is equivalent to showing that if a, b ∈ A′ are linearly independent then a +
b ∈ A′. Let a2 = u ∈ R, b2 = v ∈ R, then ∃p, q, r, s ∈ R such that

(a + b)2 = u + (ab + ba) + v = p(a + b) + q,

(a− b)2 = u− (ab + ba) + v = r(a− b) + s,

which leads to 2(u + v) = (p + r)a + (p− r)b + (q + s).
But any R-relation a = tb + t′ gives a2 = t2b2 + 2tt′b + t′2. b 6∈ R implies t = 0

(a = t′) or t′ = 0 (a = tb). In both cases we get contradictions. Hence we must
have p = r = 0 and then (a + b)2 = q ∈ R. Again a + b 6∈ R implies q < 0. Hence
a + b ∈ A′ as claimed.

Now A = R⊕A′ and we have a positive definite quadratic form on A′ defined
by Q(a) = −a2 for a ∈ A′. The associated symmetric bilinear form

B(a, b) := Q(a, b)−Q(a)−Q(b) = −(ab + ba)

is then an inner product on A′.
If A ) R, pick i ∈ A′ with i2 = −1. Then A ⊃ R⊕Ri = C.
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If A ) C, pick j ∈ (Ri)⊥ in A′ with j2 = −1. Then

0 = B(j, i) = −(ji + ij), i.e. ij = −ji.

Let k := ij, then k2 = ijij = −i2 j2 = −1 ⇒ k ∈ A′. Also k ⊥ i, j since B(k, i) =

−(iji + iij) = 0 and (B, j) = 0. So A ⊃ R⊕Ri⊕Rj⊕Rk = H.
If A ) H, then there exists ` ∈ A′, `2 = −1 and ` ⊥ i, j, k. However, `ij =

−i`j = ij`⇒ `k = k`, which contradicts to `k = −k`, so A = H. �

(3) For finite division rings the situation is even simpler:

Theorem 2.40 (Wedderburn). Any finite division ring A is a finite field.

PROOF. Let F = C(A) be a finite field with |F| = q and let n = dimF A. If
n = 1 we are done. If n > 1 we will derive a contradiction.

Consider the conjugation group action of G := A× on A×. The class equa-
tion reads as qn − 1 = q− 1 + ∑i[A× : C(xi)] where xi are representatives of the
conjugacy classes not from F.

Notice that Ai := { g ∈ A | gxi = xig } is a division subring ( A with
A×i = C(xi). Let ni := dimF Ai < n. Since A is also a vector space over Ai,
n = [A : Ai][Ai : F] implies ni | n. Hence we have

qn − 1 = q− 1 + ∑i(q
n − 1)/(qni − 1)

with each summand being in Z[q]. Moreover, xm − 1 = ∏d|m `d(x) where `d(x) ∈
Z[x] is the irreducible cyclotomic polynomial for xd = 1. Hence `n(q) divides the
sum as well as qn − 1, and then `n(q) | (q− 1).

However, since `n(q) = ∏w(q−w) where w’s are primitive n-th roots of 1, we
have |q− w| > |q− 1| for all w. This leads to a contradiction. �

Historically the first centrally infinite division ring was discovered by
Hilbert it in his study of independence of geometry axioms!

Exercise 2.4. Let F be a field and σ ∈ Aut F, and ∆ = F((x, σ)) be the ring
of σ-twisted formal Laurent series ∑∞

i=n aixi with n ∈ Z and ai ∈ F, with
the non-commutative product being defined by xa = σ(a)x.

(1) Show that ∆ is a division ring. (2) Moreover, let k = Fσ be the
fixed field of σ. Then C(∆) = k if σ has infinite order. In this case ∆ is
centrally infinite. Give an explicit example of such a (F, σ). (3) Show that
C(∆) = k((xr)) when σ has order r < ∞ and in this case ∆ is centrally finite.

From now on we focus on the basic structural theorems on finite di-
mensional CSA/F. It is based on tensor product of F-algebras.
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Let A, B be F-algebras with vector space base xi and yj respectively.
Then the tensor product over F is simply

D := A⊗F B = (
⊕

Fxi)⊗F (
⊕

Fyj) ∼=
⊕

F xi ⊗ yj,

with the product structure between A ⊂ D and B ⊂ D, under the standard
embedding a 7→ a⊗ 1 and b 7→ 1⊗ b, defined by

ab = (a⊗ 1) · (1⊗ b) = a⊗ b = (1⊗ b) · (a⊗ 1) = ba.

So D = AB = BA. The following simple characterization is useful:

Proposition 2.41. Let A, B ⊂ D be sub F-algebras. Then D ∼= A⊗F B if

(1) ab = ba for all a ∈ A, b ∈ B.
(2) There is a F-base xi of A such that any z ∈ D can be written uniquely as

z = ∑ bixi with bi ∈ B.

If dimF D < ∞, then (2) is satisfied by D = AB and [D : F] = [A : F][B : F].

PROOF. Define the F-bilinear map A × B → D by (a, b) 7→ ab. This
then induces A⊗F B→ D, which is a ring homomorphism by (1). The map
is indeed a bijection by (2). �

Corollary 2.42. (1) For any F-algebra B, Mn(F)⊗F B ∼= Mn(B).
(2) Mm(F)⊗F Mn(F) ∼= Mmn(F).

PROOF. For (1), take D = Mn(B) with A = Mn(F) ⊂ D and B ↪→ D
under the embedding b 7→ diag(b, . . . , b) ∈ D. Then both conditions in
Proposition 2.41 are satisfied. Hence A⊗F B = D.

For (2), simply apply (1) to B = Mn(F) and then use the isomorphism
of block decompositions of matrices Mm(Mn(F)) ∼= Mmn(F). �

Definition 2.43. The algebra Ae := A⊗F Aop is called the enveloping algebra
of A. If A ↪→ B, then B = Ae B via (∑ ai ⊗ bi)y = ∑ aiybi.

For B = A, this shows that submodules of Ae A are precisely ideals of
A. Hence A is simple⇐⇒ Ae A is irreducible. Also End Ae A = C(A).

For the last statement, let f ∈ End Ae A, then

f (acb) = f ((a⊗ b)c) = (a⊗ b) f (c) = a f (c)b.

Hence f (a) = a f (1) = f (1)a and we may identify f with f (1) ∈ C(A).
The following two theorems are fundamental:
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Theorem 2.44. Let A be a finite dimensional CSA/F with n = dimF A. Then
Ae := A⊗F Aop ∼= Mn(F).

PROOF. Let R = Ae, then R A is irreducible and R′ := End R A = C(A) =

F. Since n = dimF A < ∞, the density theorem (Theorem 2.20) for F-
algebras implies that for all a′′ ∈ R′′ := End R′A = EndF A, there exists
a ∈ R = Ae with a 7→ a′′. That is, Ae � EndF A ∼= Mn(F). Since both Ae

and Mn(F) have the same dimension n2, the map is an isomorphism. �

Theorem 2.45. Let A be a f.d. CSA/F, A ⊂ B as a F-subalgebra. Then

(1) B ∼= A⊗F C with C = CB(A).
(2) There is a bijection between ideals of C and ideals of B via

I ⊂ C 7→ AI ⊂ B.

(3) C(C) = C(B).

PROOF. (1): Theorem 2.44⇒ Ae is simple⇒ Ae A is irreducible⇒

B =
⊕

Aci

as Ae-modules (by Theorem 2.35). Since (a ⊗ 1)1A = a = (1⊗ a)1A and
Aci
∼= A as Ae-modules, by choosing ci such that ci 7→ 1A we then have

aci = (a⊗ 1)ci = (1⊗ a)ci = cia. Moreover aci = 0⇒ a = 0.
If c ∈ C := CB(A), by writing c = ∑ aici with ai ∈ A, the condition

ca = ac for all a ∈ A is equivalent to aai = aia for all i, that is ai ∈ C(A) = F.
This shows that C =

⊕
Fci. Proposition 2.41⇒ B ∼= A⊗F C = AC.

(2) I ⊂ C ⇒ AI ⊂ AC = B. We claim that AI ∩ C = I: if A has a F-base
1 = xi, . . . , xn, then B =

⊕
xiC as a vector space over F. If d = ∑ xidi ∈

AI ∩ C, di ∈ I, then by (1) the expression is unique even allowing di ∈ C.
Since d = x1d is such an expression, we thus have d = d1 ∈ I.

To show that every I′ ideal in B is of the form AI, we simple take I :=
I′ ∩ C. Since I′ = ∑ Adi with di ∈ C ∩ I′ = I, we get I′ = AI.

(3) C(B) ⊂ CB(A) = C ⇒ C(B) ⊂ C(C). Also c ∈ C(C) commutes with
all elements in B = AC. Hence C(C) ⊂ C(B) as well. �

The condition on A is necessary: for B = A⊗F C, CB(A) contains C and
C(A). Hence C(A) must be the ground field to conclude CB(A) = C.

Corollary 2.46. Let A be a f.d. CSA/F and C be an arbitrary F-algebra. Then
B = A⊗F C is central/simple if C is central/simple.

Hence if A1, . . . , Ar are f.d. CSA/F then A1⊗F . . .⊗F Ar is also a f.d. CSA/F.
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The second statement in Corollary 2.46 allows us to introduce

Definition 2.47 (Brauer group Br(F)). Let A, B be f.d. CSA/F. We say that
A ∼ B if there are m, n ∈N such that Mm(A) ∼= Mn(B). Since A ∼= Mp(∆),
B ∼= Mq(∆′), this is equivalent to Mmp(∆) ∼= Mnq(∆′), hence equivalent to
∆ ∼= ∆′ since divisions are local rings (as shown in last chapter).

It is clear that ∼ is an equivalence relation, namely A ∼ B ⇒ B ∼ A
and A ∼ B ∼ C ⇒ A ∼ C. Hence we may define the abelian group

Br(F) := ({ isomorphism classes of f.d. CSF/F },⊗F)/ ∼,

with 1 = [F] = [Mn(F)] for all n ∈N and [A]−1 = [Aop] (by Theorem 2.44).

Hence Example 2.37 implies Br(F̄) = {1} = Br(Fq) and Br(R) =

〈[H]〉 ∼= {±1}. Notice that C is not R-central simple since C(C) = C.

Remark 2.48. Later we will show that for any p-adic number field F = Qp,
Br(Qp)

∼−→(Q/Z,+). This is part of the “local class field theory”.
For “global class field theory”, there is a Hasse exact sequence

0→ Br(Q)→
⊕

ν
Br(Qν)→ Q/Z→ 0,

where ν runs through all finite places ν = p (primes) as well as the infinite
place ν = ∞ (Q∞ := R). Here [A] 7→ [Aν] := [A⊗Q Qν] is non-trivial only
for a finite set of places. Also Br(R) is identified as 1

2 Z/Z.
Similar statements hold for a finite extension field K/Q. After we de-

fined the Galois cohomology, we will interprete Hilbert’s theorem 90 in
terms of H1 and show that the Brauer group is exactly H2.

The first statement in Corollary 2.46 leads to

Definition 2.49. Let A be a f.d. CSA/F and E/F an extension field. Then
AE := A⊗F E is f.d. CSA/E. E is called a splitting field of A If AE ∼= Mn(E).

Example 2.50. Consider the standard embedding H ↪→ M2(C) of rings

a + bi + cj + dk = z + wj 7→
(

a + bi c + di
−c + di a− bi

)
=

(
z w
−w̄ z̄

)
.

It follows that H⊗R C ∼= M2(C).Notice that C is a maximal subfield of H.

Proposition 2.51. Let A, B be CSA/F and E an extension field of F. Then

(1) If E splits A and B then it splits Aop and A⊗F B.
(2) If A = Mn(B) then E splits A if and only if E splits B.
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PROOF. (1) follows from the definitions easily. For (2) we only need to
prove the direction⇒: we have

AE ∼= Mn(BE) ∼= Mn(Ms(∆)) ∼= Mns(∆)

where ∆ is a central division algebra over E.
If E splits A then AE ∼= Mm(E). Hence Mns(∆) ∼= Mm(E) which implies

that m = ns and ∆ = E since ∆ and E are local rings. �

In particular, E splits A = Mn(∆) if and only if E splits the division F-
algebra ∆. From this we see that splitting fields always exist. Indeed E = F̄
is a splitting field since the only division algebra over F̄ is F̄ itself. Hence

AF̄ = Mn(∆F̄)
∼= Mn(Ms(F̄)) ∼= Mns(F̄).

However F̄ is generally an infinite extension. Much better results hold:

Theorem 2.52. Let ∆ be a finite dimensional division F-algebra. A finite dimen-
sional extension field E of F splits ∆ if and only if E is a subfield of A := Mr(∆)
for some r such that CA(E) = E.

In particular, taking r = 1 shows that any maximal subfield E of ∆ is a split-
ting field for ∆. (There could be infinitely many of them, e.g. C ↪→H.)

We only give the proof that a maximal subfield E of ∆ splits ∆. The
general case is similar and is left to the readers.

First we noticed that ∆ = End ∆op ∆ consists of F-linear maps commute
with ∆op. Consider R := ∆op

E = ∆op ⊗F E which acts on ∆ as a faithful
irreducible R-module. R′ := End R∆ ⊂ EndF ∆ consists of F-linear maps
which commute with R. Thus R′ = C∆(E) = E since E is a maximal sub-
field. This implies R′′ := End R′∆ = EndE ∆ ∼= Mn(E) where n = dimE ∆.
The density theorem for F-algebras then implies that

∆op ⊗F E = R ∼= R′′ = Mn(E).

Remark 2.53. In particular, [∆ : F][E : F] = n2[E : F] ⇒ [∆ : F] = n2. Since
n = [∆ : E], then [E : F] = [∆ : F]/[∆ : E] = n2/n = n as well. Thus the
phenomenon occurs in the special case ∆ = H is really a general one.

There are other interesting basic results on CSA. All of them are derived
from consideration of Ae-modules and the density theorems as above. We
mention only two of them and leave the proofs as exercises:

Exercise 2.5. (1) (Skolem–Noether Theorem) show that any automorphism
of a f.d. CSA is inner. (2) Let A ⊂ B be a semi-simple sub-algebra of a
f.d. CSA B, then CB(CB(A)) = A.


