Lie groups and Lie algebras

A course by prof. Chin-Lung Wang

$$
2022 \text { Fall }
$$

1 Introduction, 9/5

Sample Problems:

1) Given two matrices $A, B \in \mathrm{M}_{n \times n}(\mathbb{C}), \operatorname{tr}[A, B]=0$, where $[A, B]=A B-B A$ is the Lie bracket. Conversely, if $\operatorname{tr} C=0$, can we find A, B such that $C=[A, B]$?
2) We know that $e^{A} e^{B}=e^{A+B}$ when $[A, B]=0$, where

$$
e^{A}:=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

If $[A, B] \neq 0$, what should be the RHS? (Baker-Campbell-Hausdorff formula)
Dynkin's formula: for $X_{i} \in \mathrm{M}_{n \times n}(\mathbb{C})$, define

$$
\left[x_{n}, \ldots, x_{1}\right]=\left[x_{n},\left[x_{n-1}, \cdots, x_{2}, x_{1}\right]\right]
$$

recursively. More generally, define

$$
\left[x_{n}^{\left(i_{n}\right)}, \ldots, x_{1}^{\left(i_{1}\right)}\right]=[\underbrace{x_{n}, \ldots, x_{n}}_{i_{n}}, \ldots, \underbrace{x_{1}, \ldots, x_{1}}_{i_{1}}] .
$$

Then we have $e^{X} e^{Y}=e^{Z}$, where

$$
Z=\sum_{n, I, J} \frac{(-1)^{n-1}}{n} \frac{1}{i_{1}+j_{1}+\cdots+i_{n}+j_{n}} \frac{\left[x_{1}^{\left(i_{1}\right)}, y_{1}^{\left(j_{1}\right)}, \cdots, x_{n}^{\left(i_{n}\right)}, y_{n}^{\left(j_{n}\right)}\right]}{i_{1}!j_{1}!\cdots i_{n}!j_{n}!}
$$

3) Consider the PDE: $\Delta u+e^{u}=0$ on $U=B_{0}(1) \subseteq \mathbb{R}^{2}$. Liouville: The solution can be explicitly written down! (integrable system).

More generally, consider $u_{1}, \ldots, u_{n}:=U \rightarrow \mathbb{R}$ such that

$$
\triangle u_{i}+\sum_{j=1}^{n} a_{i j} e^{u_{j}}=0
$$

Can the solution be written down explicitly (locally)? Toda: Yes, if $A=\left(a_{i j}\right)$ is the Cartan matrix of a simple Lie algebra.

Let V be a vector space over a field F. For $s, t \in \operatorname{End}(V)$, we define

$$
[s, t]=s t-t s
$$

We have the Jacobi identity:

$$
[s,[t, u]]+[t,[u, s]]+[u,[s, t]]=0
$$

Definition 1.1. A Lie algebra L is a vector space over F with a bilinear map

$$
[-,-]: L \times L \rightarrow L
$$

such that $[x, x]=0$ for each $x \in L$ and $[-,-]$ satisfies the Jacobi identity.

A Lie algebra homomorphism $\varphi: L \rightarrow L^{\prime}$ is a linear map over F satisfies

$$
\varphi([x, y])=[\varphi(x), \varphi(y)] .
$$

A subspace $K \subseteq L$ is a subalgebra of the Lie algebra L if for each $x, y \in K,[x, y] \in K$. A subspace $K \subseteq L$ is an ideal of L, denoted by $K \unlhd L$, if $[x, y] \in K$ for each $x \in K$ and $y \in L$.

If K is an ideal of L, we can define the quotient Lie algebra L / K with the natural Lie bracket $[\bar{x}, \bar{y}]=\overline{[x, y]}$. For a Lie algebra homomorphism $\varphi: L \rightarrow L^{\prime}, \operatorname{ker} \varphi$ is an ideal, and there is a Lie algebra isomorphism $L / \operatorname{ker} \varphi \cong \operatorname{Im} \varphi \subseteq L^{\prime}$.

Classical Lie algebra:
For a vector space V, we define $\mathfrak{g l}(V)=(\operatorname{End}(V),[-,-])$, where $[x, y]=x y-y x$. If $V=F^{n}$, we write $\mathfrak{g l}(V)=\mathfrak{g l}(n, F)=\mathrm{M}_{n \times n}(F)$.

There are 4 special types of classical subalgebra of $\mathfrak{g l}(V)$:

- A_{ℓ} : special linear Lie algebra. $\operatorname{dim} V=\ell+1, A_{\ell}=\mathfrak{s l}(V)=\{x \in \mathfrak{g l l}(V) \mid \operatorname{tr} x=0\}$.
- B_{ℓ} : orthogonal Lie algebra. $\operatorname{dim} V=2 \ell+1, B_{\ell}=\left\{x \in \mathfrak{g l}(V) \mid x^{\top} A+A x=0\right\}$, where A is the bilinear form

$$
\left(\begin{array}{lll}
1 & & \\
& & I_{\ell} \\
& I_{\ell} &
\end{array}\right)
$$

- C_{ℓ} : symplectic Lie algebra. $\operatorname{dim} V=2 \ell, C_{\ell}=\left\{x \in \mathfrak{g l}(V) \mid x^{\top} A+A x=0\right\}$, where A is the bilinear form

$$
\left(\begin{array}{cc}
& I_{\ell} \\
-I_{\ell} &
\end{array}\right)
$$

- D_{ℓ} : orthogonal Lie algebra. $\operatorname{dim} V=2 \ell, D_{\ell}=\left\{x \in \mathfrak{g l}(V) \mid x^{\top} A+A x=0\right\}$, where A is the bilinear form

$$
\left(\begin{array}{ll}
& I_{\ell} \\
I_{\ell} &
\end{array}\right)
$$

Note that for x, y satisfying $x^{\top} A+A x=y^{\top} A+A y=0$, we have

$$
[x, y]^{\top} A+A[x, y]=0 .
$$

Remark 1.2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a orthogonal transformation. Then $\langle T a, T b\rangle=\langle a, b\rangle$. An infinitesimal orthogonal transformation then satisfies

$$
\langle x a, b\rangle+\langle a, x b\rangle=0,
$$

which is equivalent to $x^{\top}+x=0$

A representation, or a module, of a Lie algebra is a Lie homomorphism

$$
\varphi: L \longrightarrow \mathfrak{g l}(V) .
$$

Can you find one? Yes, the adjoint representation

$$
\begin{aligned}
& L \longrightarrow \mathrm{ad} \\
& x \longmapsto \operatorname{al}(L) \\
& x \longmapsto \operatorname{ad} x=[y \mapsto[x, y]] .
\end{aligned}
$$

Definition 1.3. The center of a Lie algebra L is

$$
Z(L):=\operatorname{kerad}=\{y \in L \mid[x, y]=0, \forall x \in L\} .
$$

There is an embedding $L / Z(L) \hookrightarrow \mathfrak{g l}(L)$.

Definition 1.4. For a Lie algebra L, define $L^{(i)}=\left[L^{(i-1)}, L^{(i-1)}\right]$ recursively, where $L^{0}=L$. The sequence

$$
L=L^{(0)} \supseteq L^{(1)} \supseteq L^{(2)} \supseteq \cdots
$$

is called the derived series of L.
We say L is commutative (or abelian) (resp. solvable) if $L^{(1)}=0$ (resp. $L^{(n)}=0$ for some positive integer n).

Note that $L^{(1)}$ is an ideal of L and $L / L^{(1)}$ is commutative.

Definition 1.5. For a Lie algebra L, define $L^{i}=\left[L, L^{i-1}\right]$ recursively, where $L^{1}=L$.
We say L is nilpotent if $L^{n}=0$ for some positive integer n.

2 Three giants, 9/7

From now on, we will assume that the Lie algebras are finite dimensional.

Let

$$
\begin{aligned}
\mathfrak{t}(n, F) & =\{x \in \mathfrak{g l}(n) \mid x \text { is upper triangular }\} \\
\mathfrak{n}(n, F) & =\{x \in \mathfrak{g l}(n) \mid x \text { is strictly upper triangular }\}, \\
\mathfrak{d}(n, F) & =\{x \in \mathfrak{g l}(n) \mid x \text { is diagonal }\}
\end{aligned}
$$

Then $\mathfrak{t}(n, F)$ is solvable, $\mathfrak{n}(n, F)$ is nilpotent and $\mathfrak{d}(n, F)$ is commutative.
We say a Lie algebra L is ad-nilpotent if ad x is nilpotent for each L.

Theorem 2.1 (Engel). An ad-nilpotent algebra is nilpotent.

Theorem 2.2 (M). Let $L \subseteq \mathfrak{g l}(V)$ be a Lie subalgebra. If a is nilpotent for each $a \in L$, then there exists a (simultaneous) 0 -eigenvector of L.

Proof. Induction on $\operatorname{dim} L$ for all V. The base case $\operatorname{dim} L=1$ is trivial.
If $\operatorname{dim} L>1$, take any $K \varsubsetneqq L$ subalgebra. Consider the adjoint representation $\operatorname{ad}: K \rightarrow \mathfrak{g l}(L)$. Then ad x is nilpotent for all $x \in K$ (also on $\mathfrak{g l}(L / K))$. Indeed,

$$
x^{n}=0 \quad \Longrightarrow \quad(\mathrm{ad} x)^{2 n-1}=\left(x_{L}-x_{R}\right)^{2 n-1}=0 .
$$

The induction hypothesis tells us that there exists a zero eigenvector $\bar{x}=x+K$ of " K "
(under ad), i.e., $[y, x]=(\operatorname{ad} y) x \in K$ for each $y \in K$, or equivalently, K is a proper ideal of $N_{L}(K)$.

Pick K to be a maximal proper Lie subalgebra of L, we see that $N_{L}(K)=L$, i.e., $K \unlhd L$. Note that $\operatorname{dim}(L / K)=1$ (otherwise K is not maximal). Say $L=K+F z$.

Let $W=\{v \in V \mid K v=0\}$, which is nonzero by induction. Then $L W \subseteq W$:

$$
y(x w)=x(y w)-[x, y] w=0
$$

for $x \in L, y \in K$ and $w \in W$. Hence, z is a nilpotent element that acts on W. So there exists a nonzero element $v \in W$ such that $z v=0$. Thus, $L v=0$.

Proof of (2.1). Let L be an ad-nilpotent Lie algebra. Apply (2.2) to the embedding $\operatorname{ad} L \subseteq \mathfrak{g l}(L)$. There exists a nonzero element $x \in L$ such that $[L, x]=0$. Hence $Z(L) \neq 0$.

The $\operatorname{dim}(L / Z(L))<\operatorname{dim} L$ and is also adjoint nilpotent. By induction on dimension, it remains to show that $L / Z(L)$ is nilpotent implies L is nilpotent, which follows from the observation:

$$
L^{(n)} \subseteq Z(L) \quad \Longrightarrow \quad L^{(n+1)}=0
$$

Corollary 2.3. Under the setting in (2.2), there exists a flag

$$
V=V_{0} \supset V_{1} \supset \cdots \supset V_{n}=0
$$

such that $L V_{i} \subseteq V_{i+1}$, i.e., there exists a basis of V such that $L \subseteq \mathfrak{n}(n, F)$.

Proof. Induction on dimension. Pick $v \in V$ such that $L v=0$ then consider the action of L on $W=V / F v$.

From now on, we assume that F is algebraically closed and $\operatorname{char} F=0$.

Theorem 2.4 (Lie). If $L \subseteq \mathfrak{g l}(V)$ is a solvable Lie subalgebra, then there exists a common eigenvector of L.

Proof. This is clearly true when $\operatorname{dim} L=0$ or 1 . Induction on $\operatorname{dim} L$.
Consider the quotient

$$
L \longrightarrow L /[L, L] .
$$

Since $L /[L, L]$ is abelian, any subspace of it is an ideal. Take $\bar{K} \unlhd L /[L, L]$ with codimension 1 (note that $L /[L, L]$ is nontrivial since L is solvable) and consider its preimage $K \unlhd L$. Since K is also solvable, the subspace

$$
W=\{w \in V \mid x w=\lambda(x) w, \forall x \in K\} \subseteq V
$$

is nonzero. Let us fix this λ as a function on K.

Claim (Dynkin). The subspace W is fixed by L.

Proof of Claim. Let $x \in L$ and $w \in W$. Then for each $y \in K$,

$$
y(x w)=x(y w)-[x, y] w=\lambda(y) x w-\lambda([x, y]) w .
$$

So our goal $x w \in W$ is equivalent to $\lambda([x, y])=0$.
Consider

$$
W_{i}=\left\langle w, x w, x^{2} w, \ldots, x^{i-1} w\right\rangle \subseteq V
$$

Let r be the smallest integer such that $W_{r}=W_{r+1}$. Then $W_{r+j}=W_{r}$ for all positive integer j. We claim that $y x^{j} w \equiv \lambda(y) x^{j} w\left(\bmod W_{j}\right)$:

Induction on j. The base case $j=0$ is true. For $j>0$,

$$
\begin{aligned}
y x^{j} w & =x y x^{j-1} w-[x, y] x^{j-1} w \\
& =x\left(\lambda(y) x^{j-1} w+w^{\prime}\right)-\lambda([x, y]) x^{j-1} w
\end{aligned}
$$

where $w^{\prime} \in W_{j-1}$.
Hence, $y \in K$ acts on W_{r} has

$$
\operatorname{tr}_{W_{r}} y=r \lambda(y)
$$

This shows that for $[x, y] \in K$,

$$
r \lambda([x, y])=\operatorname{tr}_{W_{r}}[x, y]=0,
$$

which implies $\lambda([x, y])=0$ if char $F=0$.

Say $L=K+F z$, then we can find a nonzero element $v_{0} \in W$ such that $z v_{0}=\lambda v_{0}$, this v_{0} is expected!

Corollary 2.5. Under the setting in (2.4), L stabilizes some flag in V, i.e., there exists a basis of V such that $L \subseteq \mathfrak{t}(n, F)$.

Proof. Using the theorem and induction on $\operatorname{dim} V$.

Corollary 2.6. If L is a solvable Lie algebra, then there exists a chain of ideals

$$
0=L_{0} \subset L_{1} \subset \cdots \subset L_{n}=L
$$

such that $\operatorname{dim} L_{i}=i$.

Proof. Consider

$$
\phi=\operatorname{ad}: L \rightarrow \operatorname{gl}(L)
$$

Since $\phi(L)$ is solvable, a flag is simply a chain of ideals.

Corollary 2.7. If L is solvable, then $\operatorname{ad}_{L} x$ is nilpotent for $x \in[L, L]$. In particular, $[L, L]$ is nilpotent (by (2.1)).

Proof. Since ad $L \subseteq \mathfrak{t}(n, F)$, we have $\operatorname{ad}[L, L]=[\operatorname{ad} L, \operatorname{ad} L] \subseteq \mathfrak{n}(n, F)$.

Theorem 2.8 (Cartan's criterion). Suppose $L \subseteq \mathfrak{g l}(V)$ is a Lie subalgebra such that

$$
\operatorname{tr}(x y)=0, \quad \forall x \in[L, L], y \in L
$$

Then L is solvable.

Proof. It is enough to prove $\operatorname{ad}_{[L, L]} x$ is nilpotent for all $x \in[L, L]$. (This implies that $[L, L]$ is nilpotent by (2.1), which gives us the solvability of L.)

Let

$$
M=\{z \in \mathfrak{g l l}(V) \mid[z, L] \subseteq[L, L]\} \supseteq L
$$

Then for all $z \in M, x \in[L, L]$, we have $\operatorname{tr}(x z)=0$: assume that $x=[u, v]$, then

$$
\operatorname{tr}(x z)=\operatorname{tr}(u v z-v u z)=\operatorname{tr}(u v z-u z v)=\operatorname{tr}(u[v, z])=0
$$

by the assumption.
Now, let $x=x_{s}+x_{n}$ be the Jordan decomposition, where x_{s} is the semi-simple part and x_{n} is the nilpotent part. Recall that x_{s}, x_{n} are uniquely determined and there exists $p(T), q[T] \in F[T]$ with $p(0)=q(0)=0$ such that $x_{s}=p(x), x_{n}=q(x)$.

Write

$$
\left[x_{s}\right]_{\mathcal{B}}=\left(\begin{array}{lll}
a_{1} & & \\
& \ddots & \\
& & a_{m}
\end{array}\right)
$$

with $a_{i} \in F \supseteq \mathbb{Q}$. Let $E=\sum \mathbb{Q} a_{i} \subseteq F$. We want $E=0$. In fact, we will show $\operatorname{Hom}(E, \mathbb{Q})=0$.

Let $f \in \operatorname{Hom}(E, \mathbb{Q})$ and consider

$$
y=\left(\begin{array}{ccc}
f\left(a_{1}\right) & & \\
& \ddots & \\
& & f\left(a_{m}\right)
\end{array}\right) \in \mathfrak{g l}(V)
$$

It is easy to get

$$
\begin{equation*}
\operatorname{ad} x_{s}\left(e_{i j}\right)=\left(a_{i}-a_{j}\right) \cdot e_{i j} \quad \text { and } \quad \operatorname{ad} y\left(e_{i j}\right)=\left(f\left(a_{i}\right)-f\left(a_{j}\right)\right) \cdot e_{i j} . \tag{ケ}
\end{equation*}
$$

Find $r(T) \in F[T]$ such that

$$
r\left(a_{i}-a_{j}\right)=f\left(a_{i}\right)-f\left(a_{j}\right), \quad \forall i, j
$$

We see from ((Υ) that

$$
\operatorname{ad} y=r(\operatorname{ad} s)=(r \circ p)(\operatorname{ad} x) .
$$

Since $(\operatorname{ad} x) L \subseteq[L, L]$ and $(r \circ p)(0)=0$, we must have $(\operatorname{ad} y) L \subseteq[L, L]$, i.e., $y \in M$. Then

$$
0=\operatorname{tr}(x y)=\sum a_{i} f\left(a_{i}\right) \quad \stackrel{f}{\Longrightarrow} \quad \sum f\left(a_{i}\right)^{2}=0 \quad \stackrel{f\left(a_{i}\right) \in \mathbb{Q}}{\Longrightarrow} f \equiv 0 .
$$

3 Simple Lie algebra and Weyl's theorem, 9/12

Definition 3.1. A Lie algebra L is simple if the only Lie ideals of L are 0 and L also L is not abelian.

A Lie algebra L is semi-simple if $\operatorname{Rad} L$, the maximal solvable ideal in L, is 0 , i.e., L has no (nonzero) abelian ideal. (If $I \unlhd L$ is solvable with $I^{(n-1)} \neq 0$ and $I^{(n)}=0$, then $I^{(n-1)}$ is abelian.)

Definition 3.2. The Killing form of L is

$$
\begin{aligned}
\kappa=\kappa_{L}: & L \times L \\
& (x, y) \longmapsto \operatorname{tr}(\operatorname{ad} x \operatorname{ad} y) .
\end{aligned}
$$

This is a symmetric bilinear form on L.

- κ is "associative" (anti-symmetry), i.e.,

$$
\begin{array}{cc}
\kappa([x, y], z)= & \kappa(x,[y, z]) \\
\text { " } \\
-\kappa(\operatorname{ad} y(x), z) & \kappa(x, \operatorname{ad} y(z)) .
\end{array}
$$

The "null space" $\operatorname{rad} \kappa=\{x \in L \mid \kappa(x, y)=0, \forall y \in L\}$ is an ideal of L. Indeed,

$$
\kappa([x, z], y)=\kappa(x,[z, y])=0
$$

for every $x \in \operatorname{rad} \kappa$ and $y, z \in L$.
Fact. If I is an Lie ideal of L, then κ_{I}, the Killing form of I, is equal to $\left.\kappa_{L}\right|_{I \times I}$.
This is easy by completing a basis from I to L via L / I.

Theorem 3.3. The followings are equivalent:

1. L is semi-simple;
2. κ_{L} is non-degenerate;
3. $L=\bigoplus I_{i}$ as Lie algebra, where each I_{i} is a simple ideal of L.

Proof. 1. \Rightarrow 2. : Let $S=\operatorname{rad} \kappa$. Then $\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y)=0$ for $x \in S$ and $y \in[S, S]=0$. By Cartan's criterion, $\operatorname{ad}_{L} S$ is solvable. Since ad : $L \rightarrow \mathfrak{g l}(L)$ is an embedding (otherwise the center $Z(L)$ is nontrivial, which is an abelian ideal), S is solvable, which implies $S \subseteq \operatorname{Rad} L=0$.
$2 . \Rightarrow 1$. : It is enough to show that every abelian ideal I of L lies in $S=\operatorname{rad} \kappa$. Let $x \in I$ and $y \in L$. Then

$$
(\operatorname{ad} x \operatorname{ad} y)^{2}(L) \subseteq \operatorname{ad} x \operatorname{ad} y(I) \subseteq \operatorname{ad} x(I) \subseteq[I, I]=0
$$

This implies $\operatorname{tr}(\operatorname{ad} x$ ad $y)=0$. Since this is true for all x and $y, I \subseteq S$.
1.2. $\Rightarrow 3$. : Let I be any Lie ideal of L. Then I^{\perp}, the orthogonal complement of I with respect to κ, is an ideal of L by the associativity of κ. Let $J=I \cap I^{\perp}$. Our goal is to show that $J=0$ (this gives us the decomposition $L=I \oplus I^{\perp}$).

Since $\kappa_{J}=\left.\kappa\right|_{J \times J}$, for each $x, y \in J$ we have $\kappa_{J}(x, y)=0$. By Cartan's criterion, J is solvable, and hence equal to 0 .

Now, for an ideal $K \unlhd I$, we have $K \unlhd L$ since

$$
[L, K]=\left[I \oplus I^{\perp}, K\right]=[I, K] \subseteq K .
$$

(Note that $\left[I^{\perp}, K\right] \subseteq\left[I^{\perp}, I\right] \subseteq J=0$.) This gives us the desired decomposition by induction on the dimension of L.

The uniqueness of decomposition: Let $I \unlhd L$ be a simple ideal. Then $[I, L] \unlhd I$ and is nonzero since $Z(L)=0$. So

$$
I=[I, L]=\bigoplus\left[I, I_{i}\right] .
$$

Then $I=\left[I, I_{i}\right] \subseteq I_{i}$ for some i, which shows that $I=I_{i}$ by the simpleness of I_{i}.
3. $\Rightarrow 1$. : If L is simple, then $\operatorname{Rad} L=0$ or L. The latter case implies $[L, L] \varsubsetneqq L$, so $[L, L]=0$, i.e., L is abelian, which is a contradiction. Hence, L is semi-simple.

Also, we know that direct sum of semi-simple Lie algebras is semi-simple.

Corollary 3.4. Let L be a semi-simple Lie algebra. Then $L=[L, L]$.

Recall: ad $L \unlhd \operatorname{Der} L=\{\delta \in \mathfrak{g l}(L) \mid \delta[x, y]=[\delta x, y]+[x, \delta y]\}$. This comes from the Jacobi identity and the formula $[\delta, \operatorname{ad} x]=\operatorname{ad}(\delta x)$.

Theorem 3.5. Let L be a semi-simple Lie algebra. Then ad $L=\operatorname{Der} L$.

Recall that an L-module, or a representation of L, is a Lie homomorphism

$$
\varphi: L \longrightarrow \mathfrak{g l}(V)
$$

where V is a (finite dimensional) vector space over F.
A representation φ is irreducible if the only sub L-modules are 0 and V.
For a L-module V, we define the Lie action on $V^{*}=\operatorname{Hom}(V, F)$ by

$$
(x \cdot f)(v)=-f(x \cdot v), \quad \forall f \in V^{*}
$$

For two L-modules V and W, we define the Lie action on $V \otimes W$ by the Leibniz rule

$$
x \cdot(v \otimes w)=(x \cdot v) \otimes w+v \otimes(x \cdot w)
$$

and define the Lie action on $\operatorname{Hom}(V, W)$ by

$$
(x \cdot f)(v)=x \cdot f(v)-f(x \cdot v)
$$

Theorem 3.6 (Weyl). Let L be a semi-simple Lie algebra and $\varphi: L \rightarrow \mathfrak{g l}(V)$ be a representation. Then φ is completely irreducible, i.e., φ is a direct sum of irreducible representations.

We represent Serre's proof here
Fact. $\varphi(L) \subseteq \mathfrak{s l}(V)$ and hence $=0$ on 1-dimensional L-module: since $L=[L, L]$ and $\mathfrak{s l}(V)=[\mathfrak{g l}(V), \mathfrak{g l}(V)]$.

May assume φ is faithful.

Definition 3.7 (Casimir element). Let $\beta: L \times L \rightarrow F$ be a non-degenerate symmetric bilinear associative form. For a basis x_{1}, \ldots, x_{n} of L, there exists a basis y_{1}, \ldots, y_{n} of L such that $\beta\left(x_{i}, y^{j}\right)=\delta_{i}^{j}$. For each $x \in L$, write

$$
\left[x, x_{i}\right]=\sum a_{i}^{j} x_{j}, \quad\left[x, y^{j}\right]=\sum b_{i}^{j} y^{i},
$$

then the associativity of β gives us $a_{i}^{j}=-b_{i}^{j}$. We define the Casimir element of β to be

$$
c_{\varphi}(\beta)=\sum \varphi\left(x_{i}\right) \varphi\left(y^{i}\right) \in \mathfrak{g l}(V) .
$$

We see that

$$
\left[\varphi(x), c_{\varphi}(\beta)\right]=\sum\left(\varphi\left(a_{i}^{j} x_{j}\right) \varphi\left(y^{i}\right)+\varphi\left(x_{i}\right) \varphi\left(b_{i}^{j} y^{i}\right)\right)=0
$$

i.e., it is $\varphi(L)$-linear.

For $\beta(x, y)=\operatorname{tr}(\varphi(x) \varphi(y))$, we get the Casimir element of $\varphi: c_{\varphi}=c_{\varphi}(\beta)$, with

$$
\operatorname{tr} c_{\varphi}=\sum \beta\left(x_{i}, y^{i}\right)=\operatorname{dim} L \neq 0 .
$$

If $\varphi: L \rightarrow \mathfrak{g l}(V)$ is irreducible, then Schur's lemma implies that

$$
c_{\varphi}=\frac{\operatorname{dim} L}{\operatorname{dim} V} \cdot \operatorname{id}_{V} .
$$

To prove (3.6), let us consider the special case first: suppose that there exists a L-submodule $W \subset V$ of codimension 1 .

$$
0 \longrightarrow W \longrightarrow V \longrightarrow V / W \longrightarrow 0
$$

The space $V / W \cong F$ has a trivial action by L. Now, we induction on $\operatorname{dim} W$. If W is irreducible, then $\left.c_{\varphi}\right|_{W}$ is a nonzero scalar, but $c_{\varphi} \equiv 0$ on F, i.e., the kernel of $c_{\varphi}: V \rightarrow W$ is 1 -dimensional and its intersection with W is 0 . Thus, c_{φ} gives us the desired splitting map.

If W is not irreducible, then there exists a nonzero proper L-submodule W^{\prime} of W and we get the exact sequence

$$
0 \longrightarrow W / W^{\prime} \longrightarrow V / W^{\prime} \longrightarrow F \longrightarrow 0
$$

By induction, $V / W^{\prime}=W / W^{\prime} \oplus \bar{W} / W^{\prime}$ for some \bar{W} and we have the exact sequence

$$
0 \longrightarrow W^{\prime} \longrightarrow \bar{W} \longrightarrow F \longrightarrow 0 .
$$

Induction hypothesis tells us that $\bar{W}=W^{\prime} \oplus X$ for some X. Hence, $V=W \oplus X$ since $W \cap X=0$.

For the general case, let W be a nonzero proper L-submodule of V.

$$
0 \longrightarrow W \longrightarrow V \longrightarrow V / W \longrightarrow 0
$$

Define

$$
\mathscr{V}=\left\{f \in \operatorname{Hom}(V, W)|f|_{W}=a \mathrm{id}_{W}, \text { for some } a \text { in } F\right\}
$$

and \mathscr{W} its codimension 1 subspace corresponds to $a=0$. Then for $x \in L, f \in \mathscr{V}$, and $w \in W$ we have

$$
(x \cdot f)(w)=x \cdot f(w)-f(x \cdot w)=x(a w)-a(x w)=0 .
$$

So there is a exact sequence of L-modules:

$$
0 \longrightarrow \mathscr{W} \longrightarrow \mathscr{V} \longrightarrow F \longrightarrow 0
$$

The special case tells us that $\mathscr{V}=\mathscr{W} \oplus \mathscr{U}$ for some \mathscr{U}. Let \mathscr{U} be spanned by f such that $\left.f\right|_{W}=\left.1\right|_{W}$. Again, L acts on \mathscr{U} trivially, so

$$
0=(x \cdot f)(v)=x \cdot f(v)-f(x \cdot v)
$$

i.e., f is an L-homomorphism. Hence, $V=W \oplus \operatorname{ker} f$.

$4 \mathfrak{s l}(2, F)$-representation, $\mathbf{9 / 1 4}$

The Lie algebra $\mathfrak{s l}(2, F)$ is spanned by 3 -elements:

$$
x=\left(\begin{array}{l}
1 \\
\end{array}\right), \quad y=\binom{1}{1}, \quad h=\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right) .
$$

Note that h is a semi-simple matrix. It is easy to see that

$$
[h, x]=2 x, \quad[h, y]=2 y, \quad[x, y]=h .
$$

Let V be an $\mathfrak{s l}(2, F)$-module. Then h acts on V semi-simply, which gives us the decomposition $V=\bigoplus_{\lambda} V_{\lambda}$, called the weight decomposition, where

$$
V_{\lambda}=\{v \in V \mid h \cdot v=\lambda v\} .
$$

For $v \in V_{\lambda}$, we see that

$$
h \cdot(y \cdot v)=y \cdot(h \cdot v)+-2 y \cdot v=(\lambda-2)(y \cdot v),
$$

i.e., $y \cdot v \in V_{\lambda-2}$. Similarly, $x \cdot v \in V_{\lambda+2}$.

Consider $v \in V_{\lambda}$ such that $x \cdot v=0$ and the subspace

$$
V_{v}:=\left\langle v, y v, \ldots, y^{m} v \neq 0, y^{m+1} v=0\right\rangle \subseteq V .
$$

To show that V_{v} is irreducible, it remains to show that x acts on V_{v}.

Lemma 4.1. Let $v=v_{0}, v_{i}=y^{i} v_{0} / i$!. Then for each $i \geq 1$,

$$
x \cdot v_{i}=(\lambda-i+1) v_{i-1} .
$$

Proof. By induction (as before).
Taking $i=m+1$, we see that

$$
0=x \cdot v_{m+1}=(\lambda-m) v_{m} .
$$

Hence,

Corollary 4.2. The eigenvalue λ of v is equal to m.

Denote by $V(m)$ the space

$$
V_{m} \oplus V_{m-2} \oplus \cdots \oplus V_{-m},
$$

where each V_{j} is a 1-dimensional subspace. Then each irreducible representation of $\mathfrak{s l}(2, F)$ is of the form $V(m)$, where m is a non-negative integer.

Let L be a semi-simple Lie algebra such that ad : $L \rightarrow \mathfrak{g l}(L)$ is an embedding.

Definition 4.3. A subalgebra T of L is a toral subalgebra if all its elements are semisimple.

Fact I. T is abelian: for $x \in T$, take a λ-eigenvector $y \in T$ of $\operatorname{ad}_{T} x(y)$, i.e., $\operatorname{ad}_{T} x(y)=$ λy. Suppose that $\lambda \neq 0$. Note that y is a 0 -eigenvector of $\operatorname{ad}_{T} y$. Write x as a linear combination of eigenvectors of $\operatorname{ad}_{T} y$. Then $\operatorname{ad}_{T} y(x)=-\lambda y$ gives us a contradiction $\left(\operatorname{ad}_{T} y(y)=0\right)$.

Fix such a T, call it H. Then $\operatorname{ad}_{L} H$ is simultaneously diagonalizable (since H is abelian). Hence,

$$
L=\bigoplus_{\alpha \in \Phi} L_{\alpha} \oplus L_{0}
$$

where $\alpha \in H^{\vee}:=\operatorname{Hom}(H, F)$

$$
L_{\alpha}=\{x \in L \mid \operatorname{ad} h(x)=\alpha(h) x, \forall h \in H\} .
$$

This is called the Cartan decomposition of L, elements in Φ are called roots of L.
Fact II. For all $\alpha, \beta \in H^{\vee},\left[L_{\alpha}, L_{\beta}\right] \subseteq L_{\alpha+\beta}$: for any $h \in H, x \in L_{\alpha}$ and $y \in L_{\beta}$,

$$
\operatorname{ad} h[x, y]=[\operatorname{ad} h(x), y]+[x, \operatorname{ad} h(y)]=(\alpha+\beta)(h)[x, y] .
$$

Hence, if $x \in L_{\alpha}$ for some $\alpha \neq 0$, then ad x is nilpotent (since Φ is a finite set).
Fact III. $L_{\alpha} \perp L_{\beta}$ if $\alpha+\beta \neq 0$ with respect to the Killing form κ : for any $h \in H, x \in L_{\alpha}$ and $y \in L_{\beta}$,

$$
0=\kappa([h, x], y)+\kappa(x,[h, y])=(\alpha+\beta)(h) \kappa(x, y)
$$

Since $\alpha+\beta \neq 0$, we take $h \in H$ such that $(\alpha+\beta)(h) \neq 0$, then $\kappa(x, y)=0$.

In particular,

$$
L_{0} \perp \bigoplus_{\alpha \in \Phi} L_{\alpha} .
$$

If $\left.z \in L_{0} \cap \operatorname{rad} \kappa\right|_{L_{0}}$, then $z \in \operatorname{rad} \kappa=0$. Hence, $\left.\kappa\right|_{L_{0}}$ is nondegenerate.

Proposition 4.4. If H is a maximal toral, then $L_{0}=C_{L}(H)=H$.

Proof. Reading.

So $\left.\kappa\right|_{H}$ is nondegenerate and induces the isomorphism

$$
\begin{aligned}
H^{\vee} & \longrightarrow H \\
\varphi & \longmapsto t_{\varphi},
\end{aligned}
$$

where $t_{\varphi} \in H$ is the unique element such that $\kappa\left(t_{\varphi},-\right)=\varphi$.

5 Root system, 9/19

Proposition 5.1. Let

$$
L=\bigoplus_{\alpha \in \Phi} L_{\alpha} \oplus H
$$

be a Cartan decomposition of a semi-simple Lie algebra L. Then
(a) Φ spans H^{\vee};
(b) $\alpha \in \Phi$ implies $-\alpha \in \Phi$;
(c) for $x \in L_{\alpha}$ and $y \in L_{-\alpha},[x, y]=\kappa(x, y) t_{\alpha}$;
(d) $\alpha \in \Phi$ implies $\left[L_{\alpha}, L_{-\alpha}\right]=F \cdot t_{\alpha}$ is 1-dimensional;
(e) $\alpha\left(t_{\alpha}\right)=\kappa\left(t_{\alpha}, t_{\alpha}\right) \neq 0$;
(f) for each non-zero $x_{\alpha} \in L_{\alpha}$, there exists $y_{\alpha} \in L_{-\alpha}$ such that there is an isomorphism

$$
\begin{gathered}
\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha}=\left[x_{\alpha}, y_{\alpha}\right]\right\rangle \xrightarrow{\sim} \mathfrak{s l}(2, F)=\langle x, y, h\rangle \\
x_{\alpha}, y_{\alpha}, h_{\alpha} \longmapsto x, y, h .
\end{gathered}
$$

(g) $h_{-\alpha}=-h_{\alpha}$.

Proof. (a) If not, dually, there exists a non-zero $h \in H$ such that for each $\alpha \in \Phi, \alpha(h)=0$. Then $\left[h, L_{\alpha}\right]=0$, which implies $h \in Z(L)$, a contradiction.
(b) If $\alpha \notin \Phi$, then $\alpha+\beta \neq 0$ for each $\beta \in \Phi$. Then $L_{\alpha} \perp L$, contradicting the nondegeneracy of κ.
(c) For each $h \in H$,

$$
\kappa(h,[x, y])=\kappa([h, x], y)=\alpha(h) \kappa(x, y)=\kappa\left(t_{\alpha} \kappa(x, y), h\right)
$$

(d) As in (b), if $x \in L_{\alpha}$ is a non-zero element, with $\left[x, L_{-\alpha}\right]=0$, then $\kappa\left(x, L_{-\alpha}\right)=0$. Hence, $\kappa(x, L)=0$, a contradiction.
(e) If $\alpha\left(t_{\alpha}\right)=0$, then $\left[t_{\alpha}, x\right]=0=\left[t_{\alpha}, y\right]$ for any $x \in L_{\alpha}$ and any $y \in L_{-\alpha}$. From (d), we can fix x, y such that $[x, y]=t_{\alpha}$. Then $S:=\left\langle x, y, t_{\alpha}\right\rangle$ is solvable and $S \cong \operatorname{ad}_{L} S \hookrightarrow \mathfrak{g l}(L)$. It follows that $\operatorname{ad}_{L}[S, S]$ is nilpotent. This tells us that $\operatorname{ad}_{L} t_{\alpha}$ is both semi-simple and nilpotent, which is 0 . Hence, $t_{\alpha} \in Z(L)=0$, a contradiction.
(f) Find y_{α} such that $\kappa\left(x_{\alpha}, y_{\alpha}\right)=\frac{2}{\kappa\left(t_{\alpha}, t_{\alpha}\right)} \neq 0$ and set $h_{\alpha}=\frac{2}{\kappa\left(t_{\alpha}, t_{\alpha}\right)} t_{\alpha}$. Then

$$
\begin{aligned}
{\left[x_{\alpha}, y_{\alpha}\right] } & =\kappa\left(x_{\alpha}, y_{\alpha}\right) t_{\alpha}=h_{\alpha} \\
{\left[h_{\alpha}, x_{\alpha}\right] } & =\frac{2}{\kappa\left(t_{\alpha}, t_{\alpha}\right)}\left[t_{\alpha}, x_{\alpha}\right]=\frac{2}{\alpha\left(t_{\alpha}\right)} \alpha\left(t_{\alpha}\right) x_{\alpha}=2 x_{\alpha}, \\
{\left[h_{\alpha}, y_{\alpha}\right] } & =\frac{2}{\kappa\left(t_{\alpha}, t_{\alpha}\right)}\left[t_{\alpha}, y_{\alpha}\right]=\frac{2}{\alpha\left(t_{\alpha}\right)}(-\alpha)\left(t_{\alpha}\right) y_{\alpha}=-2 y_{\alpha}
\end{aligned}
$$

(g) By $t_{-\alpha}=-t_{\alpha}$ and $\kappa\left(t_{\alpha}, t_{\alpha}\right)=\kappa\left(-t_{\alpha},-t_{\alpha}\right)$.

For $\alpha \in \Phi$, let $M=M_{\alpha}:=H \oplus \bigoplus_{c \in F^{\times}} L_{c \alpha}$. Then $S_{\alpha}=\left\langle x_{\alpha}, y_{\alpha}, h_{\alpha}\right\rangle \cong \mathfrak{s l}(2, F)$ acts on M by adjoint representation. M has weights (for h_{α}) c $\alpha\left(h_{\alpha}\right) \in \mathbb{Z}$. Since $\alpha\left(h_{\alpha}\right)=$ $\frac{2}{\kappa\left(t_{\alpha}, t_{\alpha}\right)} \alpha\left(t_{\alpha}\right)=2$, we see that $c \in \frac{1}{2} \mathbb{Z}$. Note that M contains S_{α} as an irreducible $S_{\alpha-}$ submodule. The weight 0 part of M is

$$
H=\operatorname{ker} \alpha \oplus F \cdot h_{\alpha} .
$$

Hence, $V(0) \subset M$ occurs $\operatorname{dim} H-1$ times, $V(2)=S_{\alpha} \subset M$, and there is no other even weights. This shows that $2 \alpha \notin \Phi$ and $\frac{1}{2} \alpha \notin \Phi$ neither. Hence, 1 is not a weight of $\alpha \in M$ and $M=\operatorname{ker} \alpha \oplus S_{\alpha}=H+S_{\alpha}$, which implies that $\operatorname{dim} L_{\alpha}=1$. Also, $S_{\alpha}=L_{\alpha} \oplus L_{-\alpha} \oplus\left[L_{\alpha}, L_{-\alpha}\right]$ is unique.

Next, consider the action of S_{α} on $K_{\beta}:=\sum_{i \in \mathbb{Z}} L_{\beta+i \alpha}$, where $\beta \neq \pm \alpha$. Each 1dimensional space $L_{\beta+i \alpha}$ has weight $\beta\left(h_{\alpha}\right)+2 i$. Hence, K_{β} is irreducible. Let q and r be
the largest integers such that $\beta+q \alpha$ and $\beta-r \alpha$ are roots. Then

$$
\beta\left(h_{\alpha}\right)+2 q=-\left(\beta\left(h_{\alpha}\right)-2 r\right) \quad \Longrightarrow \quad 2 \cdot \frac{\kappa\left(t_{\beta}, t_{\alpha}\right)}{\kappa\left(t_{\alpha}, t_{\alpha}\right)}=\beta\left(h_{\alpha}\right)=r-q \in \mathbb{Z}
$$

On H^{\vee}, put an inner product $(\lambda, \mu):=\kappa\left(t_{\lambda}, t_{\mu}\right)$ for $\lambda, \mu \in H^{\vee}$. For any basis α_{1}, \ldots, $\alpha_{\ell} \in \Phi$ of H^{\vee}, we have $\Phi \subset E_{\mathbb{Q}}:=\bigoplus \mathbb{Q} \alpha_{i}$ (by the integrality of $\beta\left(h_{\alpha}\right)$) and

$$
(\lambda, \mu)=\kappa\left(t_{\lambda}, t_{\mu}\right)=\sum_{\alpha \in \Phi} \alpha\left(t_{\lambda}\right) \alpha\left(t_{\mu}\right)
$$

is positive definite (on $E_{\mathbb{Q}}$).

Theorem 5.2 (Root system). For the root system Φ,
(R1) Φ spans E, and $|\Phi|<\infty$;
(R2) if $\alpha \in \Phi$, then $c \alpha \in \Phi$ if and only if $c= \pm 1$;
(R3) for $\alpha, \beta \in \Phi$, the reflection $\beta-\frac{(\beta, \alpha)}{(\alpha, \alpha)} \alpha$ of β with respect to α^{\perp} lies in Φ;
(R4) for $\alpha, \beta \in \Phi,\langle\beta, \alpha\rangle:=2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$.

Now, we study the abstract root system $\Phi \subset(E,(-,-))$, i.e., Φ satisfies (R1) (R4).

Lemma 5.3. For $\sigma \in \operatorname{GL}(E)$ with $\sigma(\Phi)=\Phi, \sigma(\alpha)=-\alpha$ for some $\alpha \in \Phi$, and $\sigma=\mathrm{id}$ on some hyperplane, we have $\sigma=\sigma_{\alpha}$, the reflection $\beta \mapsto \beta-\langle\beta, \alpha\rangle \alpha$.

Proof. Define $\tau=\sigma \circ \sigma_{\alpha}$. Then $\tau(\Phi)=\Phi, \tau(\alpha)=\alpha$, and $\tau=$ id on $E / \mathbb{Q} \alpha$. So all eigenvalues of τ is 1 . The minimal polynomial P of τ satisfies $P \mid(T-1)^{\ell=\operatorname{dim} E}$. Choose $K \gg 1$ such that $\left.\tau^{K}\right|_{\Phi}=$ id, then $P \mid T^{K}-1$. Hence, $P=T-1$.

Definition 5.4. Let $\mathscr{W} \subset \mathrm{GL}(E)$ be the subgroup generated by $\sigma_{\alpha}, \alpha \in \Phi . \mathscr{W}$ is called the Weyl group of Φ, and is a subgroup of $S_{|\Phi|}$.

Lemma 5.5. Let $\sigma \in \mathrm{GL}(E)$ with $\sigma(\Phi)=\Phi$. Then $\sigma \sigma_{\alpha} \sigma^{-1}=\sigma_{\sigma(\alpha)}$ for each $\alpha \in \Phi$ and $\langle\beta, \alpha\rangle=\langle\sigma(\beta), \sigma(\alpha)\rangle$.

Proof. $\sigma \sigma_{\alpha} \sigma^{-1}(\Phi)=\Phi$ fixes $\sigma\left(P_{\alpha}\right)\left(P_{\alpha}\right.$ is the hyperplane fixed by $\left.\sigma_{\alpha}\right)$ pointwisely and maps $\sigma(\alpha)$ to $-\sigma(\alpha)$. Applying the previous lemma, we see that $\sigma \sigma_{\alpha} \sigma^{-1}=\sigma_{\sigma(\alpha)}$.

Now,

$$
\sigma(\beta)-\langle\sigma(\beta), \sigma(\alpha)\rangle \sigma(\alpha)=\sigma_{\sigma(\alpha)}(\sigma(\beta))=\sigma\left(\sigma_{\alpha}(\beta)\right)=\sigma(\beta-\langle\beta, \alpha\rangle \alpha)
$$

Corollary 5.6. If $(\Phi, E) \cong\left(\Phi^{\prime}, E^{\prime}\right)$, then $\mathscr{W} \cong \mathscr{W}^{\prime}$. In particular, $\mathscr{W} \subseteq$ Aut Φ.

Definition 5.7. The dual root system $\Phi^{\vee}=\left\{\left.\alpha^{\vee}=\frac{2 \alpha}{(\alpha, \alpha)} \right\rvert\, \alpha \in \Phi\right\}$ is a root system with the same \mathscr{W}.

Example 5.8. Some root systems:
$A_{1}:$

$A_{1} \times A_{1}:$

A_{2} :

B_{2} :

G_{2} :

Since

$$
\langle\beta, \alpha\rangle=\frac{2(\beta, \alpha)}{(\alpha, \alpha))}=\frac{2|\beta| \cos \theta}{|\alpha|}
$$

where θ is the angle between α and $\beta,\langle\beta, \alpha\rangle\langle\alpha, \beta\rangle=4 \cos ^{2} \theta \in \mathbb{Z}$. We get the table $(\alpha \neq \pm \beta$ and WLOG let $|\beta| \geq|\alpha|)$:

$\langle\alpha, \beta\rangle$	$\langle\beta, \alpha\rangle$	θ	$\|\beta\|^{2} /\|\alpha\|^{2}$
0	0	90°	$?$
1	1	60°	1
-1	-1	120°	1
1	2	45°	2
-1	-2	135°	2
1	3	30°	3
-1	-3	150°	3

Lemma 5.9. For $\alpha, \beta \in \Phi$, we have

$$
(\alpha, \beta)>0 \quad \Longrightarrow \quad \alpha-\beta \in \Phi .
$$

Similarly,

$$
(\alpha, \beta)<0 \quad \Longrightarrow \quad \alpha+\beta \in \Phi
$$

Proof. Suppose that $(\alpha, \beta)>0$. From the table, $\langle\alpha, \beta\rangle=1$ or $\langle\alpha, \beta\rangle=1$. The former case together with (R3) gives us $\sigma_{\beta}(\alpha)=\alpha-\langle\alpha, \beta\rangle \beta=\alpha-\beta \in \Phi$. Similarly, the latter case gives us $\beta-\alpha \in \Phi$, which implies $\alpha-\beta \in \Phi$ by (R2).

Corollary 5.10. For $\beta \neq \pm \alpha$, all roots $\beta+i \alpha, i \in \mathbb{Z}$ is unbroken of length ≤ 4.

Proof. If $\beta+p \alpha, \beta+s \alpha \in \Phi$ with $p<s$ and $\beta+(p+1) \alpha, \beta+(s-1) \alpha \notin \Phi$. The lemma implies $(\alpha, \beta+p \alpha) \geq 0$ and $(\alpha, \beta+s \alpha) \leq 0$. Then

$$
(s-p)(\alpha, \alpha)=(\alpha, \beta+s \alpha)-(\alpha, \beta+p \alpha) \leq 0,
$$

a contradiction.
The length it at most 4: if q and r are the largest integers such that $\beta+q \alpha, \beta-r \alpha \in \Phi$, then $q+r=\langle\beta+p \alpha, \alpha\rangle<4$.

6 Weyl group, 9/21

Definition 6.1. We call $\Delta \subseteq \Phi$ a base if
(B1) Δ is a basis of E;
(B2) for $\beta=\sum_{\alpha \in \Delta} k_{\alpha} \alpha \in \Phi$, either all $k_{\alpha} \in \mathbb{Z}_{\geq 0}$ or all $k_{\alpha} \in \mathbb{Z}_{\leq 0}$.

Fact. For distinct $\alpha, \beta \in \Delta$, we have $(\alpha, \beta) \leq 0$, and $\alpha-\beta \notin \Phi$: if $(\alpha, \beta)>0$, then $\alpha-\beta \in \Phi$ by (5.9), which contradicts (B2).

Theorem 6.2. Every root system has a base. In fact,
(1) let $\gamma \in E \backslash \bigcup_{\alpha \in \Phi} P_{\alpha}$, where P_{α} is the hyperplane fixed by σ_{α}. Then

$$
\Delta(\gamma):=\left\{\text { indecomposable roots in } \Phi^{+}(\gamma)\right\}
$$

is a base, where $\Phi^{+}(\gamma)=\{\alpha \in \Phi \mid(\alpha, \gamma)>0\}$ (a root α is said to be indecomposable if α cannot be written as $\alpha_{1}+\alpha_{2}$ for some $\left.\alpha_{1}, \alpha_{2} \in \Phi^{+}(\gamma)\right)$. Elements in $\Delta(\gamma)$ is called a simple root relative to $\Delta(\gamma)$.
(2) Any base come from such a way.

Proof. Since $\Delta(\gamma)$ spans $\Phi^{+}(\gamma)$ in $\mathbb{Z}_{\geq 0}$, hence spans E. If $\alpha, \beta \in \Delta$ are distinct, then $(\alpha, \beta) \leq 0$, otherwise

$$
\begin{array}{lll}
\alpha-\beta \in \Phi^{+}(\gamma) & \Longrightarrow & \alpha=\beta+(\alpha-\beta) \\
\beta-\alpha \in \Phi^{+}(\gamma) & \Longrightarrow \quad \beta=\alpha+(\beta-\alpha)
\end{array}
$$

Hence, $\Delta(\gamma)$ is a linearly independent set: suppose that $\varepsilon=\sum s_{\alpha} \alpha=\sum t_{\beta} \beta$ with s_{α}, $t_{\beta}>0$. Then

$$
0 \leq(\varepsilon, \varepsilon)=\sum_{\alpha, \beta} s_{\alpha} t_{\beta}(\alpha, \beta) \leq 0
$$

tells us that $\varepsilon=0$.
(2) is left in Exercise 7.

Definition 6.3. The set $E \backslash \bigcup_{\alpha \in \Phi} P_{\alpha}$ is a union of (connected) open cones, each open cone is called a Weyl chamber.

Every element in a Weyl chamber defines same base. Conversely, every base determines a Weyl chamber.

Lemma 6.4.

(a) For $\alpha \in \Phi^{+} \backslash \Delta$, there exists $\beta \in \Delta$ such that $\alpha-\beta \in \Phi^{+}$. Hence, we can write $\alpha=\sum_{i=1}^{k} \alpha_{i}$, where $\alpha_{i} \in \Delta$, such that $\sum_{i=1}^{j} \in \Phi^{+}$for all $j \leq k$.
(b) For $\alpha \in \Delta, \sigma_{\alpha}$ permutes $\Phi^{+} \backslash\{\alpha\}$. In particular, $\sigma(\delta)=\delta-\alpha$ for $\delta=\frac{1}{2} \sum_{\beta \in \Phi^{+}} \beta$.
(c) (Cancellation lemma) Let $\sigma_{i}=\sigma_{\alpha_{i}}$. If

$$
\sigma_{1} \cdots \sigma_{t-1} \sigma_{t}\left(\alpha_{t}\right) \succ 0
$$

then there exists $s<t$ such that $\sigma_{1} \cdots \sigma_{t}=\sigma_{1} \cdots \sigma_{s-1} \sigma_{s+1} \cdots \sigma_{t-1}$. Here $\alpha \succ \beta$ if $\alpha-\beta \in \Phi^{+}$.

Proof. (a) Suppose that $(\alpha, \beta) \leq 0$ for each $\beta \in \Delta$, then $\Delta \cup\{\alpha\}$ is a linearly independent set (cf. Proof of (6.2)), a contradiction. So there exists $\beta \in \Delta$ such that $(\alpha, \beta)>0$, and hence $\alpha-\beta \in \Phi^{+}\left(\right.$Note that $\alpha-\beta \in \Phi^{-} \Longrightarrow \beta=\alpha+(\beta-\alpha)$).
(b) For $\beta \in \Phi^{+} \backslash\{\alpha\}, \beta=\sum_{\gamma \in \Delta} k_{\gamma} \gamma$ with $k_{\gamma} \geq 0$ for all γ and $k_{\gamma_{0}}>0$ for some $\gamma_{0} \neq \alpha$. The element

$$
\sigma_{\alpha}(\beta)=\beta-\langle\beta, \alpha\rangle \alpha
$$

has the same $k_{\gamma_{0}}$, so $\sigma_{\alpha}(\beta) \in \Phi^{+} \backslash\{\alpha\}$.
(c) Let

$$
\beta_{i}=\sigma_{i+1} \cdots \sigma_{t-1}\left(\alpha_{t}\right), \quad i=0, \ldots, t-2
$$

Then $\beta_{t-1}=\alpha_{t} \succ 0, \beta_{0} \prec 0$. So there exists smallest s such that $\beta_{s} \succ 0$. Since $\beta_{s-1} \prec 0$, we must have $\beta_{s}=\alpha_{s}$. Therefore

$$
\sigma_{s}=\left(\sigma_{s+1} \cdots \sigma_{t-1}\right) \sigma_{t}\left(\sigma_{t-1} \cdots \sigma_{s+1}\right)
$$

i.e., $\sigma_{1} \cdots \sigma_{s-1} \sigma_{s} \sigma_{s+1} \cdots \sigma_{t}=\sigma_{1} \cdots \sigma_{s-1} \sigma_{s+1} \cdots \sigma_{t-1}$.

Theorem 6.5. The group \mathscr{W} acts on $\{$ base of $\Phi\}$ simply and transitively, and \mathscr{W} is generated by $\sigma_{\alpha}, \alpha \in \Delta$, for any base Δ.

Proof. Let $\mathscr{W}^{\prime} \subseteq \mathscr{W}$ generated by $\sigma_{\alpha}, \alpha \in \Delta$. If γ is regular, choose $\sigma \in \mathscr{W}^{\prime}$ with $(\sigma(\gamma), \delta)$ largest. Then

$$
(\sigma(\gamma), \delta) \geq\left(\sigma_{\alpha} \cdot \sigma(\gamma), \delta\right)=\left(\sigma(\gamma), \sigma_{\alpha}(\delta)\right)=(\sigma(\gamma), \delta)-(\sigma(\gamma), \alpha)
$$

i.e., $(\sigma(\gamma), \alpha) \geq 0$. Also, $(\sigma(\gamma), \alpha) \neq 0$, otherwise $\gamma \perp \sigma^{-1} \alpha$, a contradiction. Hence, $\sigma(\gamma)$ lies in the Weyl chamber $\mathscr{C}(\Delta)$ corresponds to Δ and $\sigma: \mathscr{C}(\gamma) \rightarrow \mathscr{C}(\Delta)$.

Any $\alpha \in \Phi$ lies in some base: take any $\gamma \in P_{\alpha} \backslash \bigcup_{\beta \neq \pm \alpha} P_{\beta}$. Let γ^{\prime} "close to" γ such that $\left(\gamma^{\prime}, \alpha\right)=\varepsilon>0,\left|\left(\gamma^{\prime}, \beta\right)\right|>\varepsilon$. Then $\alpha \in \Delta\left(\gamma^{\prime}\right)$.

In particular, there exists $\sigma \in \mathscr{W}^{\prime}$ such that $\beta=\sigma(\alpha) \in \Delta$. Then $\sigma_{\beta}=\sigma_{\sigma(\alpha)}=$ $\sigma \sigma_{\alpha} \sigma^{-1}$ tells us that $\sigma_{\alpha}=\sigma^{-1} \sigma_{\beta} \sigma \in \mathscr{W}^{\prime}$. Hence, $\mathscr{W}^{\prime}=\mathscr{W}$.

It remains to show that the action \mathscr{W} on $\{$ base of $\Phi\}$ is simple. If $\sigma \neq \mathrm{id}$ with $\sigma(\Delta)=$ Δ, write $\sigma=\sigma_{1} \cdots \sigma_{t}$ (minimal length). Then $\sigma\left(\alpha_{t}\right)<0$ by (6.4, c), a contradiction.

Definition 6.6. For $\sigma \in \mathscr{W}$, let $\ell(\sigma)$ be the minimal length of the expression $\sigma=$ $\sigma_{1} \cdots \sigma_{t}$ (relative to a base Δ). For a root $\alpha=\sum_{\beta \in \Delta} k_{\beta} \beta \in \Phi$, we define the height of α to be $\operatorname{ht}(\alpha)=\sum_{\beta \in \Delta} k_{\beta} \in \mathbb{Z}$.

A root system Φ is called irreducible if $\Phi=\Phi_{1} \sqcup \Phi_{2}$ with $\Phi_{1} \perp \Phi_{2}$ (this is equivalent to $\Delta=\Delta_{1} \sqcup \Delta_{2}$ for some base Δ). Otherwise, Φ is called reducible. For example, $A_{1} \times A_{1}$ is reducible.

Lemma 6.7. Let Φ be an irreducible root system. Then
(a) there exists a unique element $\beta \in \Phi^{+}$maximum with respect to \succ;
(b) the action \mathscr{W} on E is irreducible;
(c) there are at most 2 lengths " $|\alpha|$ " $\forall \alpha \in \Phi$ (by key table), and $|\alpha|=|\beta| \Longrightarrow \beta=$ $w(\alpha)$ for some $w \in \mathscr{W}$.
(d) The unique maximal element β is the longer one.

7 Classification of root systems, $9 / 26$

Let $\Phi \subseteq E$ be a root system, \mathscr{W} be its Weyl group, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ be a base.

Proposition 7.1. The Cartan matrix $\left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right)_{i, j=1}^{\ell} \in \mathrm{M}_{\ell}(\mathbb{Z})$ determines Φ up to an isomorphism.

Proof. For a vector space isomorphism $\phi: E \rightarrow E^{\prime}$, where $\phi\left(\alpha_{i}\right)=\alpha_{i}^{\prime}$, the diagram

commutes when $\left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right)_{i, j=1}^{\ell}=\left(\left\langle\phi\left(\alpha_{i}\right), \phi\left(\alpha_{j}\right)\right\rangle\right)_{i, j=1}^{\ell}$. Indeed,

$$
\sigma_{\phi(\alpha)}(\phi(\beta))=\phi(\beta)-\langle\phi(\beta), \phi(\alpha)\rangle \phi(\alpha)=\phi(\beta-\langle\beta, \alpha\rangle \alpha)
$$

Hence, $\phi \mathscr{W} \phi^{-1}=\mathscr{W}^{\prime}$ by (6.5).
For each $\beta \in \Phi, \beta=\sigma(\alpha)$ for some $\sigma \in \mathscr{W}$, so $\phi(\beta)=\left(\phi \sigma \phi^{-1}\right) \phi(\alpha) \in \mathscr{W}^{\prime} \Delta^{\prime}=\Phi^{\prime}$.

Definition 7.2. The Coxeter graph $\Gamma=\Gamma_{\Phi}$ of Φ is a weighted graph (V, E) with ℓ vertices $V=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ and edges

$$
E=\left\{\left(\overline{\alpha_{i} \alpha_{j}},\left\langle\alpha_{i}, \alpha_{j}\right\rangle\left\langle\alpha_{j}, \alpha_{i}\right\rangle \neq 0\right)\right\} .
$$

The Dynkin diagram of Φ is the directed weighted graph Γ with $\overline{\alpha_{i} \alpha_{j}}$ replaced by $\overrightarrow{\alpha_{i} \alpha_{j}}$ if $\left|\alpha_{i}\right|>\left|\alpha_{j}\right|$.

Fact. There is a one-to-one correspondence between the irreducible components of Φ and the connected components of Γ_{Φ}.

Theorem 7.3. If Φ is irreducible, then the Dynkin diagram Γ_{Φ} is isomorphic to one of followings:
A_{ℓ} :

B_{ℓ} :

C_{ℓ} :

$D_{\ell}:$

$E_{\ell}(\ell=6,7,8):$

F_{4} :

G_{2} :

Proof. Let $\hat{\alpha}_{i}=\alpha_{i} /\left|\alpha_{i}\right|$. Then

$$
2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)} \cdot 2 \frac{\left(\alpha_{j}, \alpha_{i}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}=4\left(\hat{\alpha}_{i}, \hat{\alpha}_{j}\right)^{2} .
$$

Hence, we call a set of unit vectors $A=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$ admissible if $4\left(\varepsilon_{i}, \varepsilon_{j}\right)^{2} \in\{0,1,2,3\}$ for all $i \neq j$.
(1) The admissible property is preserved under removing a vertex.
(2) The number of edges is at most $\# A-1$. Let $n=\# A$ and $\varepsilon=\sum \varepsilon_{i}$. Then

$$
0 \leq(\varepsilon, \varepsilon)=n+2 \sum_{i<j}\left(\varepsilon_{i}, \varepsilon_{j}\right)
$$

Since for an edge (i, j), we have $2\left(\varepsilon_{i}, \varepsilon_{j}\right) \leq-1$. The number of the edges is at most $n-1$.
(3) There are no cycles in Γ. Take any cycle $\Gamma^{\prime} \subseteq \Gamma$. Then the correspond $A^{\prime} \subseteq A$ is admissible, but it has $\# A^{\prime}$ edges, a contradiction.
(4) At any $\varepsilon \in A$, the number of edges that connects with ε is at most 3 (counted with multiplicity). Suppose $\eta_{1}, \ldots, \eta_{k} \in A$ are connected to ε, then $\left(\eta_{i}, \eta_{j}\right)=\delta_{i j}$ by (3). Find a unit vector $\eta_{0} \in\left\langle\varepsilon, \eta_{1}, \ldots, \eta_{k}\right\rangle$ that is perpendicular to $\left\langle\eta_{1}, \ldots, \eta_{k}\right\rangle$. Then

$$
\varepsilon=\sum_{i=0}^{k}\left(\varepsilon, \eta_{i}\right) \eta_{i} \quad \Longrightarrow \quad 1=(\varepsilon, \varepsilon)=\sum_{i=0}^{k} 4\left(\varepsilon, \eta_{i}\right)^{2}<4(\varepsilon, \varepsilon)-4\left(\varepsilon, \eta_{0}\right)^{2}<4
$$

(5) The only case with a weight 3 edge is G_{2} itself.
(6) Shrinking a simple chain to a point is OK.
(7) Hence, there is no subgraphs of the form

(8) Γ belongs to 4 types:
(i)

(ii)

(iii)
\Longleftrightarrow
(iv)

(i) and (iii) corresponds to A_{n-1} and G_{2}, respectively.
(9) For (ii), consider $\varepsilon=\sum i \varepsilon_{i}, \eta=\sum j \eta_{j}$. Since $2\left(\varepsilon_{i}, \varepsilon_{i+1}\right)=-1=2\left(\eta_{j}, \eta_{j+1}\right)$, we get

$$
(\varepsilon, \varepsilon)=\sum_{i=1}^{p} i^{2}-\sum_{i=1}^{p} i(i+1)=p^{2}-\frac{p(p-1)}{2}=\frac{p(p+1)}{2} .
$$

Similarly, $(\eta, \eta)=\frac{q(q+1)}{2}$. By definition and Cauchy-Schwarz inequality,

$$
(\varepsilon, \eta)^{2}=\frac{p^{2} q^{2}}{2}<\frac{p(p+1)}{2} \cdot \frac{q(q+1)}{2} \quad \Longrightarrow \quad(p-1)(q-1)<2
$$

If one of p or q is 1 , then Γ is isomorphic to B_{ℓ} or C_{ℓ}. Otherwise, $p=q=2$, in this case we get F_{4}.
(10) For (iv), consider $\varepsilon=\sum i \varepsilon_{i}, \eta=\sum j \eta_{j}, \zeta=\sum k \zeta_{k}$. As in (4), let $\theta_{1}, \theta_{2}, \theta_{3}$ be the angles between ψ and ε, η, ζ, respectively. Then $\sum \cos ^{2} \theta_{\ell}<1$. As in (9),

$$
\cos ^{2} \theta_{1}=\frac{(\varepsilon, \psi)^{2}}{(\varepsilon, \varepsilon)(\psi, \psi)}=(p-1)^{2} \cdot \frac{1}{4} \cdot \frac{2}{p(p-1)}=\frac{1}{2}\left(1-\frac{1}{p}\right) .
$$

Hence,

$$
\frac{1}{2}\left(3-\frac{1}{p}-\frac{1}{q}-\frac{1}{q}\right)<1
$$

i.e., $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1$. Say $r=2$, then $q=2$ gives us D_{n}, while $q=3$ gives us E_{p+3} ($p=3,4,5)$.

Remark 7.4. The automorphism group Aut Φ is isomorphic to $\gamma \rtimes \mathscr{W}$, where $\gamma=\{\sigma \in$ Aut $\Phi \mid \sigma(\Delta)=\Delta\}$, which can be related to Aut Γ_{Φ}.

Definition 7.5. Given a root system $\Phi \subset E$, we define the weight lattice to be

$$
\Lambda=\{\lambda \in E \mid\langle\lambda, \alpha\rangle \in \mathbb{Z}, \forall \alpha \in \Phi\} \supseteq \Phi
$$

It is clear that we only need to check the condition $\langle\lambda, \alpha\rangle \in \mathbb{Z}$ for $\alpha \in \Delta$. Given $\Delta=$ $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ (an ordered base), we get λ_{i} such that $\left\langle\lambda_{i}, \alpha_{j}\right\rangle=\delta_{i j}$, called the fundamental weights. Then Λ is a lattice generated by $\lambda_{1}, \ldots, \lambda_{\ell}$. Hence,

$$
\alpha_{i}=\sum_{k}\left\langle\alpha_{i}, \alpha_{k}\right\rangle \lambda_{k} .
$$

Let Λ_{r} be the lattice generated by Φ. Then $\Lambda_{r} \subseteq \Lambda$ and $\left|\Lambda / \Lambda_{r}\right|=\operatorname{det} C$, where $C=$ $\left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right)$ is the Cartan matrix.

Examples. For A_{2},

$$
C_{A_{2}}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \quad \Longrightarrow \quad\binom{\lambda_{1}}{\lambda_{2}}=\frac{1}{3}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}} .
$$

For G_{2},

$$
C_{G_{2}}=\left(\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right) \quad \Longrightarrow \quad\binom{\lambda_{1}}{\lambda_{2}}=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}
$$

Note that $\mathscr{W}(\Lambda)=\Lambda: \sigma_{i} \lambda_{j}=\lambda_{j}-\delta_{i, j} \alpha_{i} \in \Lambda$. So any weight λ can be conjugate to a dominant weight, i.e., it lies in the dominant set

$$
\Lambda^{+}=\{\lambda \in \Lambda \mid(\lambda, \alpha) \geq 0\}=\overline{\mathscr{C}(\Delta)} \cap \Lambda
$$

The strictly dominant set is defined to be

$$
\{\lambda \in \Lambda \mid(\lambda, \alpha)>0\}=\mathscr{C}(\Delta) \cap \Lambda
$$

Although $\lambda \succ \mu$ with $\mu \in \Lambda^{+}$does not imply $\lambda \in \Lambda^{+}$, but $\lambda \in \Lambda^{+}$implies that there are only finitely many $\mu \in \Lambda^{+}$with $\lambda \succ \mu$.

Example. The vector $\delta=\frac{1}{2} \sum_{\alpha \succ 0} \alpha=\sum_{j=1}^{\ell} \lambda_{j}$ is a strictly positive weight.

Lemma 7.6. Let $\mu \in \Lambda^{+}$and $\nu \in \mathscr{W}(\mu)$. Then $|\nu+\delta| \leq|\mu+\delta|$, and the equality holds if and only if $\nu=\mu$.

8 Final step I, 10/3

Recall: For a semi-simple Lie algebra L, we choose a maximal toral subalgebra H, which induces a root space decomposition $L=H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}$. Note that H is self-normalizing (in L), i.e., $N_{L}(H)=H$.

In fact, any 2 choices of maximal torals H_{1}, H_{2} are conjugate by some automorphism. This gives us the classification of semi-simple Lie algebra as $A \sim G$.

Let V be a finite dimensional vector space over F and $A: V \rightarrow V$ be a linear map. Consider its characteristic polynomial $f_{A}(T)=\Pi\left(T-\lambda_{i}\right)^{m_{i}}=\prod p_{i}(T)$. We get the decomposition $V=\bigoplus V_{i}$, where $V_{i}=\operatorname{ker} p_{i}(A)$.

Take $V=L$, the action ad $x: L \rightarrow L$ gives us the decomposition $L=\bigoplus_{a \in F} L_{a}(\operatorname{ad} x)$, where $L_{a}(\operatorname{ad} x)=\bigcup_{n} \operatorname{ker}(\operatorname{ad} x-a)^{n}$.

Fact. $\left[L_{a}(\operatorname{ad} x), L_{b}(\operatorname{ad} x)\right] \subseteq L_{a+b}(\operatorname{ad} x):$

$$
\begin{aligned}
& (\operatorname{ad} x-a-b)[y, z]=[(\operatorname{ad} x-a) y, z]+[y,(\operatorname{ad} x-b), z] \\
& \Longrightarrow(\operatorname{ad} x-a-b)^{m}[y, z]=\sum_{i=0}^{m}\binom{m}{i}\left[(\operatorname{ad} x-a)^{i} y,(\operatorname{ad} x-b)^{m-i} z\right]=0
\end{aligned}
$$

for $y \in L_{a}$ and $z \in L_{b}$ with $m \gg 0$.
This tells us that $L_{0}(\operatorname{ad} x)$ is a Lie subalgebra, called an Engel subalgebra, and $L_{a \neq 0}(\operatorname{ad} x)$ is ad-nilpotent.

Lemma 8.1. Let K be a Lie subalgebra of L that contains $L_{0}(\operatorname{ad} x)$. Then K is selfnormalizing (in L), i.e., $N_{L}(K)=K$.

Proof. Consider the action ad $x: N_{L}(K) / K \rightarrow N_{L}(K) / K$. All the eigenvalues of the action is nonzero. Note that $x \in K$, so $\left[N_{L}(K), x\right] \subseteq K$, which means that the action is 0 .

Lemma 8.2. Let K be a Lie subalgebra of L, and let $L_{0}(\operatorname{ad} z)$ be minimal among all such $z \in K$. If moreover, it contains K, then it is totally minimal.

Proof. Fix an arbitrary $x \in K$ and consider the pencil $\{\operatorname{ad}(z+c x) \mid c \in F\}$. Since $x \in K$, these elements all stabilize $K_{0}=L_{0}(\operatorname{ad} z)$, hence stabilize L / K_{0} as well.

The characteristic polynomial $f_{c}(T)=f(T, c) g(T, c)$, where $f(T, c)$ is the characteristic polynomial of $\left.\operatorname{ad}(z+c x)\right|_{K_{0}}$ and $g(T, c)$ is the characteristic polynomial of $\left.\operatorname{ad}(z+c x)\right|_{L / K_{0}}$. Write

$$
\begin{aligned}
& f(T, c)=T^{r}+f_{1}(c) T^{r-1}+\cdots+f_{r}(c) \\
& g(T, c)=T^{n-r}+g_{1}(c) T^{n-r-1}+\cdots+g_{r}(c)
\end{aligned}
$$

We know that each f_{i}, g_{i} are polynomials in c of degree at most i.
For $c=0$, the 0 -eigenspace of ad z lies in K_{0}, so $g_{n-r}(0) \neq 0$. So we can find c_{1}, \ldots, $c_{r+1} \in F$ such that $g_{n-r}\left(c_{i}\right) \neq 0$ for all i. Then 0 is not an eigenvalue of $\operatorname{ad}\left(z+c_{i} x\right)$ on L / K_{0}, and hence $L_{0}\left(\operatorname{ad}\left(z+c_{i} x\right)\right) \subseteq K_{0}$.

Since K_{0} is minimal, $K_{0}=L_{0}(\operatorname{ad} z)=L_{0}\left(\operatorname{ad}\left(z+c_{i} x\right)\right)$, i.e., $\operatorname{ad}\left(z+c_{i} x\right)$ has only 0 -eigenvalue on K_{0}. So $f\left(T, c_{i}\right)=T^{r}$, i.e., $f_{i} \equiv 0$. Hence, $L_{0}(\operatorname{ad}(z+c x)) \supseteq K_{0}$ for all $c \in F$. Since x is arbitrary, K_{0} is totally minimal.

Definition 8.3. A Cartan subalgebra (CSA) H of a Lie algebra L is a self-normalizing nilpotent subalgebra.

For example, a maximal toral of a semi-simple Lie algebra is Cartan.

Theorem 8.4. Let H be a Lie subalgebra of L. Then H is a CSA if and only if H is a minimal Engel subalgebra (hence it exists).

Proof. $(\Leftarrow) H$ is self-normalizing by (8.1). Also, by (8.2), $H=L_{0}(\operatorname{ad} z) \subseteq L_{0}(\operatorname{ad} x)$ for all $x \in H$, i.e., $\operatorname{ad}_{H} x$ is ad-nilpotent for all $x \in H$. Hence, by Engel's theorem (2.1), H is nilpotent.
(\Rightarrow) Let H be a CSA. The nilpotency of H implies that $H \subseteq L_{0}(\operatorname{ad} x)$ for all $x \in H$. We claim the equality holds for some minimal one.

If not, take $L_{0}(\operatorname{ad} z \in H)$ be a minimal one. By $(8.2), L_{0}(\operatorname{ad} z) \subseteq L_{0}(\operatorname{ad} x)$ for all $x \in H$. So the action of H on $L_{0}(\operatorname{ad} z) / H$ acts as nilpotent endomorphisms. By some ancient theorem, there exists a 0 -eigenvector $y+H, y \notin H$, such that $[H, y] \subseteq H$. Since H is self-normalizing, $y \in H$, a contradiction.

Corollary 8.5. Let L be a semi-simple Lie algebra over F. Then CSA \equiv maximal toral $\left(\equiv C_{L}(s)\right.$ for some semi-simple element $\left.s\right)$.

Proof. (\Leftarrow) is already done. (\Rightarrow) Let H be a CSA. Then $H=L_{0}(\operatorname{ad} x)$ for some $x \in H$. Write $x=x_{s}+x_{n}$, then $H=L_{0}(\operatorname{ad} x)=L_{0}\left(\operatorname{ad} x_{s}\right)=C_{L}\left(x_{s}\right)$. Since $C_{L}\left(x_{s}\right)$ contains $F x_{s}$ and $F x_{s}$ is contained in some maximal toral C, which is abelian, we have $H \supseteq C$. Since C is a CSA, $H=C$.

Remark 8.6. Functorialities:
(a) If $\phi: L \rightarrow L^{\prime}$ is surjective, then the image $\phi(H)$ of a CSA H of L is a CSA of L^{\prime}.
(b) Let $H^{\prime} \subseteq L^{\prime}$ be a CSA. Then any CSA H of $\phi^{-1}\left(H^{\prime}\right)$ is also a CSA of L.

Definition 8.7. An element $x \in L$ is strongly ad-nilpotent if $x \in L_{a \neq 0}(\operatorname{ad} y)$ for some $y \in L$.

Let $\mathcal{N}(L)=\{$ strongly ad-nilpotent $\}$, and let

$$
\mathcal{E}(L)=\left\langle e^{\operatorname{ad} x} \mid x \in \mathcal{N}(L)\right\rangle \unlhd \operatorname{Aut} L
$$

For a subalgebra K of L,

$$
\mathcal{E}(L ; K)=\left\langle e^{\operatorname{ad}_{L} x} \mid x \in \mathcal{N}(K)\right\rangle .
$$

Idea. $\mathcal{E}(L)$ is "better than" $\operatorname{Int} L$.

Facts. $K \subseteq L$ implies $\mathcal{N}(K) \subseteq \mathcal{N}(L)$, hence $\mathcal{E}(K)=\left.\mathcal{E}(L ; K)\right|_{K}$.
For a surjective homomorphism $\phi: L \rightarrow L^{\prime}, \phi(\mathcal{N}(L))=\mathcal{N}\left(L^{\prime}\right)$. Moreover, for each $\sigma^{\prime} \in \mathcal{E}\left(L^{\prime}\right)$, there exists $\sigma \in \mathcal{E}(L)$ such that the diagram

commutes: say $\sigma^{\prime}=e^{\operatorname{ad}_{L^{\prime}} x^{\prime}}$, where $x^{\prime}=\phi(x)$ for some $x \in \mathcal{N}(L)$. Then for each $z \in L$,

$$
\begin{aligned}
\left(\phi \circ e^{\operatorname{ad}_{L} x}\right)(z) & =\phi\left(z+[x, z]+\frac{1}{2}[x,[x, z]]+\cdots\right) \\
& =\phi(z)+\left[x^{\prime}, \phi(z)\right]+\frac{1}{2}\left[x^{\prime},\left[x^{\prime}, \phi(z)\right]\right]+\cdots \\
& =\left(e^{\operatorname{ad}_{L^{\prime}} x^{\prime}} \circ \phi\right)(z) .
\end{aligned}
$$

Theorem 8.8. Let L be a solvable Lie algebra. Then any two CSA's H_{1}, H_{2} are conjugated under $\mathcal{E}(L)$.

Proof. Introduction on $\operatorname{dim} L$. If $\operatorname{dim} L=1$ or L is nilpotent, CSA $=L$, done!
If L is not nilpotent, take $A \unlhd L$ to be an abelian ideal with smallest dimension.
Let $\phi: L \rightarrow L^{\prime}=L / A$ be the quotient map. Then the images $H_{1}^{\prime}=\phi\left(H_{1}\right)$, $H_{2}^{\prime}=\phi\left(H_{2}\right)$ are CSA's of L^{\prime}. By induction hypothesis, there exists $\sigma^{\prime} \in \mathcal{E}\left(L^{\prime}\right)$ such that $\sigma^{\prime}\left(H_{1}^{\prime}\right)=H_{2}^{\prime}$. Take $\sigma \in \mathcal{E}(L)$ such that $\sigma^{\prime} \circ \phi=\phi \circ \sigma$. Then σ maps $K_{1}=\phi^{-1}\left(H_{1}\right)$ to $K_{2}=\phi^{-1}\left(H_{2}\right)$ and $\sigma\left(H_{1}\right), H_{2}$ are CSA's of K_{2}.

If $K_{2} \neq L$, then by the induction hypothesis there exists $\tau^{\prime}=\left.\tau\right|_{K} \in \mathcal{E}\left(K_{2}\right)=$ $\left.\mathcal{E}\left(L ; K_{2}\right)\right|_{K_{2}}$ such that $H_{2}=\tau^{\prime}\left(\sigma\left(H_{1}\right)\right)=(\tau \sigma)\left(H_{1}\right)$, as desired.

Otherwise $L=K_{2}=\sigma\left(K_{1}\right)=K_{1}$, and hence $L=H_{2}+A=H_{1}+A$. Write $H_{2}=L_{0}(\operatorname{ad} x)$. Since A is ad x-stable,

$$
A=A_{0}(\operatorname{ad} x) \oplus A_{*}(\operatorname{ad} x)=A_{0} \oplus A_{*} .
$$

Then both A_{0} and A_{*} are $L=H_{2}+A$ stable. It follows from the minimality of the dimension of A that $A=A_{0}$ or $A=A_{*}$.

If $A=A_{0}$, then $A \subseteq H_{2}$. Then $L=H_{2}$ is nilpotent, a contradiction. Hence $A=$ $A_{*}(\operatorname{ad} x)$. But $L=H_{1}+A$ shows that $x=y+z$ for some $y \in H_{1}$ and $z \in A=A_{*}(\operatorname{ad} x)$, i.e., $z=\left[x, z^{\prime}\right]$ since $\operatorname{ad} x$ is invertible on it.

Since A is abelian, $\left(\operatorname{ad} z^{\prime}\right)^{2}=0$. So

$$
e^{\mathrm{ad} z^{\prime}} x=\left(1+\operatorname{ad} z^{\prime}\right)(x)=x-\left[x, z^{\prime}\right]=y .
$$

So $H=L_{0}(\operatorname{ad} y)$ is also a CSA that contains H_{1}, which implies $H=H_{1}$, i.e., $e^{\operatorname{ad} z^{\prime}}$ maps H_{2} to H_{1}. Write $z^{\prime}=\sum_{a \neq 0} z_{a}^{\prime}, z_{a}^{\prime} \in A_{a}(\operatorname{ad} x)$, we see that all z_{a}^{\prime} commutes. So

$$
e^{\operatorname{ad} z^{\prime}}=\prod e^{\operatorname{ad} z_{a}^{\prime}} \in \mathcal{E}(L) .
$$

9 Final step II, 10/5

Theorem 9.1. For a Lie algebra L over an algebraically closed field F with char $F=0$, any CSA is conjugate to each other.

The case $F=\mathbb{C}$ is proved by Cartan and Weyl using analysis (differential geometry). For a general field, it is proved by Chevalley and Bourbaki using algebraic geometry. A purely algebraic proof was given by Winter.

We do the case $F=\mathbb{C}$ first. Let $n=\operatorname{dim} L$. For each element $x \in L$, consider the characteristic polynomial

$$
f_{x}(T):=\operatorname{det}(\operatorname{ad} x-T)=(-1)^{n} T^{n}+g_{1}(x) T^{n-1}+\cdots+g_{n-r}(x) T^{r}
$$

where r is the smallest integer such that the polynomial $g_{n-r}(x) \neq 0$. We define the rank of L, denoted by rank L, to be such r, and call $x \in L$ regular, or generic, if $g_{n-r}(x) \neq 0$. Then a CSA $H=L_{0}(\operatorname{ad} x)$ has dimension $k \geq r$.

Fact. Regular elements form a Zariski open subset in $L \cong \mathbb{C}^{n}$, hence it is path connected and dense open.

Given CSA's $H_{0}=L_{0}\left(\operatorname{ad} x_{0}\right), H_{1}=L_{0}\left(\operatorname{ad} x_{1}\right)$, and take any path x_{-}in the Zariski open subset connecting x_{0} and x_{1}. Then for any $t \in[0,1], L_{0}\left(\operatorname{ad} x_{t}\right)$ is a CSA. If we can prove that any point y near $x=x_{t}, L_{0}(\operatorname{ad} y)$ is conjugate to $L_{0}(\operatorname{ad} x)$, then the statement holds by applying compact argument.

To do this, apply IFT to

$$
\begin{aligned}
& H \times \mathbb{C}^{n-k} \longrightarrow \\
&(h, t) \longmapsto \prod_{i=1}^{n-k} e^{\operatorname{ad}\left(t_{i} y_{i}\right)} h,
\end{aligned}
$$

where y_{i} are the generalized eigenvectors of ad x.
Exercise. This is invertible!

Definition 9.2. A subalgebra $B \subseteq L$ is Borel if it is a maximal solvable subalgebra.
(A) A Borel subalgebra is self-normalizing: if $[x, B] \subseteq B$, then $[B+F x, B+F x] \subseteq B$, which implies $B+F x$ is solvable. By maximality of $B, x \in B$.
(B) If $\operatorname{Rad} L \subsetneq L$, then the set of Borel subalgebras in L is $1-1$ corresponds to the set of Borel subalgebras in $L / \operatorname{Rad} L$. Indeed, the sum of a solvable subalgebra and the solvable ideal $\operatorname{Rad} L$ is a solvable subalgebra.
(C) For a semi-simple Lie algebra L, H a CSA with base $\Delta \subseteq \Phi$,

$$
B(\Delta):=H \oplus \bigoplus_{\alpha \in \Phi^{+}(\Delta)} L_{\alpha}
$$

called a standard Borel relative to H, is Borel. Any standard Borel subalgebra is conjugate to each other via $\mathcal{E}(L)$. Indeed, let $N(\Delta)=\bigoplus_{\alpha \in \Phi^{+}(\Delta)} L_{\alpha}$. Then $[B(\Delta), B(\Delta)]=N(\Delta)$, which is nilpotent, so $B(\Delta)$ is solvable. If $B(\Delta)$ is not maximal, say $K \supsetneq B(\Delta)$ is also solvable, then $K \supseteq L_{-\alpha}$ for some $\alpha \in \Phi^{+}$. Then K contains a semi-simple Lie algebra S_{α}, a contradiction. Now, for a root $\alpha \in \Phi$, the action σ_{α} on H extends to $\tau_{\alpha} \in \mathcal{E}(L)$: take $x_{\alpha} \in L_{\alpha}, y_{\alpha} \in L_{-\alpha}$ that defines S_{α}, and define $\tau_{\alpha}=e^{\operatorname{ad} x_{\alpha}} e^{-\operatorname{ad} y_{\alpha}} e^{\operatorname{ad} x_{\alpha}}$. Then τ_{α} maps $B(\Delta)$ to $B\left(\sigma_{\alpha} \Delta\right)$. Hence, any standard Borel subalgebra is conjugate to each other since the Weyl group \mathscr{W} acts on the bases transitively.

Theorem 9.3. All Borel subalgebras (BSA) are $\mathcal{E}(L)$-conjugate. In particular, all CSA's are $\mathcal{E}(L)$-conjugate.

Proof. We prove the latter statement first (using the former statement): for CSA's H and H^{\prime}, we can put them in BSA's B and B^{\prime}, respectively. Take any $\sigma \in \mathcal{E}(L)$ such that $\sigma(B)=B^{\prime}$, then $\sigma(H), H^{\prime}$ are CSA in B^{\prime}. The statement now reduce to the solvable case.

For the former statement, induction on $\operatorname{dim} L$. The base case $\operatorname{dim} L=1$ is trivial. Using (B) together with the lifting of $\mathcal{E}(L)$ under $L \rightarrow L^{\prime}=L / \operatorname{Rad} L$, we may assume that L is semi-simple. And it suffices to prove that any Borel subalgebra B^{\prime} of L is
conjugate to a standard Borel subalgebra $B=B(\Delta)$ relative to some CSA H.
Next, we induction on $\operatorname{dim}\left(B \cap B^{\prime}\right)$ downward. The base case $B \cap B^{\prime}=B$, which is equivalent to $B=B^{\prime}$, is trivial. So let $B \supsetneq B \cap B^{\prime}$.
(1) If $B \cap B^{\prime} \neq 0$, then
(i) 1. all nilpotent elements N^{\prime} in $B \cap B^{\prime}$ is nonzero. N^{\prime} is an ideal in $B \cap B^{\prime}$ (using $[B, B]=N(\Delta)$), but not in L. So $K:=N_{L}\left(N^{\prime}\right) \subsetneq L$.
2. $B \cap B^{\prime} \subsetneq B \cap K$: consider the adjoint action N^{\prime} on $B / B \cap B^{\prime} \neq 0$. Then there exists a 0 -eigenvector $y+B \cap B^{\prime}$, but $x \in N^{\prime}$ implies $[x, y] \in[B, B]$, and thus in N^{\prime}, i.e., $y \in N_{B}\left(N^{\prime}\right)=B \cap K$.
3. Take BSA's C, C^{\prime} of $K \subsetneq L$ that contains $B \cap K, B^{\prime} \cap K$, respectively.

By (first) induction hypothesis, there exists $\sigma \in \mathcal{E}(L ; K)$ such that $\sigma\left(C^{\prime}\right)=C$.
By (second) induction hypothesis, there exists $\tau \in \mathcal{E}(L)$ such that $\tau\left(B_{1}\right)=B$, where B_{1} is some BSA that contains $\sigma\left(C^{\prime}\right)$. Then

$$
B \cap \tau \sigma\left(B^{\prime}\right) \supseteq \tau \sigma\left(C^{\prime}\right) \cap \tau \sigma\left(B^{\prime}\right) \supseteq \tau \sigma\left(B^{\prime} \cap K\right) \supsetneq \tau \sigma\left(B \cap B^{\prime}\right) .
$$

By (second) induction hypothesis, B is conjugate to $\tau \sigma\left(B^{\prime}\right)$.
(ii) If $N^{\prime}=0$, left for reading.
(2) $B \cap B^{\prime}=0$, left for reading.

10 Existence theorem I, 10/12

Definition 10.1. For a vector space V over F, we define the tensor algebra

$$
T(V):=\oplus_{i=0}^{\infty} T^{i}(V), \quad T^{i}(V)=V^{\otimes i}
$$

For a Lie algebra, the universal enveloping algebra of L is defined to be

$$
\mathfrak{U}(L):=T(L) / J,
$$

where J is the 2-sided ideal generated by $x \otimes y-y \otimes x-[x, y], x, y \in L$.

The universal enveloping algebra $\mathfrak{U}(L)$ satisfies the following universal property: for a linear map $j: L \rightarrow \mathfrak{A}$, where \mathfrak{A} is an associative F-algebra, such that $j[x, y]=j(x) j(y)-$ $j(y) j(x), x, y \in L$, there exists a linear map $\mathfrak{U}(L) \rightarrow \mathfrak{A}$ that completes the diagram:

Definition 10.2. Let $T_{m}=T^{0} \oplus \cdots \oplus T^{m}, U_{m}=\pi\left(T_{m}\right)$. We see that $U_{i} \cdot U_{j} \subseteq U_{i+j}$, Define $G^{m}=U_{m} / U_{m-1}, \mathfrak{G}=\bigoplus_{m=0}^{\infty} G^{m}$.

Theorem 10.3 (PBW, Poincaré-Birkhoff-Witt). There is an isomorphism $w: S(L) \rightarrow$ \mathfrak{G}, where $S(L)$ is the symmetric algebra of L.

The surjectivity is easy: $T^{m} \rightarrow U_{m} \rightarrow G^{m}$ is onto, so $\phi: T \rightarrow \mathfrak{G}$ is onto. Also, $\phi(I)=0$, where I is the 2 -sided ideal generated by $x \otimes y-y \otimes x$.

This defines a surjection from $w: S(L) \rightarrow \mathfrak{G}$. The injectivity is hard (left for reading).

Corollary 10.4. (A) For $W \subseteq T^{m} \rightarrow S^{m}$ satisfying $\pi: W \cong S, \pi(W)$ is complement to U_{m-1} in U_{m}.
(B) $i: L \rightarrow \mathfrak{U}(L)$ is injective: taking $W=T^{1}=L(m=1)$.
(C) For any ordered basis, x_{1}, \ldots, x_{n} of $L . x_{i(1)} \cdots x_{i(m)}$ with $i(1) \leq \cdots \leq i(m)$ form a basis of $\mathfrak{U}(L)$: Take $W=\left\langle x_{i(1)} \otimes \cdots \otimes x_{i(m)}\right\rangle \subseteq T^{m}$

Definition 10.5. Let X be a set. The free Lie algebra generated by X over F is defined to be the Lie subalgebra \mathbf{X} in $T(V)$ generated by X, where V is the vector space over F with X as basis.

Let L be a semi-simple Lie algebra, H a CSA of L. Let Φ be the root system induced by $H, \Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ a base of $\Phi, A=\left(c_{i j}\right)=\left(\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right)$ the Cartan matrix. For each i, let $S_{\alpha_{i}}=\left\langle x_{i}, y_{i}, h_{i}\right\rangle$ be the Lie algebra generated by $L_{\alpha_{i}}$ and $L_{-\alpha_{i}}$.

Proposition 10.6 (Serre relations). (S1) $\left[h_{i}, h_{j}\right]=0$,
(S2) $\left[x_{i}, y_{j}\right]=\delta_{i j} h_{i}$,
(S3) $\left[h_{i} x_{j}\right]=c_{j i} x_{j},\left[h_{i} y_{j}\right]=-c_{j i} y_{j}$,
$\left(\mathrm{S}_{i j}^{+}\right)\left(\operatorname{ad} x_{i}\right)^{-c_{j i}+1} x_{j}=0(i \neq j)$,
$\left(\mathrm{S}_{i j}^{-}\right)\left(\operatorname{ad} y_{i}\right)^{-c_{j i}+1} y_{j}=0(i \neq j)$.
Proof. We only prove $\left(\mathrm{S}_{i j}^{+}\right)$. Since $\alpha_{j}-\alpha_{i} \notin \Phi$, we get the α_{j}-string $\alpha_{j}, \alpha_{j}+\alpha_{i}, \ldots$, $\alpha_{j}+q \alpha_{i}$. Since $0-q=c_{j i}$, we get $\left(\operatorname{ad} x_{i}\right)^{-c_{j i}+1} x_{j}=\left(\operatorname{ad} x_{i}\right)^{q+1} x_{j}=0$.

Theorem 10.7 (Serre). These relations are complete (for semi-simple Lie algebra L).

Proof. Step 1. Let \hat{L} be the free Lie algebra generated by $X=\left\{x_{i}, y_{i}, h_{i}\right\}_{i=1}^{\ell}, \hat{K}$ the 2sided ideal generated by (S1), (S2), and (S3), L_{0} the quotient \hat{L} / \hat{K}. Then $L_{0}=H \oplus X \oplus Y$, where H, X, and Y are lie subalgebras generated by $\left\{h_{i}\right\},\left\{x_{i}\right\}$, and $\left\{y_{i}\right\}$, respectively, and $H=\oplus F h_{i}$.

Let $\mathbf{V}=T\left(F^{\ell}\right)$. Fix a basis v_{1}, \ldots, v_{ℓ} of F^{ℓ} and define the representation $\hat{\phi}: \hat{L} \rightarrow$ $\mathfrak{g l}(\mathbf{V})$ by $h_{j} \cdot 1=x_{j} \cdot 1=x_{j} \cdot v_{j}=0, y_{j} \cdot 1=v_{j}$, and

$$
\left\{\begin{array}{l}
h_{j} \cdot v_{i_{1}} \otimes \cdots \otimes v_{i_{t}}=-\left(c_{i_{1} j}+\cdots+c_{i_{t} j}\right) v_{i_{1}} \otimes \cdots \otimes v_{i_{t}} \\
x_{j} \cdot v_{i_{1}} \otimes \cdots \otimes v_{i_{t}}=v_{i_{1}} \otimes\left(x_{j} \cdot v_{i_{2}} \otimes \cdots \otimes v_{i_{t}}\right)-\delta_{i_{1} j}\left(\sum_{k=2}^{t} c_{i_{k} j}\right) v_{i_{2}} \otimes \cdots \otimes v_{i_{t}} \\
y_{j} \cdot v_{i_{1}} \otimes \cdots \otimes v_{i_{t}}=v_{j} \otimes v_{i_{1}} \otimes \cdots \otimes v_{i_{t}}
\end{array}\right.
$$

We check that $\hat{K}_{0}:=\operatorname{ker} \hat{\phi} \supseteq \hat{K}$, i.e., the $\mathfrak{g l}(\mathbf{V})$ is in fact an L_{0}-module.
(1) $\left[h_{i}, h_{j}\right] \in \hat{K}_{0}$: since h_{i} acts diagonally, $\left[\hat{\phi}\left(h_{i}\right), \hat{\phi}\left(h_{j}\right)\right]=0$,
(2) $\left[x_{i}, y_{j}\right]-\delta_{i j} h_{j} \in \hat{K}_{0}$:

$$
\begin{aligned}
x_{i} y_{j} \cdot v_{i_{2}} \otimes \cdots \otimes v_{i_{t}}-y_{j} x_{i} \cdot v_{i_{2}} \otimes \cdots \otimes v_{i_{t}} & =-\delta_{j i}\left(\sum_{k=2}^{t} c_{i_{k} j}\right) v_{i_{2}} \otimes \cdots \otimes v_{i_{t}} \\
& =\delta_{i j} h_{j} v_{i_{2}} \otimes \cdots \otimes v_{i_{t}} .
\end{aligned}
$$

(3) $\left[h_{i}, y_{j}\right]+c_{j i} y_{j} \in \hat{K}_{0}$:

$$
\begin{aligned}
\left(h_{i} y_{j}-y_{j} h_{i}\right) \cdot 1= & h_{i} v_{j}=-c_{j i} v_{j}=-c_{j i} y_{j} \cdot 1, \\
\left(h_{i} y_{j}-y_{j} h_{i}\right) \cdot v_{i_{1}} \otimes \cdots \otimes v_{i_{t}}= & h_{i} \cdot v_{j} \otimes v_{i_{1}} \otimes \cdots \otimes v_{i_{t}} \\
& +\left(e_{i_{1} i}+\cdots+e_{i_{t} i}\right) v_{j} \otimes v_{i_{1}} \otimes \cdots \otimes v_{i_{t}} \\
= & e_{j i} y_{j} v_{i_{1}} \otimes \cdots \otimes v_{i_{t}} .
\end{aligned}
$$

(4) $\left[h_{i}, x_{j}\right]-c_{j i} x_{j} \in \hat{K}_{0}$:

Claim. $h_{i} \cdot\left(x_{j} \cdot v_{i_{1}} \otimes \cdots \otimes v_{i_{t}}\right)=-\left(c_{i_{1} i}+\cdots+c_{i_{t} i}-c_{j i}\right) x_{j} \cdot v_{i_{1}} \otimes \cdots \otimes v_{i_{t}}$.
Induction on t. The base case $t=0$ is trivial. For simplicity, let $v=v_{i_{2}} \otimes \cdots \otimes v_{i_{t}}$.
By induction hypothesis,

$$
\begin{equation*}
h_{i} \cdot\left(x_{j} \cdot v\right)=-\left(c_{i_{2 i}}+\cdots+c_{i t i}-c_{j i}\right) x_{j} \cdot v . \tag{II}
\end{equation*}
$$

Since

$$
y_{i_{1}} h_{i} x_{j}=\left(h_{i}+c_{i_{1} i}\right) y_{i_{1}} x_{j}=\left(h_{i}+c_{i_{1} i}\right)\left(x_{j} y_{i_{1}}-\delta_{j i_{1}} h_{j}\right),
$$

we get

$$
\begin{aligned}
h_{i} \cdot\left(x_{j} \cdot v_{i_{1}} \otimes v\right)= & h_{i} x_{j} y_{i_{1}} \cdot v, \\
= & y_{i_{1}}\left(h_{i} x_{j} \cdot v\right)-c_{i_{1} i} x_{j} y_{i_{1}} \cdot v+\delta_{j i_{1}}\left(h_{i}+c_{i_{1} i}\right) h_{j} \cdot v \\
= & -\left(c_{i_{2}}+\cdots+c_{i_{t i}}-c_{j i}\right) y_{i_{1}} x_{j} \cdot v-c_{i_{1}} x_{j} \cdot v_{i_{1}} \otimes v \\
& +\delta_{j i_{1}}\left(-c_{i_{1} i}+c_{i_{2} i}+\cdots+c_{i_{t} i}\right)\left(c_{i_{2} j}+\cdots+c_{i_{t} j}\right) v \\
= & -\left(c_{i_{2}}+\cdots+c_{i_{t} i}-c_{j i}\right)\left(x_{j} y_{i_{1}}+\delta_{j i_{1}} h_{j}\right) \cdot v-c_{i_{1}} x_{j} \cdot v_{i_{1}} \otimes v \\
& +\delta_{j i_{1}}\left(-c_{i_{1} i}+c_{i_{2} i}+\cdots+c_{i_{t} i}\right)\left(c_{i_{2} j}+\cdots+c_{i_{t j} j}\right) v \\
= & -\left(c_{i_{1} i}+\cdots+c_{i_{t} i}-c_{j i}\right) x_{j} \cdot v_{i_{1}} \otimes v \\
& +\delta_{j i_{1}}\left(c_{i_{2} i}+\cdots+c_{i_{t i} i}-c_{j i}\right)\left(c_{i_{2} j}+\cdots+c_{i_{t} j}\right) v \\
& +\delta_{j i_{1}}\left(-c_{i_{1} i}+c_{i_{2} i}+\cdots+c_{i_{i} i}\right)\left(c_{i_{2} j}+\cdots+c_{i_{t} j}\right) v \\
= & -\left(c_{i_{1} i}+\cdots+c_{i_{t i}}-c_{j i}\right) x_{j} \cdot v_{i_{1}} \otimes v,
\end{aligned}
$$

as desired.

Hence, $\left(h_{i} x_{j}-x_{j} h_{i}\right) \cdot 1=0$ and

$$
\left(h_{i} x_{j}-x_{j} h_{i}\right) \cdot v_{i_{1}} \otimes \cdots \otimes v_{i_{t}}=c_{j i} x_{j} \cdot v_{i_{1}} \otimes \cdots \otimes v_{i_{t}} .
$$

11 Existence theorem II, 10/17

So there is a nontrivial L_{0}-module $\mathfrak{g l}(\mathbf{V})$. Then $L_{0}=H+X+Y$, where $H=\sum_{i} F h_{i}$, $X=\left\langle x_{i}\right\rangle, Y=\left\langle y_{i}\right\rangle$.

Exercise. Prove that X (resp. Y) is generated by $\left\{x_{i}\right\}$ (resp. $\left\{y_{i}\right\}$) freely.

- For all $h_{i},\left[h_{i}, H\right]=0,\left[h_{i},\left[x_{j}, x_{k}\right]\right]=\left(c_{j i}+c_{k i}\right)\left[x_{j}, x_{k}\right]$, induction get the main calculation:

$$
\left[h_{i},\left[x_{i_{1}},\left[\ldots,\left[x_{i_{t-1}}, x_{i_{t}}\right] \ldots\right]\right]\right]=\left(c_{i_{1} i}+\cdots+c_{i_{t}}\right)\left[x_{i_{1}},\left[\ldots,\left[x_{i_{t-1}}, x_{i_{t}}\right] \ldots\right]\right] \in X
$$

A similar result also holds for Y.

- For all $x_{i} .\left[x_{i}, H+X\right]=X$,

$$
\begin{aligned}
{\left[x_{i},\left[y_{j}, y_{k}\right]\right] } & =\left[\left[x_{i}, y_{j}\right], y_{k}\right]+\left[y_{j},\left[x_{i}, y_{k}\right]\right] \\
& =\delta_{i j}\left[h_{i}, y_{k}\right]+\delta_{i k}\left[y_{j}, h_{i}\right]=-\delta_{i j} c_{k i} y_{k}+\delta_{i k} c_{j i} y_{j} \in Y .
\end{aligned}
$$

By induction, we get $\left[x_{i}, Y\right] \subseteq Y$.

- For all y_{i}, we get $\left[y_{i}, L_{0}\right] \subseteq Y$ similarly.

Claim. $\phi\left(h_{i}\right)$ are linearly independent and the sum $L_{0}=H+X+Y$ is direct.
If $\sum a^{i} \phi\left(h_{i}\right)=0$, then for each j,

$$
0=\sum a^{i} \phi\left(h_{i}\right) v_{j}=-\sum a_{i} c_{j i} e_{j} \Longrightarrow \sum a^{i} c_{j i}=0 .
$$

Since j is arbitrary, $a^{i}=0$ for all i.
By the calculation above, $L_{0}=H+X+Y$ is a decomposition of L_{0} into eigenspaces of ad H. Indeed, the eigenvalue is $\lambda=\sum_{j} k_{j} \alpha_{j}>0$ on $X(<0$ on $Y)$, any iterative [...] in X of $x_{i_{1}}, \ldots, x_{i_{t}}$ has eigenvalue $\sum_{k} c_{i_{k}}$. Evaluate at h_{i}, this eigenvalue is of the form $\sum m_{j} c_{j i}$, where $m_{j} \geq 0$ and $\sum m_{j}=t$. So $X \cap Y=0$. (Otherwise, we get $\sum m_{j} c_{j i}=-\sum n_{j} c_{j i}$ for some $m_{j}, n_{j} \geq 0$, then $\sum\left(m_{j}+n_{j}\right) c_{j i}=0$. Since C is nondegenerate, this leads to a contradiction.)

Step 2. Adding relations $\left(\mathrm{S}_{i j}^{+}\right),\left(\mathrm{S}_{i j}^{-}\right)$:

$$
\begin{aligned}
& I=\left\langle x_{i j}:=\left(\operatorname{ad} x_{i}\right)^{-c_{j i}+1} x_{j} \mid i \neq j\right\rangle \unlhd X, \\
& J=\left\langle y_{i j}:=\left(\operatorname{ad} y_{i}\right)^{-c_{j i}+1} y_{j} \mid i \neq j\right\rangle \unlhd Y .
\end{aligned}
$$

Then J, and hence $I, K=I+J$, is an ideal of L_{0}.

Lemma 11.1. $\left[x_{k}, y_{i j}\right]=0$.

Proof of Lemma. If $k \neq i$, then $\left[x_{k}, y_{i}\right]=0$ implies that

$$
\operatorname{ad} x_{k}\left(y_{i j}\right)=\left(\operatorname{ad} y_{i}\right)^{-c_{j i}+1} \operatorname{ad} x_{k}\left(y_{j}\right)=0 .
$$

If $k=i$, then

$$
\operatorname{ad} x_{k}\left(\operatorname{ad} y_{i}\right)^{t} y_{j}=t\left(c_{j i}-t+1\right)\left(\operatorname{ad} y_{i}\right)^{t-1} y_{j}
$$

by induction on t. The result now follows by letting $t=-c_{j i}+1$.

Now we check that $J \unlhd L_{0}$: As the calculation above, we have

$$
\left(\operatorname{ad} h_{k}\right) y_{i j}=\left(-c_{j k}+\left(c_{j i}-1\right) c_{i k}\right) y_{i j} .
$$

Together with ad $h_{k}(Y) \subseteq Y$, we get ad $h_{k}(J) \subseteq J$ by Jacobi's identity. Using the Lemma and the fact ad $x_{k}(Y) \subseteq Y+H$, we get ad $x_{k}(J) \subseteq J$ (again by Jacobi's identity).

Step 3. Hence, $L:=L_{0} / K=H \oplus N^{+} \oplus N^{-}$, where $N^{+}:=X / I$ and $N^{-}:=Y / J$, and this is the semi-simple Lie algebra we want!

For $\lambda \in H^{\vee}, L_{\lambda}:=\{x \in L \mid[h, x]=\lambda(h) x\}$ as before. We had seen $H=L_{\overrightarrow{0}}$, $N^{+}=\bigoplus_{\lambda>0} L_{\lambda}, N^{-}=\bigoplus_{\lambda<0} L_{\lambda}$, and each piece has finite dimension.

The operators ad x_{i} and ad y_{i} are locally nilpotent, i.e., for each $z \in L$, there exists $k \geq 0$ such that $\left(\operatorname{ad} x_{i}\right)^{k} z=\left(\operatorname{ad} y_{i}\right)^{k} z=0$: let

$$
M_{i}=\{\text { all such } z\} .
$$

Then $x_{j} \in M_{i}$ by $\left(\mathrm{S}_{i j}^{+}\right)$, hence $h_{j} \in M_{i}$ by (S3), and hence $y_{j} \in M_{i}$ by (S2). Note that M_{i} is a Lie algebra:

$$
\left(\operatorname{ad} x_{i}\right)^{n}[y, z]=\sum_{j=0}^{n}\binom{n}{j}\left[(\operatorname{ad} x)^{j} y,(\operatorname{ad} x)^{n-j} z\right]=0
$$

by taking n large enough. We get $M_{i}=L$.
Now, $\tau_{i}:=e^{\operatorname{ad} x_{i}} e^{-\operatorname{ad} y_{i}} e^{\operatorname{ad} x_{i}} \in$ Aut L is well-defined. In fact, if $\sigma_{i} \lambda=\mu$, where $\sigma_{i}=\sigma_{\alpha_{i}}$ is the reflection, then $\tau_{i}=\sigma_{i}$ on $L_{\lambda} \oplus L_{\mu}$ as a reflection. So $\operatorname{dim} L_{\lambda}=\operatorname{dim} L_{\mu}$. This result also holds for $\sigma \lambda=\mu$, where $\sigma \in \mathscr{W}$.

It is clear that $\operatorname{dim} L_{\alpha_{i}}=1$ by the main calculation and $L_{k \alpha_{i}}=0$ if $k \neq-1,0,1$ (since $\left[x_{i}, \ldots, x_{i}\right]=0$). By some exercise before, $L_{\lambda} \neq 0$ if and only if $\lambda \in \Phi$ or $\lambda=\overrightarrow{0}$. In particular, $\operatorname{dim} L=\operatorname{dim} H+|\Phi|<\infty . L$ is semi-simple: let $A \unlhd L$ be an abelian ideal, $A=(A \cap H) \oplus \bigoplus_{\alpha \in \Phi}\left(A \cap L_{\alpha}\right)$. We see that $A \cap L_{\alpha}=0$ for all $\alpha \in \Phi$ (otherwise $\left.A \supseteq\left\langle L_{\alpha}, L_{-\alpha}\right\rangle\right)$. Hence, $A \subseteq H$ and $\left[L_{\alpha}, A\right]=0$ for all α. So $A \subseteq \bigcap_{\alpha \in \Phi} \operatorname{ker} \alpha=0$.

Now, H is abelian and self normalizing, so H is a CSA with root system Φ. The proof is complete.

For the classical case $A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$, we want to show that they are simple.

Definition 11.2. A Lie algebra L is reductive if $\operatorname{rad} L=Z(L)$.

If L is reductive, then $L^{\prime}=L / Z(L)$ is semisimple. So there is a (completely) action of $\operatorname{ad} L=\operatorname{ad} L^{\prime}$ on $L=M \oplus Z(L)$, where $M \unlhd L$ is an ideal. Then $[L, L]=[M, M] \subseteq M \cong L^{\prime}$. Hence this inclusion is an identity, so $L=[L, L] \oplus Z(L)$.

Proposition 11.3. Let $L \subseteq \mathfrak{g l}(V)$. If the action of L on V is irreducible, then L is reductive and $\operatorname{dim} Z(L) \leq 1$. If moreover $L \subseteq \mathfrak{s l}(V)$, then L is semi-simple.

Proof. Let $S=\operatorname{rad} L$, and let v be a common eigenvector v (exists by (2.4)). Then $s \cdot v=\lambda(s) v$ for all $s \in S$ for some λ. For $x \in L$, we have

$$
s \cdot(x \cdot v)=x \cdot(s \cdot v)+[s, x] \cdot v=\lambda(s) x \cdot v+\lambda([s, x]) v .
$$

Since $L \cdot v=V$, all matrices of S is upper diagonal in some basis with diagonal entries $\lambda(s)$.

Since $\operatorname{tr}[S, L] \equiv 0,\left.\lambda\right|_{[S, L]}=0$, so the calculation above shows that the action of S on V is just scalar. So $S=Z(L)$ and $\operatorname{dim} S \leq 1$. Also, if $L \subseteq \operatorname{sl}(V)$, then $S=0$.

Example 11.4. $L=A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$ are semi-simple: it suffices to check that the actions of $B_{\ell}, C_{\ell}, D_{\ell}$ on V are irreducible.

Let $W \subseteq V$ be an L-invariant subspace. Then W is invariant under $\langle\mathrm{id}, L,+, \circ\rangle \subseteq$ End V. For $L=B_{\ell}, C_{\ell}, D_{\ell}$, we get all End V.

In fact, $L=A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$ are simple with $H \cong C_{L}(H)$.

12 Representation theory of semi-simple Lie algebra, 10/19

In this section, we fix a Lie algebra L, its CSA H, root system Φ, base Δ, and Weyl group \mathscr{W}.

Facts. Let V be a L-module. Then H acts on V diagonally and for each $\lambda \in H^{\vee}, V_{\lambda}$ is defined. It is easy to see that
(a) $L_{\alpha}: V_{\lambda} \rightarrow V_{\lambda+\alpha}$;
(b) $V^{\prime}:=\sum V_{\lambda}$ is $\operatorname{direct}\left(\widehat{\triangle}: V^{\prime}\right.$ could be 0$)$;
(c) if $\operatorname{dim} V<\infty$, then $V=V^{\prime}$.

Definition 12.1. Suppose a maximal vector v^{+}exists, i.e., $v^{+} \in V$ and $L_{\alpha} v^{+}=0$ for all $\alpha>0$. (For example, when $\operatorname{dim} L$ is finite, then Lie's theorem tells us that there exists a common eigenvector v^{+}of $B=B(\Delta)$.) We may further assume that $v^{+} \in V_{\lambda}$ for some λ. We call λ a highest weight and call v^{+}a highest weight vector.

If $V=\mathfrak{U}(L) \cdot v^{+}$, then V is called a standard cyclic (or irreducible) L-module.
Notation. Let $\Phi^{+}=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. Then PBW theorem tells us that $\mathfrak{U}(L)$ has a basis $\left\{z_{i_{1}}^{k_{1}} \ldots z_{i_{t}}^{k_{t}} \mid i_{1}<\cdots<i_{t}\right\}$, where $\left\{z_{i}\right\}=\left\{h_{\bullet}, x_{\bullet}, y_{\bullet}\right\}$ and the order is given by

$$
y_{\beta_{1}}<\cdots<y_{\beta_{m}}<h_{1}<\cdots<h_{\ell}<x_{\beta_{1}}<\cdots<x_{\beta_{m}} .
$$

Proposition 12.2. Suppose V is cyclic.
(i) Then V is spanned by $y_{\beta_{1}}^{i_{1}} \cdots y_{\beta_{m}}^{i_{m}} v^{+}\left(i_{j} \geq 0\right)$, hence $V=\bigoplus_{\lambda \in H^{\vee}} V_{\lambda}$. V has weights of the form $\mu=\lambda-\sum_{i=1}^{\ell} k_{i} \alpha_{i}, k_{i} \geq 0$. Each V_{μ} has finite dimension, and $\operatorname{dim} V_{\lambda}=1$.
(ii) Every L-submodule W of V is the direct sum of its weight spaces. Hence

- V is indecomposable with unique maximal proper submodule and unique irreducible quotient module.
- In particular, if there is a surjective map $V \rightarrow V^{\prime}$, then V^{\prime} is also standard cyclic of weight λ.

Proof. (i) Consider the (vector space) decomposition $L=N^{-} \oplus B$. We have $\mathfrak{U}(L)=$ $\mathfrak{U}\left(N^{-}\right) \otimes \mathfrak{U}(B)$ (as vector space). Then $V=\mathfrak{U}\left(N^{-}\right) \cdot v^{+}$. The last assertion follows from the fact that the solutions of $\sum i_{j} \beta_{j}=\sum k_{i} \alpha_{i}$ is finite for each fixed $\left\{k_{i}\right\}$.
(ii) Let $w=\sum_{i=1}^{n} v_{i} \in W$ with $v_{i} \in V_{\mu_{i}}$. We claim that $v_{i} \in W$ for each i. If not, then there exists a w with smallest $n \geq 2$ such that $v_{i} \notin W$ for all i. Find $h \in H$ such that $\mu_{1}(h) \neq \mu_{2}(h)$. Then

$$
h h \cdot w=\sum \mu_{i}(h) v_{i} \Longrightarrow 0 \neq w^{\prime}:=\left(h-\mu_{1}(h)\right) \cdot w=\sum_{i=2}^{n}\left(\mu_{i}(h)-\mu_{1}(h)\right) v_{i},
$$

a contradiction.
Now, if $V=W_{1} \oplus W_{2}$, then $V_{\lambda} \nsubseteq W_{i}$. This implies $W_{1} \oplus W_{2} \subsetneq V$ a contradiction. This shows that $\sum_{W \subsetneq V} W \subsetneq V$ is the unique maximal proper submodule.

Theorem 12.3. For each $\lambda \in H^{\vee}$, there exists a unique (up to isomorphism) irreducible standard cyclic L-module of highest weight λ (may be infinite dimensional).

Proof. If V is an irreducible module, then the maximal vector v^{+}is unique up to scalar. Indeed, for $w \in L_{\mu}, \mathfrak{U}(L) \cdot w \subseteq \mathfrak{U}(L) \cdot v^{+}$and the equality holds if and only if $\lambda=\mu$.

Given irreducible modules $V=\mathfrak{U}(L) \cdot v^{+}$and $W=\mathfrak{U}(L) \cdot w^{+}$. Let $X=V \oplus W$. Then $\left(v^{+}, w^{+}\right) \in X_{\lambda}$ is a highest vector. Let $Y=\mathfrak{U}(L) \cdot\left(v^{+}, w^{+}\right) \subseteq X$ and consider the projections p and q to V and W, respectively. We see that $p(Y)=V$ and $q(Y)=W$. Since V and W are irreducible quotient modules of Y, they are isomorphic. This proves the uniqueness.

We prove the existence via induced module technique. Notice that $V=\mathfrak{U}(L) \cdot v^{+}$ has a 1-dimensional B-submodule V_{λ}. Thus, we define $D_{\lambda}=F v^{+}$as B-module via

$$
\left(h+\sum x_{\alpha}\right) \cdot v^{+}:=h \cdot v^{+}=\lambda(h) v^{+} .
$$

Then D is also a $\mathfrak{U}(B)$-module. Define $Z(\lambda)=\mathfrak{U}(L) \otimes_{\mathfrak{U}(B)} D_{\lambda}$, which is a left $\mathfrak{U}(L)$-module. The vector $1 \otimes v^{+} \in Z(\lambda)$ is nonzero by PBW theorem.

Since $\mathfrak{U}(L)=\mathfrak{U}\left(N^{-}\right) \otimes_{F} \mathfrak{U}(B)$, we get $Z(\lambda)=\mathfrak{U}\left(N^{-}\right) \otimes F\left(1 \otimes v^{+}\right)$. Now take $Y(\lambda) \subsetneq Z(\lambda)$ be the unique maximal proper submodule. We define $V(\lambda)=Z(\lambda) / Y(\lambda)$, which is the desired module.

13 Existence theorem, 10/24

Definition 13.1. An element $\lambda \in H^{\vee}$ is integral (resp. dominant, $(\lambda \in \Lambda)$) if $\lambda\left(h_{i}\right) \in$ $\mathbb{Z}\left(\right.$ resp. $\left.\lambda\left(h_{i}\right) \in \mathbb{N}\right)$ for all i.

Theorem 13.2. There exists a one-to-one correspondence between $\lambda \in \Lambda^{+}$and finite dimensional irreducible L-modules $V(\lambda)$. Also, the set $\Pi(\lambda)$ of weights of $V(\lambda)$ is permuted by \mathscr{W}.

Proof. Similar as in Serre's theorem. Let $m_{i}=\lambda\left(h_{i}\right) \in \mathbb{Z}_{\geq 0}, \phi: L \rightarrow \mathfrak{g l}(V)$ the representation, and $v^{+} \in V(\lambda)$ the highest weight vector.

Lemma 13.3. In $\mathfrak{U}(L)$, we have
(a) $\left[x_{j}, y_{i}^{k+1}\right]=0, j \neq i$;
(b) $\left[h_{j}, y_{i}^{k+1}\right]=-(k+1) \alpha\left(h_{j}\right) y_{i}^{k+1}$;
(c) $\left[x_{i}, y_{i}\right]^{k+1}=-(k+1) y_{i}\left(k-h_{i}\right)$

Proof of (13.3). (a). Since $\left[R_{y_{i}}, L_{y_{i}}\right]=0$, we have $\left[x_{j}, y_{i}^{k+1}\right]=\left(R_{y_{i}}^{k+1}-L_{y_{i}}^{k+1}\right) x_{j}=\left(R_{y_{i}}^{k}+\cdots+L_{y_{i}}^{k}\right)\left(R_{y_{i}}-L_{y_{i}}\right) x_{j}=\left(R_{y_{i}}^{k}+\cdots+L_{y_{i}}^{k}\right)\left[x_{j}, y_{i}\right]=0$.
(b) Induction on k. The case $k=0$ follows from the definition. For $k>0$, we have

$$
\begin{aligned}
{\left[h_{j}, y_{i}^{k+1}\right] } & =\left(h_{j} y_{i}^{k}-y_{i}^{k} h_{j}\right) y_{i}+y_{i}^{k}\left(h_{j} y_{i}-y_{i} h_{j}\right) \\
& =-k \alpha\left(h_{j}\right) y_{i}^{k+1}-y_{i}^{k} \alpha\left(h_{j}\right) y_{i}=-(k+1) \alpha\left(h_{j}\right) y_{i}^{k+1} .
\end{aligned}
$$

(c) Induction on k. The case $k=0$ again follows from the definition. For $k>0$, we have

$$
\begin{aligned}
{\left[x_{i}, y_{i}\right]^{k+1} } & =\left[x_{i}, y_{i}\right]^{k} y_{i}+y_{i}^{k}\left[x_{i}, y_{i}\right] \\
& =-k y_{i}^{k+1}\left(k-1-h_{i}\right) y_{i}+y_{i}^{k} h_{i}=-(k+1) y_{i}\left(k-h_{i}\right) .
\end{aligned}
$$

Now, for each $i, y_{i}^{m_{i}+1} \cdot v^{+}=0$: Let $w=y_{i}^{m_{i}+1} v^{+}$. Then $x_{j} \cdot v^{+}=0$ implies that $x_{j} \cdot w=0$ for all $j \neq i$ (by (a)). By (c),

$$
x_{i} \cdot w=y_{i}^{m_{i}+1} x_{i} \cdot v^{+}-\left(m_{i}+1\right) y_{i}^{m_{i}}\left(m_{i}-h_{i}\right) v^{+}=0 .
$$

If $w \neq 0$, then it is a highest vector whose weight is not equal to λ, a contradiction.
Hence, V contains a finite dimensional $S_{i}:=S_{\alpha_{i}}$-module $\left\langle v^{+}, y_{i} \cdot v^{+}, \ldots, y_{i}^{m_{i}} \cdot v^{+}\right\rangle$. Note that this is S_{i}-stable since it is y_{i}-stable, h_{i}-stable by (b), and x_{i}-stable by (c).

For any fixed i, let $V^{\prime}:=V_{i}^{\prime}$ be the sum of all finite dimensional S_{i}-submodule in V. Then $V^{\prime}=V$: say W is a finite dimensional S_{i}-submodule. Then $x_{\alpha} \cdot W, \alpha \in \Phi$ is still a finite dimensional S_{i}-module. Hence, V^{\prime} is stable under $S_{\alpha_{i}}$. Since $V^{\prime} \neq 0, V^{\prime}=V$.

So any $v \in V$ lies in a finite (sum of) finite S_{i}-module. Therefore $\phi\left(x_{i}\right)$ and $\phi\left(y_{i}\right)$ are locally nilpotent, and hence $s_{i}:=e^{\phi\left(x_{i}\right)} e^{-\phi\left(y_{i}\right)} e^{\phi\left(x_{i}\right)} \in \operatorname{Aut}(V)$ and $s_{i} V_{\mu}=V_{\sigma_{i} \mu}$. This tells us that \mathscr{W} maps $\Pi(\lambda)$ to itself and $\Pi(\lambda)$ is finite. Indeed, for each $\mu \in \Pi(\lambda)$, there exists $w \in \mathscr{W}$ such that $w \mu \in \Lambda^{+}$. Then $w \mu \prec \lambda$ and thus

$$
|\Pi(\lambda)| \leq|\mathscr{W}| \cdot\left|\left\{\nu \in \Lambda^{+} \mid \nu \prec \lambda\right\}\right|<\infty .
$$

Since each weight space V_{μ} is finite dimensional, V is finite dimensional.

Definition 13.4 (weight string). For $\mu \in \Lambda$ and $\alpha \in \Phi$, the α-string through μ is the set

$$
\{\mu+i \alpha \in \Pi(\lambda) \mid i \in \mathbb{Z}\} \subseteq \Pi(\lambda)
$$

S_{α} acts on $\bigoplus V_{\mu+i \alpha}$, so it must be connected, i.e.,

$$
\{\mu+i \alpha\}=\{\mu-r \alpha, \ldots, \mu+q \alpha\} .
$$

As before, $r-q=\langle\mu, \alpha\rangle$ and σ_{α} reverse it.

Corollary 13.5. Let $\mu \in \Lambda$. Then $\mu \in \Pi(\lambda)$ if and only if $w \mu \prec \lambda$ for all $w \in \mathscr{W}$.

Proof. $\Pi(\lambda)$ is saturated, i.e., $\mu \in \Pi(\lambda)$ and $\alpha \in \Phi$ implies $\mu-i \alpha \in \Pi(\lambda)$ for all i between 0 and $\langle\mu, \alpha\rangle$.

Choose $w \lambda \in \Lambda^{+}$, then we may obtain $w \mu$ from λ by saturated roots.

Main questions on representation theory: In terms of Euclidean system, what's $\operatorname{deg} \lambda:=\operatorname{dim} V(\lambda) ?$ What's $m_{\lambda}(\mu):=\operatorname{dim} V(\lambda)_{\mu}$? What's the irreducible decomposition of $V\left(\lambda_{1}\right) \otimes V\left(\lambda_{2}\right)$?

Definition 13.6. Let $\left\{k^{i}\right\} \subseteq H$ be the dual basis of $\left\{h_{i}\right\}$ (with respect to the killing form). For each $\alpha \in \Phi$, let $z_{\alpha}=\frac{(\alpha, \alpha)}{2} y_{\alpha}$ so that $\left[x_{\alpha}, z^{\alpha}\right]=t_{\alpha}=((\alpha, \alpha) / 2) h_{\alpha}$. We define the universal Casimir element $c_{L}:=\sum_{i=1}^{\ell} h_{i} k^{i}+\sum_{\alpha \in \Phi} x_{\alpha} z^{\alpha} \in \mathfrak{U}(L)$.

Let $\phi: L \rightarrow \mathfrak{g l}(V)$ be a nontrivial representation. For L simple, we get the ordinary Casimir element $c_{\phi}=a \cdot \phi\left(c_{L}\right)$ for some $a \in F$. Indeed, $\phi(x, y):=\operatorname{tr}(\phi(x) \phi(y))$ is nondegenerate and associative, and hence proportional to $\kappa(x, y)$ by Schur's lemma.

For $L=L_{1} \oplus \cdots \oplus L_{t}$ semi-simple, $c_{L}=c_{1}+\cdots+c_{t}, \phi\left(c_{L}\right)$ is not necessary proportional to c_{ϕ}, but it commutes with c_{ϕ}. So if ϕ is irreducible, $\phi\left(c_{L}\right)$ is scalar.

Proposition 13.7 (traces on weight spaces). Let $V=V(\lambda)$ for some $\lambda \in \Lambda^{+}$with representation $\phi: L \rightarrow \mathfrak{g l}(V)$. Then for each $\mu \in \Pi(\lambda)$,

$$
\operatorname{tr}\left(\phi\left(x_{\alpha}\right) \phi\left(z_{\alpha}\right) ; V_{\mu}\right)=\sum_{i=0}^{\infty} m_{\lambda}(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha)
$$

Proof. For α fixed, an irreducible S_{α}-module $V(m)$ of highest weight m has a basis $\left\{v_{0}, \ldots, v_{m}\right\}$, where $v_{0} \in V_{m}, v_{i}=y^{i} \cdot v_{0} / i!$. Now we scale v_{i} : let $w_{i}=((\alpha, \alpha) / 2)^{i} i!\cdot v_{i}=$ $z_{0}^{i} \cdot v_{0}$. Then

$$
\begin{aligned}
& t_{\alpha} \cdot w_{i}=(m-2 i) \frac{(\alpha, \alpha)}{2} \cdot w_{i} \\
& z_{\alpha} \cdot w_{i}=w_{i+1} \\
& x_{\alpha} \cdot w_{i}=i(m-i-1) \frac{(\alpha, \alpha)}{2} \cdot w_{i-1}
\end{aligned}
$$

Hence

$$
\operatorname{tr}\left(\phi\left(x_{\alpha}\right) \phi\left(z_{\alpha}\right) ; V(m)\right)=\sum_{i}(i+1)(m-i) \frac{(\alpha, \alpha)}{2} .
$$

Let $\mu \in \Pi(\lambda)$ with $\mu+\alpha \notin \Pi(\lambda)$. We get the α-string through $\mu: \mu-m \alpha, \ldots, \mu$, where $m=\langle\mu, \alpha\rangle$. For i between 0 and $\lfloor m / 2\rfloor$.

Consider the S_{α}-module $W=V_{\mu-m \alpha} \oplus \cdots \oplus V_{\mu}$. Write $W=\bigoplus_{i=0}^{\lfloor m / 2\rfloor} V(m-2 i)^{n_{i}}$. Let $0 \leq k \leq m / 2,0 \leq i \leq k$. We see that

$$
\phi\left(x_{\alpha}\right) \phi\left(z_{\alpha}\right) w_{k-i}=(k-i+1)(m-1-k) \frac{(\alpha, \alpha)}{2} \cdot w_{k-i} .
$$

Using the relation $\sum_{i=0}^{j} n_{i}=m_{\lambda}(\mu-j \alpha)$, we get

$$
\begin{aligned}
\operatorname{tr}\left(\phi\left(x_{\alpha}\right) \phi\left(z_{\alpha}\right) ; V_{\mu-k \alpha}\right) & =\sum_{i=0}^{k} n_{i}(k-i+1)(m-i-k) \frac{(\alpha, \alpha)}{2} \\
& =\sum_{i=0}^{k} m_{\lambda}(\mu-i \alpha)(m-2 i) \frac{(\alpha, \alpha)}{2} \\
& =\sum_{i=0}^{k} m_{\lambda}(\mu-i \alpha) \cdot(\mu-i \alpha, \alpha) .
\end{aligned}
$$

Reflection by σ_{α}, we get the case $m / 2<k \leq m$:

$$
\begin{aligned}
\operatorname{tr}\left(\phi\left(x_{\alpha}\right) \phi\left(z_{\alpha}\right) ; V_{\mu-k \alpha}\right) & =\sum_{i=0}^{m-k-1} m_{\lambda}(\mu-i \alpha) \cdot(\mu-i \alpha, \alpha) \\
& =\sum_{i=0}^{k} m_{\lambda}(\mu-i \alpha) \cdot(\mu-i \alpha, \alpha)
\end{aligned}
$$

by $(\mu-i \alpha, \alpha)=-(\mu-(m-i) \alpha, \alpha)$. This completes the proof.

Proposition 13.8 (Freudenthal's formula). The number $m(\mu):=m_{\lambda}(\mu)$ is given recursively by

$$
((\lambda+\delta, \lambda+\delta)-(\mu+\delta, \mu+\delta)) \cdot m(\mu)=2 \sum_{\alpha \succ 0} \sum_{i=1}^{\infty} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha) .
$$

Proof. Since V is irreducible, $\operatorname{tr}\left(\phi\left(c_{L}\right) ; V_{\mu}\right)=c \cdot m(\mu)$, where c is independent of μ. By the definition of c_{L},

$$
\begin{aligned}
\operatorname{tr}\left(\phi\left(c_{L}\right) ; V_{\mu}\right) & =\sum_{i=1}^{\ell} \phi\left(h_{i}\right) \phi\left(k^{i}\right)+\sum_{\alpha \in \Phi} \sum_{i=0}^{\infty} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha) \\
& =m(\mu) \cdot(\mu, \mu)+\sum_{\alpha \in \Phi} \sum_{i=1}^{\infty} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha),
\end{aligned}
$$

where the $i=0$ term is cancelled for $\alpha,-\alpha$.

Claim. For each $\alpha \in \Phi$ and $\mu \in \Lambda$,

$$
\sum_{i=-\infty}^{\infty} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha)=0
$$

Indeed, let $\mu-r \alpha, \ldots, \mu+q \alpha$ be the α-string through μ. Since $\frac{q-r}{2}=-\frac{(\mu, \alpha)}{(\alpha, \alpha)}$ and

$$
\begin{aligned}
& m(\mu-(r-j) \alpha)=m(\mu+(q-j) \alpha), \\
& \sum_{i=-\infty}^{\infty} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha)= \sum_{i<\frac{q-r}{2}} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha) \\
&+\sum_{i>\frac{q-r}{2}} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha) \\
&= 0 .
\end{aligned}
$$

By the claim,

$$
\begin{aligned}
c \cdot m(\mu) & =(\mu, \mu) m(\mu)+\sum_{\alpha \succ 0}(\mu, \alpha) \cdot m(\mu)+2 \sum_{\alpha \succ 0} \sum_{i=1}^{\infty} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha) \\
& =(\mu, \mu+2 \delta) \cdot m(\mu)+2 \sum_{\alpha \succ 0} \sum_{i=1}^{\infty} m(\mu+i \alpha) \cdot(\mu+i \alpha, \alpha) .
\end{aligned}
$$

For $\mu=\lambda$, we get $c=(\lambda, \lambda+2 \delta)$. So the statement now follows from the identity

$$
(\lambda+2 \delta, \lambda)-(\mu+2 \delta, \mu)=(\lambda+\delta, \lambda+\delta)-(\mu+\delta, \mu+\delta) .
$$

Also, $w \mu \prec \lambda$ for all $w \in \mathscr{W}$ implies that $(\mu+\delta, \mu+\delta)<(\lambda+\delta, \lambda+\delta)$.

14 Character theory, 10/26

Let $\lambda \in \Lambda^{+}$be a weight, and let $V(\lambda)=\bigoplus_{\mu \in \Pi(\lambda)} V(\lambda)_{\mu}^{\oplus m_{\lambda}(\mu)}$ be the corresponding irreducible module. We define its formal character to be

$$
\mathrm{ch}_{\lambda}=\operatorname{ch}_{V(\lambda)}=\sum_{\mu \in \Pi(\lambda)} m_{\lambda}(\mu) e(\mu) \in Z[\Lambda],
$$

where $\{e(\mu)\}$ is a free basis of the group ring.
For a finite dimensional module $V \in \operatorname{Rep} L$, we define ch_{V} similarly. Then $\mathrm{ch}_{V \oplus V^{\prime}}=$ $\mathrm{ch}_{V}+\mathrm{ch}_{V^{\prime}}$, and $\mathrm{ch}_{V \otimes V^{\prime}}=\mathrm{ch}_{V} \cdot \mathrm{ch}_{V^{\prime}}$. Hence, there is a homomorphism ch : Rep $L \rightarrow \mathbb{Z}[\Lambda]$.

Under the correspondence

$$
\mathbb{Z}[\Lambda] \quad \longleftrightarrow \mathbb{Z}^{\oplus \Lambda}=\{f: \Lambda \rightarrow \mathbb{Z} \mid f \text { has finite support }\}
$$

$e(\mu)$ corresponds to e_{μ} (or ε_{μ}), where

$$
e_{\mu}(\lambda)= \begin{cases}1, & \text { if } \lambda=\mu \\ 0, & \text { if } \lambda \neq \mu\end{cases}
$$

Definition 14.1. (a) The Kostant function $p(\lambda)$ is the number of ways to write $\lambda=\sum_{\alpha \prec 0} k_{\alpha} \alpha$ with $k_{\alpha} \geq 0$.
(b) The Weyl function $q=\prod_{\alpha \succ 0}\left(e_{\alpha / 2}-e_{-\alpha / 2}\right)$, where we view $e_{\alpha / 2}=e(\alpha / 2), e_{-\alpha / 2}=$ $e(-\alpha / 2) \in \mathbb{Z}[\Lambda / 2]$, and

$$
q=\sum_{\sigma \in \mathscr{W}}(-1)^{|\sigma|} e_{\sigma \delta} \in Z[\Lambda]
$$

since $\delta=\frac{1}{2} \sum_{\alpha \succ 0} \alpha \in \Lambda$.

Theorem 14.2 (Kostant). For $\lambda \in \Lambda^{+}$,

$$
m_{\lambda}(\mu)=\sum_{\sigma \in \mathscr{W}}(-1)^{|\sigma|} p(\mu+\delta-\sigma(\lambda+\delta))
$$

Theorem 14.3 (Weyl character formula). For $\lambda \in \Lambda^{+}$,

$$
q \cdot \mathrm{ch}_{\lambda}=\sum_{\sigma \in \mathscr{W}}(-1)^{|\sigma|} e_{\sigma(\lambda+\delta)} .
$$

Corollary 14.4. The degree of λ, i.e., $\operatorname{dim} V(\lambda)$, is equal to

$$
\frac{\prod_{\alpha \succ 0}(\lambda+\delta, \alpha)}{\prod_{\alpha \succ 0}(\delta, \alpha)}
$$

Theorem 14.5 (Steinberg). For $\lambda^{\prime}, \lambda^{\prime \prime} \in \Lambda^{+}$, if we write $V\left(\lambda^{\prime}\right) \otimes V\left(\lambda^{\prime \prime}\right)=\bigoplus_{\lambda \in \Lambda^{+}} V(\lambda)^{\oplus d_{\lambda}}$, then

$$
d_{\lambda}=\sum_{\sigma, \tau \in \mathscr{W}}(-1)^{|\sigma|+|\tau|} p\left(\lambda+2 \delta-\sigma\left(\lambda^{\prime}+\delta\right)-\tau\left(\lambda^{\prime \prime}+\delta\right)\right) .
$$

Theorem 14.6 (Weyl). Let G be a compact Lie group. Then a two G-representations $(V, \rho),\left(V^{\prime}, \rho^{\prime}\right)$ are isomorphic if and only if χ_{ρ}

Harish-Chandra proved this result for semi-simple Lie algebras.
For a L-module V, let $P(V)=S\left(V^{*}\right)$. For example, $P(H)$ is spanned by pure powers λ^{k} (exercise). For an element f, we define its symmetrization $\operatorname{Sym} f=\sum_{\boldsymbol{\sigma} \in \mathscr{W}} f^{\sigma}$, where $f^{\sigma}(x)=\sigma \cdot f(x)=f\left(\sigma^{-1} x\right)$. Then $P(V)^{\mathscr{W}}$ is spanned by $\operatorname{Sym} \lambda^{k}$'s.

Let $G=\operatorname{Int} L=\left\langle e^{\mathrm{ad} x}\right| x$ nilpotent \rangle acts on $P(V)$ in the obvious way. We get $P(V)^{G}$, the G-invariant polynomial functions.

Theorem 14.7 (Chevalley). The map

$$
\theta: P(L)^{G} \longrightarrow P(H)^{\mathscr{W}}
$$

is surjective, where $\theta(f)=\left.f\right|_{H}$.

Definition 14.8. For $\lambda \in H^{\vee}$, the character $\chi_{\lambda}: Z=Z(\mathfrak{U}(L)) \rightarrow F$ is defined by mapping $z \in Z$ to $z \cdot v^{+} / v^{+}$. Note that $z \cdot v^{+}=a \cdot v^{+}$for some a since $h \cdot z \cdot v^{+}=$ $z \cdot h \cdot v^{+}=z \cdot \lambda(h) v^{+}$and $x_{\alpha} \cdot z \cdot v^{+}=z \cdot x_{\alpha} \cdot v^{+}=0$.

Proposition 14.9 (Linkage). For $\lambda, \mu \in H^{\vee}$, we say μ is equivalent to λ, denoted by $\mu \sim \lambda$, if $\lambda+\delta=w(\mu+\delta)$ for some $w \in \mathscr{W}$. Then $\lambda \sim \mu$ implies $\chi_{\lambda}=\chi_{\mu}$.

Proof. We have, by PBW bases, that

$$
Z(\lambda)=\mathfrak{U}(L) / I(\lambda),
$$

where $I(\lambda)=\mathfrak{U}(L)\left\langle x_{\alpha}, h_{\alpha}-\lambda\left(h_{\alpha}\right) \cdot 1\right\rangle$.
If $m:=\langle\lambda, \alpha\rangle \geq 0, \bar{y}_{\alpha}^{m+1}$ is still a maximal vector, and is not 0 if $\lambda\left(\alpha_{j}\right)<0$ for some j. For

$$
\begin{aligned}
\mu & =\sigma_{\alpha}(\lambda+\delta)-\delta \\
& =(\lambda-\langle\lambda, \alpha\rangle \alpha)-(\delta-(\delta-\alpha)) \\
& =\lambda-(m+1) \alpha,
\end{aligned}
$$

$Z(\lambda)$ contains image of $Z(\mu)$. This implies that $\chi_{\lambda}=\chi_{\mu}$.
If $m<0$, then

$$
\langle\mu, \alpha\rangle=\langle\lambda, \alpha\rangle-2(\langle\lambda, \alpha\rangle+1)=-\langle\lambda, \alpha\rangle-2 .
$$

$m=-1$ is equivalent to $\mu=\lambda$, and $m \leq-2$ implies that $\langle\mu, \alpha\rangle \geq 0$, which reduce to the case $m \geq 0$.

15 The proof of Harish-Chandra's theorem and Kostant/Weyl formulas, 10/31

Theorem 15.1 (Harish-Chandra). For $\lambda, \mu \in H^{\vee}$. If $\chi_{\lambda}=\chi_{\mu}$, then $\lambda \sim \mu$.

Proof. Let $\xi: \mathfrak{U}(L) \rightarrow \mathfrak{U}(H)$ via PBW bases. Let v^{+}be a maximal vector of $V(\lambda)$. Then

$$
\prod_{\alpha \succ 0} y_{\alpha}^{i_{\alpha}} \prod_{i} h_{i}^{k_{i}} \prod_{\alpha \succ 0} x_{\alpha}^{j_{\alpha}} v^{+}=0
$$

if there exists $j_{\alpha}>0$, or maps to lower weight vector if there exists $i_{\alpha}>0$. Hence, the only bases contribute $\chi_{\lambda}(z)$ are from $\mathfrak{U}(H)$, i.e., $\chi_{\lambda}(z)=\lambda(\xi(z))$ for $z \in Z$. Here, we extend $\lambda \in H^{\vee}$ to $\lambda: \mathfrak{U}(H) \rightarrow F$.

Consider the Lie algebra homomorphism

Let

Since $\delta=\frac{1}{2} \sum_{\alpha \succ 0} \alpha=\sum \lambda_{i}$,

$$
(\lambda+\delta)\left(h_{i}-1\right)=\lambda\left(h_{i}\right)+1-(\lambda+\delta) \cdot 1=\lambda\left(h_{i}\right)
$$

So

$$
(\lambda+\delta)(\psi(z))=\lambda(\xi(z)))=\chi_{\lambda}(z) .
$$

If $\lambda \in \Lambda$, all \mathscr{W}-conjugates of $\mu=\lambda+\delta$ are equal at $\psi(z)$, so \mathscr{W} fixes $\psi(z)$ for each $z \in Z$. Hence, there is a homomorphism $\psi: Z \rightarrow S(H)^{\mathscr{W}}$. Thus, if $\lambda \sim \mu$, then $\chi_{\lambda}=\chi_{\mu}$ for all $\lambda, \mu \in H^{\vee}$.

Conversely, let $\chi_{\lambda}=\chi_{\mu}$. Then $\lambda+\delta=\mu+\delta$ on $\psi(Z) \subseteq S(H)^{\mathscr{W}}$. If $\psi(Z)=S(H)^{\mathscr{W}}$, then

$$
\lambda+\delta=w(\mu+\delta)
$$

for some $w \in \mathscr{W}$ and done!
Let $G=\operatorname{Int} L$. Recall that $S(L) \cong \mathfrak{U}(L)$ only as G-module (not algebra). So we have a diagram via the isomorphism $H^{\vee} \xrightarrow{\sim} H$ induced by the killing form:

where $P(-)$ is the polynomial function functor.

Lemma 15.2. The center $Z=Z(\mathfrak{U}(L))$ is equal to $\mathfrak{U}(L)^{G}$.

Proof of Lemma. Let $z \in Z$. We see that $e^{\operatorname{ad} x} z=z$ and hence $\sigma(z)=z$ for each $\sigma \in G$. Conversely, let $x \in \mathfrak{U}(L)^{G}$ and let $n=\operatorname{ad} x_{\alpha}$ with $n^{t} \neq 0, n^{t+1}=0$. Take distinct numbers $a_{1}, \ldots, a_{t+1} \in F$. Then

$$
e^{a_{i} n}=1+a_{i} n+\cdots+\frac{a_{i}^{t}}{t!} n^{t} \in G
$$

and

$$
n=b_{1} e^{a_{1} n}+\cdots+b_{t+1} e^{a_{t+1} n}
$$

for some b_{i} 's. So

$$
\left(\operatorname{ad} x_{\alpha}\right)(x)=\left(\sum_{i=1}^{t+1} b_{i}\right) x
$$

and $\sum b_{i}=0$ since n is nilpotent. Hence, $\left[x_{\alpha}, x\right]=0$. Since α is arbitrary, $x \in Z$.

To apply it, let \mathfrak{X} be the space of functions $f: H^{\vee} \rightarrow F$ supported on region of the form $\lambda=\sum_{\alpha \succ 0} \mathbb{Z}_{\geq 0} \alpha$.

Let $\theta(\lambda)=\left\{\mu \in H^{\vee} \mid \mu \prec \lambda, \mu \sim \lambda\right\}$.
Main example. $\operatorname{ch}_{Z(\lambda)} \in \mathfrak{X}$. We compute $\operatorname{ch}_{\lambda}=\operatorname{ch}_{V(\lambda)}$ via $\operatorname{ch}_{Z(\mu)}$'s within \mathfrak{X}. By Harish-Chandra's theorem, an easy induction shows that $Z(\lambda)$ has a composition series with factor of the form $V(\mu), \mu \in \theta(\lambda)$. Reversing it! By triangular system, we write

$$
\operatorname{ch}_{V(\lambda)}=\sum_{\mu \in \theta(\lambda)} c(\mu) \operatorname{ch}_{Z(\mu)}
$$

where $c(\mu) \in \mathbb{Z}$ and $c(\lambda)=1$. For $\lambda \in \Lambda^{+}, \sigma\left(\operatorname{ch}_{\lambda}\right)=\operatorname{ch}_{\lambda}$ for each $\sigma \in \mathscr{W}$. We have

$$
\sigma\left(q * \operatorname{ch}_{\lambda}\right)=\sigma(q) * \sigma\left(\operatorname{ch}_{\lambda}\right)=(-1)^{|\sigma|} q * \operatorname{ch}_{\lambda} .
$$

Also,

- $\operatorname{ch}_{Z(\lambda)}(\mu)=P(\mu-\lambda)=\left(P * e_{\lambda}\right)(\mu) ;$
- $q * p * e_{-\delta}=e_{\delta} * \prod_{\alpha \succ 0}\left(e_{0}-e_{-\alpha}\right) * p * e_{-\delta}$

$$
=\prod_{\alpha \succ 0}\left(e_{0}-e_{-\alpha}\right) \prod_{\alpha \succ 0}\left(e_{0}+e_{-\alpha}+e_{-2 \alpha}+\cdots\right)=e_{0} .
$$

Hence, $q * \operatorname{ch}_{Z(\lambda)}=e_{\lambda+\delta}$, and thus

$$
q * \operatorname{ch}_{V(\lambda)}=\sum_{\mu \in \theta(\lambda)} c(\mu) e_{\mu+\delta}
$$

Since \mathscr{W} acts on $\{\mu+\delta \mid \mu \in \theta(\lambda)\}$ transitively, $c(\mu)=(-1)^{|\sigma|}$, where $\sigma(\mu+\delta)=\lambda+\delta$. So we get

$$
q * \operatorname{ch}_{\lambda}=\sum_{\sigma \in \mathscr{W}}(-1)^{|\sigma|} e_{\sigma(\lambda+\delta)} .
$$

Definition 15.3. (a) A Lie group G is a $\left(C^{\infty}\right)$ manifold such that its group law

$$
\begin{aligned}
G \times G & \longrightarrow G \\
(g, h) & \longmapsto h^{-1}
\end{aligned}
$$

is C^{∞}.
(b) $f: G \rightarrow H$ is a Lie group homomorphism if it is a group homomorphism and C^{∞}.
(c) If f is an immersion, i.e., the tangent map $d f_{a}: T_{a} G \rightarrow T_{f(a)} H$ is injective, we call $G \hookrightarrow H$ an (immersed) Lie subgroup.

If $f(G) \subseteq H$ is closed, then $\operatorname{Top}(G)$ is diffeomorphic to $\left.\operatorname{Top}(H)\right|_{f(G)}$.
Main example. $\mathrm{GL}(n, F) \subseteq \mathrm{M}_{n \times n}(F) \cong F^{n^{2}}$. Since $y^{-1}=\operatorname{adj} y / \operatorname{det} y, y^{-1}$ is a rational function in y_{i}^{j},s, which is C^{∞} outside $\operatorname{det}^{-1}(0)$. Hence, $\mathrm{GL}(n, F)$ is a Lie group (in fact an algebraic group).

For the quaternion numbers \mathbb{H}, we define

$$
\begin{aligned}
& \mathrm{M}_{n \times n}(\mathbb{H})=\left\{g: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n} \text { (right) linear over } \mathbb{H}\right\}, \\
& \operatorname{GL}(n, \mathbb{H})=\left\{g \in \mathrm{M}_{n \times n}(\mathbb{H}) \text { invertible }\right\}
\end{aligned}
$$

If we write $\mathbb{H}=\mathbb{C} \oplus j \mathbb{C}$:

$$
a+b i+c j+d k=(a+b i)+j(c-d i),
$$

then we can view $\mathrm{GL}(n, \mathbb{H})$ as a subgroup of $\mathrm{GL}(2 n, \mathbb{C})$: since

$$
(u+j v) \cdot j=j \bar{u}-\bar{v}=\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right)\binom{\bar{u}}{\bar{v}}=: J\binom{\bar{u}}{\bar{v}},
$$

$g \in \mathrm{M}_{n \times n}(\mathbb{H})$ if and only if

$$
g \in \mathrm{GL}(2 n, \mathbb{C})_{\mathbb{H}}:=\left\{Y \in \mathrm{M}_{n \times n}(\mathbb{C}) \mid Y J=J \bar{Y}\right\}=\left\{Y=\left(\begin{array}{ll}
A & -\bar{B} \\
B & -\bar{A}
\end{array}\right)\right\} .
$$

Compact Lie groups.

$$
\begin{aligned}
& \mathrm{O}(n)=\left\{g \in \mathrm{GL}(n, \mathbb{R}) \mid g^{\top} g=\mathrm{id}\right\} \supseteq \mathrm{SO}(n)=\{g \in \mathrm{O}(n) \mid \operatorname{det} g=1\}, \\
& \mathrm{U}(n)=\left\{g \in \mathrm{GL}(n, \mathbb{C}) \mid g^{*} g=\mathrm{id}\right\} \supseteq \mathrm{SU}(n)=\{g \in \mathrm{U}(n) \mid \operatorname{det} g=1\}
\end{aligned}
$$

where $g^{*}=\bar{g}^{\top}$. Since $\mathrm{O}(n)$ and $\mathrm{SO}(n)$ are defined by polynomials, we can define $\mathrm{O}(n, F)$ and $\mathrm{SO}(n, F)$ over every field F.

The symplectic group is defined by

$$
\mathrm{Sp}(n)=\left\{g \in \mathrm{M}_{n \times n}(\mathrm{H}) \mid g^{*} g=\mathrm{id}\right\} \subseteq \mathrm{GL}(n, \mathbb{H}),
$$

where $\overline{a+b i+c j+d k}=a-b i-c j-d k$, i.e., $g \in \operatorname{Sp}(n)$ preserves the inner product $(z, w)=\sum \bar{z}_{i} w_{i}$. Under the identification $\mathbb{H}=\mathbb{C} \oplus j \mathbb{C}$, we have

$$
\operatorname{Sp}(n)=\mathrm{SU}(2 n) \cap \mathrm{M}_{2 n \times 2 n}(\mathbb{C})_{\mathbb{H}}=\mathrm{SU}(2 n) \cap \mathrm{Sp}_{2 n},
$$

where

$$
\mathrm{Sp}_{2 n}:=\left\{g \in \mathrm{GL}(n, \mathbb{C}) \mid g^{\top} J g=J\right\} .
$$

(Note that under the condition $g^{*} g=1, g J=J \bar{g}$ if and only if $g^{\top} J g=J$.)
By definition, $\mathrm{Sp}(1)=\mathrm{SU}(2) \cong S^{3}$, where $\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right)$ is mapped to $(a, b) \in \mathbb{C}^{2} \cong \mathbb{R}^{4}$. In fact, there is a 2-1 cover from $\operatorname{Sp}(1)$ to $\mathrm{SO}(3)$. Moreover, since $\pi_{1}(\mathrm{SO}(n))=\mathbb{Z} / 2 \mathbb{Z}$ for all $n \geq 3$, there exists a simply connected double cover $\operatorname{Spin}_{n}(\mathbb{R}) \rightarrow \mathrm{SO}(n)$ called the spin group. When $n=3, \operatorname{Spin}_{3}(\mathbb{R})$ is just $\operatorname{Sp}(1)$.

Definition 15.4. The Clifford algebra on $V=\left(\mathbb{R}^{n},(-,-)\right)$ is

$$
\mathrm{Cl}_{n}(\mathbb{R})=\mathrm{Cl}(V):=T(V) /\langle x \otimes x+(x, x)\rangle,
$$

i.e., $x y+y x=-2(x, y)$.

Examples. $\mathrm{Cl}_{0}(\mathbb{R}) \cong \mathbb{R}, \mathrm{Cl}_{1}(\mathbb{R}) \cong \mathbb{C}, \mathrm{Cl}_{2}(\mathbb{R}) \cong \mathbb{H}$.
Let e_{1}, \ldots, e_{n} be a basis of V. Then $\mathrm{Cl}(V)$ has basis $\left\{e_{i_{1}} \cdots e_{i_{k}} \mid i_{1}<\cdots<i_{k}\right\}$. As a vector space, $\mathrm{Cl}(V)$ is isomorphic to $\bigwedge V$.

Definition 15.5. Clifford module structure on $\bigwedge V$: for $x \in V, c(x)=\epsilon(x)-\iota(x)=$ $(x \wedge)-(x\lrcorner)$. Here,

$$
x\lrcorner\left(y_{1} \wedge \cdots \wedge y_{k}\right)=\sum_{i=1}^{k}(-1)^{i-1}\left(x, y_{i}\right) y_{1} \wedge \cdots \wedge \widehat{y}_{i} \wedge \cdots y_{k} .
$$

By checking on standard basis, we can show that $c(x)^{2}=-(x, x)$.

Definition 15.6. We define the homomorphisms

$$
\begin{array}{cc}
\Phi: \quad \mathrm{Cl}(V) & \longrightarrow \operatorname{End}(\bigwedge V) \\
& x_{1} \cdots x_{k} \longmapsto c\left(x_{1}\right) \cdots c\left(x_{k}\right)
\end{array}
$$

and

$$
\begin{aligned}
\Psi: \quad \mathrm{Cl}(V) & \longrightarrow \wedge V \\
v & \longmapsto v \cdot 1 .
\end{aligned}
$$

Now, we construct $\operatorname{Spin}_{n}(\mathbb{R})$:
Facts. $\operatorname{Sp}(n)$ for $n \geq 1$ and $\operatorname{SU}(n)$ for $n \geq 2$ are simply connected. $\pi_{1}(\mathrm{SO}(2))=\mathbb{Z}$, $\pi_{1}(\mathrm{SO}(n))=\mathbb{Z} / 2 \mathbb{Z}$ for $n \geq 3$. Indeed, for a Lie group G and its Lie subgroup H, we can consider the homogeneous space (coset space) G / H. There is a fiber bundle

so hence an induced long exact sequence

$$
\cdots \longrightarrow \pi_{k}(H) \longrightarrow \pi_{k}(G) \longrightarrow \pi_{k}(G / H) \longrightarrow \pi_{k-1}(H) \longrightarrow \cdots .
$$

For the case $G=\operatorname{SO}(n)$ and $G / H=S^{n-1}, H \cong \operatorname{Stab}(x) \cong \operatorname{SO}(n-1)$ for all $x \in G / H$. Thus, the statement $\pi_{1}(\mathrm{SO}(n))=\mathbb{Z} / 2 \mathbb{Z}$ for $n \geq 4$ is equivalent to $\pi_{1}(\mathrm{SO}(3))=\mathbb{Z} / 2 \mathbb{Z}$.

To show that $\mathrm{SO}(3) \cong S^{3} /\{ \pm 1\}$, we note that $\mathrm{SO}(3)=\mathrm{O}(\operatorname{Im} \mathbb{H})^{\circ}$. So the adjoint map

$$
\mathrm{Ad}: \mathrm{Sp}(1) \longrightarrow \mathrm{SO}(3),
$$

where

$$
\operatorname{Ad}(g)(u)=g u g^{-1}=g u \bar{g},
$$

is well-defined. For $\{i, j, k\}$ is an orthogonal basis of $\operatorname{Im} \mathbb{H}$. By checking on this basis, $\operatorname{Ad}(\cos \theta+v \sin \theta)$ is equal to the rotation $R_{2 \theta}$ in $i-j$ plane. We see that Ad is surjective and ker $\operatorname{Ad}=\{ \pm 1\}$. Hence, $\operatorname{Spin}_{3}(\mathbb{R})=\operatorname{SU}(2)=\operatorname{Sp}(1)=S^{3}$.

Definition 15.7. Write $\mathrm{Cl}(V)=\mathrm{Cl}(V)^{+} \oplus \mathrm{Cl}(V)^{-}$(under the identification $\wedge V=$ $\left.(\bigwedge V)^{+} \oplus(\bigwedge V)^{-}\right)$. There is a main involution α defined by

$$
\alpha\left(x_{1} \cdots x_{k}\right)=x_{1} \cdots x_{k} .
$$

It is easy to see that α is a homomorphism. The conjugation on $\mathrm{Cl}(V)$ is defined to be

$$
\left(x_{1} \cdots x_{k}\right)^{*}=\alpha\left(x_{k} \cdots x_{1}\right)
$$

The spin group and the pin group are now defined to be

$$
\begin{aligned}
\operatorname{Spin}(V) & =\left\{g \in \mathrm{Cl}(V)^{+} \mid g g^{*}=\mathrm{id}, g V g^{*}=V\right\} \\
\operatorname{Pin}(V) & =\left\{g \in \mathrm{Cl}(V) \mid g g^{*}=\mathrm{id}, g V g^{*}=V\right\}
\end{aligned}
$$

These groups lie in $\mathrm{Cl}(V)^{\times}$, and hence are Lie subgroups.

Theorem 15.8. There are exact sequences

$$
\begin{aligned}
& 1 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Pin}_{n}(\mathbb{C}) \xrightarrow{\rho} \mathrm{O}(n) \longrightarrow 1 \\
& 1 \longrightarrow\{ \pm 1\} \longrightarrow \operatorname{Sin}_{n}(\mathbb{C}) \xrightarrow{\rho} \mathrm{SO}(n) \longrightarrow 1
\end{aligned}
$$

where $\rho(g)(v)=\alpha(g) v g^{*}$. Moreover, $\operatorname{Pin}_{n}(\mathbb{R})$ has 2 connected components and $\operatorname{Pin}_{n}(\mathbb{R})=$ $\operatorname{Spin}_{n}(\mathbb{R})^{\circ}$.

Proof. For $\operatorname{Pin}_{n}(\mathbb{R})$,

$$
|\rho(g) x|^{2}=-\alpha(g) x g^{*}\left(\alpha(g) x g^{*}\right)^{*}=\alpha(g) x g^{*} g^{* *} x^{*} \alpha(g)^{*}=\alpha(g)|x|^{2} \alpha(g)^{*}
$$

- ρ surjects reflections: $r_{x}:=\rho(x)$.
- $\operatorname{ker} \rho=\{ \pm 1\}$: it suffices to show $\operatorname{ker} \rho \subseteq \mathbb{R}$. Let $g \in \operatorname{ker} \rho$, so that $\alpha(g) x=x g$ for all $x \in V$. Write $g=e_{1} a+b$, where b has no e_{1} in its products. Take $x=e_{1}$, we get

$$
-e_{1} \alpha(a) e_{1}+\alpha(b) e_{1}=-a+e_{1} b
$$

Since $-e_{1} \alpha(a) e_{1}=a, \alpha(b) e_{1}=e_{1} b$, we get $a=0$. By symmetry, there is no e_{i} component in g for each i. Hence, $g \in \mathbb{R}$.

So

$$
\operatorname{Pin}_{n}(\mathbb{R})=\left\{x_{1} \cdots x_{k}| | x_{i} \mid=1, k \leq 2 n\right\}
$$

and

$$
\operatorname{Spin}_{n}(\mathbb{R})=\left\{x_{1} \cdots x_{k}| | x_{i} \mid=1, k \text { even }\right\} .
$$

Finally, $\operatorname{Spin}_{n}(\mathbb{R})$ is connected (for $n \geq 2$):

$$
\gamma(t)=\cos t+e_{1} e_{2} \sin t=e_{1}\left(-e_{1} \cos t+e_{2} \sin t\right) \in \operatorname{Spin}_{n}(\mathbb{R})
$$

connects ker $\rho=\{ \pm 1\}$. Also, $\operatorname{Pin}_{n}(\mathbb{R})=x \operatorname{Spin}_{n}(\mathbb{R}) \sqcup \operatorname{Spin}_{n}(\mathbb{R})$ for any $x \in S^{n-1}$.

16 Integration, 11/7

Proposition 16.1. Let G be a connected Lie group. Then $G=\bigcup_{n \geq 1} U^{n}$, where U is any neighborhood of the identity $e \in G$. In particular, G is second countable.

Proof. Let $V=U \cap U^{-1}$, which is open, $H=\bigcup_{n \geq 1} V^{n} \subseteq G$. For each $g \in G, g H$ is also open. Hence, $G=\bigsqcup_{\alpha \in G / H} g_{\alpha} H$. Since G is connected, $G=e H=H$.

Proposition 16.2. Let H be a discrete normal subgroup of a connected Lie group G. Then H lies in the center of G.

Proof. For $h \in H$, consider the set $C_{h}=\left\{g h g^{-1} \mid g \in G\right\} \subseteq H$. Since G is connected, C_{h} is connected. Since H is discrete, $C_{h}=\{h\}$, which implies $h \in Z(G)$.

Theorem 16.3. Let G be a connected Lie group. The universal cover \widetilde{G} of G is a Lie group, such that the canonical map $\pi: \widetilde{G} \rightarrow G$ is a group homomorphism. In particular, $K:=\operatorname{ker} \pi$ is a normal discrete subgroup of G, hence abelian.

Proof. We only need to define the Lie group structure on \widetilde{G}. Fix $\widetilde{e} \in \pi^{-1}(e)$. Consider

$$
\begin{aligned}
M: & \widetilde{G} \times \widetilde{G} \longrightarrow \\
& (\widetilde{g}, \widetilde{h}) \longrightarrow \pi(\widetilde{g}) \pi(\widetilde{h})^{-1}
\end{aligned}
$$

There exists a unique map $\widetilde{s}: M \rightarrow \widetilde{G}$ such that $\pi \circ \widetilde{s}=s$. This \widetilde{s} defines the group structure on \widetilde{G} (and that π is a group homomorphism).

Example. Let G be a Lie group. Then $\pi_{k}(G)$ is abelian for each $k \geq 1, \pi_{0}(G) \cong G / G^{\circ}$, where G° is the connected component of G. The composition law in π_{k} is equal to the group law in G.

Indeed, let $\phi_{1}, \phi_{2}:\left(I^{k}, \partial I^{k}\right) \rightarrow(G, e)$ be 2 continuous maps. Then

$$
\phi_{1} * \phi_{2} \sim\left(\phi_{1} * \phi_{0}\right) *\left(\phi_{0} * \phi_{2}\right)=\phi_{1} \cdot \phi_{2},
$$

where the • is the group law in G.

To show that π_{k} is abelian for $k \geq 2$, simply note that

| ϕ_{1} | ϕ_{2} |
| :--- | :--- |\sim| ϕ_{1} | id |
| :--- | :--- |
| id | ϕ_{2} |\sim| id | ϕ_{1} |
| :--- | :--- |
| ϕ_{2} | id |\sim| ϕ_{2} | ϕ_{1} |
| :--- | :--- |

Fact. The tangent bundle $T G$ is trivial, i.e., $T G \cong_{C^{\infty}} G \times T_{e} G$, for example, via left invariant vector fields. For $v \in T_{e} G$, let $\widetilde{v}(g)=\ell_{g *} v$, where ℓ_{g} is the left translation, while r_{g} is the right translation. \widetilde{v} is a left invariant vector fields by its value at $T_{e} G$. Using this construction, we can also define left invariant metric $\langle-,-\rangle$, left invariant volume form, denoted by $\omega_{g}=d g$, unique up to scalar. If G is compact, we can choose a unique $d g$ such that

$$
\int_{G} d g=1
$$

Theorem 16.4. If G is compact, then $d g$ is also right invariant and inversion invariant.

Proof. Since $d g$ is left invariant,

$$
\ell_{g}^{*}\left(r_{h}^{*} d g\right)=r_{h}^{*} \ell_{g}^{*} d g=r_{h}^{*} d g
$$

is also left invariant, and hence there exists $c(h) \in \mathbb{R}^{\times}$such that $r_{h}^{*} d g=c(h)^{-1} d g$. Then $c: G \rightarrow \mathbb{R}^{\times}$is a homomorphism. Since G is compact, $\operatorname{Im} c \subseteq\{ \pm 1\}$. Note that $c(h)=-1$ if and only if r_{h} is orientation reversing.

Now,

$$
\int_{G} f(g h) d g=\int_{G} f(g h) d(g h) \cdot c(h)=\int_{G} f(g) d g .
$$

Theorem 16.5 (Fubini). Let G be a compact Lie group, $H \subseteq G$ a closed subgroup. If $\ell_{h}^{*}=\operatorname{id}$ on $\bigwedge^{\text {top }}(G / H)_{\bar{e}}$, then G / H has a unique left invariant volume form $\omega_{G / H}=$ $d(g H)=d \bar{g}$ such that

$$
\int_{G / H} F d \bar{g}=\int_{G}(F \circ \pi) d g
$$

where $\pi: G \rightarrow G / H$ is the quotient map. Moreover,

$$
\int_{G} f(g) d g=\int_{G / H} \int_{H} f(g h) d h d(g H)
$$

17 Representation of Lie groups, 11/9

A group representation (π, V) of G is a (continuous) homomorphism $\pi: G \rightarrow \mathrm{GL}(V)$, where G is a Lie group and V is a finite dimensional vector space over \mathbb{C}. For two representations $(\pi, V),\left(\pi^{\prime}, V^{\prime}\right)$, the set of morphisms between them are

$$
\operatorname{Hom}_{G}\left(V, V^{\prime}\right)=\left\{T: V \rightarrow V^{\prime} \mid T \circ \pi(g)=\pi^{\prime}(g) \circ T, \forall g \in G\right\} .
$$

Examples.

1) Standard representation: If G is a subgroup of $\operatorname{GL}(n, F), F=\mathbb{R}, \mathbb{C}$, then the inclusion $G \hookrightarrow \mathrm{GL}(n, F)$ is a representation, where $V=\mathbb{C}^{n}$. Also, G acts on functions on V by $(g \cdot f)(v)=f\left(g^{-1} v\right)$.
2) Let $V_{m}\left(\mathbb{R}^{n}\right)=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{m}$, the space of homogeneous degree m polynomials. We see that $\operatorname{dim} V_{m}\left(\mathbb{R}^{n}\right)=\binom{n+m-1}{m}$. Let $G=\mathrm{O}(n) \subseteq \mathrm{GL}(n, \mathbb{R})$. Then elements in G commutes with the Laplacian $\triangle=\sum \partial_{i}^{2}$, i.e.,

$$
\triangle(g \cdot f)=g(\Delta f)
$$

Hence, G acts on the harmonic polynomials $\mathscr{H}_{m}\left(\mathbb{R}^{n}\right)=\left\{f \in V_{m}\left(\mathbb{R}^{n}\right) \mid \triangle f=0\right\}$.
3) Consider the action of $G=\mathrm{SU}(2)$ on $V_{n}\left(\mathbb{C}^{2}\right)=\mathbb{C}\left[z_{1}, z_{2}\right]_{2}$. This is an irreducible representation. In fact,

$$
g \cdot f=\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right) \cdot z_{1}^{k} z_{2}^{n-k}=z_{1}^{k} z_{2}^{n-k} \circ\left(\begin{array}{cc}
\bar{a} & \bar{b} \\
-b & a
\end{array}\right)=\left(\bar{a} z_{1}+\bar{b} z_{2}\right)^{k}\left(-b z_{1}+a z_{2}\right)^{n-k}
$$

and it is easy to see that every nonzero element in $V_{n}\left(\mathbb{C}^{2}\right)$ generates $V_{n}\left(\mathbb{C}^{2}\right)$ under G.

Alternatively, consider $V_{n}^{\prime}=\operatorname{Hol}_{0}(\mathbb{C})_{\leq n}=\left\{a_{0}+a_{1} z+\cdots a_{n} z^{n}\right\}$, which is isomorphic to $V_{n}\left(\mathbb{C}^{2}\right)$ as an vector space via Möbius transformation. Hence, the action of G on V_{n}^{\prime} is

$$
(g \cdot f)(z)=(-b z+a)^{n} f\left(\frac{\bar{a} z+\bar{b}}{-b z+a}\right) .
$$

Since holomorphic functions on \mathbb{C} corresponds to harmonic functions on \mathbb{R}^{2}, we know that $\mathscr{H}_{m}\left(\mathbb{R}^{2}\right)=2$.
4) Consider the 2-1 cover $G=\operatorname{Spin}_{n}(\mathbb{R}) \rightarrow \mathrm{SO}(n)$. A genuine representation is a representation not from $\mathrm{SO}(n)$. Let $V=\left(\mathbb{R}^{n},(-,-)\right) \otimes \mathbb{C}$, where $(z, w)=\sum z_{i} w_{i}$. Let $m=\left\lfloor\frac{n}{2}\right\rfloor$. We can write $V=W \oplus W^{\prime}$ if $n=2 m$ and $V=W \oplus W^{\prime} \oplus \mathbb{C} e_{n}$ if $n=2 m+1$, where

$$
W=\left\{\left(z_{1}, \ldots, z_{m}, i z_{1}, \ldots, i z_{m}\right)\right\}, \quad W^{\prime}=\left\{\left(z_{1}, \ldots, z_{m},-i z_{1}, \ldots,-i z_{m}\right)\right\}
$$

Theorem 17.1. Let $S=\Lambda^{\bullet}(W)$ be the spinor. Then

$$
\mathrm{Cl}(V) \cong \begin{cases}\operatorname{End} S, & \text { if } n=2 m \\ \operatorname{End} S \oplus \operatorname{End} S, & \text { if } n=2 m+1\end{cases}
$$

as an algebra. Since $\operatorname{Spin}(\mathbb{R})$ is a subset of $\mathrm{Cl}(V)$, we get a faithful representation of $\operatorname{Spin}_{n}(\mathbb{R})$.

Proof. For n even, define $\varphi: V \rightarrow \operatorname{End} S$ by $\varphi(z)=\alpha \epsilon(w)-\beta \iota\left(w^{\prime}\right)$, where $z=w=w^{\prime}$ with $w \in W, w^{\prime} \in W^{\prime}$ and α, β are two numbers such that $\alpha \beta=2$. We see that

$$
\varphi(z)^{2}=-2\left(\epsilon(w) \iota\left(w^{\prime}\right)+\iota\left(w^{\prime}\right) \epsilon(w)\right)=-2\left(w, w^{\prime}\right)=-(z, z)
$$

and hence φ defines a map $\mathrm{Cl}(V) \rightarrow \operatorname{End} S$. Note that $\operatorname{dim} \mathrm{Cl}(V)=\operatorname{dim} \operatorname{End} S$. Hence, to show that it is an isomorphism, it suffices to show that it is surjective.

Take a basis $\left\{w_{i}\right\}$ of W and a basis $\left\{w_{i}^{\prime}\right\}$ of W^{\prime} such that $\left(w_{i}, w_{j}^{\prime}\right)=\delta_{i j}$. Note that $w_{i_{1}} \cdots w_{i_{k}} w_{i_{1}}^{\prime} \cdots w_{i_{k}}^{\prime}$ maps $\bigwedge^{p} W$ to 0 if $p<k$, onto $w_{i_{1}} \wedge \cdots \wedge w_{i_{k}}$ if $p=k$, and an induction shows that it is surjective it $p>k$.

For n odd, write $z=w+w^{\prime}+\zeta e_{n}$ and define

$$
\varphi^{ \pm}(z)=\alpha \epsilon(w)-\beta \iota\left(w^{\prime}\right) \pm(-1)^{p} i \zeta
$$

on $\bigwedge^{p} W$. Again, these defines maps $\varphi^{ \pm}: \mathrm{Cl}(V) \rightarrow \operatorname{End}(S)$ and these maps are surjective.

Theorem 17.2. As an algebra,

$$
\mathrm{Cl}(V) \cong \begin{cases}\operatorname{End} S^{+} \oplus \operatorname{End} S^{-}, & \text {if } n=2 m \\ \operatorname{End} S, & \text { if } n=2 m+1\end{cases}
$$

Proof. For n even, φ preserves $S^{ \pm}$on $\mathrm{Cl}^{+}(V)$. So $\varphi: \mathrm{Cl}^{+}(V) \hookrightarrow \operatorname{End} S^{+} \oplus \operatorname{End} S^{-}$. Since they have same dimensions, φ is an isomorphism.

For n odd, the definition of $\varphi^{ \pm}$mixes degree. So $\varphi^{ \pm}$does not preserve $S^{ \pm}$. But take one piece φ^{+}and dimension count, we still get an isomorphism.

Example. For $n=3, m=1, \operatorname{Spin}_{3}(\mathbb{R})=\mathrm{SU}(2)=S^{3} . S=\bigwedge W=\mathbb{C}^{2}$ and there is a $\operatorname{map} \operatorname{Spin}_{3}(\mathbb{R}) \rightarrow \operatorname{End} S=M_{2 \times 2}(\mathbb{C})$.

Since $-1 \in \operatorname{Spin}_{n}(\mathbb{R}) \subseteq \mathrm{Cl}^{+}(V)$ maps to $1 \in \mathrm{SO}(n)$, and -1 is nontrivial on S, S is a genuine module.

18 Representation of Lie groups II, 11/21

Let G acts on finite dimensional \mathbb{C}-vector spaces V, W. There is a natural action on $V \otimes_{\mathbb{C}} W$ by Leibniz rule:

$$
g \cdot(v \otimes w)=g v \otimes w+v \otimes g w .
$$

Let $\rho: G \rightarrow \operatorname{GL}(V)$ be the representation, $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis of V. Write $M_{g}=[\rho(g)]_{\mathcal{B}}^{\mathcal{B}}$. Then $\left(M_{g}\right)_{i}^{j}=v^{j}\left(g v_{i}\right)$, where $\mathcal{B}^{\vee}=\left\{v^{i}\right\} \subseteq V^{\vee}$ is the dual basis of \mathcal{B}. Hence,

$$
\left(\left(M_{g}^{\vee}\right)^{\top}\right)_{i}^{j}=v_{i}\left(g v^{j}\right)=v^{j}\left(g^{-1} v_{i}\right)=\left(M_{g^{-1}}\right)_{i}^{j}=\left(M_{g}^{-1}\right)_{i}^{j}
$$

i.e., $M_{g}^{\vee}=\left(M_{g}^{-1}\right)^{\top}$.

For \bar{V}, the same abelian group as V but with different G-module structure: $z \odot v=$ $\bar{z} \cdot v$, where \odot, denote the multiplications on \bar{V}, V, respectively. Then there is a representation $\bar{\rho}: G \rightarrow \bar{V}$.

For G compact, there exists a G-invariant inner product $(-,-)$ on V by taking

$$
(v, w)=\int_{G}\langle g v, g w\rangle d g
$$

where $\langle-,-\rangle$ is any inner product on V. We may choose v_{i} to be an orthonormal (unitary) basis. Then ρ maps G into $U(n) \subseteq \mathrm{GL}(n) \cong \mathrm{GL}(V)$. Hence, $\rho(g)^{-1}=\overline{\rho(g)}{ }^{\top}$ and as G-modules, $V^{\vee} \cong \bar{V}$. Also, we get Weyl's completely reducibility theorem: for a G submodule $W \subseteq V$, we see that $W^{\perp} \subseteq V$ is also a G-module. We say that a G-module V is irreducible if every G-submodule of V is either $\{0\}$ or V.

Theorem 18.1 (Schur's Lemma). Let V, W be irreducible finite dimensional G-modules. Then

$$
\operatorname{Hom}_{G}(V, W)= \begin{cases}\mathbb{C}, & \text { if } V \cong W \\ 0, & \text { else }\end{cases}
$$

Proof. For a nonzero G-homomorphism $T \in \operatorname{Hom}_{G}(V, W)$, $\operatorname{ker} T=0$ and $\operatorname{Im} T=W$. So $V \cong W$ as G-modules. Fix a G-isomorphism $T_{0}: V \rightarrow W$. For any $T: V \rightarrow W$, since $\operatorname{det}\left(T T_{0}^{-1}-\lambda I\right) \neq 0$, we get $T T_{0}^{-1}=\lambda I$ for some λ.

Corollary 18.2. Let G be a compact Lie group. Then a finite dimensional G-module V is irreducible if and only if $\operatorname{Hom}_{G}(V, V) \cong \mathbb{C}$. In this case, the G-invariant inner product $(-,-)$ is unique up to scalar.

Proof. If V is not irreducible, say $V=V_{1} \oplus V_{2}$ with $V_{1}, V_{2} \neq 0$, then

$$
\operatorname{dim} \operatorname{Hom}_{G}(V, V) \geq \operatorname{dim} \operatorname{Hom}_{G}\left(V_{1}, V_{1}\right)+\operatorname{dim} \operatorname{Hom}_{G}\left(V_{2}, V_{2}\right) \geq 2
$$

Given two G-invariant inner products $(-,-)_{1},(-,-)_{2}$. These give us two isomorphisms

$$
T_{i} \in \operatorname{Hom}\left(\bar{V}, V^{\vee}\right) \cong \mathbb{C}
$$

by sending $v \in \bar{V}$ to $(-, v)_{i}, i=1,2$. Then $T_{1}=c T_{2}$ for some $c \neq 0$.

Corollary 18.3. Let V_{1}, V_{2} be irreducible G-submodules of $(V,(-,-))$, where $(-,-)$ is a G-invariant inner product. If V_{1} and V_{2} are non-isomorphic, then $V_{1} \perp V_{2}$.

Proof. If not, then $W=\left\{v \in V_{1} \mid v_{1} \perp v_{2}\right\}$ is a proper submodule of V_{1}, which is 0 by the irreducibility of V_{1}. Hence, $(-,-): V_{1} \otimes V_{2} \rightarrow \mathbb{C}$ is a nondegenerate pairing, and thus $\bar{V}_{1} \cong V_{2}^{\vee} \cong \bar{V}_{2}$.

Let \widehat{G} be the set of equivalence elements of irreducible (unitary) representation $\left(\pi, E_{\pi}\right)$'s. For a finite dimensional G-module V, let $V_{[\pi]}$ be the π-isotropic component, i.e., the largest subspace of V which is isomorphic to $E_{\pi}^{m_{\pi}}$ for some $m_{\pi} \geq 0$.

Theorem 18.4. There is an isomorphism $\iota_{\pi}: \operatorname{Hom}_{G}\left(E_{\pi}, V\right) \otimes E_{\pi} \rightarrow V_{[\pi]}$ by sending
$T \otimes v$ to $T v$. Hence

$$
\bigoplus_{\pi \in \widehat{G}} \operatorname{Hom}_{G}\left(E_{\pi}, V\right) \otimes E_{\pi} \xrightarrow{\sim} \bigoplus_{\pi \in \widehat{G}} V_{[\pi]}=V
$$

called the canonical decomposition of V.

Proof. Let $T \in \operatorname{Hom}_{G}\left(E_{\pi}, V\right)$ be a nonzero element. Then $\operatorname{ker} T=0$ and therefore $E_{\pi} \cong T\left(E_{\pi}\right)$. By the definition of $V_{[\pi]}, T\left(E_{\pi}\right) \subseteq V_{[\pi]}$. Since ι_{π} is a G-morphism, onto, so we only have to check that it is injective.

Since

$$
\operatorname{dim} \operatorname{Hom}_{G}\left(E_{\pi}, V\right)=\operatorname{dim} \operatorname{Hom}_{G}\left(E_{\pi}, V_{[\pi]}\right)=m_{\pi}
$$

by Schur's lemma, dim LHS $=m_{\pi} \cdot \operatorname{dim} E_{\pi}=\operatorname{dim} V_{[\pi]}$.
Finally, $V=\sum_{[\pi] \in \widehat{G}} V_{[\pi]}=\bigoplus_{[\pi] \in \widehat{G}} V_{[\pi]}$.

Examples.

(1) The action of $\mathrm{SU}(2)$ on $V_{n}\left(\mathbb{C}^{2}\right)$ is irreducible.
(2) The action of $\mathrm{SO}(n)$ on $\mathscr{H}_{m}\left(\mathbb{R}^{n}\right)$ is irreducible for $n \geq 3$. For $n=2$, only $\mathrm{O}(2)$ irreducible.

Fact 1. Under the algebra isomorphism

$$
\begin{gathered}
V\left(\mathbb{R}^{n}\right) \longrightarrow D\left(\mathbb{R}^{n}\right) \\
x_{i} \longmapsto \partial_{x_{i}}
\end{gathered}
$$

where $D\left(\mathbb{R}^{n}\right)$ is the space of differential operator with constant coefficient, define $(p, q)=\overline{\partial_{q}} p$, which is a hermitian inner product on $V_{m}\left(\mathbb{R}^{n}\right)$. There is an orthonormal basis $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ with $\sum k_{i}=m$. Also,

$$
\mathscr{H}_{m}\left(\mathbb{R}^{n}\right)=\left(|x|^{2} V_{m-2}\left(\mathbb{R}^{n}\right)\right)^{\perp}
$$

Indeed,

$$
\left(p,|x|^{2} q\right)=\overline{\partial_{|x|^{2} q}} p=\overline{\partial_{q}} \Delta p=(\triangle p, q)
$$

As a consequence,

$$
V_{m}\left(\mathbb{R}^{n}\right)=\mathscr{H}_{m}\left(\mathbb{R}^{n}\right) \oplus^{\perp}|x|^{2} V_{m-2}\left(\mathbb{R}^{n}\right)=\mathscr{H}_{m}\left(\mathbb{R}^{n}\right) \oplus \mathscr{H}_{m-2}\left(\mathbb{R}^{n}\right) \oplus \cdots
$$

as $\mathrm{O}(n)$-modules.
Fact 2. Under $\mathrm{O}(n-1) \hookrightarrow \mathrm{O}(n), g \mapsto\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right)$,

$$
\left.\mathscr{H}_{m}\left(\mathbb{R}^{n}\right)\right|_{\mathrm{O}(n-1)}=\mathscr{H}_{m}\left(\mathbb{R}^{n-1}\right) \oplus \mathscr{H}_{m-1}\left(\mathbb{R}^{n-1}\right) \oplus \mathscr{H}_{m-2}\left(\mathbb{R}^{n-1}\right) \oplus \cdots
$$

Write $V_{m}\left(\mathbb{R}^{n}\right) \ni p=\sum x_{1}^{k} p_{k}$, where $p_{k} \in V_{m-k}\left(\mathbb{R}^{n-1}\right)$. Then $V_{m}\left(\mathbb{R}^{n}\right) \cong \bigoplus V_{m-k}\left(\mathbb{R}^{n-1}\right)$ as $\mathrm{O}(n-1)$-modules. So

$$
\begin{aligned}
\left.V_{m}\left(\mathbb{R}^{n}\right)\right|_{\mathrm{O}(n-1)} & \left.\left.\cong \mathscr{H}\left(\mathbb{R}^{n}\right)\right|_{\mathrm{O}(n-1)} \oplus V_{m-2}\left(\mathbb{R}^{n}\right)\right|_{\mathrm{O}(n-1)} \\
& \left.\cong \mathscr{H}\left(\mathbb{R}^{n}\right)\right|_{\mathrm{O}(n-1)} \oplus \bigoplus V_{m-2-k}\left(\mathbb{R}^{n-1}\right)
\end{aligned}
$$

On the other hand,

$$
\left.V_{m}\left(\mathbb{R}^{n}\right)\right|_{\mathrm{O}(n-1)} \cong \bigoplus V_{m-k}\left(\mathbb{R}^{n-1}\right) \oplus \bigoplus V_{m-2-k}\left(\mathbb{R}^{n-1}\right)
$$

So it suffices to show the "cancellation": if G is a compact Lie group and $V \oplus U \cong$ $W \oplus U$, then $V \cong W$. This is true by the canonical decomposition.

Now, we show that $\mathscr{H}_{m}\left(\mathbb{R}^{n}\right)$ is an irreducible $\mathrm{SO}(n)$-module. If $f \in \mathscr{H}_{m}\left(\mathbb{R}^{n}\right)$ is $\mathrm{SO}(n)$-invariant, then $f=c|x|^{m}$ and $\triangle f=0$. which implies that $m=0$ or $c=0$. It follows from Fact 2 that $\left.\mathscr{H}_{m}\left(\mathbb{R}^{n}\right)\right|_{\mathrm{SO}(n-1)}$ has a unique $\mathrm{SO}(n-1)$-invariant function, up to scalar.

Claim. For an $\mathrm{SO}(n)$-invariant finite dimensional subspace V of $C^{0}\left(S^{n-1}\right)$, there exists a (nonzero) $\mathrm{SO}(n-1)$-invariant function $f \in V$.

Indeed, there exists $f \in V$ such that $f(1,0, \ldots, 0) \neq 0$ (otherwise $V=0$). Let

$$
\tilde{f}(s)=\int_{\mathrm{SO}(n-1)} f(g s) d g
$$

$\left\{f_{i}\right\}$ a basis of V. Since $g f=\sum c^{i}(g) f_{i}$ for some functions $c^{i}: G \rightarrow \mathbb{C}, \tilde{f}=$ $\sum\left(\int_{\mathrm{SO}(n-1)} c^{i}(g) d g\right) f_{i} \in V$. So \tilde{f} is the desired function since $\tilde{f}(1,0, \ldots, 0) \neq 0$.
Now, if $\mathscr{H}_{m}\left(\mathbb{R}^{n}\right)=V_{1} \oplus V_{2}$ with V_{i} being $\mathrm{SO}(n)$-invariant, $\left.V_{i}\right|_{S^{n-1}}$ contains a nonzero $\mathrm{SO}(n-1)$-invariant function $f_{i}, i=1,2$, which contradicts the uniqueness of such functions (up to scalar).
(3) For n even, the action of $\operatorname{Spin}_{n}(\mathbb{R})$ on $S^{ \pm}$is irreducible. For n odd, the action of $\operatorname{Spin}_{n}(\mathbb{R})$ on S is irreducible.

19 Character theory, 11/23

Let G be a compact Lie group. Then there is a G-invariant metric on G and hence a G-invariant volume form (Haar measure) $d g$. We normalize the form so that

$$
|G|=\int_{G} d g=1
$$

Let $\rho: G \rightarrow \mathrm{GL}(V), \rho^{\prime}: G \rightarrow \mathrm{GL}\left(V^{\prime}\right)$ be representations, where V, V^{\prime} are finite dimensional \mathbb{C}-vector spaces. Consider $\rho^{\prime \prime}: G \rightarrow \operatorname{GL}\left(\operatorname{Hom}\left(V, V^{\prime}\right)\right), \rho^{\prime \prime}(g)(e)=\rho^{\prime}(g) \circ e \circ$ $\rho\left(g^{-1}\right)$.

Lemma 19.1 (Symmetrization). For a homomorphism $e: V \rightarrow V^{\prime}$, the element $\eta(e)=$ $\int_{G} \rho^{\prime \prime}(g)(e) d g$ lies in $\operatorname{Hom}_{G}\left(V, V^{\prime}\right)$.

Proof. By defintion

$$
\begin{aligned}
\rho^{\prime}(h) \eta(e) & =\int_{G} \rho^{\prime}(h g) e \rho\left(g^{-1}\right) d g=\int_{G} \rho^{\prime}(g) e \rho\left(h^{-1} g\right)^{-1} d\left(h^{-1} g\right) \\
& =\int_{G} \rho^{\prime}(g) e \rho(g)^{-1} d g \rho(h)=\eta(e) \rho(h) .
\end{aligned}
$$

Corollary 19.2. If ρ, ρ^{\prime} are irreducible, then
(i) $\rho \not \not \not \rho^{\prime}$ implies $\eta(e)=0$ for all $e \in \operatorname{Hom}\left(V, V^{\prime}\right)$;
(ii) $\rho \cong \rho^{\prime}$ implies $\eta(e) \cong c I_{V}$ under an identification $V \cong V^{\prime}$.

Theorem 19.3 (Schur's orthogonality relations). Let $(\rho, V),\left(\rho^{\prime}, V^{\prime}\right)$ be irreducible representations. Write $\rho(g)=\left(T_{j}^{i}(g)\right), \rho^{\prime}(g)=\left(T_{\ell}^{\prime k}(g)\right)$ in some basis $\mathcal{B} \subset V, \mathcal{B}^{\prime} \subset V^{\prime}$. Then

$$
\int_{G} T_{j}^{i}(g) T_{\ell}^{k}\left(g^{-1}\right) d g= \begin{cases}0, & \text { if } \rho \not \approx \rho^{\prime}, \\ \frac{|G| \mid}{\operatorname{dim} V} \delta_{\ell}^{i} \delta_{j}^{k}, & \text { if } \rho=\rho^{\prime}, \mathcal{B}=\mathcal{B}^{\prime}\end{cases}
$$

Proof. Let $e=e_{j}^{k}$ be the elementary matrix. Then the integral

$$
\int_{G} T_{j}^{i}(g) T_{\ell}^{\prime k}\left(g^{-1}\right) d g=\int_{G} \rho^{\prime}\left(g^{-1}\right) e_{j}^{k} \rho(g) d g=\left(\eta\left(e_{j}^{k}\right)\right)_{\ell}^{i}
$$

When $\rho \not \not \rho^{\prime}$, this is 0 . For the case $\rho=\rho^{\prime},\left(\eta\left(e_{j}^{k}\right)\right)_{\ell}^{i}=c_{j}^{k} \cdot \delta_{\ell}^{i}$ for some c_{j}^{k}. So

$$
c_{j}^{k}=\frac{1}{\operatorname{dim} V} \int_{G} \sum_{i=\ell}\left(T_{j}^{i}(g) T_{\ell}^{k}(g)^{-1}\right) d g=\frac{1}{\operatorname{dim} V} \int_{G} T_{j}^{i}(g) T_{i}^{k}(g)^{-1} d g=|G| \cdot \delta_{j}^{k}
$$

Now we set $\chi_{\rho}=\chi_{V}:=\operatorname{tr} \circ \rho: G \rightarrow \mathbb{C}$, called the character of (ρ, V). Then $\chi_{\rho} \in$ $C^{\infty}(G)$ and $\chi_{\rho}(e)=\operatorname{dim} V$.

Let \mathbb{C} be the trivial representation, i.e., $G \rightarrow\{\operatorname{id}\} \subset \mathrm{GL}(\mathbb{C})$. Then $\chi_{\mathbb{C}} \equiv 1$.
χ defines a map from $\operatorname{Rep} G$ to $C^{\infty}(G)$. We see that $\chi_{V \oplus V^{\prime}}=\chi_{V}+\chi_{V^{\prime}}$ and $\chi_{V \otimes V^{\prime}}=$ $\chi_{V} \cdot \chi_{V^{\prime}}$. Since $\chi_{V}\left(h g h^{-1}\right)=\chi_{V}(g), \chi_{V}$ is a class function. Also,

$$
\chi_{V^{\vee}}(g)=\chi_{\bar{V}}(g)=\overline{\chi_{V}(g)}=\chi_{V}\left(g^{-1}\right)
$$

by taking a unitary basis.

Theorem 19.4. Let V, W be finite dimensional G-representations over \mathbb{C}.
(1) $\left\langle\chi_{V}, \chi_{W}\right\rangle:=\int_{G} \chi_{V}(g) \overline{\chi_{W}(g)} d g=\operatorname{dim} \operatorname{Hom}_{G}(V, W)$.
(2) $V \cong W$ if and only if $\chi_{V}=\chi_{W}$.

Proof. Choose a unitary bases of V, W, etc.. If V, W are irreducible, we get $\bar{T}^{\prime}(g)=$ $T^{\top}\left(g^{-1}\right)$. So

$$
\left\langle\chi_{V}, \chi_{W}\right\rangle= \begin{cases}0, & \text { if } V \not \approx W \\ \frac{1}{\operatorname{dim} V} \delta_{\ell}^{i} \delta_{j}^{k} \delta_{i}^{j} \delta_{k}^{\ell}=1, & \text { if } V \cong W\end{cases}
$$

In general, write $V=\bigoplus E_{\pi}^{m_{\pi}}, W=\bigoplus E_{\pi}^{m_{\pi}^{\prime}}$. Then $\chi_{V}=\sum m_{\pi} \chi_{\pi}, \chi_{W}=\sum m_{\pi}^{\prime} \chi_{\pi}$. So

$$
\left\langle\chi_{V}, \chi_{W}\right\rangle=\operatorname{Hom}(V, W) .
$$

Since $\left\{m_{\pi}\right\}$ (resp. $\left\{m_{\pi}^{\prime}\right\}$) determines the isomorphic type of V (resp. W) and

$$
m_{\pi}=\left\langle\chi_{\pi}, \chi_{V}\right\rangle, \quad m_{\pi}^{\prime}=\left\langle\chi_{\pi}, \chi_{W}\right\rangle,
$$

we get (2).

Corollary 19.5. Let V^{G} be the G-invariant vectors in V. Then

$$
\int_{G} \chi_{V}(g) d g=\left\langle\chi_{V}, \chi_{\mathbb{C}}\right\rangle=\operatorname{dim} V^{G}
$$

since $V^{G}=\operatorname{Hom}_{G}(\mathbb{C}, V)$. Also, V is irreducible if and only if $\left\|\chi_{V}\right\|=1$.

Theorem 19.6. For compact Lie groups G_{1}, G_{2}, a finite dimensional representation W of $G_{1} \times G_{2}$ is irreducible if and only if $W \cong V_{1} \otimes V_{2}$, where V_{i} is a irreducible $G_{i}{ }^{-}$ representation, $i=1,2$.

Proof. Let V_{i} be a irreducible G_{i}-representation, $i=1,2$. The invariant measure on $G_{1} \times G_{2}$ is given by $d g_{1} \wedge d g_{2}$. So

$$
\chi_{V_{1} \otimes V_{2}}\left(g_{1} g_{2}\right)=\chi_{V_{1}}\left(g_{1}\right) \cdot \chi_{V_{2}}\left(g_{2}\right)
$$

implies that $\left\|\chi_{V_{1} \otimes V_{2}}\right\|=\left\|\chi_{V_{1}}\right\| \cdot\left\|\chi_{V_{2}}\right\|=1$.
Conversely, let W be an irreducible $G_{1} \times G_{2}$-representation. Write

$$
W=\bigoplus_{[\pi] \in \widehat{G}_{2}} \operatorname{Hom}_{G_{2}}\left(E_{\pi}, W\right) \otimes E_{\pi}
$$

as G_{2}-modules. The equation above is in fact a $G_{1} \times G_{2}$-morphism, since $\operatorname{Hom}_{G_{2}}\left(E_{\pi}, W\right)$ has a natural G_{1} action. Since W is irreducible, $W=\operatorname{Hom}_{G_{2}}\left(E_{\pi}, W\right) \otimes E_{\pi}$ for some π.

Be more concern with your character than your representation!

20 Peter-Weyl theorem, 11/28

Let G be a compact Lie group. Then $C(G)$ is a Banach space with respect to

$$
\|f\|_{C(G)}=\sup _{g \in G}|f(g)| ;
$$

$L^{2}(G)$ is a Hilbert space with respect to

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{G} f_{1} \bar{f}_{2} d g, \quad\|f\|_{L^{2}(G)}=\left(\int_{G}|f|^{2} d g\right)^{1 / 2}
$$

Since G is compact, $C(G)$ is dense in $L^{2}(G)$. There are two natural action of G on $C(G)$, $L^{2}(G)$:

$$
\begin{gathered}
\ell: G \times C(G) \longrightarrow C(G) \\
\quad(g, f) \longmapsto \ell_{g} f=\left[h \mapsto f\left(g^{-1} h\right)\right], \\
r: G \times C(G) \longrightarrow C(G) \\
\quad(g, f) \longmapsto r_{g} f=[h \mapsto f(h g)] .
\end{gathered}
$$

The action of G on $C(G)$ is continuous: for each $h \in G$, since f_{1} is uniformly continuous,

$$
\begin{aligned}
\left|\ell_{g_{1}} f_{1}(h)-\ell_{g_{2}} f_{2}(h)\right| & =\left|f_{1}\left(g_{1}^{-1} h\right)-f_{2}\left(g_{2}^{-1} h\right)\right| \\
& \leq\left|f_{1}\left(g_{1}^{-1} h\right)-f_{1}\left(g_{2}^{-1} h\right)\right|+\left|f_{1}\left(g_{2}^{-1} h\right)-f_{2}\left(g_{2}^{-1} h\right)\right| \rightarrow 0
\end{aligned}
$$

as $\left(g_{1}, f_{1}\right)$ tends to $\left(g_{2}, f_{2}\right)$. The action of G on $L^{2}(G)$ is also continuous:

$$
\begin{aligned}
\left\|\ell_{g_{1}} f_{1}-\ell_{g_{2}} f_{2}\right\|_{L^{2}(G)} & =\left\|f_{1}-\ell_{g_{1}^{-1} g_{2}} f_{2}\right\|_{L^{2}(G)} \\
& \leq\left\|f_{1}-f_{2}\right\|_{L^{2}(G)}+\left\|f_{2}-\ell_{g_{1}^{-1} g_{2}} f_{2}\right\|_{L^{2}(G)}+\left\|\ell_{g_{1}} f_{2}-\ell_{g_{2}} f_{2}\right\|_{L^{2}(G)} \\
& \leq\left\|\ell_{g_{1}} f_{2}-\ell_{g_{1}} f\right\|_{L^{2}(G)}+\left\|\ell_{g_{1}} f-\ell_{g_{2}} f\right\|_{L^{2}(G)}+\left\|\ell_{g_{2}} f-\ell_{g_{2}} f_{2}\right\|_{L^{2}(G)} \\
& \leq\left\|f_{2}-f\right\|_{L^{2}(G)}+\left\|\ell_{g_{1}} f-\ell_{g_{2}} f\right\|_{L^{2}(G)}+\left\|f_{2}-f\right\|_{L^{2}(G)} \\
& \leq\left\|\ell_{g_{1}} f-\ell_{g_{2}} f\right\|,
\end{aligned}
$$

where $f \in C(G)$ is an element such that $f \rightarrow f_{2}$ in L^{2}-norm.

Definition 20.1. Let $\left\{V_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be a family of Hilbert spaces with inner product $\langle-,-\rangle_{\alpha}$ on V_{α}. We define

$$
\widehat{\bigoplus_{\alpha \in \mathcal{A}}} V_{\alpha}=\left\{\left(v_{\alpha}\right) \mid v_{\alpha} \in V_{\alpha}, \sum_{\alpha \in \mathcal{A}}\left\|v_{\alpha}\right\|_{\alpha}^{2}<\infty\right\}
$$

and

$$
\left\langle\left(v_{\alpha}\right),\left(v_{\alpha}^{\prime}\right)\right\rangle=\sum_{\alpha}\left\langle v_{\alpha}, v_{\alpha}^{\prime}\right\rangle_{\alpha} .
$$

Then $\bigoplus_{\alpha} V_{\alpha}$ is dense in $\widehat{\bigoplus}_{\alpha} V_{\alpha}$ and $V_{\alpha} \perp V_{\beta}$ for all $\alpha \neq \beta$.
Let T be a bounded self-adjoint on operator on V. The spectral projection of T is the family $\left\{P_{\Omega}=\chi_{\Omega}(T)\right\}$ where χ_{Ω} is the indicator function of the Borel measurable set Ω such that
(1) P_{Ω} is an orthogonal projection;
(2) $P_{\varnothing}=0, P_{(-a, a)}=\mathrm{id}$ for some $a>0$;
(3) If $\Omega=\bigsqcup_{i=1}^{\infty} \Omega_{i}$, then $\lim _{N \rightarrow \infty} \sum_{i=1}^{N} P_{\Omega_{i}}=P_{\Omega}$.
(The spectrum of T is the set

$$
\{\lambda \in \mathbb{C} \mid \lambda I-T \text { is not invertible }\},
$$

and $\left.P_{\lambda}=\chi_{\lambda}(T).\right)$
For each $v \in V, \lambda \mapsto\left\langle v, P_{\lambda} v\right\rangle$ is a measure. Since T is self-adjoint,

$$
\langle v, T v\rangle=\int_{\mathbb{R}} \lambda d\left(\left\langle v, \mathbb{P}_{\lambda} v\right\rangle\right) .
$$

Fact. There is a one-to-one correspondence

$$
\begin{gathered}
\{\text { projection valued measures }\} \longrightarrow\{\text { bounded self-adjoint operators }\} \\
\qquad\left\{P_{\Omega}\right\} \longmapsto\langle v, T w\rangle=\int_{\mathbb{R}} \lambda d\left(\left\langle v, P_{\lambda} w\right\rangle\right) .
\end{gathered}
$$

Lemma 20.2 (Schur's lemma for Hilbert spaces). If V is irreducible, then $\operatorname{Hom}_{G}(V, V)=$ $\mathbb{C} \cdot \mathrm{id}$.

Proof. For a G-operator T, write

$$
T=\frac{T+T^{*}}{2}-i \frac{T-T^{*}}{2 i}
$$

Since T is a G-operator, then T^{*} is also a G-operator. So we may assume that T is self-adjoint. For each $g \in G, g \circ T=T \circ g$ implies that $g \circ P_{\Omega}=P_{\Omega} \circ g$, so ker g and $\operatorname{Im} g$ are G-submodules. Hence, $P_{\Omega}=$ id or 0 .

Now, $P_{(-a, a)}=\mathrm{id}$ for some $a>0$. So there exists λ such that $P_{\lambda}=\mathrm{id}$. Hence, $T=\lambda \cdot \mathrm{id}$.

Theorem 20.3. Let V be a Hilbert space and $\rho: G \rightarrow \mathrm{GL}(V)$ an irreducible representation. Then there exists finite dimensional irreducible G-submodules $V_{\alpha} \subseteq V$ such that $V=\widehat{\bigoplus}_{\alpha} V_{\alpha}$.

This shows that every irreducible unitary representation of G are all finite dimensional, and the set of G-finite vectors (i.e., $v \in V$ such that $\operatorname{dim}\langle G v\rangle<\infty$) is dense in V.

Fact. Let (ρ, V) be a unitary representation of G on V. Then there exists a nonzero G-subspace of V with $\operatorname{dim} W<\infty$.

Proof. Let T_{0} be a nonzero finite rank projection (self-adjoint, positive, compact) in $\operatorname{Hom}(V, V)$,

$$
T=\int_{G} \rho(g) \circ T_{0} \circ \rho(g)^{-1} d g
$$

Then T is G-invariant. Since T_{0} is positive,

$$
\langle T v, v\rangle=\int_{G}\left(T \circ \rho(g)^{-1}(v), \rho(g)^{-1} v\right) d g
$$

shows that T is positive. Since T_{0} is self-adjoint, T is self-adjoint. If T is compact, self-adjoint, then there exists $\lambda \in \mathbb{C}$ such that $\operatorname{dim} \operatorname{ker}(T-\lambda I)<\infty$ and we know that $\operatorname{ker}(T-\lambda I)$ is a G-submodule.

Now, consider

$$
\mathcal{S}=\left\{\left\{V_{\alpha} \mid \alpha \in \mathcal{A}, \operatorname{dim} V_{\alpha}<\infty, V_{\alpha} \perp V_{\beta} \text { for } \alpha \neq \beta\right\}\right\}
$$

By Zorn's lemma, there exists a maximal element $\left\{V_{\alpha} \mid \alpha \in \mathcal{A}\right\}$ in \mathcal{S}.
Claim. $\widehat{\bigoplus}_{\alpha \in \mathcal{A}} V_{\alpha}=V$.
If not, the orthogonal complement of $\widehat{\bigoplus}_{\alpha \in \mathcal{A}} V_{\alpha}$ is closed and G-invariant. So it contains a finite dimensional subspace V_{γ}, a contradiction.

Consider the π-isotypic component $V_{[\pi]}$ of $V . \operatorname{Hom}_{G}\left(E_{\pi}, V\right)$ forms a Hilbert space: $\left\langle T_{1}, T_{2}\right\rangle_{\text {Hom id }}=T_{2}^{*} \circ T_{1}$. For $x_{1}, x_{2} \in E_{\pi}$,

$$
\left\langle T_{1} x, T_{2} x_{2}\right\rangle_{V}=\left\langle T_{2}^{*} T_{1} x_{1}, x_{2}\right\rangle_{E_{\pi}}=\left\langle\left\langle T_{1}, T_{2}\right\rangle_{\text {Hom }} x_{1}, x_{2}\right\rangle=\left\langle T_{1}, T_{2}\right\rangle_{\text {Hom }}\left\langle x_{1}, x_{2}\right\rangle_{E_{\pi}} .
$$

Definition 20.4. For V_{1}, V_{2}, we define $V_{1} \widehat{\otimes} V_{2}$ to be the completion of $V_{1} \otimes V_{2}$ with respect to

$$
\left\langle v_{1} \otimes v_{2}, v_{1}^{\prime} \otimes v_{2}^{\prime}\right\rangle=\left\langle v_{1}, v_{1}^{\prime}\right\rangle\left\langle v_{2}, v_{2}^{\prime}\right\rangle .
$$

Hence,

$$
V=\widehat{\bigoplus_{[\pi] \in \widehat{G}}} V_{[\pi]}=\widehat{\bigoplus_{[\pi] \in \widehat{G}}} \operatorname{Hom}_{G}\left(E_{\pi}, V\right) \widehat{\otimes} E_{\pi} .
$$

21 Peter-Weyl theorem II, 11/30

Theorem 21.1. As $G \times G$-modules,

$$
L^{2}(G) \cong \widehat{[\pi] \in \widehat{G}} \widehat{\bigoplus_{\pi}} E_{\pi}^{\vee} \otimes E_{\pi}
$$

Proof. Recall that

$$
L^{2}(G)=\widehat{\bigoplus_{[\pi] \in \widehat{G}}} L^{2}(G)_{[\pi]}=\widehat{\bigoplus_{[\pi] \in \widehat{G}}} \operatorname{Hom}_{G}\left(E_{\pi}, L^{2}(G)\right) \widehat{\otimes} E_{\pi}
$$

Consider $C(G)_{G \text {-fin }} \subseteq C(G) \subseteq L^{2}(G)$, where $C(G)_{G \text {-fin }}$ contains the elements that has finite dimensional G-orbit.

Lemma 21.2. We have
(1) $\operatorname{Hom}_{G}\left(E_{\pi}, C(G)_{G \text {-ini }}\right) \cong E_{\pi}^{\vee}$, and
(2) $C(G)_{G-\text { fin }} \cong \bigoplus_{[\pi] \in \widehat{G}} E_{\pi}^{\vee} \otimes E_{\pi}$.

Proof of Lemma. We see that $C(G)_{G \text {-fin }}$ is equal to $\mathrm{MC}(G)$, the set of functions of the form

$$
f_{u, v}^{V}: g \mapsto\langle g u, v\rangle
$$

where V is a finite dimensional unitary representation of G. Indeed, via the left action $\ell: G \rightarrow \mathrm{GL}(C(G))$,

$$
\left(\ell_{g} f_{u, v}^{V}\right)(h)=f_{u, v}^{V}\left(g^{-1} h\right)=\left\langle g^{-1} h u, v\right\rangle=\langle h u, g v\rangle=f_{u, g v}^{V}(h) .
$$

So

$$
\left\langle\ell_{g} f_{u, v}^{V} \mid g \in G\right\rangle \subseteq\left\langle f_{u, v^{\prime}}^{V} \mid v^{\prime} \in V\right\rangle \in \mathrm{Ob}\left(\operatorname{Vect}_{\mathrm{fin}}\right)
$$

and hence $f_{u, v}^{V} \in C(G)_{G \text {-fin }}$. Conversely, if $f \in C(G)_{G \text {-fin }}$, say $\operatorname{dim} V<\infty$ and $f \in V$. Consider $\bar{V}=\{\bar{f} \mid f \in V\}$ with action $g \cdot \bar{f}=\overline{g \cdot f}$. Then \bar{V} is a G-submodule of $C(G)$ and \bar{V} has an induced norm from $L^{2}(G)$. Now, for each $\bar{f} \in \bar{V}, \bar{f}(e) \in \mathbb{C}$, so there is exist an $\bar{f}_{0} \in \bar{V}$ such that $\bar{f}(e)=\left\langle\bar{f}, \bar{f}_{0}\right\rangle$ for all $\bar{f} \in \bar{V}$. Hence,

$$
\bar{f}(g)=\ell_{g^{-1}} \bar{f}(e)=\left\langle\ell_{g^{-1}} \bar{f}, \bar{f}_{0}\right\rangle=\left\langle\bar{f}, \ell_{g} \bar{f}_{0}\right\rangle
$$

implies that

$$
f_{f_{0}, \bar{f}}^{\bar{V}}(g)=\left\langle g \bar{f}_{0}, \bar{f}\right\rangle=\overline{\bar{f}(g)}=f(g),
$$

i.e., $f \in \operatorname{MC}(G)$.

From the proof above, we also see that $C(G)_{G \text {-fin }}$ with respect to ℓ is equal to $C(G)_{G \text {-fin }}$ with respect to r. Indeed, for $f \in C(G)_{G \text {-fin }}$ with respect to r, there exists $V \in C(G)$ with $\operatorname{dim} V<\infty$ and $f \in V$. Similarly, there exists $f_{0} \in V$ such that $f(e)=\left(f, f_{0}\right)$ for all $f \in V$. So $f(g)=r_{g} f(e)=\left\langle r_{g} f, f_{0}\right\rangle$ implies that $f=f_{f, f_{0}}^{V} \in \operatorname{MC}(G)$.

Now,

$$
C(G)_{G-\mathrm{fin}}=\bigoplus_{\pi \in \widehat{G}} \operatorname{Hom}_{G}\left(E_{\pi}, C(G)_{G-\mathrm{fin}}\right) \otimes E_{\pi}
$$

as left G-modules. In fact, $C(G)_{G \text {-fin }}$ is a $G \times G$-module by

$$
\left(\left(g_{1}, g_{2}\right) f\right)(h)=\left(r_{g_{1}} \ell_{g_{2}} f\right)(h)=f\left(g_{2}^{-1} h g_{1}\right) .
$$

The second G-action on $\operatorname{Hom}_{G}\left(E_{\pi}, C(G)_{G \text {-in }}\right) \otimes E_{\pi}$ is trivial on the second component and is defined by

$$
(g T)(x)=r_{g}(T(x))
$$

on the first component $\left(\ell_{g^{\prime}}(T g)(x)=\ell_{g^{\prime}} r_{g} T(x)=r_{g} T\left(\ell_{g^{\prime}} x\right)=(T g)\left(\ell_{g^{\prime}} x\right)\right)$.
Recall that E_{π}^{\vee} is a (left) G-module: for $\lambda \in E_{\pi}^{\vee},(\lambda g)(x)=\lambda\left(g^{-1} x\right)$.
Consider

$$
\begin{gathered}
\operatorname{Hom}_{G}\left(E_{\pi}, C(G)_{G-\text { fin }}\right) \stackrel{\varphi}{\psi} E_{\pi}^{*} \\
T \longmapsto \lambda_{T}: x \mapsto(T x)(e) \\
T_{\lambda}: x \mapsto\left[h \mapsto \lambda\left(h^{-1} x\right)\right] \longleftrightarrow \lambda
\end{gathered}
$$

We see that φ is a G-morphism:

$$
\begin{aligned}
\left(\lambda_{T} g\right)(x) & =\lambda_{T}\left(g^{-1} x\right)=T\left(g^{-1} x\right)(e)=\left(\ell_{g^{-1}}(T x)\right)(e) \\
& =(T x)(g)=((T x) g)(e)=((T g)(x))(e)=\lambda_{T g}(x) .
\end{aligned}
$$

$T_{\lambda} \in \mathrm{LHS}:$

$$
\ell_{g}\left(T_{\lambda}(x)\right)(h)=T_{\lambda}(x)\left(g^{-1} h\right)=\lambda\left(h^{-1} g x\right)=\left(T_{\lambda}(g x)\right)(h),
$$

so $\ell_{g}\left(T_{\lambda}(x)\right)=T_{\lambda}(g x)$. Similarly, ψ is a G-morphism.
It is easy to check that $\varphi \circ \psi=\mathrm{id}$ and $\psi \circ \varphi=\mathrm{id}: \lambda_{T_{\lambda}}(x)=\left(T_{\lambda}(x)\right)(e)=\lambda(x)$,

$$
\left(T_{\lambda_{T}}(x)\right)(h)=\lambda_{T}\left(h^{-1} x\right)=\left(T\left(h^{-1} x\right)\right)(e)=\left(\ell_{h^{-1}}(T(x))\right)(e)=T(x)(h) .
$$

This proves (1). For (2), consider

$$
\begin{aligned}
& \bigoplus_{[\pi] \in \widehat{G}} E_{\pi}^{\vee} \otimes E_{\pi} \longrightarrow C(G)_{G-\text { fin }} \\
& \quad \lambda \otimes v \longmapsto f_{\lambda \otimes v}: g \mapsto \lambda\left(g^{-1} v\right) .
\end{aligned}
$$

This is a $G \times G$-morphism.
First, we check that φ is surjective. Since $\mathrm{MC}(G)=C(G)_{G \text {-fin }}$ is generated by $f_{v_{i}^{\pi}}^{E_{\pi}^{\pi}, v_{j}^{\pi}}$, where $\left\{v_{i}^{\pi}\right\}$ is a basis of E_{π}, it suffices to show that $f_{v_{i}^{\pi}, v_{j}^{\pi}}^{E_{\pi}}$ lies in the image. Pick $\lambda=\langle-, u\rangle \in E_{\pi}^{\vee}$. Then

$$
f_{\lambda \otimes v}(g)=\lambda\left(g^{-1} v\right)=\left\langle g^{-1} v, u\right\rangle=\langle v, g u\rangle=f_{u, v}^{E_{\pi}}(g),
$$

as desired.
Suppose that φ is not injective, say $0 \neq \sum \lambda_{i} \otimes v_{i} \in \operatorname{ker} \varphi$. We may assume that $\sum \lambda_{i} \otimes v_{i} \in \sum_{j=1}^{N} E_{\pi_{j}}^{\vee} \otimes E_{\pi_{j}}$ for some $\pi_{j} \in \widehat{G}$. Then $\left\langle\sum \lambda_{j i} \otimes v_{j i}\right\rangle_{G \times G} \subseteq E_{\pi_{j}}^{\vee} \otimes E_{\pi_{j}}$. But for $0 \neq \lambda \otimes v \in E_{\pi_{i}}^{\vee} \otimes E_{\pi_{i}}$, there exists h such that $f_{\lambda \otimes v}(h) \neq 0$, a contradiction.

We claim that $C(G)_{G \text {-fin }}$ is dense in $C(G)$ and thus in $L^{2}(G)$. By Stone-Weierstrass theorem, we only need to show that $C(G)_{G \text {-in }}$ separates points, i.e., for each $g_{0} \in G$, there exists $f \in C(G)_{G \text {-fin }}$ such that $f\left(g_{0}\right) \neq f(e)$.

Choose $e \in U \subseteq G$ such that $U \cap g_{0} U=\varnothing$. Let χ_{U} be the characteristic function of U. Then $\ell_{g_{0}} \chi_{U}=\chi_{g_{0} U}$ implies that $\left\langle\ell_{g_{0}} \chi_{U}, \chi_{U}\right\rangle=0$. Since $\left\langle\chi_{U}, \chi_{U}\right\rangle>0, \ell_{g_{0}} \neq \mathrm{id}_{L^{2}(G)}$. Also, $L^{2}(G)=\widehat{\bigoplus} V_{\alpha}$ implies that there exists $V_{\alpha_{0}}$ and $x \in V_{\alpha_{0}}$ such that $\ell_{g_{0}} x \neq x$. So there exists $y \in V_{\alpha_{0}}$ such that $\left\langle\ell_{g_{0}} x, y\right\rangle \neq\langle x, y\rangle$. Pick $f=f_{x, y}^{V_{\alpha_{0}}}$. We get $f\left(g_{0}\right) \neq f(e)$, as desired.

Let

$$
\iota: \widehat{\bigoplus_{[\pi] \in \widehat{G}}} \operatorname{Hom}_{G}\left(E_{\pi}, L^{2}(G)\right) \widehat{\otimes} E_{\pi} \xrightarrow{\sim} L^{2}(G)
$$

We need to show that the inclusion $\kappa: E_{\pi}^{\vee} \rightarrow \operatorname{Hom}_{G}\left(E_{\pi}, L^{2}(G)\right)$ is an isomorphism.
If not, $\operatorname{Im} \kappa \varsubsetneqq \operatorname{Hom}_{G}\left(E_{\pi}, L^{2}(G)\right)$. Since ι is an isomorphism and $\operatorname{dim} E_{\pi}^{\vee}<\infty$, so the inclusion

$$
\iota\left(\kappa\left(E_{\pi}^{\vee}\right) \otimes E_{\pi}\right) \varsubsetneqq \iota\left(\operatorname{Hom}_{G}\left(E_{\pi}, L^{2}(G)\right) \otimes E_{\pi}\right.
$$

is closed. Pick $f \neq 0$ lies in the orthogonal complement of the LHS in the RHS. Then

$$
f \in\left(\bigoplus_{\left[\pi^{\prime}\right] \in \widehat{G}} \iota\left(\kappa\left(E_{\pi^{\prime}}^{\vee}\right) \otimes E_{\pi^{\prime}}\right)\right)^{\perp}=\left(C(G)_{G \text {-fin }}\right)^{\perp}
$$

a contradiction.

22 Applications of Peter-Weyl theorem, 12/5

Let G be a compact Lie group. Then there is a decomposition (21.1)

$$
L^{2}(G)=\widehat{\bigoplus_{[\pi] \in \widehat{G}}} E_{\pi}^{\vee} \otimes E_{\pi}=\widehat{\bigoplus_{[\pi] \in \widehat{G}}} \text { End } E_{\pi}
$$

For $f \in L^{2}(G)$, what is the corresponding element in End E_{π} ? For $G=S^{1}$, this is Fourier series (note that $\widehat{S^{1}} \cong \mathbb{Z}$). What is the algebra structure in the RHS corresponds to the algebra structure (via convolution) in the LHS?

1. Let $f_{i j}^{E_{\pi}}$ be the matrix coefficient of E_{π}. Then

$$
\left\{\sqrt{\operatorname{dim} E_{\pi}} f_{i j}^{E_{\pi}} \mid[\pi] \in \widehat{G}\right\}
$$

is an orthonormal basis of $L^{2}(G)$.
2. There exists a finite dimensional faithful representation $\rho: G \hookrightarrow \mathrm{GL}(V)$, and hence G is isomorphic to a subgroup of $\mathrm{U}(N)(N=\operatorname{dim} V)$.

If $\operatorname{dim} G>0$, take $e \neq g_{1} \in G^{\circ}$. Then there exists a representation $\left(\rho_{1}, V_{1}\right)$ such that $\pi_{1}\left(g_{1}\right) \neq I_{V}$ (by P-W). Then $G_{1}:=\operatorname{ker} \pi_{1}$ is a closed subgroup of G (and hence a compact submanifold) that contains g_{1}. Since G_{1} cannot contain a neighborhood of $e, \operatorname{dim} G_{1}<\operatorname{dim} G$. If $\operatorname{dim} G_{1}>0$, then continue this process to get $\left(\rho_{i}, V_{i}\right)_{i=1}^{N}$. Then $\operatorname{dim} \operatorname{ker}\left(\rho_{1} \oplus \cdots \oplus \rho_{N}\right)=0$, so $\operatorname{ker}\left(\rho_{1} \oplus \cdots \oplus \rho_{N}\right)=\left\{h_{j}\right\}_{j=1}^{M}$ is a finite group. For each $i=1, \ldots, M$, choose $\rho_{N+i}\left(h_{i}\right) \neq \mathrm{id}$. Then $\rho_{1} \oplus \cdots \oplus \rho_{N+M}$ is the desired representation.
3. Let $\underline{\chi}$ be the set of irreducible characters $\chi_{\pi}, \pi \in \widehat{G}$.
(3.1) $\langle\underline{\chi}\rangle=C_{\mathrm{cl}}(G)_{G \text {-fin }}$, the set of G-finite class functions.

Indeed, there is an isomorphism

$$
C_{\mathrm{cl}}(G)_{G-\mathrm{fin}} \cong \bigoplus_{[\pi] \in \widehat{G}}\left(\text { End } E_{\pi}\right)_{\mathrm{cl}}
$$

For $f \in C(G), f \in C(G)_{\mathrm{cl}}$ if and only if the diagonal action $g \cdot f=f$, where $g \cdot f(h):=f\left(g^{-1} h g\right)$, i.e., f corresponds to $\left\{T_{\pi} \in \operatorname{End}_{G} E_{\pi}\right\}_{[\pi] \in \widehat{G}}$. By Schur's lemma, $T_{\pi}=\lambda_{\pi}(g) I_{E_{\pi}}$.

Note that $I_{E_{\pi}}=\sum_{i}\left\langle-, e_{i}\right\rangle \otimes e_{i} \in E_{\pi}^{\vee} \otimes E_{\pi}$ maps to

$$
g \mapsto \sum_{i}\left\langle g^{-1} e_{i}, e_{i}\right\rangle=\sum_{i}\left\langle e_{i}, g e_{i}\right\rangle=\sum \overline{\left\langle g e_{i}, e_{i}\right\rangle},
$$

i.e., $\bar{\chi}_{\pi}$.
(3.2) $\langle\underline{\chi}\rangle$ is dense in $C_{\mathrm{cl}}(G)$.

Indeed, for $f \in C(G)$ and for each $\varepsilon>0$, there exists $\varphi \in C(G)_{G \text {-fin }}$ such that the sup norm $\|f-\varphi\|_{0}<\varepsilon$. Let

$$
\widetilde{\varphi}(h)=\int_{G} \pi\left(g^{-1} h g\right) d g \in C_{\mathrm{cl}}(G)
$$

then

$$
\|f-\widetilde{\varphi}\|_{0} \leq \sup _{h \in G} \int_{G}\left|f\left(g^{-1} h g\right)-\varphi\left(g^{-1} h g\right)\right| d g \leq\|f-\varphi\|_{0}<\varepsilon .
$$

Now, $\widetilde{\varphi}$ is G-finite: write

$$
\varphi(h)=\sum_{i}\left\langle h x_{i}, y_{i}\right\rangle,
$$

where $x_{i}, y_{i} \in E_{\pi_{i}}$ and the sum is finite. Then

$$
\begin{aligned}
\widetilde{\varphi}(h) & =\sum_{i} \int_{G}\left\langle g^{-1} h g x_{i}, y_{i}\right\rangle d g \\
& =\sum_{i}\left\langle\int_{G} g^{-1} h g d g \cdot x_{i}, y_{i}\right\rangle \\
& =\sum_{i} \frac{\chi_{i}}{\operatorname{dim} E_{\pi_{i}}}\left\langle x_{i}, y_{i}\right\rangle,
\end{aligned}
$$

where $\chi_{i}=\chi_{\pi_{i}}=\operatorname{tr} \pi_{i}$. Here, we use the fact that

$$
\int_{G} \pi\left(g^{-1} h g\right) d g \in \operatorname{End}_{G} E_{\pi}=\mathbb{C} \cdot \mathrm{id}
$$

and that

$$
\operatorname{tr}\left(\int_{G} \pi\left(g^{-1} h g\right) d g\right)=\int_{G} \operatorname{tr} \pi\left(g^{-1} h g\right) d g=\int_{G} \operatorname{tr} \pi(h) d g=\chi(h) .
$$

(3.3) $\underline{\chi}$ is an orthonormal basis of $L_{\mathrm{cl}}^{2}(G)$, i.e., for $f \in L_{\mathrm{cl}}^{2}(G)$,

$$
f=\sum_{[\pi] \in \widehat{G}}\left\langle f, \chi_{\pi}\right\rangle \chi_{\pi} .
$$

Indeed, choose $\varphi \in C(G)_{G \text {-fin }}$ such that $\|f-\varphi\|_{2}<\varepsilon$ by P-W theorem. As above, $\widetilde{\varphi} \in\langle\underline{\chi}\rangle$. Also,

$$
\begin{aligned}
\|f-\widetilde{\varphi}\|_{2} & =\left(\int_{G}|f(h)-\widetilde{\varphi}(h)|^{2} d h\right)^{1 / 2} \\
& =\left(\int_{G}\left|\int_{G} f\left(g^{-1} h g\right)-\varphi\left(g^{-1} h g\right) d g\right|^{2} d h\right)^{1 / 2} \\
& \leq \int_{G}\left(\int_{G}\left|f\left(g^{-1} h g\right)-\varphi\left(g^{-1} h g\right)\right|^{2} d h\right)^{1 / 2} d g=\|f-\varphi\|_{2}<\varepsilon
\end{aligned}
$$

4. As a corollary, we have $\mathbb{N} \cong \widehat{\mathrm{SU}(2)}$ by mapping $n \in \mathbb{N}$ to $V_{n}\left(\mathbb{C}^{2}\right)$.

The isomorphism

$$
L^{2}(G) \cong \widehat{\bigoplus_{[\pi] \in \widehat{G}}} \text { End } E_{\pi}
$$

can be extended to an unitary/algebra isomorphism. The inner product on $L^{2}(G)$ is the natural one, and the product structure on $L^{2}(G)$ is the convolution:

$$
\left(f_{1} * f_{2}\right)(g)=\int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h) d h
$$

The inner product on the RHS is the Hilbert-Schmidt inner product:

$$
\left\langle\left(T_{\pi}\right),\left(S_{\pi}\right)\right\rangle=\sum \operatorname{tr}\left(S_{\pi}^{*} \circ T_{\pi}\right)
$$

The product structure on $L^{2}(G)$ is the operator product structure:

$$
\left(T_{\pi}\right) \cdot\left(S_{\pi}\right)=\left(\frac{T_{\pi} \circ S_{\pi}}{\sqrt{\operatorname{dim} E_{\pi}}}\right)
$$

On one component $[\pi] \in \widehat{G}$, let $\pi: L^{2}(G) \rightarrow$ End E_{π} be

$$
\pi(f) \cdot v:=\int_{G} f(g) \cdot g v d g
$$

Then in fact
(1) $\pi\left(f_{1} * f_{2}\right)=\pi\left(f_{1}\right) \circ \pi\left(f_{2}\right)$, and
(2) $\pi(f)^{*}=\pi(\tilde{f})$, where $\tilde{f}(g)=\overline{f\left(g^{-1}\right)}$.

Indeed, this follows from

$$
\begin{aligned}
\pi\left(f_{1} * f_{2}\right) \cdot v & =\int_{G} \int_{G} f_{1}\left(g h^{-1}\right) f_{2}(h) g \cdot v d h d g \\
& =\int_{G} f_{1}(g)\left(g \cdot \int_{G} f_{2}(h) h v\right) d h d g=\pi\left(f_{1}\right) \circ \pi\left(f_{2}\right) \cdot v
\end{aligned}
$$

and

$$
\left\langle\pi\left(f_{1}\right) v, w\right\rangle=\int_{G} f(g)\langle g v, w\rangle d g=\int_{G}\left\langle v, \overline{f(g)} g^{-1} w\right\rangle d g=\langle v, \pi(\tilde{f}) \cdot w\rangle
$$

Definition 22.1. The operator valued Fourier transform is

$$
L^{2}(G) \underset{\mathcal{G}}{\stackrel{\mathcal{F}}{\rightleftarrows}} \mathrm{Op}(\widehat{G}),
$$

where $\operatorname{Op}(\widehat{G})$ is just $\widehat{\bigoplus}$ End E_{π} with the inner product structure and the product structure,

$$
\begin{aligned}
\mathcal{F} f & :=\left(\sqrt{\operatorname{dim} E_{\pi}} \cdot \pi(f)\right)_{\pi \in \widehat{G}} \\
\mathcal{G}\left(T_{\pi}\right) & :=\sum_{\pi} \sqrt{\operatorname{dim} E_{\pi}} \cdot \operatorname{tr}\left(T_{\pi} \circ \pi\left(g^{-1}\right)\right) .
\end{aligned}
$$

Theorem 22.2 (Plancherel). The maps \mathcal{F} and \mathcal{G} are unitary, algebra, $G \times G$-isomorphisms and inverse to each other.

Corollary 22.3. We have
(1) $\|f\|^{2}=\sum \operatorname{dim} E_{\pi} \cdot\|\pi(f)\|^{2}$;
(2) $\mathcal{G} I_{E_{\pi}}=\sqrt{\operatorname{dim} E_{\pi}} \cdot \chi_{\bar{E}_{\pi}}$;
(3) $f=\sum \operatorname{dim} E_{\pi} \cdot f * \chi_{\pi}$;
(4) $\left\langle f_{1}, f_{2}\right\rangle=\sum \operatorname{dim} E_{\pi} \cdot \operatorname{tr} \pi\left(\tilde{f}_{2} * f_{1}\right)$.

Definition 22.4. For $f \in L^{2}(G)$, its scalar valued Fourier transform is

$$
\widehat{f}(\pi):=\operatorname{tr} \pi(f)=\sum_{i}\left\langle\pi(f) v_{i}, v_{i}\right\rangle=\int_{G} f(g) \sum_{i}\left\langle g v_{i}, v_{i}\right\rangle d g=\left\langle f, \chi_{\bar{E}_{\pi}}\right\rangle
$$

Corollary 22.5. There is an isomorphism

$$
\begin{gathered}
L_{\mathrm{cl}}^{2}(G) \longrightarrow \ell^{2}(\widehat{G}) \\
f \longmapsto \widehat{f} .
\end{gathered}
$$

23 Lie algebras coming from Lie groups, 12/7

Let G be a Lie group. Then the Lie algebra of G, denoted by Lie G or \mathfrak{g}, is the left invariant vector field on G under Lie bracket:

$$
[X, Y] f=X Y f-Y X f
$$

If $X=a^{i} \frac{\partial}{\partial x^{i}}$ and $Y=b^{j} \frac{\partial}{\partial x^{j}}$, then

$$
[X, Y]=X Y-Y X=a^{i} \frac{\partial b^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}-b^{i} \frac{\partial a^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}}
$$

Since X, Y are left invariant, $[X, Y]$ is also left invariant.
Fact. $\mathfrak{g l}(n, \mathbb{R})=\operatorname{GL}(n, \mathbb{R})$, i.e., $[\widetilde{A}, \widetilde{B}]_{e}=A B-B A$, where \widetilde{A} (resp. $\left.\widetilde{B}\right)$ is the left invariant vector field determined by $A \in T_{e} \mathrm{GL}(n, \mathbb{R})$ (resp. B). Indeed, let h be a curve on $G=\mathrm{GL}(n, \mathbb{R})$ such that $h^{\prime}(0)=A$. Then $(g h(t))^{\prime}=g h^{\prime}(t)$. So in particular $\ell_{g *} A=g A$. Write $A=\left(a_{j}^{i} \frac{\partial}{\partial x_{j}^{i}}\right), g=\left(x_{j}^{i}(g)\right)$. Notice that

$$
\frac{\partial}{\partial x_{j}^{i}}\left(x_{m}^{k} b_{\ell}^{m}\right)=\delta_{i}^{k} \delta_{m}^{j} b_{\ell}^{m}=\delta_{i}^{k} b_{\ell}^{j}
$$

So

$$
\begin{aligned}
{[\widetilde{A}, \widetilde{B}]_{e} } & =a_{j}^{i} \frac{\partial}{\partial x_{j}^{i}}(g B)_{\ell}^{k} \frac{\partial}{\partial x_{\ell}^{k}}-\left.b_{j}^{i} \frac{\partial}{\partial x_{j}^{i}}(g A)_{\ell}^{k} \frac{\partial}{\partial x_{\ell}^{k}}\right|_{g=e} \\
& =\left.(A B-B A)_{\ell}^{i} \frac{\partial}{\partial x_{\ell}^{i}}\right|_{e}
\end{aligned}
$$

Consider the (unique) curve γ with $\gamma(0)=e, \gamma^{\prime}(0)=X \in T_{e} G, \gamma^{\prime}(t)=\widetilde{X}_{\gamma(t)}$. If $G \subseteq \mathrm{GL}(n, \mathbb{C})$, then in fact $\gamma(t)=e^{t X}$:

$$
\gamma^{\prime}(t)=e^{t X} X=\gamma(t) X=\widetilde{X}_{\gamma(t)}
$$

This says that \widetilde{X} determines an one parameter group of diffeomorphism on G by right translations.

Fact. The exponential map exp: $X \mapsto \gamma(1)=e^{X}$ is complete, i.e., $\gamma(t)$ is defined for all $t \in \mathbb{R}$ and is a diffeomorphism.

Proof. Notw that $\left.\frac{d}{d t} e^{t X}\right|_{t=0}=X$ implies $\left.(d \exp)_{0}\right)_{0}=i d$. The result then follows from the inverse function theorem.

Caution: $\exp \mathfrak{g}$ generate a neighborhood of G, hence generate G°. But it may not be onto. True if G is compact!

Example 23.1. $\quad \mathfrak{s l}(n, F)$: $\operatorname{det} e^{t X}=e^{t \operatorname{tr} X}$. So $\operatorname{det} e^{t X}=1$ for all t if and only if $\operatorname{tr} X=0$. $\mathfrak{s u}(n)=\mathfrak{u}(n) \cap \mathfrak{s l}(n, \mathbb{C}): e^{t X}\left(e^{t X}\right)^{*}=e^{t X} e^{t X^{*}}=1$ for all t if and only if $X^{*}=-X$.

Note that $\operatorname{dim}_{\mathbb{R}} \mathfrak{s l}(n, \mathbb{R})=\operatorname{dim}_{\mathbb{R}} \mathfrak{s u}(n)=n^{2}-1$. In fact, $\mathfrak{s l}(n, \mathbb{C}) \cong \mathfrak{s u}(n) \otimes_{\mathbb{R}} \mathbb{C}$. $\mathfrak{s o}(n)=\mathfrak{o}(n)$: we have $X^{\top}=-X$, and note that this implies $\operatorname{tr} X=0$ automatically. $\mathfrak{s p}(n)$: reading.

Proposition 23.2. Let $\varphi: H \rightarrow G$ be a Lie group homomorphism, i.e., a C^{∞} group homomorphism. Then $d \varphi: \mathfrak{h} \rightarrow \mathfrak{g}$ is a Lie algebra homomorphism, the diagram

commutes, and if H is connected, then $d: \operatorname{Hom}(H, G) \rightarrow \operatorname{Hom}(\mathfrak{h}, \mathfrak{g})$ is injective.

Proof. $d \varphi([X, Y])=[d \varphi(X), d \varphi(Y)]$ follows from the C^{∞} structure. Since $\varphi\left(g g^{\prime}\right)=$ $\varphi(g) \varphi\left(g^{\prime}\right), \varphi \circ \ell_{g}=\ell_{\varphi(g)} \circ \varphi$. By chain rule,

$$
d \varphi \circ d \ell_{g}=d \ell_{\varphi(g)} \circ d \varphi,
$$

i.e., left invariant vector field are compatible with $d \varphi$, hence also integral curve. This implies that the diagram commutes by the construction of exp. Then the injectivity of d follows from the commutative diagram.

Consider the inner automorphism $I_{g}=\ell_{g} r_{g^{-1}}$. The adjoint representation is

$$
\begin{aligned}
& G \xrightarrow{\mathrm{Ad}} \mathrm{Aut} \mathfrak{g} \\
& g \longmapsto d I_{g},
\end{aligned}
$$

this is a Lie group homomorphism. If $Z(G)$ is trivial, then $G \hookrightarrow \mathrm{GL}(\mathfrak{g})$, and hence G is a matrix group. We define

$$
\mathrm{ad}=d \operatorname{Ad}: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})
$$

Fact. Explicit formulas for matrix groups. They are all as expected.

$$
\begin{aligned}
\operatorname{Ad}(g)(X) & =\left(g e^{t X} g^{-1}\right)^{\prime}(0)=g X g^{-1} \\
\operatorname{ad}(X) Y & =\left(e^{t X} Y e^{-t X}\right)^{\prime}(0)=X Y-Y X=[X, Y] .
\end{aligned}
$$

Also, $\operatorname{Ad} e^{X}=e^{\operatorname{ad} X}$.

Theorem 23.3. There is a one to one correspondence between subalgebras \mathfrak{h} of \mathfrak{g} and connected Lie subgroup H of G.

Proof. Fix a basis $\left\{X_{i}\right\}$ of \mathfrak{h}. We get a distribution $\mathscr{H}_{g}=\left\langle\widetilde{X}_{i g}\right\rangle$ for each $g \in G$. Let $\mathscr{H}=\bigsqcup_{g \in G} \mathscr{H}_{g}$. We show that this distribution is integrable:

$$
\left[f^{i} \widetilde{X}_{i}, g^{j} \widetilde{X}_{j}\right]=f^{i} g^{j}\left[\widetilde{X}_{i}, \widetilde{X}_{j}\right]+f^{i}\left(\widetilde{X}_{i} g^{j}\right) \widetilde{X}_{j}-g^{j}\left(\widetilde{X}_{j} f^{i}\right) \widetilde{X}_{i} \in \mathscr{H}_{g} .
$$

Take H to be the maximal integral submanifold that contains e. It is easy to check that H is indeed a subgroup.

Corollary 23.4. If H is simply connected, G is connected, then there exists natural bijection between $\operatorname{Hom}(H, G)$ and $\operatorname{Hom}(\mathfrak{h}, \mathfrak{g})$.

Proof. Let $\rho: H \rightarrow G$. Then the graph $\Gamma_{\rho} \subseteq H \times G$ is a group and $\Gamma_{\rho} \rightarrow H$ is a bijection. Then it can be reduced to the previous case.

24 Exponential map, 12/12

Consider $G \subseteq \operatorname{GL}(n, \mathbb{C})$. Then $[X, Y]=0$ if and only if $e^{t X} e^{s Y}=e^{t X+s Y}$ for all $t, s \in \mathbb{R}$. Indeed, if the latter condition holds, then

$$
e^{t X} e^{s Y}=e^{s Y} e^{t X}
$$

Applying $\left.\partial_{s} \partial_{t}\right|_{s=t=0}$ on the both sides we get $X Y=Y X$. Hence,

Corollary 24.1. If $A \subseteq G$ is connected, then A is abelian if and only if $\mathfrak{a}:=$ Lie A is abelian.

Definition 24.2. A (k -)torus is a Lie group $T^{k}:=\left(S^{1}\right)^{k}=\mathbb{R}^{k} / \mathbb{Z}^{k}$.

Proposition 24.3. A compact abelian Lie group G is isomorphic to $T^{k} \times F$ for some k, where F is a finite abelian group.

Proof. Consider the exponential map exp: $\mathfrak{g} \rightarrow G^{\circ}$, which is a group homomorphism, and hence surjective. Since exp is locally diffeomorphic near 0, its kernel ker exp is discrete, and thus is isomorphic to $\mathbb{Z}^{\operatorname{dim} \mathfrak{g}}$ (since $\mathfrak{g} / \operatorname{ker} \exp \cong G^{0}$).

Now, G / G° is a finite abelian group $F \cong \Pi \mathbb{Z} / n_{i} \mathbb{Z}$. Let $g_{i} \in G$ with $\bar{g}_{i}=1+$ $n_{i} \mathbb{Z} \in \mathbb{Z} / n_{i} \mathbb{Z}$. Then $g_{i}^{n_{i}} \in G^{\circ}$ implies that there exists an x_{i} such that $e^{n_{i} x_{i}}=g_{i}^{n_{i}}$. Let $h_{i}=g_{i} e^{-x_{i}} \in g_{i} G^{\circ}$. Then $h_{i}^{n_{i}}=e$ and

$$
\begin{aligned}
& G^{\circ} \times \prod \mathbb{Z} / n_{i} \mathbb{Z} \longrightarrow G \\
&\left(g,\left(\overline{m_{i}}\right)_{i}\right) \longmapsto \longmapsto h_{i}^{m_{i}}
\end{aligned}
$$

is the desired isomorphism.

Definition 24.4. A maximal torus of a compact Lie group G is a maximal connected abelian group. A Cartan subalgebra of $\mathfrak{g}=\operatorname{Lie} G$ is a maximal abelian subalgebra.

Corollary 24.5. Let T be a connected subgroup of a compact Lie group G. Then T is a maximal torus of G if and only if $\mathfrak{t}:=\operatorname{Lie} T$ is Cartan. In particular, \mathfrak{t} (and hence T) always exists!

Example 24.6. (1) Let

$$
\begin{aligned}
T & =\left\{\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)\right\} \subseteq \mathrm{U}(n) \\
\mathfrak{t} & =\left\{\operatorname{diag}\left(i \theta_{1}, \ldots, i \theta_{n}\right)\right\} \subseteq \mathfrak{u}(n) .
\end{aligned}
$$

Then T is a maximal torus of $\mathrm{U}(n), \mathfrak{t}$ is a Cartan subalgebra of $\mathfrak{u}(n)$. A similar results holds for $\mathrm{SU}(n)$ and $\mathfrak{s u}(n)$ with additional condition $\sum \theta_{i}=0$.
(2)

$$
\begin{aligned}
T & =\left\{\operatorname{diag}\left(\left(\begin{array}{cc}
\cos \theta_{i} & -\sin \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i}
\end{array}\right)\right)\right\} \subseteq \mathrm{SO}(2 n), \\
\mathfrak{t} & =\left\{\operatorname{diag}\left(\left(\begin{array}{cc}
0 & -\theta_{i} \\
\theta_{i} & 0
\end{array}\right)\right)\right\} \subseteq \mathfrak{s o}(2 n) .
\end{aligned}
$$

(3)

$$
\begin{aligned}
T & =\left\{\operatorname{diag}\left(\left(\begin{array}{cc}
\cos \theta_{i} & -\sin \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i}
\end{array}\right), 1\right)\right\} \subseteq \mathrm{SO}(2 n+1), \\
\mathfrak{t} & =\left\{\operatorname{diag}\left(\left(\begin{array}{cc}
0 & -\theta_{i} \\
\theta_{i} & 0
\end{array}\right), 0\right)\right\} \subseteq \mathfrak{s o}(2 n+1)
\end{aligned}
$$

Theorem 24.7. Let G be a compact Lie group, \mathfrak{t} a Cartan subalgebra. Then for each $X \in \mathfrak{g}$, there exists $g \in G$ such that $\operatorname{Ad}(g) X \in \mathfrak{t}$.

Proof. Any finite dimensional representation (ρ, V) has a G-invariant inner product, in particular for (Ad, $\mathfrak{g})$, we call it $\langle-,-\rangle$.

Lemma 24.8. Let $\mathfrak{t}=\mathfrak{z}(y)$ for some regular element $Y \in \mathfrak{g}$.

So we want to find $g \in G$ such that $[\operatorname{Ad}(g) X, Y]=0$, i.e.,

$$
\langle[\operatorname{Ad}(g) X, Y], Z\rangle=-\langle Y,[\operatorname{Ad}(g), Z]\rangle=0
$$

for all $Z \in \mathfrak{g}$. Let g_{0} achieves the maximal of the C^{∞} function

$$
f(g)=\langle Y, \operatorname{Ad}(g) X\rangle
$$

Then $t \mapsto\left\langle Y, \operatorname{Ad}\left(e^{t Z}\right) \operatorname{Ad}\left(g_{0}\right) X\right\rangle, t \in \mathbb{R}$, has maximum at $t=0$ for each $Z \in \mathfrak{g}$. Hence,

$$
0=\left.\frac{d}{d t}\right|_{t=0}\left\langle Y, \operatorname{Ad}\left(e^{t Z}\right) \operatorname{Ad}\left(g_{0}\right) X\right\rangle=\left\langle Y, \operatorname{ad}(Z) \operatorname{Ad}\left(g_{0}\right) X\right\rangle=-\left\langle Y,\left[\operatorname{Ad}\left(g_{0}\right) X, Z\right]\right\rangle
$$

Corollary 24.9. (a) $\operatorname{Ad}(G)$ acts transitively on the set of Cartan subalgbras.
(b) G acts transitively on maximal tori of G by conjugation.

Proof. For (a), let $\mathfrak{t}_{1}=\mathfrak{z}(X)$, and let $g \in G$ such that $\operatorname{Ad}(g) X \in \mathfrak{t}_{2}$. Then

$$
\operatorname{Ad}(g) \mathfrak{t}_{1}=\{\operatorname{Ad}(g) Y \mid[Y, X]=0\} .
$$

Write $Y^{\prime}=\operatorname{Ad}(g) Y$. Then

$$
\left[\operatorname{Ad}(g)^{-1} Y^{\prime}, X\right]=0 \Longrightarrow\left[Y^{\prime}, \operatorname{Ad}(g) X\right]=0
$$

So $\mathfrak{t}_{2} \subseteq \mathfrak{z}(\operatorname{Ad}(g) X)$. By the maximality of $\mathfrak{t}_{2}, \operatorname{Ad}(g) \mathfrak{t}_{1}=\mathfrak{t}_{2}$.
For (b), let $T_{i}=\exp \mathfrak{t}_{i}$. Then

$$
g T_{1} g^{-1}=g \exp \left(\mathfrak{t}_{1}\right) g^{-1}=\exp \left(\operatorname{Ad}(g) \mathfrak{t}_{1}\right)=\exp \left(\mathfrak{t}_{2}\right)=T_{2} .
$$

Recall that if G is connected, then $\operatorname{Ad}(g)=$ id if and only if $g \in Z(G)$.

Theorem 24.10. Let G be a compact connected Lie group. Then $\exp \mathfrak{g}=G$ and for each $g_{0} \in G$, there exists $g \in G$ such that $g g_{0} g^{-1} \in T$.

Proof. Indeed, g_{0} lies in some maximal torus T^{\prime}, and $g T^{\prime} g^{-1}=T$ for some $g \in G$.

Theorem 24.11. Let $G \subseteq \operatorname{GL}(n, \mathbb{C}), \gamma: \mathbb{R} \rightarrow \mathfrak{g}$ a C^{∞} curve. Then

$$
\frac{d}{d t} \gamma(t)=\left(\frac{e^{\operatorname{ad} \gamma(t)}-1}{\operatorname{ad} \gamma(t)}\right) \gamma^{\prime}(t) \cdot e^{\gamma(t)}=e^{\gamma(t)} \cdot\left(\frac{1-e^{-\operatorname{ad} \gamma(t)}}{\operatorname{ad} \gamma(t)}\right) \gamma^{\prime}(t) .
$$

Note that $\left(e^{z}-1\right) / z$ and $\left(1-e^{-z}\right) / z$ are invertible power series in z.

Proof. Consider the C^{∞} function $\varphi(s, t)=e^{-s \gamma(t)} \frac{\partial}{\partial t} e^{s \gamma(t)}$. Then $\varphi(0, t)=0$ and

$$
\frac{\partial}{\partial s} \varphi(s, t)=-e^{-s \gamma} \gamma \frac{\partial}{\partial t} e^{s \gamma}+e^{-s \gamma} \frac{\partial}{\partial t}\left(\gamma e^{s \gamma}\right)=\operatorname{Ad}\left(e^{-s \gamma}\right) \gamma^{\prime}=e^{-s \operatorname{ad} \gamma} \gamma^{\prime}
$$

So

$$
\begin{aligned}
e^{-\gamma(t)} \frac{\partial}{\partial t} e^{\gamma(t)}=\varphi(1, t) & =\int_{0}^{1} \frac{\partial}{\partial s} \varphi(s, t) d s=\int_{0}^{1} e^{-s \operatorname{ad} \gamma} \gamma^{\prime} d s \\
& =\left(\int_{0}^{1} \sum_{n} \frac{(-s)^{n}}{n!}(\operatorname{ad} \gamma)^{n}\right) \gamma^{\prime}=\frac{1-e^{-\operatorname{ad} \gamma}}{\operatorname{ad} \gamma} \gamma^{\prime}
\end{aligned}
$$

Corollary 24.12. The tangent map $(d \exp)_{X}$ is nonsingular if and only if

$$
\operatorname{Spec}(\operatorname{ad} X) \subseteq(\mathbb{C} \backslash 2 \pi i \mathbb{Z}) \cup\{0\}
$$

Proof. Simply take $\gamma(t)=X+t Y$ with $(\operatorname{ad} X) Y=\lambda Y$. Then

$$
\left(\frac{1-e^{-\operatorname{ad} X}}{\operatorname{ad} X}\right) Y= \begin{cases}\frac{1-e^{-\lambda}}{\lambda} Y, & \text { if } \lambda \neq 0 \\ Y, & \text { if } \lambda=0\end{cases}
$$

Theorem 24.13 (Dynkin's formula). For any $X, Y \in \mathfrak{g l}(n)$, we have $e^{X} e^{Y}=e^{Z}$, where

$$
Z=\sum_{i_{k}+j_{k} \geq 1} \frac{(-1)^{n+1}}{n} \frac{1}{\left(i_{1}+j_{1}\right) \cdots\left(i_{k}+j_{k}\right)} \cdot \frac{\left[X^{\left(i_{1}\right)} Y^{\left(j_{1}\right)} \cdots X^{\left(i_{k}\right)} Y^{\left(j_{k}\right)}\right]}{i_{1}!j_{1}!\cdots i_{k}!j_{k}!} .
$$

Proof. There exists a unique C^{∞} function $Z(t)$ such that $e^{Z(t)}=e^{t X} e^{t Y}$ near $t=0$. Then

$$
\left(\frac{e^{\operatorname{ad} Z}-1}{\operatorname{ad} Z}\right) Z^{\prime} \cdot e^{Z}=X e^{Z}+e^{Z} Y
$$

Hence,

$$
\begin{aligned}
Z^{\prime} & =\left(\frac{\operatorname{ad} Z}{e^{\operatorname{ad} Z}-1}\right)\left(X+\operatorname{Ad}\left(e^{Z}\right) Y\right) \\
& =\left(\frac{\operatorname{ad} Z}{e^{\operatorname{ad} Z}-1}\right)\left(X+\operatorname{Ad}\left(e^{t X}\right) Y\right)=\left(\frac{\operatorname{ad} Z}{e^{\operatorname{ad} Z}-1}\right)\left(X+e^{t \operatorname{ad} X} Y\right)
\end{aligned}
$$

Note that

$$
\operatorname{ad} Z=\log \left(1+\left(e^{\operatorname{ad} Z}-1\right)\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(e^{\operatorname{ad} Z}-1\right)^{n}
$$

So

$$
\left(\frac{\operatorname{ad} Z}{e^{t \operatorname{ad} Z}-1}\right)\left(X+e^{t \operatorname{ad} X} Y\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(e^{t \operatorname{ad} X} e^{t \operatorname{tad} Y}-1\right)^{n-1}\left(X+e^{t \operatorname{ad} X} Y\right)
$$

The result now follows by an easy calculation.

Corollary 24.14. Let $N \subseteq \operatorname{GL}(n, \mathbb{C})$ be a connected subgroup such that $\mathfrak{n}:=$ Lie N is contained in the set of strict upper triangular matrices. Then $N=\exp \mathfrak{n}$.

Proof. Consider the equation $e^{X} e^{Y}=e^{Z}$ near 0 (so that exp is one-to-one). The matrix coefficients of Z are polynomial in $X=\left(x_{j}^{i}\right), Y=\left(y_{j}^{i}\right)$ by Dynkin's formula. So the equality holds everywhere. Hence, $(\exp \mathfrak{n})^{2} \subseteq \exp \mathfrak{n}$. Since $\exp \mathfrak{n}$ generated $N, \exp \mathfrak{n}=$ N.

Theorem 24.15. Let G be a compact Lie group. Then \mathfrak{g} is reductive.

Proof. Let $\langle-,-\rangle$ be a Ad-invariant inner product on \mathfrak{g}. Then $\mathfrak{a} \subseteq \mathfrak{g}$ implies $\mathfrak{a}^{\perp} \subseteq \mathfrak{g}$. Hence,

$$
\mathfrak{g}=\mathfrak{s}_{1} \oplus \cdots \oplus \mathfrak{s}_{k} \oplus \mathfrak{z}_{1} \oplus \cdots \mathfrak{z}_{k}
$$

where $\operatorname{dim} \mathfrak{s}_{i} \geq 2$ and $\operatorname{dim} \mathfrak{z}_{i}=1$. It is easy to check that $\left[\mathfrak{s}_{i}, \mathfrak{s}_{j}\right]=0$ if $i \neq j$ and $Z(\mathfrak{g})=\bigoplus \mathfrak{z}_{j}$.

Theorem 24.16 (Structure of compact Lie group). (a) Let G^{\prime} be the normal subgroup generated by commutators $[g, h]=g h g^{-1} h^{-1}$. If G is compact connected, then G^{\prime} is connected, closed in G and Lie $G^{\prime}=[\mathfrak{g}, \mathfrak{g}]$.
(b) $G=G^{\prime} \times Z(G)^{\circ} / F$, where $F=G^{\prime} \cap Z(G)^{\circ}$ is a finite abelian group.
(c) For $\mathfrak{g}^{\prime}=\bigoplus \mathfrak{s}_{i}, S_{i}=\exp \left(\mathfrak{s}_{i}\right) \unlhd G^{\prime}$ is connect, closed, with only proper closed normal subgroup being finite central in G.

25 Reduce Lie group representations to Lie algebra representations, 12/14

Let G be a Lie subgroup of $\operatorname{GL}(n, \mathbb{C}), \rho: G \rightarrow \mathrm{GL}(V)$ a finite dimensional representation. Then $\rho\left(e^{X}\right)=e^{d \rho(X)}$, so $d \rho$ determines $\left.\rho\right|_{G^{\circ}}$. Also, ρ determines $d \rho$. Hence, for G connected, $W \subseteq V$ is $\rho(G)$-invariant if and only if W is $d \rho(\mathfrak{g})$-invariant. For G compact connected, V is irreducible if and only if V is irreducible as a $\mathfrak{g}_{\mathbb{C}}$-representation, where $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}=\mathfrak{g} \oplus i \mathfrak{g}$.

Observation. We can put $\mathfrak{g} \subseteq \mathfrak{u}(n) \subseteq \mathfrak{g l}(n, \mathbb{C})=\mathfrak{u}(n) \oplus \mathfrak{u}(n)=\mathfrak{u}(n)_{\mathbb{C}}$. So there is a
natural inclusion $\mathfrak{g}_{\mathbb{C}} \rightarrow \mathfrak{u}(n)_{\mathbb{C}}$.
Note that elements in $\mathfrak{u}(n)$ are skew-Hermitian, while elements in $i \mathfrak{u}(n)$ are Hermitian. So elements in $\mathfrak{u}(n) \cup \mathfrak{i} \mathfrak{u}(n)$ are normal.

Example 25.1.

$$
\begin{aligned}
\mathfrak{s u}(n)_{\mathbb{C}} & =\mathfrak{s l}(n, \mathbb{C}) \\
\mathfrak{s o}(n)_{\mathbb{C}} & =\left\{X^{\top}=-X\right\} \\
\mathfrak{s p}(n)_{\mathbb{C}} & =(\mathfrak{u}(2 n) \cap \mathfrak{s p}(n, \mathbb{C}))_{\mathbb{C}}=\mathfrak{s p}(n, \mathbb{C}) .
\end{aligned}
$$

We see that $\mathrm{SU}(n), \operatorname{Sp}(n)$ are real compact Lie groups, while $\mathrm{SL}(n), \mathrm{Sp}(n)$ are noncompact.

Theorem 25.2. For any semisimple Lie algebra L over \mathbb{C}, there exists a compact real form, i.e., there exists a real compact Lie group G such that $L \cong \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$.

Let G be a compact Lie group that acts on V by $\rho,\langle-,-\rangle$ a G-invariant inner product on $\mathbb{C}, \mathfrak{t} \subseteq \mathfrak{g}$ a Cartan subalgebra. Then $\mathfrak{t}_{\mathbb{C}}$ acts on V as a family of commuting normal operators, and hence simultaneously diagonalizable. So the Cartan subalgebra defined here is same as the Cartan subalgebra defined in the theory of Lie algebra.

Now, fix a maximal torus $T \subseteq G, \mathfrak{t}=\operatorname{Lie} T$. For a G-module (ρ, V), consider the weight space decomposition

$$
V=\bigoplus_{\alpha \in \Phi(V)} V_{\alpha}, \quad H \cdot v=d \rho(H) \cdot v=\alpha(H) \cdot v, \quad \forall H \in \mathfrak{t}_{\mathbb{C}}, v \in V_{\alpha}
$$

Take $(\rho, V)=\left(\operatorname{Ad}, \mathfrak{g}_{\mathbb{C}}\right)$. Then we have the root decomposition

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in \Phi\left(\mathfrak{g}_{\mathbb{C}}\right)^{\times}} \mathfrak{g}_{\alpha}
$$

Then $\Phi\left(\mathfrak{g}_{\mathbb{C}}\right)^{\times}$could be decomposed into the positive part Φ^{+}and the negative part Φ^{-}.

Example 25.3. Let $G=\operatorname{SU}(n)$,

$$
\mathfrak{t}=\left\{\operatorname{diag}\left(i \theta_{1}, \ldots, i \theta_{n}\right) \mid \sum \theta_{i}=0\right\}, \quad \mathfrak{t}_{\mathbb{C}}=\left\{\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right) \mid \sum z_{i}=0\right\} .
$$

Then $\Phi=\left\{ \pm\left(\varepsilon_{i}-\varepsilon_{j}\right) \mid i<j\right\}$, where $\varepsilon_{i}\left(\operatorname{diag}\left(z_{j}\right)\right)=z_{i}$. This is indeed A_{n-1}.

As in the Lie algebra representation, an element $v \in V_{\lambda_{0}}$ is a highest weight vector if $X \cdot v=0$ for all $X \in \mathfrak{n}^{+}$. New feature: analytically integral weight,

$$
A=A(T)=\left\{\lambda \in(i t)^{\vee} \mid \lambda(H) \in 2 \pi i \mathbb{Z}, \forall e^{H}=\mathrm{id}\right\} .
$$

We see that A is isomorphic to the character group $\chi(T)=\operatorname{Hom}\left(T, \mathbb{C}^{\times}\right)$of T by $\xi_{\lambda}\left(e^{H}\right)=$ $e^{\lambda(H)}$.

Theorem 25.4. Let G be a connected compact Lie group, V a finite dimensional irreducible representation. Then there exists a unique highest weight λ_{0} which is dominant, integral, and analytically integral.

Definition 25.5. An element $g \in G$ is regular if $Z_{G}(g)^{\circ}$ is a maximal torus. The set of regular elements in G is denoted by G^{reg}, and is open dense in G.

For $t \in T$, define $d(t)=\prod_{\alpha \in \Phi}\left(1-\xi_{-\alpha}(t)\right)$, which is nonzero if and only if t is regular.

Theorem 25.6 (Weyl integral formula). For $f \in C(G)$,

$$
\int_{G} f(g) d g=\frac{1}{|W(G)|} \int_{T} d(t) \int_{G / T} f\left(g t g^{-1}\right) d(g T) d t
$$

where $W(G)=N_{G}(T) / T$, which is in fact isomorphic to the Weyl group of $\mathfrak{g}_{\mathbb{C}}$ with respect to $\mathfrak{t}_{\mathbb{C}}$.

Proof. Consider

$$
\psi: G / T \times T^{\mathrm{reg}} \longrightarrow G^{\mathrm{reg}}
$$

by multiplication. This map is surjective, and is a $|W(G)|$ to 1 local diffeomorphism. Now use

$$
\psi^{*} \omega_{G}=d(t) \pi_{1}^{*} \omega_{G / T} \wedge \pi_{2}^{*} \omega_{T} .
$$

Theorem 25.7. Let $V=V(\lambda)$ be the representation with highest weight λ. For $g \in$ G^{reg}, g is conjugate to $e^{H} \in T$ for some $H \in \mathfrak{t}$, then

$$
\chi_{\lambda}(g)=\Theta_{\lambda}(g):=\frac{\sum_{w \in W(G)} \operatorname{det} w \cdot e^{w(\lambda+\Phi)(H)}}{\prod_{\alpha \in \Phi^{+}}\left(e^{\alpha(H) / 2}-e^{-\alpha(H) / 2}\right)},
$$

where $\Phi=\frac{1}{2} \sum_{\alpha \succ 0} \alpha$.

26 Borel-Weil theorem, 12/19

Definition 26.1. Let G be a compact connected Lie group, T a maximal torus of G. Then we can embed G into $\mathrm{U}(n) \subseteq \operatorname{GL}(n, \mathbb{C})$. Fix $\Phi^{+}\left(\mathfrak{g}_{\mathbb{C}}\right)$, we get a Borel subalgebra $\mathfrak{b}=\mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{n}^{+}$and $\mathfrak{g}_{\mathbb{C}}=\mathfrak{n}^{-} \oplus \mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{n}^{+}$. Let $N, B, A, G_{\mathbb{C}}$ be the connected Lie subgroup in $\mathrm{GL}(n, \mathbb{C})$ correspond to $\mathfrak{n}^{+}, \mathfrak{b}, \mathfrak{a}=i \mathfrak{t}, \mathfrak{g}_{\mathbb{C}} \subseteq \mathfrak{g l}(n, \mathbb{C})=\mathfrak{u}(n)_{\mathbb{C}}$.

The Cartan involution θ (an abstact version of complex conjugation) is defined to be $\theta(x \otimes z)=x \otimes \bar{z}$. Hence, $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \oplus i \mathfrak{g}$ is the eigenspace decomposition of θ (with eigenvalue $1,-1$, respectively). Since $\mathfrak{g} \subseteq \mathfrak{u}(n), \theta Z=-Z^{*}$:

$$
Z=X+i Y \quad \Longrightarrow \quad-Z^{*}=-X^{*}+i Y^{*}=X-i Y
$$

Proposition 26.2. Let $\alpha \in \Phi\left(\mathfrak{g}_{\mathbb{C}}\right)$ be a root. Then α is purely imaginary on \mathfrak{t}, equivalently, α is real on \mathfrak{a}. In particular, $\theta \mathfrak{g}_{\alpha}=\mathfrak{g}_{-\alpha}$.

Proof. The first statement follows from the facts that α skew-hermitian on \mathfrak{t} and hermitian on $i \mathfrak{t}$. For $H \in \mathfrak{t}, Z=X+i Y \in \mathfrak{g}_{\alpha}$,

$$
\alpha(H)(X+i Y)=[H, X]+i[H, Y]
$$

implies that $\alpha(H) X=i[H, Y], \alpha(H) Y=[H, X]$. Hence,

$$
\operatorname{ad}(H)(\theta Z)=[H, X]-i[H, Y]=-\alpha(H)(X-i Y)=(-\alpha)(H)(\theta Z)
$$

Remark 26.3. For \mathbb{G} compact, \mathfrak{g} semisimple, the Killing form $B(X, Y)=\operatorname{tr}(\operatorname{ad} X \operatorname{ad} Y)$ is negative definite on \mathfrak{g} since

$$
B(X, X)=\sum_{\alpha \in \Phi} \alpha(X)^{2}<0 .
$$

So we prefer to consider $\alpha \in \mathfrak{a}^{*}$, so that $\alpha(H)=B\left(H, u_{\alpha}\right)$ for some $u_{\alpha} \in \mathfrak{a}$, and get

$$
h_{\alpha}=\frac{2}{B\left(u_{\alpha}, u_{\alpha}\right)} \cdot u_{\alpha}, \quad \alpha\left(h_{\alpha}\right)=2 .
$$

These give us the standard $\mathfrak{s l}(2, \mathbb{C})$ triple: take $e_{\alpha} \in \mathfrak{g}_{\alpha}, f_{\alpha}=-\theta e_{\alpha}$, then $\left[e_{\alpha}, f_{\alpha}\right] \| h_{\alpha}$ and we may assume that $\left[e_{\alpha}, f_{\alpha}\right]=h_{\alpha}$.

Let M be a C^{∞} manifold, $\mathbf{V} \rightarrow M$ a complex vector bundle of rank n. Assume that a Lie group G acts on \mathbf{V} fiberwisely, i.e., $g \cdot \mathbf{V}_{x} \subseteq \mathbf{V}_{g(x)}$ for some $g(x) \in M$. We say that V is a homogeneous vector bundle if $\mathbf{V}_{x} \xrightarrow{g} \mathbf{V}_{g(x)}$ is a linear isomorphism. Then G acts on M and on $\Gamma(M, \mathbf{V})$ by $(g \cdot s)(x)=g \cdot s\left(g^{-1} x\right)$.

Let $H \subseteq G$ be a closed subgroup, V a finite dimensional representation of H. Then

$$
\mathbf{V}=G \times_{H} V:=G \times V / \sim \longrightarrow M:=G / H
$$

is a homogeneous vector bundle, where $(g h, v) \sim(g, h v)$ and $g^{\prime} \cdot[(g, v)]=\left[\left(g^{\prime} g, v\right)\right]$.

Proposition 26.4. There is a 1-1 correspondence between homogeneous vector bundles over G / H and finite dimensional representations of H.

Proof. Indeed, $\mathbf{V}_{e H}$ is a representation of H.

Definition 26.5. Let H be a closed subgroup of $G, \rho: H \rightarrow \mathrm{GL}(V)$ a representation. The induced representation $\operatorname{Ind}_{H}^{G}(\rho)=\operatorname{Ind}_{H}^{G}(V)$ of $\rho($ or $V)$ is

$$
\left\{f: G \rightarrow V \mid f(g h)=h^{-1} \cdot f(g)\right\}
$$

with action $\left(g^{\prime} \cdot f\right)(g)=f\left(\left(g^{\prime}\right)^{-1} g\right)$.

Proposition 26.6. There is a natural G-isomorphism

$$
\Gamma\left(G / H, G \times_{H} V\right) \xrightarrow{\sim} \operatorname{Ind}_{H}^{G}(V) .
$$

Proof. Identify $\left(G_{H} \times V\right)_{e H} \cong V:(h, v) \mapsto h^{-1} v$. For $s \in \Gamma\left(G / H, G \times_{H} V\right)$, it corresponds to $f_{s}(g)=g^{-1} s(g H)$. For $f \in \operatorname{Ind}_{H}^{G}(V)$, it corresponds to $s_{f}(g H)=(g, f(g))$.

Theorem 26.7 (Frobenius reciprocity). Let H be a closed subgroup of G, V an H module, W a G-module. Then

$$
\operatorname{Hom}_{G}\left(W, \operatorname{Ind}_{H}^{G}(V)\right) \cong \operatorname{Hom}_{H}\left(\left.W\right|_{H}, V\right)
$$

as \mathbb{C}-vector spaces.

Proof. Reading.

Lemma 26.8. The exponential maps $\exp : \mathfrak{n}^{+} \rightarrow N, \mathfrak{a}=i \mathfrak{t} \rightarrow A$ are bijections, N, B, A are closed subgroups of $G_{\mathbb{C}}$, and

$$
\begin{aligned}
T \times \mathfrak{a} \times \mathfrak{n}^{+} & \longrightarrow B \\
(t, i H, X) & \longmapsto t e^{i H} e^{X}
\end{aligned}
$$

is a diffeomorphism.

Proof. This follows from Dynkin's formula.

Theorem 26.9. We have $G / T \cong G_{\mathbb{C}} / B$, hence it is a complex (homogeneous) manifold.
Proof. Since $\mathfrak{g}=\left\{X+\theta X \mid X \in \mathfrak{g}_{\mathbb{C}}\right\}, \mathfrak{g} / \mathfrak{t}$ and $\mathfrak{g}_{\mathbb{C}} / \mathfrak{b}$ both are spanned by the image of $X_{\alpha}+\theta X_{\alpha}$, where $X_{\alpha} \in g_{\alpha}, \alpha \in \Phi^{+}$. So $p: G \rightarrow G_{\mathbb{C}} / B$ has $d p$ surjective at $e \in G$. Then $\operatorname{Im} p$ contains a neighborhood of $e B$ and hence open and closed. Thus, p is surjective.

We claim that $G \cap B=T$. First of all, $\mathfrak{g} \cap \mathfrak{b}=\mathfrak{t}$ is known. Let $g \in G \cap B$. Then $\operatorname{Ad}(g)$ preserves $\mathfrak{t}=\mathfrak{g} \cap \mathfrak{b}$, hence T, i.e., $g \in N_{G}(T)$. Let w be the image of g in the Weyl group. Then $g \in B$ implies that w preserves Δ^{\perp}, hence preserves the fundamental Weyl chamber. Thus, $w=I$ and $g=T$.

Definition 26.10. For $\lambda \in A(T)$, let \mathbb{C}_{λ} be the T-module corresponds to the character $\xi_{\lambda}: T \rightarrow \mathbb{C}^{\times}$, and $L_{\lambda}=G \times_{T} \mathbb{C}_{\lambda}$ the homogeneous line bundle over G / T. We extend ξ_{λ} to $\xi_{\lambda}^{\mathbb{C}}: B \rightarrow \mathbb{C}^{\times}$by

$$
\xi_{\lambda}^{\mathbb{C}}\left(t e^{i H} e^{X}\right)=\xi_{\lambda}(t) e^{i \lambda(H)}
$$

and still denote the corresponding B-module by \mathbb{C}_{λ}. Let $L_{\lambda}^{\mathbb{C}}=G_{\mathbb{C}} \times{ }_{B} \mathbb{C}_{\lambda}$ be the homogeneous (holomorphic) line bundle over $G_{\mathbb{C}} / B$.

Lemma 26.11. We have

$$
\operatorname{Ind}_{T}^{G}\left(\xi_{\lambda}\right) \cong \Gamma\left(G / T, L_{\lambda}\right) \cong \Gamma\left(G_{\mathbb{C}} / B, L_{\lambda}^{\mathbb{C}}\right) \cong \operatorname{Ind}_{B}^{G_{\mathbb{C}}}\left(\xi_{\lambda}^{\mathbb{C}}\right)
$$

as C^{∞}-sections.

Since $L_{\lambda}^{\mathbb{C}}$ is holomorphic over $G_{\mathbb{C}} / B$, we have $\Gamma_{\text {hol }}\left(G / T, L_{\lambda}\right):=\Gamma_{\text {hol }}\left(G_{\mathbb{C}} / B, L_{\lambda}^{\mathbb{C}}\right)$.

Theorem 26.12 (Borel-Weil). The space

$$
\Gamma_{\mathrm{hol}}\left(G / T, L_{\lambda}\right)= \begin{cases}V(-\lambda), & \text { if }-\lambda \text { is dominant } \\ 0, & \text { else }\end{cases}
$$

Proof. Use

$$
C^{\infty}(G)_{G \text {-fin }}=\bigoplus_{\substack{\gamma \in A(T) \\ \text { dominant }}} V(\gamma)^{\vee} \otimes V(\gamma)
$$

to read out holomorphic property in this decomposition.

Theorem 26.13 (Bott-Borel-Weil). Let $\lambda \in A(T), \delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$. If $\lambda+\delta$ lies in a Weyl chamber wall, then

$$
H^{p}\left(G / T=G_{\mathbb{C}} / B, L_{\lambda}^{\vee}\right)=0, \quad p>0
$$

Otherwise, let $w \in W\left(\Phi^{+}\right)$such that $w * \lambda=w(\lambda+\delta)-\delta$ is dominant, and $\ell(w)$ be the length of w, which is equal to the number of $\alpha \in \Phi^{+}$such that $B(\lambda+\delta, \alpha)<0$. Then

$$
H^{p}\left(G / T, L_{\lambda}^{\vee}\right)= \begin{cases}V(w * \lambda), & \text { if } p=\ell(w) \\ 0, & \text { else }\end{cases}
$$

