Lie groups and Lie algebras

A course by prof. Chin-Lung Wang

2022 Fall

1 Introduction, 9/5

Sample Problems:

1) Given two matrices $A, B \in M_{n \times n}(\mathbb{C})$, tr[A, B] = 0, where [A, B] = AB - BA is the Lie bracket. Conversely, if tr C = 0, can we find A, B such that C = [A, B]?

2) We know that $e^A e^B = e^{A+B}$ when [A, B] = 0, where

$$e^A := \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

If $[A, B] \neq 0$, what should be the RHS? (Baker-Campbell-Hausdorff formula)

Dynkin's formula: for $X_i \in M_{n \times n}(\mathbb{C})$, define

$$[x_n, \ldots, x_1] = [x_n, [x_{n-1}, \cdots, x_2, x_1]]$$

recursively. More generally, define

$$\left[x_n^{(i_n)},\ldots,x_1^{(i_1)}\right] = \left[\underbrace{x_n,\ldots,x_n}_{i_n},\ldots,\underbrace{x_1,\ldots,x_1}_{i_1}\right].$$

Then we have $e^X e^Y = e^Z$, where

$$Z = \sum_{n,I,J} \frac{(-1)^{n-1}}{n} \frac{1}{i_1 + j_1 + \dots + i_n + j_n} \frac{\left[x_1^{(i_1)}, y_1^{(j_1)}, \cdots, x_n^{(i_n)}, y_n^{(j_n)}\right]}{i_1! j_1! \cdots i_n! j_n!}$$

3) Consider the PDE: $\Delta u + e^u = 0$ on $U = B_0(1) \subseteq \mathbb{R}^2$. Liouville: The solution can be explicitly written down! (integrable system).

More generally, consider $u_1, \ldots, u_n := U \to \mathbb{R}$ such that

$$\Delta u_i + \sum_{j=1}^n a_{ij} e^{u_j} = 0.$$

Can the solution be written down explicitly (locally)? Toda: Yes, if $A = (a_{ij})$ is the Cartan matrix of a simple Lie algebra.

Let V be a vector space over a field F. For $s, t \in End(V)$, we define

$$[s,t] = st - ts$$

We have the Jacobi identity:

$$[s, [t, u]] + [t, [u, s]] + [u, [s, t]] = 0.$$

Definition 1.1. A Lie algebra L is a vector space over F with a bilinear map

$$[-,-]:L\times L\to L$$

such that [x, x] = 0 for each $x \in L$ and [-, -] satisfies the Jacobi identity.

A Lie algebra homomorphism $\varphi: L \to L'$ is a linear map over F satisfies

$$\varphi([x,y]) = [\varphi(x),\varphi(y)]$$

A subspace $K \subseteq L$ is a subalgebra of the Lie algebra L if for each $x, y \in K$, $[x, y] \in K$. A subspace $K \subseteq L$ is an ideal of L, denoted by $K \trianglelefteq L$, if $[x, y] \in K$ for each $x \in K$ and $y \in L$.

If K is an ideal of L, we can define the quotient Lie algebra L/K with the natural Lie bracket $[\overline{x}, \overline{y}] = \overline{[x, y]}$. For a Lie algebra homomorphism $\varphi : L \to L'$, ker φ is an ideal, and there is a Lie algebra isomorphism $L/\ker \varphi \cong \operatorname{Im} \varphi \subseteq L'$.

Classical Lie algebra:

For a vector space V, we define $\mathfrak{gl}(V) = (\operatorname{End}(V), [-, -])$, where [x, y] = xy - yx. If $V = F^n$, we write $\mathfrak{gl}(V) = \mathfrak{gl}(n, F) = M_{n \times n}(F)$.

There are 4 special types of classical subalgebra of $\mathfrak{gl}(V)$:

- A_{ℓ} : special linear Lie algebra. dim $V = \ell + 1$, $A_{\ell} = \mathfrak{sl}(V) = \{x \in \mathfrak{gl}(V) \mid \operatorname{tr} x = 0\}$.
- B_{ℓ} : orthogonal Lie algebra. dim $V = 2\ell + 1$, $B_{\ell} = \{x \in \mathfrak{gl}(V) \mid x^{\mathsf{T}}A + Ax = 0\}$, where A is the bilinear form

$$\begin{pmatrix} 1 & & \\ & I_{\ell} \\ & I_{\ell} \end{pmatrix}$$

• C_{ℓ} : symplectic Lie algebra. dim $V = 2\ell$, $C_{\ell} = \{x \in \mathfrak{gl}(V) \mid x^{\mathsf{T}}A + Ax = 0\}$, where A is the bilinear form

$$\begin{pmatrix} & I_\ell \\ -I_\ell & \end{pmatrix}$$

• D_{ℓ} : orthogonal Lie algebra. dim $V = 2\ell$, $D_{\ell} = \{x \in \mathfrak{gl}(V) \mid x^{\mathsf{T}}A + Ax = 0\}$, where A is the bilinear form

$$\begin{pmatrix} I_\ell \\ I_\ell \end{pmatrix}$$

Note that for x, y satisfying $x^{\mathsf{T}}A + Ax = y^{\mathsf{T}}A + Ay = 0$, we have

$$[x,y]^{\mathsf{T}}A + A[x,y] = 0.$$

Remark 1.2. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a orthogonal transformation. Then $\langle Ta, Tb \rangle = \langle a, b \rangle$. An infinitesimal orthogonal transformation then satisfies

$$\langle xa, b \rangle + \langle a, xb \rangle = 0,$$

which is equivalent to $x^{\mathsf{T}} + x = 0$

A representation, or a module, of a Lie algebra is a Lie homomorphism

$$\varphi: L \longrightarrow \mathfrak{gl}(V).$$

Can you find one? Yes, the adjoint representation

$$L \xrightarrow{\text{ad}} \mathfrak{gl}(L)$$
$$x \longmapsto \text{ad} \ x = [y \mapsto [x, y]]$$

Definition 1.3. The **center** of a Lie algebra L is

$$Z(L) := \ker \operatorname{ad} = \{ y \in L \mid [x, y] = 0, \ \forall x \in L \}.$$

There is an embedding $L/Z(L) \hookrightarrow \mathfrak{gl}(L)$.

Definition 1.4. For a Lie algebra L, define $L^{(i)} = [L^{(i-1)}, L^{(i-1)}]$ recursively, where $L^0 = L$. The sequence

$$L = L^{(0)} \supseteq L^{(1)} \supseteq L^{(2)} \supseteq \cdots$$

is called the **derived series** of L.

We say L is **commutative** (or **abelian**) (resp. **solvable**) if $L^{(1)} = 0$ (resp. $L^{(n)} = 0$ for some positive integer n).

Note that $L^{(1)}$ is an ideal of L and $L/L^{(1)}$ is commutative.

Definition 1.5. For a Lie algebra L, define $L^i = [L, L^{i-1}]$ recursively, where $L^1 = L$.

We say L is **nilpotent** if $L^n = 0$ for some positive integer n.

2 Three giants, 9/7

From now on, we will assume that the Lie algebras are finite dimensional.

Let

$$\mathfrak{t}(n,F) = \{x \in \mathfrak{gl}(n) \mid x \text{ is upper triangular }\},\\ \mathfrak{n}(n,F) = \{x \in \mathfrak{gl}(n) \mid x \text{ is strictly upper triangular }\}\\ \mathfrak{d}(n,F) = \{x \in \mathfrak{gl}(n) \mid x \text{ is diagonal }\}$$

Then $\mathfrak{t}(n, F)$ is solvable, $\mathfrak{n}(n, F)$ is nilpotent and $\mathfrak{d}(n, F)$ is commutative.

We say a Lie algebra L is **ad-nilpotent** if ad x is nilpotent for each L.

Theorem 2.1 (Engel). An ad-nilpotent algebra is nilpotent.

Theorem 2.2 (M). Let $L \subseteq \mathfrak{gl}(V)$ be a Lie subalgebra. If *a* is nilpotent for each $a \in L$, then there exists a (simultaneous) 0-eigenvector of *L*.

Proof. Induction on dim L for all V. The base case dim L = 1 is trivial.

If dim L > 1, take any $K \subsetneq L$ subalgebra. Consider the adjoint representation ad : $K \to \mathfrak{gl}(L)$. Then ad x is nilpotent for all $x \in K$ (also on $\mathfrak{gl}(L/K)$). Indeed,

$$x^n = 0 \implies (\operatorname{ad} x)^{2n-1} = (x_L - x_R)^{2n-1} = 0$$

The induction hypothesis tells us that there exists a zero eigenvector $\overline{x} = x + K$ of "K"

(under ad), i.e., $[y, x] = (ad y)x \in K$ for each $y \in K$, or equivalently, K is a proper ideal of $N_L(K)$.

Pick K to be a maximal proper Lie subalgebra of L, we see that $N_L(K) = L$, i.e., $K \leq L$. Note that $\dim(L/K) = 1$ (otherwise K is not maximal). Say L = K + Fz.

Let $W = \{v \in V \mid Kv = 0\}$, which is nonzero by induction. Then $LW \subseteq W$:

$$y(xw) = x(yw) - [x, y]w = 0$$

for $x \in L$, $y \in K$ and $w \in W$. Hence, z is a nilpotent element that acts on W. So there exists a nonzero element $v \in W$ such that zv = 0. Thus, Lv = 0.

Proof of (2.1). Let L be an ad-nilpotent Lie algebra. Apply (2.2) to the embedding ad $L \subseteq \mathfrak{gl}(L)$. There exists a nonzero element $x \in L$ such that [L, x] = 0. Hence $Z(L) \neq 0$.

The dim(L/Z(L)) < dim L and is also adjoint nilpotent. By induction on dimension, it remains to show that L/Z(L) is nilpotent implies L is nilpotent, which follows from the observation:

$$L^{(n)} \subseteq Z(L) \implies L^{(n+1)} = 0.$$

Corollary 2.3. Under the setting in (2.2), there exists a flag

$$V = V_0 \supset V_1 \supset \cdots \supset V_n = 0$$

such that $LV_i \subseteq V_{i+1}$, i.e., there exists a basis of V such that $L \subseteq \mathfrak{n}(n, F)$.

Proof. Induction on dimension. Pick $v \in V$ such that Lv = 0 then consider the action of L on W = V/Fv.

From now on, we assume that F is algebraically closed and char F = 0.

Theorem 2.4 (Lie). If $L \subseteq \mathfrak{gl}(V)$ is a solvable Lie subalgebra, then there exists a common eigenvector of L.

Proof. This is clearly true when dim L = 0 or 1. Induction on dim L.

Consider the quotient

$$L \longrightarrow L/[L, L].$$

Since L/[L, L] is abelian, any subspace of it is an ideal. Take $\overline{K} \leq L/[L, L]$ with codimension 1 (note that L/[L, L] is nontrivial since L is solvable) and consider its preimage $K \leq L$. Since K is also solvable, the subspace

$$W = \{ w \in V \mid xw = \lambda(x)w, \, \forall x \in K \} \subseteq V$$

is nonzero. Let us fix this λ as a function on K.

Claim (Dynkin). The subspace W is fixed by L.

Proof of Claim. Let $x \in L$ and $w \in W$. Then for each $y \in K$,

$$y(xw) = x(yw) - [x, y]w = \lambda(y)xw - \lambda([x, y])w$$

So our goal $xw \in W$ is equivalent to $\lambda([x, y]) = 0$.

Consider

$$W_i = \langle w, xw, x^2w, \dots, x^{i-1}w \rangle \subseteq V.$$

Let r be the smallest integer such that $W_r = W_{r+1}$. Then $W_{r+j} = W_r$ for all positive integer j. We claim that $yx^jw \equiv \lambda(y)x^jw \pmod{W_j}$:

Induction on j. The base case j = 0 is true. For j > 0,

$$yx^{j}w = xyx^{j-1}w - [x, y]x^{j-1}w$$

= $x(\lambda(y)x^{j-1}w + w') - \lambda([x, y])x^{j-1}w$,

where $w' \in W_{j-1}$.

Hence, $y \in K$ acts on W_r has

$$\operatorname{tr}_{W_r} y = r\lambda(y).$$

This shows that for $[x, y] \in K$,

$$r\lambda([x,y]) = \operatorname{tr}_{W_r}[x,y] = 0,$$

which implies $\lambda([x, y]) = 0$ if char F = 0.

Say L = K + Fz, then we can find a nonzero element $v_0 \in W$ such that $zv_0 = \lambda v_0$, this v_0 is expected!

6

Corollary 2.5. Under the setting in (2.4), L stabilizes some flag in V, i.e., there exists a basis of V such that $L \subseteq \mathfrak{t}(n, F)$.

Proof. Using the theorem and induction on $\dim V$.

Corollary 2.6. If L is a solvable Lie algebra, then there exists a chain of ideals

$$0 = L_0 \subset L_1 \subset \cdots \subset L_n = L$$

such that $\dim L_i = i$.

Proof. Consider

$$\phi = \mathrm{ad} : L \to \mathrm{gl}(L).$$

Since $\phi(L)$ is solvable, a flag is simply a chain of ideals.

Corollary 2.7. If L is solvable, then $\operatorname{ad}_L x$ is nilpotent for $x \in [L, L]$. In particular, [L, L] is nilpotent (by (2.1)).

Proof. Since $\operatorname{ad} L \subseteq \mathfrak{t}(n, F)$, we have $\operatorname{ad}[L, L] = [\operatorname{ad} L, \operatorname{ad} L] \subseteq \mathfrak{n}(n, F)$.

Theorem 2.8 (Cartan's criterion). Suppose $L \subseteq \mathfrak{gl}(V)$ is a Lie subalgebra such that

$$\operatorname{tr}(xy) = 0, \quad \forall x \in [L, L], \ y \in L.$$

Then L is solvable.

Proof. It is enough to prove $\operatorname{ad}_{[L,L]} x$ is nilpotent for all $x \in [L, L]$. (This implies that [L, L] is nilpotent by (2.1), which gives us the solvability of L.)

Let

$$M = \{ z \in \mathfrak{gl}(V) \mid [z, L] \subseteq [L, L] \} \supseteq L.$$

Then for all $z \in M$, $x \in [L, L]$, we have tr(xz) = 0: assume that x = [u, v], then

$$\operatorname{tr}(xz) = \operatorname{tr}(uvz - vuz) = \operatorname{tr}(uvz - uzv) = \operatorname{tr}(u[v, z]) = 0$$

by the assumption.

Now, let $x = x_s + x_n$ be the Jordan decomposition, where x_s is the semi-simple part and x_n is the nilpotent part. Recall that x_s , x_n are uniquely determined and there exists $p(T), q[T] \in F[T]$ with p(0) = q(0) = 0 such that $x_s = p(x), x_n = q(x)$. Write

$$[x_s]_{\mathcal{B}} = \begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_m \end{pmatrix}$$

with $a_i \in F \supseteq \mathbb{Q}$. Let $E = \sum \mathbb{Q} a_i \subseteq F$. We want E = 0. In fact, we will show $\operatorname{Hom}(E, \mathbb{Q}) = 0$.

Let $f \in \operatorname{Hom}(E, \mathbb{Q})$ and consider

$$y = \begin{pmatrix} f(a_1) & & \\ & \ddots & \\ & & f(a_m) \end{pmatrix} \in \mathfrak{gl}(V).$$

It is easy to get

ad
$$x_s(e_{ij}) = (a_i - a_j) \cdot e_{ij}$$
 and ad $y(e_{ij}) = (f(a_i) - f(a_j)) \cdot e_{ij}$. (Υ)

Find $r(T) \in F[T]$ such that

$$r(a_i - a_j) = f(a_i) - f(a_j), \quad \forall i, j.$$

We see from (Υ) that

$$\operatorname{ad} y = r(\operatorname{ad} s) = (r \circ p)(\operatorname{ad} x).$$

Since $(\operatorname{ad} x)L \subseteq [L, L]$ and $(r \circ p)(0) = 0$, we must have $(\operatorname{ad} y)L \subseteq [L, L]$, i.e., $y \in M$. Then

$$0 = \operatorname{tr}(xy) = \sum a_i f(a_i) \quad \stackrel{f}{\Longrightarrow} \quad \sum f(a_i)^2 = 0 \quad \stackrel{f(a_i) \in \mathbb{Q}}{\Longrightarrow} \quad f \equiv 0.$$

3 Simple Lie algebra and Weyl's theorem, 9/12

Definition 3.1. A Lie algebra L is **simple** if the only Lie ideals of L are 0 and L also L is not abelian.

A Lie algebra L is **semi-simple** if Rad L, the maximal solvable ideal in L, is 0, i.e., L has no (nonzero) abelian ideal. (If $I \leq L$ is solvable with $I^{(n-1)} \neq 0$ and $I^{(n)} = 0$, then $I^{(n-1)}$ is abelian.)

Definition 3.2. The Killing form of *L* is

$$\kappa = \kappa_L : \quad L \times L \longrightarrow F$$
$$(x, y) \longmapsto \operatorname{tr}(\operatorname{ad} x \operatorname{ad} y).$$

This is a symmetric bilinear form on L.

• κ is "associative" (anti-symmetry), i.e.,

$$\kappa([x, y], z) = \kappa(x, [y, z])$$

$$= \kappa(x, ad y(x), z) = \kappa(x, ad y(z)).$$

The "null space" rad $\kappa = \{x \in L \mid \kappa(x, y) = 0, \forall y \in L\}$ is an ideal of L. Indeed,

$$\kappa([x, z], y) = \kappa(x, [z, y]) = 0$$

for every $x \in \operatorname{rad} \kappa$ and $y, z \in L$.

Fact. If I is an Lie ideal of L, then κ_I , the Killing form of I, is equal to $\kappa_L|_{I \times I}$.

This is easy by completing a basis from I to L via L/I.

Theorem 3.3. The followings are equivalent:

- 1. L is semi-simple;
- 2. κ_L is non-degenerate;
- 3. $L = \bigoplus I_i$ as Lie algebra, where each I_i is a simple ideal of L.

Proof. 1. \Rightarrow 2. : Let $S = \operatorname{rad} \kappa$. Then $\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y) = 0$ for $x \in S$ and $y \in [S, S] = 0$. By Cartan's criterion, $\operatorname{ad}_L S$ is solvable. Since $\operatorname{ad} : L \to \mathfrak{gl}(L)$ is an embedding (otherwise the center Z(L) is nontrivial, which is an abelian ideal), S is solvable, which implies $S \subseteq \operatorname{Rad} L = 0$.

2. \Rightarrow 1. : It is enough to show that every abelian ideal I of L lies in $S = \operatorname{rad} \kappa$. Let $x \in I$ and $y \in L$. Then

$$(\operatorname{ad} x \operatorname{ad} y)^2(L) \subseteq \operatorname{ad} x \operatorname{ad} y(I) \subseteq \operatorname{ad} x(I) \subseteq [I, I] = 0.$$

This implies $\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y) = 0$. Since this is true for all x and y, $I \subseteq S$.

1.2. \Rightarrow 3. : Let *I* be any Lie ideal of *L*. Then I^{\perp} , the orthogonal complement of *I* with respect to κ , is an ideal of *L* by the associativity of κ . Let $J = I \cap I^{\perp}$. Our goal is to show that J = 0 (this gives us the decomposition $L = I \oplus I^{\perp}$).

Since $\kappa_J = \kappa|_{J \times J}$, for each $x, y \in J$ we have $\kappa_J(x, y) = 0$. By Cartan's criterion, J is solvable, and hence equal to 0.

Now, for an ideal $K \leq I$, we have $K \leq L$ since

$$[L, K] = [I \oplus I^{\perp}, K] = [I, K] \subseteq K.$$

(Note that $[I^{\perp}, K] \subseteq [I^{\perp}, I] \subseteq J = 0$.) This gives us the desired decomposition by induction on the dimension of L.

The uniqueness of decomposition: Let $I \leq L$ be a simple ideal. Then $[I, L] \leq I$ and is nonzero since Z(L) = 0. So

$$I = [I, L] = \bigoplus [I, I_i].$$

Then $I = [I, I_i] \subseteq I_i$ for some *i*, which shows that $I = I_i$ by the simpleness of I_i .

 $3. \Rightarrow 1.$: If L is simple, then Rad L = 0 or L. The latter case implies $[L, L] \subsetneq L$, so [L, L] = 0, i.e., L is abelian, which is a contradiction. Hence, L is semi-simple.

Also, we know that direct sum of semi-simple Lie algebras is semi-simple.

Corollary 3.4. Let L be a semi-simple Lie algebra. Then L = [L, L].

Recall: ad $L \leq \text{Der } L = \{\delta \in \mathfrak{gl}(L) \mid \delta[x, y] = [\delta x, y] + [x, \delta y]\}$. This comes from the Jacobi identity and the formula $[\delta, \text{ad } x] = \text{ad}(\delta x)$.

Theorem 3.5. Let *L* be a semi-simple Lie algebra. Then $\operatorname{ad} L = \operatorname{Der} L$.

Recall that an L-module, or a representation of L, is a Lie homomorphism

$$\varphi: L \longrightarrow \mathfrak{gl}(V),$$

where V is a (finite dimensional) vector space over F.

A representation φ is **irreducible** if the only sub *L*-modules are 0 and *V*.

For a L-module V, we define the Lie action on $V^* = \text{Hom}(V, F)$ by

$$(x \cdot f)(v) = -f(x \cdot v), \quad \forall f \in V^*.$$

For two L-modules V and W, we define the Lie action on $V \otimes W$ by the Leibniz rule

$$x \cdot (v \otimes w) = (x \cdot v) \otimes w + v \otimes (x \cdot w),$$

and define the Lie action on Hom(V, W) by

$$(x \cdot f)(v) = x \cdot f(v) - f(x \cdot v).$$

Theorem 3.6 (Weyl). Let *L* be a semi-simple Lie algebra and $\varphi : L \to \mathfrak{gl}(V)$ be a representation. Then φ is completely irreducible, i.e., φ is a direct sum of irreducible representations.

We represent Serre's proof here.

Fact. $\varphi(L) \subseteq \mathfrak{sl}(V)$ and hence = 0 on 1-dimensional *L*-module: since L = [L, L] and $\mathfrak{sl}(V) = [\mathfrak{gl}(V), \mathfrak{gl}(V)].$

May assume φ is faithful.

Definition 3.7 (Casimir element). Let $\beta : L \times L \to F$ be a non-degenerate symmetric bilinear associative form. For a basis x_1, \ldots, x_n of L, there exists a basis y_1, \ldots, y_n of Lsuch that $\beta(x_i, y^j) = \delta_i^j$. For each $x \in L$, write

$$[x, x_i] = \sum a_i^j x_j, \quad [x, y^j] = \sum b_i^j y^j,$$

then the associativity of β gives us $a_i^j = -b_i^j$. We define the **Casimir element** of β to be

$$c_{\varphi}(\beta) = \sum \varphi(x_i)\varphi(y^i) \in \mathfrak{gl}(V).$$

We see that

$$[\varphi(x), c_{\varphi}(\beta)] = \sum \left(\varphi(a_i^j x_j) \varphi(y^i) + \varphi(x_i) \varphi(b_i^j y^i) \right) = 0,$$

i.e., it is $\varphi(L)$ -linear.

For $\beta(x,y) = \operatorname{tr}(\varphi(x)\varphi(y))$, we get the Casimir element of φ : $c_{\varphi} = c_{\varphi}(\beta)$, with

$$\operatorname{tr} c_{\varphi} = \sum \beta(x_i, y^i) = \dim L \neq 0.$$

If $\varphi: L \to \mathfrak{gl}(V)$ is irreducible, then Schur's lemma implies that

$$c_{\varphi} = \frac{\dim L}{\dim V} \cdot \operatorname{id}_V.$$

To prove (3.6), let us consider the special case first: suppose that there exists a L-submodule $W \subset V$ of codimension 1.

 $0 \longrightarrow W \longrightarrow V \longrightarrow V/W \longrightarrow 0$

The space $V/W \cong F$ has a trivial action by L. Now, we induction on dim W. If W is irreducible, then $c_{\varphi}|_W$ is a nonzero scalar, but $c_{\varphi} \equiv 0$ on F, i.e., the kernel of $c_{\varphi} : V \to W$ is 1-dimensional and its intersection with W is 0. Thus, c_{φ} gives us the desired splitting map.

If W is not irreducible, then there exists a nonzero proper L-submodule W' of W and we get the exact sequence

 $0 \longrightarrow W/W' \longrightarrow V/W' \longrightarrow F \longrightarrow 0.$

By induction, $V/W' = W/W' \oplus \overline{W}/W'$ for some \overline{W} and we have the exact sequence

 $0 \longrightarrow W' \longrightarrow \overline{W} \longrightarrow F \longrightarrow 0.$

Induction hypothesis tells us that $\overline{W} = W' \oplus X$ for some X. Hence, $V = W \oplus X$ since $W \cap X = 0$.

For the general case, let W be a nonzero proper L-submodule of V.

$$0 \longrightarrow W \longrightarrow V \longrightarrow V/W \longrightarrow 0.$$

Define

$$\mathscr{V} = \{ f \in \operatorname{Hom}(V, W) \mid f|_W = a \operatorname{id}_W, \text{ for some } a \text{ in } F \}$$

and \mathscr{W} its codimension 1 subspace corresponds to a = 0. Then for $x \in L, f \in \mathscr{V}$, and $w \in W$ we have

$$(x \cdot f)(w) = x \cdot f(w) - f(x \cdot w) = x(aw) - a(xw) = 0.$$

So there is a exact sequence of *L*-modules:

$$0 \longrightarrow \mathscr{W} \longrightarrow \mathscr{V} \longrightarrow F \longrightarrow 0.$$

The special case tells us that $\mathscr{V} = \mathscr{W} \oplus \mathscr{U}$ for some \mathscr{U} . Let \mathscr{U} be spanned by f such that $f|_W = 1|_W$. Again, L acts on \mathscr{U} trivially, so

$$0 = (x \cdot f)(v) = x \cdot f(v) - f(x \cdot v),$$

i.e., f is an L-homomorphism. Hence, $V = W \oplus \ker f$.

4 $\mathfrak{sl}(2, F)$ -representation, 9/14

The Lie algebra $\mathfrak{sl}(2, F)$ is spanned by 3-elements:

$$x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad y = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad h = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Note that h is a semi-simple matrix. It is easy to see that

$$[h, x] = 2x, \quad [h, y] = 2y, \quad [x, y] = h.$$

Let V be an $\mathfrak{sl}(2, F)$ -module. Then h acts on V semi-simply, which gives us the decomposition $V = \bigoplus_{\lambda} V_{\lambda}$, called the weight decomposition, where

$$V_{\lambda} = \{ v \in V \mid h \cdot v = \lambda v \}.$$

For $v \in V_{\lambda}$, we see that

$$h \cdot (y \cdot v) = y \cdot (h \cdot v) + -2y \cdot v = (\lambda - 2)(y \cdot v)$$

i.e., $y \cdot v \in V_{\lambda-2}$. Similarly, $x \cdot v \in V_{\lambda+2}$.

Consider $v \in V_{\lambda}$ such that $x \cdot v = 0$ and the subspace

$$V_v := \langle v, yv, \dots, y^m v \neq 0, y^{m+1}v = 0 \rangle \subseteq V.$$

To show that V_v is irreducible, it remains to show that x acts on V_v .

Lemma 4.1. Let $v = v_0$, $v_i = y^i v_0 / i!$. Then for each $i \ge 1$,

$$x \cdot v_i = (\lambda - i + 1)v_{i-1}.$$

Proof. By induction (as before).

Taking i = m + 1, we see that

$$0 = x \cdot v_{m+1} = (\lambda - m)v_m.$$

Hence,

Corollary 4.2. The eigenvalue λ of v is equal to m.

Denote by V(m) the space

$$V_m \oplus V_{m-2} \oplus \cdots \oplus V_{-m},$$

where each V_j is a 1-dimensional subspace. Then each irreducible representation of $\mathfrak{sl}(2, F)$ is of the form V(m), where m is a non-negative integer.

Let L be a semi-simple Lie algebra such that $\mathrm{ad}: L \to \mathfrak{gl}(L)$ is an embedding.

Definition 4.3. A subalgebra T of L is a **toral** subalgebra if all its elements are semisimple.

Fact I. *T* is abelian: for $x \in T$, take a λ -eigenvector $y \in T$ of $\operatorname{ad}_T x(y)$, i.e., $\operatorname{ad}_T x(y) = \lambda y$. Suppose that $\lambda \neq 0$. Note that y is a 0-eigenvector of $\operatorname{ad}_T y$. Write x as a linear combination of eigenvectors of $\operatorname{ad}_T y$. Then $\operatorname{ad}_T y(x) = -\lambda y$ gives us a contradiction $(\operatorname{ad}_T y(y) = 0)$.

Fix such a T, call it H. Then $\operatorname{ad}_L H$ is simultaneously diagonalizable (since H is abelian). Hence,

$$L = \bigoplus_{\alpha \in \Phi} L_{\alpha} \oplus L_0,$$

where $\alpha \in H^{\vee} := \operatorname{Hom}(H, F)$

$$L_{\alpha} = \{ x \in L \mid \operatorname{ad} h(x) = \alpha(h)x, \ \forall h \in H \}$$

This is called the Cartan decomposition of L, elements in Φ are called roots of L.

Fact II. For all $\alpha, \beta \in H^{\vee}, [L_{\alpha}, L_{\beta}] \subseteq L_{\alpha+\beta}$: for any $h \in H, x \in L_{\alpha}$ and $y \in L_{\beta}$,

ad
$$h[x, y] = [ad h(x), y] + [x, ad h(y)] = (\alpha + \beta)(h)[x, y].$$

Hence, if $x \in L_{\alpha}$ for some $\alpha \neq 0$, then ad x is nilpotent (since Φ is a finite set).

Fact III. $L_{\alpha} \perp L_{\beta}$ if $\alpha + \beta \neq 0$ with respect to the Killing form κ : for any $h \in H$, $x \in L_{\alpha}$ and $y \in L_{\beta}$,

$$0 = \kappa([h, x], y) + \kappa(x, [h, y]) = (\alpha + \beta)(h)\kappa(x, y).$$

Since $\alpha + \beta \neq 0$, we take $h \in H$ such that $(\alpha + \beta)(h) \neq 0$, then $\kappa(x, y) = 0$.

In particular,

$$L_0 \perp \bigoplus_{\alpha \in \Phi} L_{\alpha}.$$

If $z \in L_0 \cap \operatorname{rad} \kappa|_{L_0}$, then $z \in \operatorname{rad} \kappa = 0$. Hence, $\kappa|_{L_0}$ is nondegenerate.

Proposition 4.4. If H is a maximal toral, then $L_0 = C_L(H) = H$.

Proof. Reading.

So $\kappa|_H$ is nondegenerate and induces the isomorphism

$$\begin{array}{ccc} H^{\vee} \longrightarrow H \\ \varphi \longmapsto t_{\omega}, \end{array}$$

where $t_{\varphi} \in H$ is the unique element such that $\kappa(t_{\varphi}, -) = \varphi$.

5 Root system, 9/19

Proposition 5.1. Let

$$L = \bigoplus_{\alpha \in \Phi} L_{\alpha} \oplus H$$

be a Cartan decomposition of a semi-simple Lie algebra L. Then

- (a) Φ spans H^{\vee} ;
- (b) $\alpha \in \Phi$ implies $-\alpha \in \Phi$;
- (c) for $x \in L_{\alpha}$ and $y \in L_{-\alpha}$, $[x, y] = \kappa(x, y)t_{\alpha}$;
- (d) $\alpha \in \Phi$ implies $[L_{\alpha}, L_{-\alpha}] = F \cdot t_{\alpha}$ is 1-dimensional;
- (e) $\alpha(t_{\alpha}) = \kappa(t_{\alpha}, t_{\alpha}) \neq 0;$
- (f) for each non-zero $x_{\alpha} \in L_{\alpha}$, there exists $y_{\alpha} \in L_{-\alpha}$ such that there is an isomorphism

$$\langle x_{\alpha}, y_{\alpha}, h_{\alpha} = [x_{\alpha}, y_{\alpha}] \rangle \xrightarrow{\sim} \mathfrak{sl}(2, F) = \langle x, y, h \rangle$$
$$x_{\alpha}, y_{\alpha}, h_{\alpha} \longmapsto x, y, h.$$

(g) $h_{-\alpha} = -h_{\alpha}$.

Proof. (a) If not, dually, there exists a non-zero $h \in H$ such that for each $\alpha \in \Phi$, $\alpha(h) = 0$. Then $[h, L_{\alpha}] = 0$, which implies $h \in Z(L)$, a contradiction. (b) If $\alpha \notin \Phi$, then $\alpha + \beta \neq 0$ for each $\beta \in \Phi$. Then $L_{\alpha} \perp L$, contradicting the nondegeneracy of κ .

(c) For each $h \in H$,

$$\kappa(h, [x, y]) = \kappa([h, x], y) = \alpha(h)\kappa(x, y) = \kappa(t_{\alpha}\kappa(x, y), h).$$

(d) As in (b), if $x \in L_{\alpha}$ is a non-zero element, with $[x, L_{-\alpha}] = 0$, then $\kappa(x, L_{-\alpha}) = 0$. Hence, $\kappa(x, L) = 0$, a contradiction.

(e) If $\alpha(t_{\alpha}) = 0$, then $[t_{\alpha}, x] = 0 = [t_{\alpha}, y]$ for any $x \in L_{\alpha}$ and any $y \in L_{-\alpha}$. From (d), we can fix x, y such that $[x, y] = t_{\alpha}$. Then $S := \langle x, y, t_{\alpha} \rangle$ is solvable and $S \cong \operatorname{ad}_{L} S \hookrightarrow \mathfrak{gl}(L)$. It follows that $\operatorname{ad}_{L}[S, S]$ is nilpotent. This tells us that $\operatorname{ad}_{L} t_{\alpha}$ is both semi-simple and nilpotent, which is 0. Hence, $t_{\alpha} \in Z(L) = 0$, a contradiction.

(f) Find y_{α} such that $\kappa(x_{\alpha}, y_{\alpha}) = \frac{2}{\kappa(t_{\alpha}, t_{\alpha})} \neq 0$ and set $h_{\alpha} = \frac{2}{\kappa(t_{\alpha}, t_{\alpha})} t_{\alpha}$. Then

$$\begin{split} [x_{\alpha}, y_{\alpha}] &= \kappa(x_{\alpha}, y_{\alpha})t_{\alpha} = h_{\alpha}, \\ [h_{\alpha}, x_{\alpha}] &= \frac{2}{\kappa(t_{\alpha}, t_{\alpha})}[t_{\alpha}, x_{\alpha}] = \frac{2}{\alpha(t_{\alpha})}\alpha(t_{\alpha})x_{\alpha} = 2x_{\alpha}, \\ [h_{\alpha}, y_{\alpha}] &= \frac{2}{\kappa(t_{\alpha}, t_{\alpha})}[t_{\alpha}, y_{\alpha}] = \frac{2}{\alpha(t_{\alpha})}(-\alpha)(t_{\alpha})y_{\alpha} = -2y_{\alpha}. \end{split}$$

(g) By $t_{-\alpha} = -t_{\alpha}$ and $\kappa(t_{\alpha}, t_{\alpha}) = \kappa(-t_{\alpha}, -t_{\alpha})$.

For $\alpha \in \Phi$, let $M = M_{\alpha} := H \oplus \bigoplus_{c \in F^{\times}} L_{c\alpha}$. Then $S_{\alpha} = \langle x_{\alpha}, y_{\alpha}, h_{\alpha} \rangle \cong \mathfrak{sl}(2, F)$ acts on M by adjoint representation. M has weights (for h_{α}) $c\alpha(h_{\alpha}) \in \mathbb{Z}$. Since $\alpha(h_{\alpha}) = \frac{2}{\kappa(t_{\alpha}, t_{\alpha})}\alpha(t_{\alpha}) = 2$, we see that $c \in \frac{1}{2}\mathbb{Z}$. Note that M contains S_{α} as an irreducible S_{α} submodule. The weight 0 part of M is

$$H = \ker \alpha \oplus F \cdot h_{\alpha}$$

Hence, $V(0) \subset M$ occurs dim H - 1 times, $V(2) = S_{\alpha} \subset M$, and there is no other even weights. This shows that $2\alpha \notin \Phi$ and $\frac{1}{2}\alpha \notin \Phi$ neither. Hence, 1 is not a weight of $\alpha \in M$ and $M = \ker \alpha \oplus S_{\alpha} = H + S_{\alpha}$, which implies that dim $L_{\alpha} = 1$. Also, $S_{\alpha} = L_{\alpha} \oplus L_{-\alpha} \oplus [L_{\alpha}, L_{-\alpha}]$ is unique.

Next, consider the action of S_{α} on $K_{\beta} := \sum_{i \in \mathbb{Z}} L_{\beta+i\alpha}$, where $\beta \neq \pm \alpha$. Each 1dimensional space $L_{\beta+i\alpha}$ has weight $\beta(h_{\alpha}) + 2i$. Hence, K_{β} is irreducible. Let q and r be the largest integers such that $\beta + q\alpha$ and $\beta - r\alpha$ are roots. Then

$$\beta(h_{\alpha}) + 2q = -(\beta(h_{\alpha}) - 2r) \implies 2 \cdot \frac{\kappa(t_{\beta}, t_{\alpha})}{\kappa(t_{\alpha}, t_{\alpha})} = \beta(h_{\alpha}) = r - q \in \mathbb{Z}.$$

On H^{\vee} , put an inner product $(\lambda, \mu) := \kappa(t_{\lambda}, t_{\mu})$ for $\lambda, \mu \in H^{\vee}$. For any basis $\alpha_1, \ldots, \alpha_{\ell} \in \Phi$ of H^{\vee} , we have $\Phi \subset E_{\mathbb{Q}} := \bigoplus \mathbb{Q} \alpha_i$ (by the integrality of $\beta(h_{\alpha})$) and

$$(\lambda,\mu) = \kappa(t_{\lambda},t_{\mu}) = \sum_{\alpha\in\Phi} \alpha(t_{\lambda})\alpha(t_{\mu})$$

is positive definite (on $E_{\mathbb{Q}}$).

Theorem 5.2 (Root system). For the root system Φ ,

- (R1) Φ spans E, and $|\Phi| < \infty$;
- (R2) if $\alpha \in \Phi$, then $c\alpha \in \Phi$ if and only if $c = \pm 1$;
- (R3) for $\alpha, \beta \in \Phi$, the reflection $\beta \frac{(\beta,\alpha)}{(\alpha,\alpha)}\alpha$ of β with respect to α^{\perp} lies in Φ ;
- (R4) for $\alpha, \beta \in \Phi, \langle \beta, \alpha \rangle := 2 \frac{(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}.$

Now, we study the abstract root system $\Phi \subset (E, (-, -))$, i.e., Φ satisfies (R1) (R4).

Lemma 5.3. For $\sigma \in GL(E)$ with $\sigma(\Phi) = \Phi$, $\sigma(\alpha) = -\alpha$ for some $\alpha \in \Phi$, and $\sigma = id$ on some hyperplane, we have $\sigma = \sigma_{\alpha}$, the reflection $\beta \mapsto \beta - \langle \beta, \alpha \rangle \alpha$.

Proof. Define $\tau = \sigma \circ \sigma_{\alpha}$. Then $\tau(\Phi) = \Phi$, $\tau(\alpha) = \alpha$, and $\tau = \text{id on } E/\mathbb{Q}\alpha$. So all eigenvalues of τ is 1. The minimal polynomial P of τ satisfies $P \mid (T-1)^{\ell = \dim E}$. Choose $K \gg 1$ such that $\tau^{K}|_{\Phi} = \text{id}$, then $P \mid T^{K} - 1$. Hence, P = T - 1.

Definition 5.4. Let $\mathscr{W} \subset \operatorname{GL}(E)$ be the subgroup generated by $\sigma_{\alpha}, \alpha \in \Phi$. \mathscr{W} is called the **Weyl group** of Φ , and is a subgroup of $S_{|\Phi|}$.

Lemma 5.5. Let $\sigma \in \operatorname{GL}(E)$ with $\sigma(\Phi) = \Phi$. Then $\sigma \sigma_{\alpha} \sigma^{-1} = \sigma_{\sigma(\alpha)}$ for each $\alpha \in \Phi$ and $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle$.

Proof. $\sigma \sigma_{\alpha} \sigma^{-1}(\Phi) = \Phi$ fixes $\sigma(P_{\alpha})$ (P_{α} is the hyperplane fixed by σ_{α}) pointwisely and maps $\sigma(\alpha)$ to $-\sigma(\alpha)$. Applying the previous lemma, we see that $\sigma \sigma_{\alpha} \sigma^{-1} = \sigma_{\sigma(\alpha)}$.

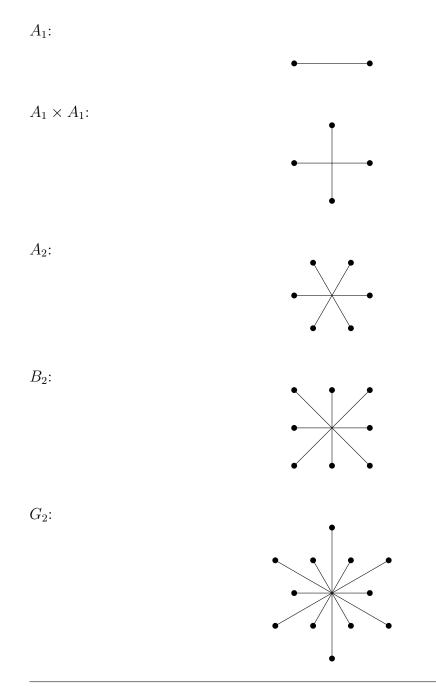
Now,

$$\sigma(\beta) - \langle \sigma(\beta), \sigma(\alpha) \rangle \sigma(\alpha) = \sigma_{\sigma(\alpha)}(\sigma(\beta)) = \sigma(\sigma_{\alpha}(\beta)) = \sigma(\beta - \langle \beta, \alpha \rangle \alpha).$$

 $\textbf{Corollary 5.6.} \quad \text{If } (\Phi, E) \cong (\Phi', E'), \, \text{then } \mathscr{W} \cong \mathscr{W}'. \, \text{ In particular, } \mathscr{W} \subseteq \text{Aut} \, \Phi.$

Definition 5.7. The dual root system $\Phi^{\vee} = \{\alpha^{\vee} = \frac{2\alpha}{(\alpha,\alpha)} \mid \alpha \in \Phi\}$ is a root system with the same \mathscr{W} .

Example 5.8. Some root systems:



Since

$$\langle \beta, \alpha \rangle = \frac{2(\beta, \alpha)}{(\alpha, \alpha))} = \frac{2|\beta| \cos \theta}{|\alpha|}$$

where θ is the angle between α and β , $\langle \beta, \alpha \rangle \langle \alpha, \beta \rangle = 4 \cos^2 \theta \in \mathbb{Z}$. We get the table $(\alpha \neq \pm \beta \text{ and WLOG let } |\beta| \ge |\alpha|)$:

$\langle \alpha, \beta \rangle$	$\langle \beta, \alpha \rangle$	θ	$ eta ^2/ lpha ^2$
0	0	90°	?
1	1	60°	1
-1	-1	120°	1
1	2	45°	2
-1	-2	135°	2
1	3	30°	3
-1	-3	150°	3

Lemma 5.9. For $\alpha, \beta \in \Phi$, we have

$$(\alpha,\beta)>0 \quad \Longrightarrow \quad \alpha-\beta \in \Phi$$

Similarly,

$$(\alpha,\beta) < 0 \implies \alpha + \beta \in \Phi.$$

Proof. Suppose that $(\alpha, \beta) > 0$. From the table, $\langle \alpha, \beta \rangle = 1$ or $\langle \alpha, \beta \rangle = 1$. The former case together with (R3) gives us $\sigma_{\beta}(\alpha) = \alpha - \langle \alpha, \beta \rangle \beta = \alpha - \beta \in \Phi$. Similarly, the latter case gives us $\beta - \alpha \in \Phi$, which implies $\alpha - \beta \in \Phi$ by (R2).

Corollary 5.10. For $\beta \neq \pm \alpha$, all roots $\beta + i\alpha$, $i \in \mathbb{Z}$ is unbroken of length ≤ 4 .

Proof. If $\beta + p\alpha$, $\beta + s\alpha \in \Phi$ with p < s and $\beta + (p+1)\alpha$, $\beta + (s-1)\alpha \notin \Phi$. The lemma implies $(\alpha, \beta + p\alpha) \ge 0$ and $(\alpha, \beta + s\alpha) \le 0$. Then

$$(s-p)(\alpha,\alpha) = (\alpha,\beta+s\alpha) - (\alpha,\beta+p\alpha) \le 0,$$

a contradiction.

The length it at most 4: if q and r are the largest integers such that $\beta + q\alpha$, $\beta - r\alpha \in \Phi$, then $q + r = \langle \beta + p\alpha, \alpha \rangle < 4$.

6 Weyl group, 9/21

Definition 6.1. We call $\Delta \subseteq \Phi$ a base if

(B1) Δ is a basis of E;

(B2) for $\beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha \in \Phi$, either all $k_{\alpha} \in \mathbb{Z}_{\geq 0}$ or all $k_{\alpha} \in \mathbb{Z}_{\leq 0}$.

Fact. For distinct α , $\beta \in \Delta$, we have $(\alpha, \beta) \leq 0$, and $\alpha - \beta \notin \Phi$: if $(\alpha, \beta) > 0$, then $\alpha - \beta \in \Phi$ by (5.9), which contradicts (B2).

Theorem 6.2. Every root system has a base. In fact,

(1) let $\gamma \in E \setminus \bigcup_{\alpha \in \Phi} P_{\alpha}$, where P_{α} is the hyperplane fixed by σ_{α} . Then

 $\Delta(\gamma) := \{ \text{ indecomposable roots in } \Phi^+(\gamma) \}$

is a base, where $\Phi^+(\gamma) = \{ \alpha \in \Phi \mid (\alpha, \gamma) > 0 \}$ (a root α is said to be **indecomposable** if α cannot be written as $\alpha_1 + \alpha_2$ for some $\alpha_1, \alpha_2 \in \Phi^+(\gamma)$). Elements in $\Delta(\gamma)$ is called a **simple root** relative to $\Delta(\gamma)$.

(2) Any base come from such a way.

Proof. Since $\Delta(\gamma)$ spans $\Phi^+(\gamma)$ in $\mathbb{Z}_{\geq 0}$, hence spans E. If $\alpha, \beta \in \Delta$ are distinct, then $(\alpha, \beta) \leq 0$, otherwise

$$\alpha - \beta \in \Phi^+(\gamma) \implies \alpha = \beta + (\alpha - \beta),$$

$$\beta - \alpha \in \Phi^+(\gamma) \implies \beta = \alpha + (\beta - \alpha).$$

Hence, $\Delta(\gamma)$ is a linearly independent set: suppose that $\varepsilon = \sum s_{\alpha} \alpha = \sum t_{\beta} \beta$ with s_{α} , $t_{\beta} > 0$. Then

$$0 \le (\varepsilon, \varepsilon) = \sum_{\alpha, \beta} s_{\alpha} t_{\beta}(\alpha, \beta) \le 0$$

tells us that $\varepsilon = 0$.

(2) is left in Exercise 7.

Definition 6.3. The set $E \setminus \bigcup_{\alpha \in \Phi} P_{\alpha}$ is a union of (connected) open cones, each open cone is called a **Weyl chamber**.

Every element in a Weyl chamber defines same base. Conversely, every base determines a Weyl chamber.

Lemma 6.4.

- (a) For $\alpha \in \Phi^+ \setminus \Delta$, there exists $\beta \in \Delta$ such that $\alpha \beta \in \Phi^+$. Hence, we can write $\alpha = \sum_{i=1}^k \alpha_i$, where $\alpha_i \in \Delta$, such that $\sum_{i=1}^j \in \Phi^+$ for all $j \leq k$.
- (b) For $\alpha \in \Delta$, σ_{α} permutes $\Phi^+ \setminus \{\alpha\}$. In particular, $\sigma(\delta) = \delta \alpha$ for $\delta = \frac{1}{2} \sum_{\beta \in \Phi^+} \beta$.
- (c) (Cancellation lemma) Let $\sigma_i = \sigma_{\alpha_i}$. If

$$\sigma_1 \cdots \sigma_{t-1} \sigma_t(\alpha_t) \succ 0,$$

then there exists s < t such that $\sigma_1 \cdots \sigma_t = \sigma_1 \cdots \sigma_{s-1} \sigma_{s+1} \cdots \sigma_{t-1}$. Here $\alpha \succ \beta$ if $\alpha - \beta \in \Phi^+$.

Proof. (a) Suppose that $(\alpha, \beta) \leq 0$ for each $\beta \in \Delta$, then $\Delta \cup \{\alpha\}$ is a linearly independent set (cf. Proof of (6.2)), a contradiction. So there exists $\beta \in \Delta$ such that $(\alpha, \beta) > 0$, and hence $\alpha - \beta \in \Phi^+$ (Note that $\alpha - \beta \in \Phi^- \implies \beta = \alpha + (\beta - \alpha)$).

(b) For $\beta \in \Phi^+ \setminus \{\alpha\}$, $\beta = \sum_{\gamma \in \Delta} k_{\gamma} \gamma$ with $k_{\gamma} \ge 0$ for all γ and $k_{\gamma_0} > 0$ for some $\gamma_0 \neq \alpha$. The element

$$\sigma_{\alpha}(\beta) = \beta - \langle \beta, \alpha \rangle \alpha$$

has the same k_{γ_0} , so $\sigma_{\alpha}(\beta) \in \Phi^+ \setminus \{\alpha\}$.

(c) Let

$$\beta_i = \sigma_{i+1} \cdots \sigma_{t-1}(\alpha_t), \quad i = 0, \dots, t-2.$$

Then $\beta_{t-1} = \alpha_t \succ 0$, $\beta_0 \prec 0$. So there exists smallest s such that $\beta_s \succ 0$. Since $\beta_{s-1} \prec 0$, we must have $\beta_s = \alpha_s$. Therefore

$$\sigma_s = (\sigma_{s+1} \cdots \sigma_{t-1}) \sigma_t (\sigma_{t-1} \cdots \sigma_{s+1}),$$

i.e., $\sigma_1 \cdots \sigma_{s-1} \sigma_s \sigma_{s+1} \cdots \sigma_t = \sigma_1 \cdots \sigma_{s-1} \sigma_{s+1} \cdots \sigma_{t-1}$.

Theorem 6.5. The group \mathscr{W} acts on $\{$ base of $\Phi \}$ simply and transitively, and \mathscr{W} is generated by $\sigma_{\alpha}, \alpha \in \Delta$, for any base Δ .

Proof. Let $\mathscr{W}' \subseteq \mathscr{W}$ generated by $\sigma_{\alpha}, \alpha \in \Delta$. If γ is regular, choose $\sigma \in \mathscr{W}'$ with $(\sigma(\gamma), \delta)$ largest. Then

$$(\sigma(\gamma),\delta) \ge (\sigma_{\alpha} \cdot \sigma(\gamma),\delta) = (\sigma(\gamma),\sigma_{\alpha}(\delta)) = (\sigma(\gamma),\delta) - (\sigma(\gamma),\alpha),$$

i.e., $(\sigma(\gamma), \alpha) \ge 0$. Also, $(\sigma(\gamma), \alpha) \ne 0$, otherwise $\gamma \perp \sigma^{-1} \alpha$, a contradiction. Hence, $\sigma(\gamma)$ lies in the Weyl chamber $\mathscr{C}(\Delta)$ corresponds to Δ and $\sigma : \mathscr{C}(\gamma) \to \mathscr{C}(\Delta)$.

Any $\alpha \in \Phi$ lies in some base: take any $\gamma \in P_{\alpha} \setminus \bigcup_{\beta \neq \pm \alpha} P_{\beta}$. Let γ' "close to" γ such that $(\gamma', \alpha) = \varepsilon > 0, |(\gamma', \beta)| > \varepsilon$. Then $\alpha \in \Delta(\gamma')$.

In particular, there exists $\sigma \in \mathscr{W}'$ such that $\beta = \sigma(\alpha) \in \Delta$. Then $\sigma_{\beta} = \sigma_{\sigma(\alpha)} = \sigma_{\sigma_{\alpha}\sigma^{-1}}$ tells us that $\sigma_{\alpha} = \sigma^{-1}\sigma_{\beta}\sigma \in \mathscr{W}'$. Hence, $\mathscr{W}' = \mathscr{W}$.

It remains to show that the action \mathscr{W} on { base of Φ } is simple. If $\sigma \neq id$ with $\sigma(\Delta) = \Delta$, write $\sigma = \sigma_1 \cdots \sigma_t$ (minimal length). Then $\sigma(\alpha_t) < 0$ by (6.4, c), a contradiction.

Definition 6.6. For $\sigma \in \mathcal{W}$, let $\ell(\sigma)$ be the minimal length of the expression $\sigma = \sigma_1 \cdots \sigma_t$ (relative to a base Δ). For a root $\alpha = \sum_{\beta \in \Delta} k_\beta \beta \in \Phi$, we define the height of α to be $ht(\alpha) = \sum_{\beta \in \Delta} k_\beta \in \mathbb{Z}$.

A root system Φ is called **irreducible** if $\Phi = \Phi_1 \sqcup \Phi_2$ with $\Phi_1 \perp \Phi_2$ (this is equivalent to $\Delta = \Delta_1 \sqcup \Delta_2$ for some base Δ). Otherwise, Φ is called reducible. For example, $A_1 \times A_1$ is reducible.

Lemma 6.7. Let Φ be an irreducible root system. Then

- (a) there exists a unique element $\beta \in \Phi^+$ maximum with respect to \succ ;
- (b) the action \mathscr{W} on E is irreducible;
- (c) there are at most 2 lengths " $|\alpha|$ " $\forall \alpha \in \Phi$ (by key table), and $|\alpha| = |\beta| \implies \beta = w(\alpha)$ for some $w \in \mathcal{W}$.
- (d) The unique maximal element β is the longer one.

7 Classification of root systems, 9/26

Let $\Phi \subseteq E$ be a root system, \mathscr{W} be its Weyl group, $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ be a base.

Proposition 7.1. The Cartan matrix $(\langle \alpha_i, \alpha_j \rangle)_{i,j=1}^{\ell} \in M_{\ell}(\mathbb{Z})$ determines Φ up to an isomorphism.

Proof. For a vector space isomorphism $\phi: E \to E'$, where $\phi(\alpha_i) = \alpha'_i$, the diagram

$$\begin{array}{ccc} E & \stackrel{\phi}{\longrightarrow} & E' \\ \downarrow^{\sigma_{\alpha}} & & \downarrow^{\sigma_{\alpha'}} \\ E & \stackrel{\phi}{\longrightarrow} & E' \end{array}$$

commutes when $(\langle \alpha_i, \alpha_j \rangle)_{i,j=1}^{\ell} = (\langle \phi(\alpha_i), \phi(\alpha_j) \rangle)_{i,j=1}^{\ell}$. Indeed,

$$\sigma_{\phi(\alpha)}(\phi(\beta)) = \phi(\beta) - \langle \phi(\beta), \phi(\alpha) \rangle \phi(\alpha) = \phi(\beta - \langle \beta, \alpha \rangle \alpha).$$

Hence, $\phi \mathscr{W} \phi^{-1} = \mathscr{W}'$ by (6.5).

For each
$$\beta \in \Phi$$
, $\beta = \sigma(\alpha)$ for some $\sigma \in \mathcal{W}$, so $\phi(\beta) = (\phi \sigma \phi^{-1})\phi(\alpha) \in \mathcal{W}'\Delta' = \Phi'$.

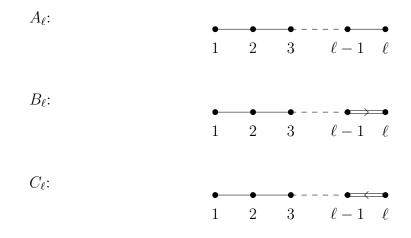
Definition 7.2. The Coxeter graph $\Gamma = \Gamma_{\Phi}$ of Φ is a weighted graph (V, E) with ℓ vertices $V = \{\alpha_1, \ldots, \alpha_\ell\}$ and edges

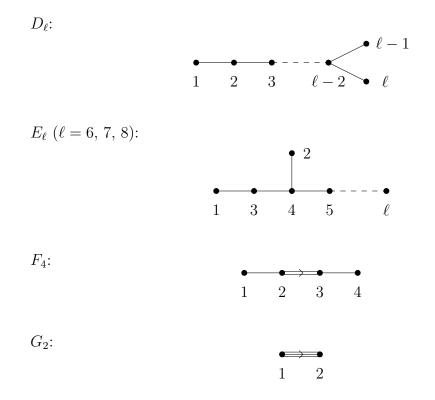
$$E = \left\{ \left(\overline{\alpha_i \alpha_j}, \langle \alpha_i, \alpha_j \rangle \langle \alpha_j, \alpha_i \rangle \neq 0 \right) \right\}.$$

The **Dynkin diagram** of Φ is the directed weighted graph Γ with $\overline{\alpha_i \alpha_j}$ replaced by $\overrightarrow{\alpha_i \alpha_j}$ if $|\alpha_i| > |\alpha_j|$.

Fact. There is a one-to-one correspondence between the irreducible components of Φ and the connected components of Γ_{Φ} .

Theorem 7.3. If Φ is irreducible, then the Dynkin diagram Γ_{Φ} is isomorphic to one of followings:





Proof. Let $\hat{\alpha}_i = \alpha_i / |\alpha_i|$. Then

$$2\frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)} \cdot 2\frac{(\alpha_j, \alpha_i)}{(\alpha_j, \alpha_j)} = 4(\hat{\alpha}_i, \hat{\alpha}_j)^2.$$

Hence, we call a set of unit vectors $A = \{\varepsilon_1, \ldots, \varepsilon_n\}$ admissible if $4(\varepsilon_i, \varepsilon_j)^2 \in \{0, 1, 2, 3\}$ for all $i \neq j$.

- (1) The admissible property is preserved under removing a vertex.
- (2) The number of edges is at most #A 1. Let n = #A and $\varepsilon = \sum \varepsilon_i$. Then

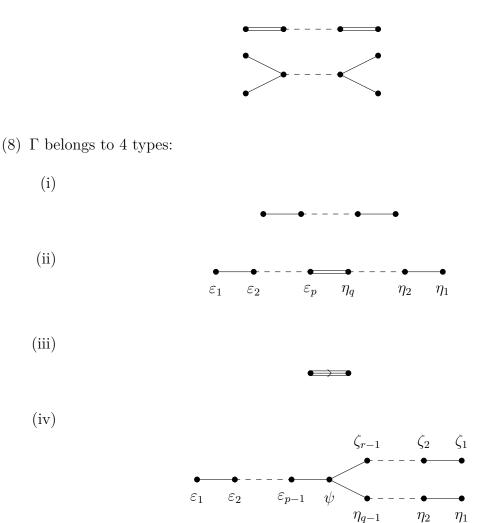
$$0 \le (\varepsilon, \varepsilon) = n + 2 \sum_{i < j} (\varepsilon_i, \varepsilon_j).$$

Since for an edge (i, j), we have $2(\varepsilon_i, \varepsilon_j) \leq -1$. The number of the edges is at most n-1.

- (3) There are no cycles in Γ . Take any cycle $\Gamma' \subseteq \Gamma$. Then the correspond $A' \subseteq A$ is admissible, but it has #A' edges, a contradiction.
- (4) At any ε ∈ A, the number of edges that connects with ε is at most 3 (counted with multiplicity). Suppose η₁, ..., η_k ∈ A are connected to ε, then (η_i, η_j) = δ_{ij} by (3). Find a unit vector η₀ ∈ ⟨ε, η₁, ..., η_k⟩ that is perpendicular to ⟨η₁, ..., η_k⟩. Then

$$\varepsilon = \sum_{i=0}^{k} (\varepsilon, \eta_i) \eta_i \quad \Longrightarrow \quad 1 = (\varepsilon, \varepsilon) = \sum_{i=0}^{k} 4(\varepsilon, \eta_i)^2 < 4(\varepsilon, \varepsilon) - 4(\varepsilon, \eta_0)^2 < 4.$$

- (5) The only case with a weight 3 edge is G_2 itself.
- (6) Shrinking a simple chain to a point is OK.
- (7) Hence, there is no subgraphs of the form



(i) and (iii) corresponds to A_{n-1} and G_2 , respectively.

(9) For (ii), consider $\varepsilon = \sum i \varepsilon_i$, $\eta = \sum j \eta_j$. Since $2(\varepsilon_i, \varepsilon_{i+1}) = -1 = 2(\eta_j, \eta_{j+1})$, we get

$$(\varepsilon,\varepsilon) = \sum_{i=1}^{p} i^2 - \sum_{i=1}^{p} i(i+1) = p^2 - \frac{p(p-1)}{2} = \frac{p(p+1)}{2}.$$

Similarly, $(\eta, \eta) = \frac{q(q+1)}{2}$. By definition and Cauchy-Schwarz inequality,

$$(\varepsilon,\eta)^2 = \frac{p^2q^2}{2} < \frac{p(p+1)}{2} \cdot \frac{q(q+1)}{2} \implies (p-1)(q-1) < 2$$

If one of p or q is 1, then Γ is isomorphic to B_{ℓ} or C_{ℓ} . Otherwise, p = q = 2, in this case we get F_4 .

(10) For (iv), consider $\varepsilon = \sum i \varepsilon_i$, $\eta = \sum j \eta_j$, $\zeta = \sum k \zeta_k$. As in (4), let θ_1 , θ_2 , θ_3 be the angles between ψ and ε , η , ζ , respectively. Then $\sum \cos^2 \theta_\ell < 1$. As in (9),

$$\cos^{2} \theta_{1} = \frac{(\varepsilon, \psi)^{2}}{(\varepsilon, \varepsilon)(\psi, \psi)} = (p-1)^{2} \cdot \frac{1}{4} \cdot \frac{2}{p(p-1)} = \frac{1}{2} \left(1 - \frac{1}{p} \right)$$

Hence,

$$\frac{1}{2}\left(3-\frac{1}{p}-\frac{1}{q}-\frac{1}{q}\right)<1,$$

i.e., $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$. Say r = 2, then q = 2 gives us D_n , while q = 3 gives us E_{p+3} (p = 3, 4, 5).

Remark 7.4. The automorphism group Aut Φ is isomorphic to $\gamma \rtimes \mathcal{W}$, where $\gamma = \{\sigma \in Aut \Phi \mid \sigma(\Delta) = \Delta\}$, which can be related to Aut Γ_{Φ} .

Definition 7.5. Given a root system $\Phi \subset E$, we define the weight lattice to be

$$\Lambda = \{ \lambda \in E \mid \langle \lambda, \alpha \rangle \in \mathbb{Z}, \ \forall \alpha \in \Phi \} \supseteq \Phi.$$

It is clear that we only need to check the condition $\langle \lambda, \alpha \rangle \in \mathbb{Z}$ for $\alpha \in \Delta$. Given $\Delta = (\alpha_1, \ldots, \alpha_\ell)$ (an ordered base), we get λ_i such that $\langle \lambda_i, \alpha_j \rangle = \delta_{ij}$, called the fundamental weights. Then Λ is a lattice generated by $\lambda_1, \ldots, \lambda_\ell$. Hence,

$$\alpha_i = \sum_k \langle \alpha_i, \alpha_k \rangle \lambda_k$$

Let Λ_r be the lattice generated by Φ . Then $\Lambda_r \subseteq \Lambda$ and $|\Lambda/\Lambda_r| = \det C$, where $C = (\langle \alpha_i, \alpha_j \rangle)$ is the Cartan matrix.

Examples. For A_2 ,

$$C_{A_2} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \implies \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

For G_2 ,

$$C_{G_2} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \implies \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}.$$

Note that $\mathscr{W}(\Lambda) = \Lambda$: $\sigma_i \lambda_j = \lambda_j - \delta_{i,j} \alpha_i \in \Lambda$. So any weight λ can be conjugate to a dominant weight, i.e., it lies in the dominant set

$$\Lambda^{+} = \{\lambda \in \Lambda \mid (\lambda, \alpha) \ge 0\} = \overline{\mathscr{C}(\Delta)} \cap \Lambda.$$

The strictly dominant set is defined to be

$$\{\lambda \in \Lambda \mid (\lambda, \alpha) > 0\} = \mathscr{C}(\Delta) \cap \Lambda.$$

Although $\lambda \succ \mu$ with $\mu \in \Lambda^+$ does not imply $\lambda \in \Lambda^+$, but $\lambda \in \Lambda^+$ implies that there are only finitely many $\mu \in \Lambda^+$ with $\lambda \succ \mu$.

Example. The vector $\delta = \frac{1}{2} \sum_{\alpha \succ 0} \alpha = \sum_{j=1}^{\ell} \lambda_j$ is a strictly positive weight.

Lemma 7.6. Let $\mu \in \Lambda^+$ and $\nu \in \mathscr{W}(\mu)$. Then $|\nu + \delta| \le |\mu + \delta|$, and the equality holds if and only if $\nu = \mu$.

8 Final step I, 10/3

Recall: For a semi-simple Lie algebra L, we choose a maximal toral subalgebra H, which induces a root space decomposition $L = H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}$. Note that H is self-normalizing (in L), i.e., $N_L(H) = H$.

In fact, any 2 choices of maximal torals H_1 , H_2 are conjugate by some automorphism. This gives us the classification of semi-simple Lie algebra as $A \sim G$.

Let V be a finite dimensional vector space over F and $A: V \to V$ be a linear map. Consider its characteristic polynomial $f_A(T) = \prod (T - \lambda_i)^{m_i} = \prod p_i(T)$. We get the decomposition $V = \bigoplus V_i$, where $V_i = \ker p_i(A)$.

Take V = L, the action ad $x : L \to L$ gives us the decomposition $L = \bigoplus_{a \in F} L_a(\operatorname{ad} x)$, where $L_a(\operatorname{ad} x) = \bigcup_n \ker(\operatorname{ad} x - a)^n$.

Fact. $[L_a(\operatorname{ad} x), L_b(\operatorname{ad} x)] \subseteq L_{a+b}(\operatorname{ad} x)$:

$$(\operatorname{ad} x - a - b)[y, z] = [(\operatorname{ad} x - a)y, z] + [y, (\operatorname{ad} x - b), z]$$

$$\implies (\operatorname{ad} x - a - b)^{m}[y, z] = \sum_{i=0}^{m} \binom{m}{i} [(\operatorname{ad} x - a)^{i}y, (\operatorname{ad} x - b)^{m-i}z] = 0$$

for $y \in L_a$ and $z \in L_b$ with $m \gg 0$.

This tells us that $L_0(\operatorname{ad} x)$ is a Lie subalgebra, called an **Engel subalgebra**, and $L_{a\neq 0}(\operatorname{ad} x)$ is ad-nilpotent.

Lemma 8.1. Let K be a Lie subalgebra of L that contains $L_0(\operatorname{ad} x)$. Then K is self-normalizing (in L), i.e., $N_L(K) = K$.

Proof. Consider the action ad $x : N_L(K)/K \to N_L(K)/K$. All the eigenvalues of the action is nonzero. Note that $x \in K$, so $[N_L(K), x] \subseteq K$, which means that the action is 0.

Lemma 8.2. Let K be a Lie subalgebra of L, and let $L_0(\text{ad } z)$ be minimal among all such $z \in K$. If moreover, it contains K, then it is totally minimal.

Proof. Fix an arbitrary $x \in K$ and consider the pencil $\{\operatorname{ad}(z+cx) \mid c \in F\}$. Since $x \in K$, these elements all stabilize $K_0 = L_0(\operatorname{ad} z)$, hence stabilize L/K_0 as well.

The characteristic polynomial $f_c(T) = f(T,c)g(T,c)$, where f(T,c) is the characteristic polynomial of $\operatorname{ad}(z + cx)|_{K_0}$ and g(T,c) is the characteristic polynomial of $\operatorname{ad}(z + cx)|_{L/K_0}$. Write

$$f(T,c) = T^{r} + f_{1}(c)T^{r-1} + \dots + f_{r}(c)$$
$$g(T,c) = T^{n-r} + g_{1}(c)T^{n-r-1} + \dots + g_{r}(c)$$

We know that each f_i , g_i are polynomials in c of degree at most i.

For c = 0, the 0-eigenspace of ad z lies in K_0 , so $g_{n-r}(0) \neq 0$. So we can find $c_1, \ldots, c_{r+1} \in F$ such that $g_{n-r}(c_i) \neq 0$ for all i. Then 0 is not an eigenvalue of $\operatorname{ad}(z + c_i x)$ on L/K_0 , and hence $L_0(\operatorname{ad}(z + c_i x)) \subseteq K_0$.

Since K_0 is minimal, $K_0 = L_0(\operatorname{ad} z) = L_0(\operatorname{ad}(z + c_i x))$, i.e., $\operatorname{ad}(z + c_i x)$ has only 0-eigenvalue on K_0 . So $f(T, c_i) = T^r$, i.e., $f_i \equiv 0$. Hence, $L_0(\operatorname{ad}(z + cx)) \supseteq K_0$ for all $c \in F$. Since x is arbitrary, K_0 is totally minimal.

Definition 8.3. A **Cartan subalgebra** (CSA) H of a Lie algebra L is a self-normalizing nilpotent subalgebra.

For example, a maximal toral of a semi-simple Lie algebra is Cartan.

Theorem 8.4. Let H be a Lie subalgebra of L. Then H is a CSA if and only if H is a minimal Engel subalgebra (hence it exists).

Proof. (\Leftarrow) *H* is self-normalizing by (8.1). Also, by (8.2), $H = L_0(\operatorname{ad} z) \subseteq L_0(\operatorname{ad} x)$ for all $x \in H$, i.e., $\operatorname{ad}_H x$ is ad-nilpotent for all $x \in H$. Hence, by Engel's theorem (2.1), *H* is nilpotent.

 (\Rightarrow) Let H be a CSA. The nilpotency of H implies that $H \subseteq L_0(\operatorname{ad} x)$ for all $x \in H$. We claim the equality holds for some minimal one.

If not, take $L_0(\operatorname{ad} z \in H)$ be a minimal one. By (8.2), $L_0(\operatorname{ad} z) \subseteq L_0(\operatorname{ad} x)$ for all $x \in H$. So the action of H on $L_0(\operatorname{ad} z)/H$ acts as nilpotent endomorphisms. By some ancient theorem, there exists a 0-eigenvector y + H, $y \notin H$, such that $[H, y] \subseteq H$. Since H is self-normalizing, $y \in H$, a contradiction.

Corollary 8.5. Let *L* be a semi-simple Lie algebra over *F*. Then $CSA \equiv maximal$ toral $(\equiv C_L(s)$ for some semi-simple element *s*).

Proof. (\Leftarrow) is already done. (\Rightarrow) Let H be a CSA. Then $H = L_0(\operatorname{ad} x)$ for some $x \in H$. Write $x = x_s + x_n$, then $H = L_0(\operatorname{ad} x) = L_0(\operatorname{ad} x_s) = C_L(x_s)$. Since $C_L(x_s)$ contains Fx_s and Fx_s is contained in some maximal toral C, which is abelian, we have $H \supseteq C$. Since C is a CSA, H = C.

Remark 8.6. Functorialities:

- (a) If $\phi: L \to L'$ is surjective, then the image $\phi(H)$ of a CSA H of L is a CSA of L'.
- (b) Let $H' \subseteq L'$ be a CSA. Then any CSA H of $\phi^{-1}(H')$ is also a CSA of L.

Definition 8.7. An element $x \in L$ is strongly ad-nilpotent if $x \in L_{a\neq 0}(\operatorname{ad} y)$ for some $y \in L$.

Let $\mathcal{N}(L) = \{ \text{strongly ad-nilpotent} \}, \text{ and let } \}$

$$\mathcal{E}(L) = \left\langle e^{\operatorname{ad} x} \mid x \in \mathcal{N}(L) \right\rangle \trianglelefteq \operatorname{Aut} L.$$

For a subalgebra K of L,

$$\mathcal{E}(L;K) = \left\langle e^{\operatorname{ad}_L x} \mid x \in \mathcal{N}(K) \right\rangle.$$

Idea. $\mathcal{E}(L)$ is "better than" Int L.

Facts. $K \subseteq L$ implies $\mathcal{N}(K) \subseteq \mathcal{N}(L)$, hence $\mathcal{E}(K) = \mathcal{E}(L;K)|_K$.

For a surjective homomorphism $\phi : L \to L', \phi(\mathcal{N}(L)) = \mathcal{N}(L')$. Moreover, for each $\sigma' \in \mathcal{E}(L')$, there exists $\sigma \in \mathcal{E}(L)$ such that the diagram

$$\begin{array}{ccc} L & \stackrel{\phi}{\longrightarrow} & L' \\ \downarrow^{\sigma} & & \downarrow^{\sigma} \\ L & \stackrel{\phi}{\longrightarrow} & L' \end{array}$$

commutes: say $\sigma' = e^{\operatorname{ad}_{L'} x'}$, where $x' = \phi(x)$ for some $x \in \mathcal{N}(L)$. Then for each $z \in L$,

$$(\phi \circ e^{\mathrm{ad}_L x})(z) = \phi \left(z + [x, z] + \frac{1}{2} [x, [x, z]] + \cdots \right)$$

= $\phi(z) + [x', \phi(z)] + \frac{1}{2} [x', [x', \phi(z)]] + \cdots$
= $\left(e^{\mathrm{ad}_{L'} x'} \circ \phi \right)(z).$

Theorem 8.8. Let *L* be a solvable Lie algebra. Then any two CSA's H_1 , H_2 are conjugated under $\mathcal{E}(L)$.

Proof. Introduction on dim L. If dim L = 1 or L is nilpotent, CSA = L, done!

If L is not nilpotent, take $A \leq L$ to be an abelian ideal with smallest dimension.

Let $\phi : L \to L' = L/A$ be the quotient map. Then the images $H'_1 = \phi(H_1)$, $H'_2 = \phi(H_2)$ are CSA's of L'. By induction hypothesis, there exists $\sigma' \in \mathcal{E}(L')$ such that $\sigma'(H'_1) = H'_2$. Take $\sigma \in \mathcal{E}(L)$ such that $\sigma' \circ \phi = \phi \circ \sigma$. Then σ maps $K_1 = \phi^{-1}(H_1)$ to $K_2 = \phi^{-1}(H_2)$ and $\sigma(H_1)$, H_2 are CSA's of K_2 .

If $K_2 \neq L$, then by the induction hypothesis there exists $\tau' = \tau|_K \in \mathcal{E}(K_2) = \mathcal{E}(L;K_2)|_{K_2}$ such that $H_2 = \tau'(\sigma(H_1)) = (\tau\sigma)(H_1)$, as desired.

Otherwise $L = K_2 = \sigma(K_1) = K_1$, and hence $L = H_2 + A = H_1 + A$. Write $H_2 = L_0(\operatorname{ad} x)$. Since A is ad x-stable,

$$A = A_0(\operatorname{ad} x) \oplus A_*(\operatorname{ad} x) = A_0 \oplus A_*.$$

Then both A_0 and A_* are $L = H_2 + A$ stable. It follows from the minimality of the dimension of A that $A = A_0$ or $A = A_*$.

If $A = A_0$, then $A \subseteq H_2$. Then $L = H_2$ is nilpotent, a contradiction. Hence $A = A_*(\operatorname{ad} x)$. But $L = H_1 + A$ shows that x = y + z for some $y \in H_1$ and $z \in A = A_*(\operatorname{ad} x)$, i.e., z = [x, z'] since $\operatorname{ad} x$ is invertible on it.

Since A is abelian, $(\operatorname{ad} z')^2 = 0$. So

$$e^{\operatorname{ad} z'}x = (1 + \operatorname{ad} z')(x) = x - [x, z'] = y.$$

So $H = L_0(\operatorname{ad} y)$ is also a CSA that contains H_1 , which implies $H = H_1$, i.e., $e^{\operatorname{ad} z'}$ maps H_2 to H_1 . Write $z' = \sum_{a \neq 0} z'_a$, $z'_a \in A_a(\operatorname{ad} x)$, we see that all z'_a commutes. So

$$e^{\operatorname{ad} z'} = \prod e^{\operatorname{ad} z'_a} \in \mathcal{E}(L).$$

9 Final step II, 10/5

Theorem 9.1. For a Lie algebra L over an algebraically closed field F with char F = 0, any CSA is conjugate to each other.

The case $F = \mathbb{C}$ is proved by Cartan and Weyl using analysis (differential geometry). For a general field, it is proved by Chevalley and Bourbaki using algebraic geometry. A purely algebraic proof was given by Winter.

We do the case $F = \mathbb{C}$ first. Let $n = \dim L$. For each element $x \in L$, consider the characteristic polynomial

$$f_x(T) := \det(\operatorname{ad} x - T) = (-1)^n T^n + g_1(x) T^{n-1} + \dots + g_{n-r}(x) T^r,$$

where r is the smallest integer such that the polynomial $g_{n-r}(x) \neq 0$. We define the rank of L, denoted by rank L, to be such r, and call $x \in L$ regular, or generic, if $g_{n-r}(x) \neq 0$. Then a CSA $H = L_0(\operatorname{ad} x)$ has dimension $k \geq r$.

Fact. Regular elements form a Zariski open subset in $L \cong \mathbb{C}^n$, hence it is path connected and dense open.

Given CSA's $H_0 = L_0(\operatorname{ad} x_0)$, $H_1 = L_0(\operatorname{ad} x_1)$, and take any path x_- in the Zariski open subset connecting x_0 and x_1 . Then for any $t \in [0, 1]$, $L_0(\operatorname{ad} x_t)$ is a CSA. If we can prove that any point y near $x = x_t$, $L_0(\operatorname{ad} y)$ is conjugate to $L_0(\operatorname{ad} x)$, then the statement holds by applying compact argument.

To do this, apply IFT to

$$\begin{aligned} H \times \mathbb{C}^{n-k} & \longrightarrow L \cong \mathbb{C}^n \\ (h,t) & \longmapsto \prod_{i=1}^{n-k} e^{\operatorname{ad}(t_i y_i)} h, \end{aligned}$$

where y_i are the generalized eigenvectors of ad x.

Exercise. This is invertible!

Definition 9.2. A subalgebra $B \subseteq L$ is **Borel** if it is a maximal solvable subalgebra.

- (A) A Borel subalgebra is self-normalizing: if $[x, B] \subseteq B$, then $[B + Fx, B + Fx] \subseteq B$, which implies B + Fx is solvable. By maximality of $B, x \in B$.
- (B) If $\operatorname{Rad} L \subsetneq L$, then the set of Borel subalgebras in L is 1-1 corresponds to the set of Borel subalgebras in $L/\operatorname{Rad} L$. Indeed, the sum of a solvable subalgebra and the solvable ideal $\operatorname{Rad} L$ is a solvable subalgebra.
- (C) For a semi-simple Lie algebra L, H a CSA with base $\Delta \subseteq \Phi$,

$$B(\Delta) := H \oplus \bigoplus_{\alpha \in \Phi^+(\Delta)} L_{\alpha},$$

called a standard Borel relative to H, is Borel. Any standard Borel subalgebra is conjugate to each other via $\mathcal{E}(L)$. Indeed, let $N(\Delta) = \bigoplus_{\alpha \in \Phi^+(\Delta)} L_{\alpha}$. Then $[B(\Delta), B(\Delta)] = N(\Delta)$, which is nilpotent, so $B(\Delta)$ is solvable. If $B(\Delta)$ is not maximal, say $K \supseteq B(\Delta)$ is also solvable, then $K \supseteq L_{-\alpha}$ for some $\alpha \in \Phi^+$. Then K contains a semi-simple Lie algebra S_{α} , a contradiction. Now, for a root $\alpha \in \Phi$, the action σ_{α} on H extends to $\tau_{\alpha} \in \mathcal{E}(L)$: take $x_{\alpha} \in L_{\alpha}, y_{\alpha} \in L_{-\alpha}$ that defines S_{α} , and define $\tau_{\alpha} = e^{\operatorname{ad} x_{\alpha}} e^{-\operatorname{ad} y_{\alpha}} e^{\operatorname{ad} x_{\alpha}}$. Then τ_{α} maps $B(\Delta)$ to $B(\sigma_{\alpha}\Delta)$. Hence, any standard Borel subalgebra is conjugate to each other since the Weyl group \mathscr{W} acts on the bases transitively.

Theorem 9.3. All Borel subalgebras (BSA) are $\mathcal{E}(L)$ -conjugate. In particular, all CSA's are $\mathcal{E}(L)$ -conjugate.

Proof. We prove the latter statement first (using the former statement): for CSA's H and H', we can put them in BSA's B and B', respectively. Take any $\sigma \in \mathcal{E}(L)$ such that $\sigma(B) = B'$, then $\sigma(H)$, H' are CSA in B'. The statement now reduce to the solvable case.

For the former statement, induction on dim L. The base case dim L = 1 is trivial. Using (B) together with the lifting of $\mathcal{E}(L)$ under $L \to L' = L/\operatorname{Rad} L$, we may assume that L is semi-simple. And it suffices to prove that any Borel subalgebra B' of L is conjugate to a standard Borel subalgebra $B = B(\Delta)$ relative to some CSA H.

Next, we induction on dim $(B \cap B')$ downward. The base case $B \cap B' = B$, which is equivalent to B = B', is trivial. So let $B \supseteq B \cap B'$.

(1) If $B \cap B' \neq 0$, then

- (i) 1. all nilpotent elements N' in $B \cap B'$ is nonzero. N' is an ideal in $B \cap B'$ (using $[B, B] = N(\Delta)$), but not in L. So $K := N_L(N') \subsetneq L$.
 - 2. $B \cap B' \subsetneq B \cap K$: consider the adjoint action N' on $B/B \cap B' \neq 0$. Then there exists a 0-eigenvector $y + B \cap B'$, but $x \in N'$ implies $[x, y] \in [B, B]$, and thus in N', i.e., $y \in N_B(N') = B \cap K$.
 - 3. Take BSA's C, C' of $K \subsetneq L$ that contains $B \cap K, B' \cap K$, respectively.

By (first) induction hypothesis, there exists $\sigma \in \mathcal{E}(L; K)$ such that $\sigma(C') = C$. By (second) induction hypothesis, there exists $\tau \in \mathcal{E}(L)$ such that $\tau(B_1) = B$, where B_1 is some BSA that contains $\sigma(C')$. Then

$$B \cap \tau\sigma(B') \supseteq \tau\sigma(C') \cap \tau\sigma(B') \supseteq \tau\sigma(B' \cap K) \supseteq \tau\sigma(B \cap B').$$

By (second) induction hypothesis, B is conjugate to $\tau\sigma(B')$.

- (ii) If N' = 0, left for reading.
- (2) $B \cap B' = 0$, left for reading.

10 Existence theorem I, 10/12

Definition 10.1. For a vector space V over F, we define the tensor algebra

$$T(V) := \bigoplus_{i=0}^{\infty} T^i(V), \quad T^i(V) = V^{\otimes i}.$$

For a Lie algebra, the **universal enveloping algebra** of L is defined to be

$$\mathfrak{U}(L) := T(L)/J,$$

where J is the 2-sided ideal generated by $x \otimes y - y \otimes x - [x, y], x, y \in L$.

The universal enveloping algebra $\mathfrak{U}(L)$ satisfies the following universal property: for a linear map $j: L \to \mathfrak{A}$, where \mathfrak{A} is an associative *F*-algebra, such that $j[x, y] = j(x)j(y) - j(y)j(x), x, y \in L$, there exists a linear map $\mathfrak{U}(L) \to \mathfrak{A}$ that completes the diagram:

$$\begin{array}{c} L \xrightarrow{j} \mathfrak{A} \\ \downarrow & \uparrow^{\exists} \\ T(L) \xrightarrow{\pi} \mathfrak{U}(L) \end{array}$$

Definition 10.2. Let $T_m = T^0 \oplus \cdots \oplus T^m$, $U_m = \pi(T_m)$. We see that $U_i \cdot U_j \subseteq U_{i+j}$, Define $G^m = U_m/U_{m-1}$, $\mathfrak{G} = \bigoplus_{m=0}^{\infty} G^m$.

Theorem 10.3 (PBW, Poincaré-Birkhoff-Witt). There is an isomorphism $w : S(L) \to \mathfrak{G}$, where S(L) is the symmetric algebra of L.

The surjectivity is easy: $T^m \to U_m \to G^m$ is onto, so $\phi : T \to \mathfrak{G}$ is onto. Also, $\phi(I) = 0$, where I is the 2-sided ideal generated by $x \otimes y - y \otimes x$.

This defines a surjection from $w: S(L) \to \mathfrak{G}$. The injectivity is hard (left for reading).

- **Corollary 10.4.** (A) For $W \subseteq T^m \to S^m$ satisfying $\pi : W \cong S$, $\pi(W)$ is complement to U_{m-1} in U_m .
- (B) $i: L \to \mathfrak{U}(L)$ is injective: taking $W = T^1 = L$ (m = 1).
- (C) For any ordered basis, x_1, \ldots, x_n of L. $x_{i(1)} \cdots x_{i(m)}$ with $i(1) \leq \cdots \leq i(m)$ form a basis of $\mathfrak{U}(L)$: Take $W = \langle x_{i(1)} \otimes \cdots \otimes x_{i(m)} \rangle \subseteq T^m$

Definition 10.5. Let X be a set. The free Lie algebra generated by X over F is defined to be the Lie subalgebra \mathbf{X} in T(V) generated by X, where V is the vector space over F with X as basis.

Let *L* be a semi-simple Lie algebra, *H* a CSA of *L*. Let Φ be the root system induced by *H*, $\Delta = \{\alpha_1, \ldots, \alpha_\ell\}$ a base of Φ , $A = (c_{ij}) = (\langle \alpha_i, \alpha_j \rangle)$ the Cartan matrix. For each *i*, let $S_{\alpha_i} = \langle x_i, y_i, h_i \rangle$ be the Lie algebra generated by L_{α_i} and $L_{-\alpha_i}$.

Proposition 10.6 (Serre relations). (S1) $[h_i, h_j] = 0$,

- (S2) $[x_i, y_j] = \delta_{ij} h_i,$
- (S3) $[h_i x_j] = c_{ji} x_j, [h_i y_j] = -c_{ji} y_j,$
- $(\mathbf{S}_{ij}^+) \ (\mathrm{ad} \, x_i)^{-c_{ji}+1} x_j = 0 \ (i \neq j),$
- $(\mathbf{S}_{ij}^{-}) \ (\text{ad } y_i)^{-c_{ji}+1} y_j = 0 \ (i \neq j).$

Proof. We only prove (\mathbf{S}_{ij}^+) . Since $\alpha_j - \alpha_i \notin \Phi$, we get the α_j -string α_j , $\alpha_j + \alpha_i$, ..., $\alpha_j + q\alpha_i$. Since $0 - q = c_{ji}$, we get $(\operatorname{ad} x_i)^{-c_{ji}+1}x_j = (\operatorname{ad} x_i)^{q+1}x_j = 0$.

Theorem 10.7 (Serre). These relations are complete (for semi-simple Lie algebra L).

Proof. Step 1. Let \hat{L} be the free Lie algebra generated by $X = \{x_i, y_i, h_i\}_{i=1}^{\ell}$, \hat{K} the 2-sided ideal generated by (S1), (S2), and (S3), L_0 the quotient \hat{L}/\hat{K} . Then $L_0 = H \oplus X \oplus Y$, where H, X, and Y are lie subalgebras generated by $\{h_i\}, \{x_i\}$, and $\{y_i\}$, respectively, and $H = \oplus Fh_i$.

Let $\mathbf{V} = T(F^{\ell})$. Fix a basis v_1, \ldots, v_{ℓ} of F^{ℓ} and define the representation $\hat{\phi} : \hat{L} \to \mathfrak{gl}(\mathbf{V})$ by $h_j \cdot 1 = x_j \cdot 1 = x_j \cdot v_j = 0, y_j \cdot 1 = v_j$, and

$$\begin{cases} h_j \cdot v_{i_1} \otimes \cdots \otimes v_{i_t} = -(c_{i_1j} + \cdots + c_{i_tj})v_{i_1} \otimes \cdots \otimes v_{i_t}, \\ x_j \cdot v_{i_1} \otimes \cdots \otimes v_{i_t} = v_{i_1} \otimes (x_j \cdot v_{i_2} \otimes \cdots \otimes v_{i_t}) - \delta_{i_1j} \left(\sum_{k=2}^t c_{i_kj}\right) v_{i_2} \otimes \cdots \otimes v_{i_t}, \\ y_j \cdot v_{i_1} \otimes \cdots \otimes v_{i_t} = v_j \otimes v_{i_1} \otimes \cdots \otimes v_{i_t}. \end{cases}$$

We check that $\hat{K}_0 := \ker \hat{\phi} \supseteq \hat{K}$, i.e., the $\mathfrak{gl}(\mathbf{V})$ is in fact an L_0 -module.

- (1) $[h_i, h_j] \in \hat{K}_0$: since h_i acts diagonally, $[\hat{\phi}(h_i), \hat{\phi}(h_j)] = 0$,
- (2) $[x_i, y_j] \delta_{ij} h_j \in \hat{K}_0$:

$$\begin{aligned} x_i y_j \cdot v_{i_2} \otimes \cdots \otimes v_{i_t} - y_j x_i \cdot v_{i_2} \otimes \cdots \otimes v_{i_t} &= -\delta_{ji} \left(\sum_{k=2}^t c_{i_k j} \right) v_{i_2} \otimes \cdots \otimes v_{i_t} \\ &= \delta_{ij} h_j v_{i_2} \otimes \cdots \otimes v_{i_t}. \end{aligned}$$

(3) $[h_i, y_j] + c_{ji}y_j \in \hat{K}_0$:

$$(h_i y_j - y_j h_i) \cdot 1 = h_i v_j = -c_{ji} v_j = -c_{ji} y_j \cdot 1,$$

$$(h_i y_j - y_j h_i) \cdot v_{i_1} \otimes \dots \otimes v_{i_t} = h_i \cdot v_j \otimes v_{i_1} \otimes \dots \otimes v_{i_t}$$

$$+ (e_{i_1 i} + \dots + e_{i_t i}) v_j \otimes v_{i_1} \otimes \dots \otimes v_{i_t}$$

$$= e_{ji} y_j v_{i_1} \otimes \dots \otimes v_{i_t}.$$

(4) $[h_i, x_j] - c_{ji} x_j \in \hat{K}_0$:

Claim.
$$h_i \cdot (x_j \cdot v_{i_1} \otimes \cdots \otimes v_{i_t}) = -(c_{i_1i} + \cdots + c_{i_ti} - c_{j_t})x_j \cdot v_{i_1} \otimes \cdots \otimes v_{i_t}.$$

Induction on t. The base case t = 0 is trivial. For simplicity, let $v = v_{i_2} \otimes \cdots \otimes v_{i_t}$. By induction hypothesis,

$$h_i \cdot (x_j \cdot v) = -(c_{i_2i} + \dots + c_{i_ti} - c_{ji})x_j \cdot v.$$
 (II)

Since

$$y_{i_1}h_ix_j = (h_i + c_{i_1i})y_{i_1}x_j = (h_i + c_{i_1i})(x_jy_{i_1} - \delta_{ji_1}h_j),$$

we get

$$\begin{split} h_i \cdot (x_j \cdot v_{i_1} \otimes v) &= h_i x_j y_{i_1} \cdot v, \\ &= y_{i_1} (h_i x_j \cdot v) - c_{i_1 i} x_j y_{i_1} \cdot v + \delta_{j i_1} (h_i + c_{i_1 i}) h_j \cdot v \\ &= - (c_{i_2} + \dots + c_{i_t i} - c_{j i}) y_{i_1} x_j \cdot v - c_{i_1} x_j \cdot v_{i_1} \otimes v \\ &+ \delta_{j i_1} (-c_{i_1 i} + c_{i_2 i} + \dots + c_{i_t i}) (c_{i_2 j} + \dots + c_{i_t j}) v \\ &= - (c_{i_2} + \dots + c_{i_t i} - c_{j i}) (x_j y_{i_1} + \delta_{j i_1} h_j) \cdot v - c_{i_1} x_j \cdot v_{i_1} \otimes v \\ &+ \delta_{j i_1} (-c_{i_1 i} + c_{i_2 i} + \dots + c_{i_t i}) (c_{i_2 j} + \dots + c_{i_t j}) v \\ &= - (c_{i_1 i} + \dots + c_{i_t i} - c_{j i}) x_j \cdot v_{i_1} \otimes v \\ &+ \delta_{j i_1} (c_{i_2 i} + \dots + c_{i_t i} - c_{j i}) (c_{i_2 j} + \dots + c_{i_t j}) v \\ &+ \delta_{j i_1} (-c_{i_1 i} + c_{i_2 i} + \dots + c_{i_t i}) (c_{i_2 j} + \dots + c_{i_t j}) v \\ &= - (c_{i_1 i} + \dots + c_{i_t i} - c_{j i}) x_j \cdot v_{i_1} \otimes v, \end{split}$$

as desired.

Hence, $(h_i x_j - x_j h_i) \cdot 1 = 0$ and

$$(h_i x_j - x_j h_i) \cdot v_{i_1} \otimes \cdots \otimes v_{i_t} = c_{ji} x_j \cdot v_{i_1} \otimes \cdots \otimes v_{i_t}.$$

11 Existence theorem II, 10/17

So there is a nontrivial L_0 -module $\mathfrak{gl}(\mathbf{V})$. Then $L_0 = H + X + Y$, where $H = \sum_i Fh_i$, $X = \langle x_i \rangle, Y = \langle y_i \rangle$.

Exercise. Prove that X (resp. Y) is generated by $\{x_i\}$ (resp. $\{y_i\}$) freely.

• For all h_i , $[h_i, H] = 0$, $[h_i, [x_j, x_k]] = (c_{ji} + c_{ki})[x_j, x_k]$, induction get the main calculation:

$$[h_i, [x_{i_1}, [\dots, [x_{i_{t-1}}, x_{i_t}] \dots]]] = (c_{i_1i} + \dots + c_{i_ti})[x_{i_1}, [\dots, [x_{i_{t-1}}, x_{i_t}] \dots]] \in X.$$

A similar result also holds for Y.

• For all x_i . $[x_i, H + X] = X$,

$$\begin{split} [x_i, [y_j, y_k]] &= [[x_i, y_j], y_k] + [y_j, [x_i, y_k]] \\ &= \delta_{ij} [h_i, y_k] + \delta_{ik} [y_j, h_i] = -\delta_{ij} c_{ki} y_k + \delta_{ik} c_{ji} y_j \in Y \end{split}$$

By induction, we get $[x_i, Y] \subseteq Y$.

• For all y_i , we get $[y_i, L_0] \subseteq Y$ similarly.

Claim. $\phi(h_i)$ are linearly independent and the sum $L_0 = H + X + Y$ is direct.

If $\sum a^i \phi(h_i) = 0$, then for each j,

$$0 = \sum a^i \phi(h_i) v_j = -\sum a_i c_{ji} e_j \implies \sum a^i c_{ji} = 0$$

Since j is arbitrary, $a^i = 0$ for all i.

By the calculation above, $L_0 = H + X + Y$ is a decomposition of L_0 into eigenspaces of ad H. Indeed, the eigenvalue is $\lambda = \sum_j k_j \alpha_j > 0$ on X (< 0 on Y), any iterative [...] in Xof x_{i_1}, \ldots, x_{i_t} has eigenvalue $\sum_k c_{i_k}$. Evaluate at h_i , this eigenvalue is of the form $\sum m_j c_{ji}$, where $m_j \ge 0$ and $\sum m_j = t$. So $X \cap Y = 0$. (Otherwise, we get $\sum m_j c_{ji} = -\sum n_j c_{ji}$ for some $m_j, n_j \ge 0$, then $\sum (m_j + n_j)c_{ji} = 0$. Since C is nondegenerate, this leads to a contradiction.)

Step 2. Adding relations $(S_{ij}^+), (S_{ij}^-)$:

$$I = \left\langle x_{ij} := (\operatorname{ad} x_i)^{-c_{ji}+1} x_j \mid i \neq j \right\rangle \trianglelefteq X,$$
$$J = \left\langle y_{ij} := (\operatorname{ad} y_i)^{-c_{ji}+1} y_j \mid i \neq j \right\rangle \trianglelefteq Y.$$

Then J, and hence I, K = I + J, is an ideal of L_0 .

Lemma 11.1. $[x_k, y_{ij}] = 0.$

Proof of Lemma. If $k \neq i$, then $[x_k, y_i] = 0$ implies that

ad
$$x_k(y_{ij}) = (ad y_i)^{-c_{ji}+1} ad x_k(y_j) = 0.$$

If k = i, then

$$\operatorname{ad} x_k (\operatorname{ad} y_i)^t y_j = t(c_{ji} - t + 1) (\operatorname{ad} y_i)^{t-1} y_j$$

by induction on t. The result now follows by letting $t = -c_{ji} + 1$.

Now we check that $J \leq L_0$: As the calculation above, we have

$$(ad h_k)y_{ij} = (-c_{jk} + (c_{ji} - 1)c_{ik})y_{ij}$$

Together with $\operatorname{ad} h_k(Y) \subseteq Y$, we get $\operatorname{ad} h_k(J) \subseteq J$ by Jacobi's identity. Using the Lemma and the fact $\operatorname{ad} x_k(Y) \subseteq Y + H$, we get $\operatorname{ad} x_k(J) \subseteq J$ (again by Jacobi's identity).

Step 3. Hence, $L := L_0/K = H \oplus N^+ \oplus N^-$, where $N^+ := X/I$ and $N^- := Y/J$, and this is the semi-simple Lie algebra we want!

For $\lambda \in H^{\vee}$, $L_{\lambda} := \{x \in L \mid [h, x] = \lambda(h)x\}$ as before. We had seen $H = L_{\vec{0}}$, $N^+ = \bigoplus_{\lambda>0} L_{\lambda}$, $N^- = \bigoplus_{\lambda<0} L_{\lambda}$, and each piece has finite dimension.

The operators $\operatorname{ad} x_i$ and $\operatorname{ad} y_i$ are locally nilpotent, i.e., for each $z \in L$, there exists $k \ge 0$ such that $(\operatorname{ad} x_i)^k z = (\operatorname{ad} y_i)^k z = 0$: let

$$M_i = \{ \text{ all such } z \}.$$

Then $x_j \in M_i$ by (S_{ij}^+) , hence $h_j \in M_i$ by (S3), and hence $y_j \in M_i$ by (S2). Note that M_i is a Lie algebra:

$$(\operatorname{ad} x_i)^n[y,z] = \sum_{j=0}^n \binom{n}{j} [(\operatorname{ad} x)^j y, (\operatorname{ad} x)^{n-j} z] = 0$$

by taking *n* large enough. We get $M_i = L$.

Now, $\tau_i := e^{\operatorname{ad} x_i} e^{-\operatorname{ad} y_i} e^{\operatorname{ad} x_i} \in \operatorname{Aut} L$ is well-defined. In fact, if $\sigma_i \lambda = \mu$, where $\sigma_i = \sigma_{\alpha_i}$ is the reflection, then $\tau_i = \sigma_i$ on $L_\lambda \oplus L_\mu$ as a reflection. So dim $L_\lambda = \dim L_\mu$. This result also holds for $\sigma \lambda = \mu$, where $\sigma \in \mathcal{W}$.

It is clear that dim $L_{\alpha_i} = 1$ by the main calculation and $L_{k\alpha_i} = 0$ if $k \neq -1, 0, 1$ (since $[x_i, \ldots, x_i] = 0$). By some exercise before, $L_{\lambda} \neq 0$ if and only if $\lambda \in \Phi$ or $\lambda = \vec{0}$. In particular, dim $L = \dim H + |\Phi| < \infty$. L is semi-simple: let $A \leq L$ be an abelian ideal, $A = (A \cap H) \oplus \bigoplus_{\alpha \in \Phi} (A \cap L_{\alpha})$. We see that $A \cap L_{\alpha} = 0$ for all $\alpha \in \Phi$ (otherwise $A \supseteq \langle L_{\alpha}, L_{-\alpha} \rangle$). Hence, $A \subseteq H$ and $[L_{\alpha}, A] = 0$ for all α . So $A \subseteq \bigcap_{\alpha \in \Phi} \ker \alpha = 0$.

Now, H is abelian and self normalizing, so H is a CSA with root system Φ . The proof is complete.

For the classical case A_{ℓ} , B_{ℓ} , C_{ℓ} , D_{ℓ} , we want to show that they are simple.

Definition 11.2. A Lie algebra L is reductive if $\operatorname{rad} L = Z(L)$.

If L is reductive, then L' = L/Z(L) is semisimple. So there is a (completely) action of ad $L = \operatorname{ad} L'$ on $L = M \oplus Z(L)$, where $M \trianglelefteq L$ is an ideal. Then $[L, L] = [M, M] \subseteq M \cong L'$. Hence this inclusion is an identity, so $L = [L, L] \oplus Z(L)$.

Proposition 11.3. Let $L \subseteq \mathfrak{gl}(V)$. If the action of L on V is irreducible, then L is reductive and dim $Z(L) \leq 1$. If moreover $L \subseteq \mathfrak{sl}(V)$, then L is semi-simple.

Proof. Let $S = \operatorname{rad} L$, and let v be a common eigenvector v (exists by (2.4)). Then $s \cdot v = \lambda(s)v$ for all $s \in S$ for some λ . For $x \in L$, we have

$$s \cdot (x \cdot v) = x \cdot (s \cdot v) + [s, x] \cdot v = \lambda(s)x \cdot v + \lambda([s, x])v.$$

Since $L \cdot v = V$, all matrices of S is upper diagonal in some basis with diagonal entries $\lambda(s)$.

Since $\operatorname{tr}[S, L] \equiv 0$, $\lambda|_{[S,L]} = 0$, so the calculation above shows that the action of S on V is just scalar. So S = Z(L) and dim $S \leq 1$. Also, if $L \subseteq \operatorname{sl}(V)$, then S = 0.

Example 11.4. $L = A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$ are semi-simple: it suffices to check that the actions of $B_{\ell}, C_{\ell}, D_{\ell}$ on V are irreducible.

Let $W \subseteq V$ be an *L*-invariant subspace. Then *W* is invariant under $(\mathrm{id}, L, +, \circ) \subseteq$ End *V*. For $L = B_{\ell}, C_{\ell}, D_{\ell}$, we get all End *V*.

In fact, $L = A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$ are simple with $H \cong C_L(H)$.

12 Representation theory of semi-simple Lie algebra, 10/19

In this section, we fix a Lie algebra L, its CSA H, root system Φ , base Δ , and Weyl group \mathcal{W} .

Facts. Let V be a L-module. Then H acts on V diagonally and for each $\lambda \in H^{\vee}$, V_{λ} is defined. It is easy to see that

- (a) $L_{\alpha}: V_{\lambda} \to V_{\lambda+\alpha};$
- (b) $V' := \sum V_{\lambda}$ is direct (A: V' could be 0);
- (c) if dim $V < \infty$, then V = V'.

Definition 12.1. Suppose a maximal vector v^+ exists, i.e., $v^+ \in V$ and $L_{\alpha}v^+ = 0$ for all $\alpha > 0$. (For example, when dim *L* is finite, then Lie's theorem tells us that there exists a common eigenvector v^+ of $B = B(\Delta)$.) We may further assume that $v^+ \in V_{\lambda}$ for some λ . We call λ a highest weight and call v^+ a highest weight vector.

If $V = \mathfrak{U}(L) \cdot v^+$, then V is called a **standard cyclic** (or **irreducible**) L-module.

Notation. Let $\Phi^+ = \{\beta_1, \ldots, \beta_n\}$. Then PBW theorem tells us that $\mathfrak{U}(L)$ has a basis $\{z_{i_1}^{k_1} \ldots z_{i_t}^{k_t} \mid i_1 < \cdots < i_t\}$, where $\{z_i\} = \{h_{\bullet}, x_{\bullet}, y_{\bullet}\}$ and the order is given by

$$y_{\beta_1} < \dots < y_{\beta_m} < h_1 < \dots < h_\ell < x_{\beta_1} < \dots < x_{\beta_m}.$$

Proposition 12.2. Suppose V is cyclic.

- (i) Then V is spanned by $y_{\beta_1}^{i_1} \cdots y_{\beta_m}^{i_m} v^+$ $(i_j \ge 0)$, hence $V = \bigoplus_{\lambda \in H^{\vee}} V_{\lambda}$. V has weights of the form $\mu = \lambda \sum_{i=1}^{\ell} k_i \alpha_i$, $k_i \ge 0$. Each V_{μ} has finite dimension, and dim $V_{\lambda} = 1$.
- (ii) Every L-submodule W of V is the direct sum of its weight spaces. Hence
 - V is indecomposable with unique maximal proper submodule and unique irreducible quotient module.
 - In particular, if there is a surjective map V → V', then V' is also standard cyclic of weight λ.

Proof. (i) Consider the (vector space) decomposition $L = N^- \oplus B$. We have $\mathfrak{U}(L) = \mathfrak{U}(N^-) \otimes \mathfrak{U}(B)$ (as vector space). Then $V = \mathfrak{U}(N^-) \cdot v^+$. The last assertion follows from the fact that the solutions of $\sum i_j \beta_j = \sum k_i \alpha_i$ is finite for each fixed $\{k_i\}$.

(ii) Let $w = \sum_{i=1}^{n} v_i \in W$ with $v_i \in V_{\mu_i}$. We claim that $v_i \in W$ for each *i*. If not, then there exists a *w* with smallest $n \geq 2$ such that $v_i \notin W$ for all *i*. Find $h \in H$ such that $\mu_1(h) \neq \mu_2(h)$. Then

$$hh \cdot w = \sum \mu_i(h)v_i \implies 0 \neq w' := (h - \mu_1(h)) \cdot w = \sum_{i=2}^n (\mu_i(h) - \mu_1(h))v_i$$

a contradiction.

Now, if $V = W_1 \oplus W_2$, then $V_{\lambda} \not\subseteq W_i$. This implies $W_1 \oplus W_2 \subsetneq V$ a contradiction. This shows that $\sum_{W \subseteq V} W \subsetneq V$ is the unique maximal proper submodule.

Theorem 12.3. For each $\lambda \in H^{\vee}$, there exists a unique (up to isomorphism) irreducible standard cyclic *L*-module of highest weight λ (may be infinite dimensional).

Proof. If V is an irreducible module, then the maximal vector v^+ is unique up to scalar. Indeed, for $w \in L_{\mu}$, $\mathfrak{U}(L) \cdot w \subseteq \mathfrak{U}(L) \cdot v^+$ and the equality holds if and only if $\lambda = \mu$.

Given irreducible modules $V = \mathfrak{U}(L) \cdot v^+$ and $W = \mathfrak{U}(L) \cdot w^+$. Let $X = V \oplus W$. Then $(v^+, w^+) \in X_\lambda$ is a highest vector. Let $Y = \mathfrak{U}(L) \cdot (v^+, w^+) \subseteq X$ and consider the projections p and q to V and W, respectively. We see that p(Y) = V and q(Y) = W. Since V and W are irreducible quotient modules of Y, they are isomorphic. This proves the uniqueness.

We prove the existence via induced module technique. Notice that $V = \mathfrak{U}(L) \cdot v^+$ has a 1-dimensional *B*-submodule V_{λ} . Thus, we define $D_{\lambda} = Fv^+$ as *B*-module via

$$\left(h + \sum x_{\alpha}\right) \cdot v^{+} := h \cdot v^{+} = \lambda(h)v^{+}.$$

Then D is also a $\mathfrak{U}(B)$ -module. Define $Z(\lambda) = \mathfrak{U}(L) \otimes_{\mathfrak{U}(B)} D_{\lambda}$, which is a left $\mathfrak{U}(L)$ -module. The vector $1 \otimes v^+ \in Z(\lambda)$ is nonzero by PBW theorem.

Since $\mathfrak{U}(L) = \mathfrak{U}(N^-) \otimes_F \mathfrak{U}(B)$, we get $Z(\lambda) = \mathfrak{U}(N^-) \otimes F(1 \otimes v^+)$. Now take $Y(\lambda) \subsetneq Z(\lambda)$ be the unique maximal proper submodule. We define $V(\lambda) = Z(\lambda)/Y(\lambda)$, which is the desired module.

13 Existence theorem, 10/24

Definition 13.1. An element $\lambda \in H^{\vee}$ is **integral** (resp. **dominant**, $(\lambda \in \Lambda)$) if $\lambda(h_i) \in \mathbb{Z}$ (resp. $\lambda(h_i) \in \mathbb{N}$) for all *i*.

Theorem 13.2. There exists a one-to-one correspondence between $\lambda \in \Lambda^+$ and finite dimensional irreducible *L*-modules $V(\lambda)$. Also, the set $\Pi(\lambda)$ of weights of $V(\lambda)$ is permuted by \mathscr{W} .

Proof. Similar as in Serre's theorem. Let $m_i = \lambda(h_i) \in \mathbb{Z}_{\geq 0}$, $\phi : L \to \mathfrak{gl}(V)$ the representation, and $v^+ \in V(\lambda)$ the highest weight vector.

Lemma 13.3. In $\mathfrak{U}(L)$, we have

- (a) $[x_j, y_i^{k+1}] = 0, \ j \neq i;$
- (b) $[h_j, y_i^{k+1}] = -(k+1)\alpha(h_j)y_i^{k+1};$
- (c) $[x_i, y_i]^{k+1} = -(k+1)y_i(k-h_i)$

Proof of (13.3). (a). Since $[R_{y_i}, L_{y_i}] = 0$, we have

$$[x_j, y_i^{k+1}] = (R_{y_i}^{k+1} - L_{y_i}^{k+1})x_j = (R_{y_i}^k + \dots + L_{y_i}^k)(R_{y_i} - L_{y_i})x_j = (R_{y_i}^k + \dots + L_{y_i}^k)[x_j, y_i] = 0.$$

(b) Induction on k. The case k = 0 follows from the definition. For k > 0, we have

$$[h_j, y_i^{k+1}] = (h_j y_i^k - y_i^k h_j) y_i + y_i^k (h_j y_i - y_i h_j)$$

= $-k\alpha(h_j) y_i^{k+1} - y_i^k \alpha(h_j) y_i = -(k+1)\alpha(h_j) y_i^{k+1}$

(c) Induction on k. The case k = 0 again follows from the definition. For k > 0, we have

$$[x_i, y_i]^{k+1} = [x_i, y_i]^k y_i + y_i^k [x_i, y_i]$$

= $-k y_i^{k+1} (k - 1 - h_i) y_i + y_i^k h_i = -(k + 1) y_i (k - h_i).$

Now, for each i, $y_i^{m_i+1} \cdot v^+ = 0$: Let $w = y_i^{m_i+1}v^+$. Then $x_j \cdot v^+ = 0$ implies that $x_j \cdot w = 0$ for all $j \neq i$ (by (a)). By (c),

$$x_i \cdot w = y_i^{m_i+1} x_i \cdot v^+ - (m_i+1) y_i^{m_i} (m_i - h_i) v^+ = 0.$$

If $w \neq 0$, then it is a highest vector whose weight is not equal to λ , a contradiction.

Hence, V contains a finite dimensional $S_i := S_{\alpha_i}$ -module $\langle v^+, y_i \cdot v^+, \dots, y_i^{m_i} \cdot v^+ \rangle$. Note that this is S_i -stable since it is y_i -stable, h_i -stable by (b), and x_i -stable by (c).

For any fixed *i*, let $V' := V'_i$ be the sum of all finite dimensional S_i -submodule in V. Then V' = V: say W is a finite dimensional S_i -submodule. Then $x_{\alpha} \cdot W$, $\alpha \in \Phi$ is still a finite dimensional S_i -module. Hence, V' is stable under S_{α_i} . Since $V' \neq 0$, V' = V.

So any $v \in V$ lies in a finite (sum of) finite S_i -module. Therefore $\phi(x_i)$ and $\phi(y_i)$ are locally nilpotent, and hence $s_i := e^{\phi(x_i)} e^{-\phi(y_i)} e^{\phi(x_i)} \in \operatorname{Aut}(V)$ and $s_i V_{\mu} = V_{\sigma_i \mu}$. This tells us that \mathscr{W} maps $\Pi(\lambda)$ to itself and $\Pi(\lambda)$ is finite. Indeed, for each $\mu \in \Pi(\lambda)$, there exists $w \in \mathscr{W}$ such that $w\mu \in \Lambda^+$. Then $w\mu \prec \lambda$ and thus

$$|\Pi(\lambda)| \le |\mathscr{W}| \cdot |\{\nu \in \Lambda^+ \mid \nu \prec \lambda\}| < \infty.$$

Since each weight space V_{μ} is finite dimensional, V is finite dimensional.

Definition 13.4 (weight string). For $\mu \in \Lambda$ and $\alpha \in \Phi$, the α -string through μ is the set

$$\{\mu + i\alpha \in \Pi(\lambda) \mid i \in \mathbb{Z}\} \subseteq \Pi(\lambda).$$

 S_{α} acts on $\bigoplus V_{\mu+i\alpha}$, so it must be connected, i.e.,

$$\{\mu + i\alpha\} = \{\mu - r\alpha, \dots, \mu + q\alpha\}.$$

As before, $r - q = \langle \mu, \alpha \rangle$ and σ_{α} reverse it.

Corollary 13.5. Let $\mu \in \Lambda$. Then $\mu \in \Pi(\lambda)$ if and only if $w\mu \prec \lambda$ for all $w \in \mathcal{W}$.

Proof. $\Pi(\lambda)$ is saturated, i.e., $\mu \in \Pi(\lambda)$ and $\alpha \in \Phi$ implies $\mu - i\alpha \in \Pi(\lambda)$ for all *i* between 0 and $\langle \mu, \alpha \rangle$.

Choose $w\lambda \in \Lambda^+$, then we may obtain $w\mu$ from λ by saturated roots.

Main questions on representation theory: In terms of Euclidean system, what's $\deg \lambda := \dim V(\lambda)$? What's $m_{\lambda}(\mu) := \dim V(\lambda)_{\mu}$? What's the irreducible decomposition of $V(\lambda_1) \otimes V(\lambda_2)$?

Definition 13.6. Let $\{k^i\} \subseteq H$ be the dual basis of $\{h_i\}$ (with respect to the killing form). For each $\alpha \in \Phi$, let $z_{\alpha} = \frac{(\alpha, \alpha)}{2} y_{\alpha}$ so that $[x_{\alpha}, z^{\alpha}] = t_{\alpha} = ((\alpha, \alpha)/2)h_{\alpha}$. We define the universal Casimir element $c_L := \sum_{i=1}^{\ell} h_i k^i + \sum_{\alpha \in \Phi} x_{\alpha} z^{\alpha} \in \mathfrak{U}(L)$.

Let $\phi: L \to \mathfrak{gl}(V)$ be a nontrivial representation. For L simple, we get the ordinary Casimir element $c_{\phi} = a \cdot \phi(c_L)$ for some $a \in F$. Indeed, $\phi(x, y) := \operatorname{tr}(\phi(x)\phi(y))$ is nondegenerate and associative, and hence proportional to $\kappa(x, y)$ by Schur's lemma.

For $L = L_1 \oplus \cdots \oplus L_t$ semi-simple, $c_L = c_1 + \cdots + c_t$, $\phi(c_L)$ is not necessary proportional to c_{ϕ} , but it commutes with c_{ϕ} . So if ϕ is irreducible, $\phi(c_L)$ is scalar.

Proposition 13.7 (traces on weight spaces). Let $V = V(\lambda)$ for some $\lambda \in \Lambda^+$ with representation $\phi : L \to \mathfrak{gl}(V)$. Then for each $\mu \in \Pi(\lambda)$,

$$\operatorname{tr}(\phi(x_{\alpha})\phi(z_{\alpha});V_{\mu}) = \sum_{i=0}^{\infty} m_{\lambda}(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha).$$

Proof. For α fixed, an irreducible S_{α} -module V(m) of highest weight m has a basis $\{v_0, \ldots, v_m\}$, where $v_0 \in V_m$, $v_i = y^i \cdot v_0/i!$. Now we scale v_i : let $w_i = ((\alpha, \alpha)/2)^i i! \cdot v_i = z_0^i \cdot v_0$. Then

$$t_{\alpha} \cdot w_{i} = (m - 2i) \frac{(\alpha, \alpha)}{2} \cdot w_{i},$$
$$z_{\alpha} \cdot w_{i} = w_{i+1},$$
$$x_{\alpha} \cdot w_{i} = i(m - i - 1) \frac{(\alpha, \alpha)}{2} \cdot w_{i-1}$$

Hence

$$\operatorname{tr}(\phi(x_{\alpha})\phi(z_{\alpha});V(m)) = \sum_{i} (i+1)(m-i)\frac{(\alpha,\alpha)}{2}$$

Let $\mu \in \Pi(\lambda)$ with $\mu + \alpha \notin \Pi(\lambda)$. We get the α -string through $\mu: \mu - m\alpha, \ldots, \mu$, where $m = \langle \mu, \alpha \rangle$. For *i* between 0 and $\lfloor m/2 \rfloor$.

Consider the S_{α} -module $W = V_{\mu-m\alpha} \oplus \cdots \oplus V_{\mu}$. Write $W = \bigoplus_{i=0}^{\lfloor m/2 \rfloor} V(m-2i)^{n_i}$. Let $0 \le k \le m/2, 0 \le i \le k$. We see that

$$\phi(x_{\alpha})\phi(z_{\alpha})w_{k-i} = (k-i+1)(m-1-k)\frac{(\alpha,\alpha)}{2} \cdot w_{k-i}.$$

Using the relation $\sum_{i=0}^{j} n_i = m_{\lambda}(\mu - j\alpha)$, we get

$$\operatorname{tr}(\phi(x_{\alpha})\phi(z_{\alpha});V_{\mu-k\alpha}) = \sum_{i=0}^{k} n_{i}(k-i+1)(m-i-k)\frac{(\alpha,\alpha)}{2}$$
$$= \sum_{i=0}^{k} m_{\lambda}(\mu-i\alpha)(m-2i)\frac{(\alpha,\alpha)}{2}$$
$$= \sum_{i=0}^{k} m_{\lambda}(\mu-i\alpha)\cdot(\mu-i\alpha,\alpha).$$

Reflection by σ_{α} , we get the case $m/2 < k \leq m$:

$$\operatorname{tr}(\phi(x_{\alpha})\phi(z_{\alpha});V_{\mu-k\alpha}) = \sum_{i=0}^{m-k-1} m_{\lambda}(\mu-i\alpha)\cdot(\mu-i\alpha,\alpha)$$
$$= \sum_{i=0}^{k} m_{\lambda}(\mu-i\alpha)\cdot(\mu-i\alpha,\alpha)$$

by $(\mu - i\alpha, \alpha) = -(\mu - (m - i)\alpha, \alpha)$. This completes the proof.

Proposition 13.8 (Freudenthal's formula). The number $m(\mu) := m_{\lambda}(\mu)$ is given recursively by

$$\left((\lambda+\delta,\lambda+\delta)-(\mu+\delta,\mu+\delta)\right)\cdot m(\mu)=2\sum_{\alpha\succ 0}\sum_{i=1}^{\infty}m(\mu+i\alpha)\cdot(\mu+i\alpha,\alpha).$$

Proof. Since V is irreducible, $tr(\phi(c_L); V_{\mu}) = c \cdot m(\mu)$, where c is independent of μ . By the definition of c_L ,

$$\operatorname{tr}(\phi(c_L); V_{\mu}) = \sum_{i=1}^{\ell} \phi(h_i)\phi(k^i) + \sum_{\alpha \in \Phi} \sum_{i=0}^{\infty} m(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha)$$
$$= m(\mu) \cdot (\mu, \mu) + \sum_{\alpha \in \Phi} \sum_{i=1}^{\infty} m(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha),$$

where the i = 0 term is cancelled for $\alpha, -\alpha$.

Claim. For each $\alpha \in \Phi$ and $\mu \in \Lambda$,

$$\sum_{i=-\infty}^{\infty} m(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha) = 0.$$

Indeed, let $\mu - r\alpha$, ..., $\mu + q\alpha$ be the α -string through μ . Since $\frac{q-r}{2} = -\frac{(\mu,\alpha)}{(\alpha,\alpha)}$ and

$$\begin{split} m(\mu - (r - j)\alpha) &= m(\mu + (q - j)\alpha), \\ &\sum_{i = -\infty}^{\infty} m(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha) = \sum_{i < \frac{q - r}{2}} m(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha) \\ &+ \sum_{i > \frac{q - r}{2}} m(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha) \\ &= 0. \end{split}$$

By the claim,

$$c \cdot m(\mu) = (\mu, \mu)m(\mu) + \sum_{\alpha \succ 0} (\mu, \alpha) \cdot m(\mu) + 2\sum_{\alpha \succ 0} \sum_{i=1}^{\infty} m(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha)$$
$$= (\mu, \mu + 2\delta) \cdot m(\mu) + 2\sum_{\alpha \succ 0} \sum_{i=1}^{\infty} m(\mu + i\alpha) \cdot (\mu + i\alpha, \alpha).$$

For $\mu = \lambda$, we get $c = (\lambda, \lambda + 2\delta)$. So the statement now follows from the identity

$$(\lambda + 2\delta, \lambda) - (\mu + 2\delta, \mu) = (\lambda + \delta, \lambda + \delta) - (\mu + \delta, \mu + \delta).$$

Also, $w\mu \prec \lambda$ for all $w \in \mathscr{W}$ implies that $(\mu + \delta, \mu + \delta) < (\lambda + \delta, \lambda + \delta)$.

14 Character theory, 10/26

Let $\lambda \in \Lambda^+$ be a weight, and let $V(\lambda) = \bigoplus_{\mu \in \Pi(\lambda)} V(\lambda)_{\mu}^{\oplus m_{\lambda}(\mu)}$ be the corresponding irreducible module. We define its formal character to be

$$\operatorname{ch}_{\lambda} = \operatorname{ch}_{V(\lambda)} = \sum_{\mu \in \Pi(\lambda)} m_{\lambda}(\mu) e(\mu) \in Z[\Lambda],$$

where $\{e(\mu)\}$ is a free basis of the group ring.

For a finite dimensional module $V \in \operatorname{Rep} L$, we define ch_V similarly. Then $\operatorname{ch}_{V \oplus V'} = \operatorname{ch}_V + \operatorname{ch}_{V'}$, and $\operatorname{ch}_{V \otimes V'} = \operatorname{ch}_V \cdot \operatorname{ch}_{V'}$. Hence, there is a homomorphism $\operatorname{ch} : \operatorname{Rep} L \to \mathbb{Z}[\Lambda]$.

Under the correspondence

$$\mathbb{Z}[\Lambda] \quad \longleftrightarrow \quad \mathbb{Z}^{\oplus \Lambda} = \{ f : \Lambda \to \mathbb{Z} \mid f \text{ has finite support } \},\$$

 $e(\mu)$ corresponds to e_{μ} (or ε_{μ}), where

$$e_{\mu}(\lambda) = \begin{cases} 1, & \text{if } \lambda = \mu, \\ 0, & \text{if } \lambda \neq \mu. \end{cases}$$

- **Definition 14.1.** (a) The Kostant function $p(\lambda)$ is the number of ways to write $\lambda = \sum_{\alpha \prec 0} k_{\alpha} \alpha$ with $k_{\alpha} \ge 0$.
 - (b) The Weyl function $q = \prod_{\alpha \succ 0} (e_{\alpha/2} e_{-\alpha/2})$, where we view $e_{\alpha/2} = e(\alpha/2)$, $e_{-\alpha/2} = e(-\alpha/2) \in \mathbb{Z}[\Lambda/2]$, and

$$q = \sum_{\sigma \in \mathscr{W}} (-1)^{|\sigma|} e_{\sigma\delta} \in Z[\Lambda]$$

since $\delta = \frac{1}{2} \sum_{\alpha \succ 0} \alpha \in \Lambda$.

Theorem 14.2 (Kostant). For $\lambda \in \Lambda^+$,

$$m_{\lambda}(\mu) = \sum_{\sigma \in \mathscr{W}} (-1)^{|\sigma|} p(\mu + \delta - \sigma(\lambda + \delta)).$$

Theorem 14.3 (Weyl character formula). For $\lambda \in \Lambda^+$,

$$q \cdot \mathrm{ch}_{\lambda} = \sum_{\sigma \in \mathscr{W}} (-1)^{|\sigma|} e_{\sigma(\lambda+\delta)}.$$

Corollary 14.4. The degree of λ , i.e., dim $V(\lambda)$, is equal to

$$\frac{\prod_{\alpha \succ 0} (\lambda + \delta, \alpha)}{\prod_{\alpha \succ 0} (\delta, \alpha)}.$$

Theorem 14.5 (Steinberg). For $\lambda', \lambda'' \in \Lambda^+$, if we write $V(\lambda') \otimes V(\lambda'') = \bigoplus_{\lambda \in \Lambda^+} V(\lambda)^{\oplus d_{\lambda}}$, then

$$d_{\lambda} = \sum_{\sigma, \tau \in \mathscr{W}} (-1)^{|\sigma| + |\tau|} p(\lambda + 2\delta - \sigma(\lambda' + \delta) - \tau(\lambda'' + \delta)).$$

Theorem 14.6 (Weyl). Let G be a compact Lie group. Then a two G-representations $(V, \rho), (V', \rho')$ are isomorphic if and only if χ_{ρ}

Harish-Chandra proved this result for semi-simple Lie algebras.

For a *L*-module *V*, let $P(V) = S(V^*)$. For example, P(H) is spanned by pure powers λ^k (exercise). For an element *f*, we define its symmetrization Sym $f = \sum_{\sigma \in \mathscr{W}} f^{\sigma}$, where $f^{\sigma}(x) = \sigma \cdot f(x) = f(\sigma^{-1}x)$. Then $P(V)^{\mathscr{W}}$ is spanned by Sym λ^k 's.

Let $G = \text{Int } L = \langle e^{\operatorname{ad} x} | x \text{ nilpotent } \rangle$ acts on P(V) in the obvious way. We get $P(V)^G$, the *G*-invariant polynomial functions.

Theorem 14.7 (Chevalley). The map

$$\theta \colon P(L)^G \longrightarrow P(H)^{\mathscr{W}}$$

is surjective, where $\theta(f) = f|_H$.

Definition 14.8. For $\lambda \in H^{\vee}$, the character $\chi_{\lambda} : Z = Z(\mathfrak{U}(L)) \to F$ is defined by mapping $z \in Z$ to $z \cdot v^+/v^+$. Note that $z \cdot v^+ = a \cdot v^+$ for some a since $h \cdot z \cdot v^+ = z \cdot h \cdot v^+ = z \cdot \lambda(h)v^+$ and $x_{\alpha} \cdot z \cdot v^+ = z \cdot x_{\alpha} \cdot v^+ = 0$.

Proposition 14.9 (Linkage). For $\lambda, \mu \in H^{\vee}$, we say μ is equivalent to λ , denoted by $\mu \sim \lambda$, if $\lambda + \delta = w(\mu + \delta)$ for some $w \in \mathcal{W}$. Then $\lambda \sim \mu$ implies $\chi_{\lambda} = \chi_{\mu}$.

Proof. We have, by PBW bases, that

$$Z(\lambda) = \mathfrak{U}(L)/I(\lambda),$$

where $I(\lambda) = \mathfrak{U}(L) \langle x_{\alpha}, h_{\alpha} - \lambda(h_{\alpha}) \cdot 1 \rangle$.

If $m := \langle \lambda, \alpha \rangle \ge 0$, $\overline{y}_{\alpha}^{m+1}$ is still a maximal vector, and is not 0 if $\lambda(\alpha_j) < 0$ for some j. For

$$\mu = \sigma_{\alpha}(\lambda + \delta) - \delta$$
$$= (\lambda - \langle \lambda, \alpha \rangle \alpha) - (\delta - (\delta - \alpha))$$
$$= \lambda - (m+1)\alpha,$$

 $Z(\lambda)$ contains image of $Z(\mu)$. This implies that $\chi_{\lambda} = \chi_{\mu}$.

If m < 0, then

$$\langle \mu, \alpha \rangle = \langle \lambda, \alpha \rangle - 2(\langle \lambda, \alpha \rangle + 1) = -\langle \lambda, \alpha \rangle - 2.$$

m = -1 is equivalent to $\mu = \lambda$, and $m \leq -2$ implies that $\langle \mu, \alpha \rangle \geq 0$, which reduce to the case $m \geq 0$.

15 The proof of Harish-Chandra's theorem and Kostant/Weyl formulas, 10/31

Theorem 15.1 (Harish-Chandra). For $\lambda, \mu \in H^{\vee}$. If $\chi_{\lambda} = \chi_{\mu}$, then $\lambda \sim \mu$.

Proof. Let $\xi : \mathfrak{U}(L) \to \mathfrak{U}(H)$ via PBW bases. Let v^+ be a maximal vector of $V(\lambda)$. Then

$$\prod_{\alpha \succ 0} y_{\alpha}^{i_{\alpha}} \prod_{i} h_{i}^{k_{i}} \prod_{\alpha \succ 0} x_{\alpha}^{j_{\alpha}} v^{+} = 0$$

if there exists $j_{\alpha} > 0$, or maps to lower weight vector if there exists $i_{\alpha} > 0$. Hence, the only bases contribute $\chi_{\lambda}(z)$ are from $\mathfrak{U}(H)$, i.e., $\chi_{\lambda}(z) = \lambda(\xi(z))$ for $z \in \mathbb{Z}$. Here, we extend $\lambda \in H^{\vee}$ to $\lambda : \mathfrak{U}(H) \to F$.

Consider the Lie algebra homomorphism

$$H \longrightarrow \mathfrak{U}(H)$$

$$i \qquad \eta \uparrow_{h_i \mapsto h_i - 1}$$

$$\mathfrak{U}(H).$$

Let

$$Z \underbrace{\longleftrightarrow}_{\psi} \mathfrak{U}(L) \xrightarrow{\xi} \mathfrak{U}(H) \xrightarrow{\eta} \mathfrak{U}(H).$$

Since $\delta = \frac{1}{2} \sum_{\alpha \succ 0} \alpha = \sum \lambda_i$,

$$(\lambda + \delta)(h_i - 1) = \lambda(h_i) + 1 - (\lambda + \delta) \cdot 1 = \lambda(h_i)$$

So

$$(\lambda + \delta)(\psi(z)) = \lambda(\xi(z))) = \chi_{\lambda}(z).$$

If $\lambda \in \Lambda$, all \mathscr{W} -conjugates of $\mu = \lambda + \delta$ are equal at $\psi(z)$, so \mathscr{W} fixes $\psi(z)$ for each $z \in Z$. Hence, there is a homomorphism $\psi: Z \to S(H)^{\mathscr{W}}$. Thus, if $\lambda \sim \mu$, then $\chi_{\lambda} = \chi_{\mu}$ for all $\lambda, \mu \in H^{\vee}$.

Conversely, let $\chi_{\lambda} = \chi_{\mu}$. Then $\lambda + \delta = \mu + \delta$ on $\psi(Z) \subseteq S(H)^{\mathscr{W}}$. If $\psi(Z) = S(H)^{\mathscr{W}}$, then

$$\lambda + \delta = w(\mu + \delta)$$

for some $w \in \mathcal{W}$ and done!

Let G = Int L. Recall that $S(L) \cong \mathfrak{U}(L)$ only as G-module (not algebra). So we have a diagram via the isomorphism $H^{\vee} \xrightarrow{\sim} H$ induced by the killing form:

$$\begin{split} \mathfrak{U}(L)^G & \longrightarrow S(H)^{\mathscr{W}} \\ \uparrow & \uparrow \\ P(L)^G & \longrightarrow P(H)^{\mathscr{W}}, \end{split}$$

where P(-) is the polynomial function functor.

Lemma 15.2. The center $Z = Z(\mathfrak{U}(L))$ is equal to $\mathfrak{U}(L)^G$.

Proof of Lemma. Let $z \in Z$. We see that $e^{\operatorname{ad} x} z = z$ and hence $\sigma(z) = z$ for each $\sigma \in G$. Conversely, let $x \in \mathfrak{U}(L)^G$ and let $n = \operatorname{ad} x_{\alpha}$ with $n^t \neq 0$, $n^{t+1} = 0$. Take distinct numbers $a_1, \ldots, a_{t+1} \in F$. Then

$$e^{a_i n} = 1 + a_i n + \dots + \frac{a_i^t}{t!} n^t \in G,$$

and

$$n = b_1 e^{a_1 n} + \dots + b_{t+1} e^{a_{t+1} n}$$

for some b_i 's. So

$$(\operatorname{ad} x_{\alpha})(x) = \left(\sum_{i=1}^{t+1} b_i\right) x$$

and $\sum b_i = 0$ since *n* is nilpotent. Hence, $[x_\alpha, x] = 0$. Since α is arbitrary, $x \in \mathbb{Z}$.

To apply it, let \mathfrak{X} be the space of functions $f: H^{\vee} \to F$ supported on region of the form $\lambda = \sum_{\alpha \succ 0} \mathbb{Z}_{\geq 0} \alpha$.

Let
$$\theta(\lambda) = \{ \mu \in H^{\vee} \mid \mu \prec \lambda, \mu \sim \lambda \}.$$

Main example. $\operatorname{ch}_{Z(\lambda)} \in \mathfrak{X}$. We compute $\operatorname{ch}_{\lambda} = \operatorname{ch}_{V(\lambda)}$ via $\operatorname{ch}_{Z(\mu)}$'s within \mathfrak{X} . By Harish-Chandra's theorem, an easy induction shows that $Z(\lambda)$ has a composition series with factor of the form $V(\mu)$, $\mu \in \theta(\lambda)$. Reversing it! By triangular system, we write

$$\operatorname{ch}_{V(\lambda)} = \sum_{\mu \in \theta(\lambda)} c(\mu) \operatorname{ch}_{Z(\mu)},$$

where $c(\mu) \in \mathbb{Z}$ and $c(\lambda) = 1$. For $\lambda \in \Lambda^+$, $\sigma(ch_{\lambda}) = ch_{\lambda}$ for each $\sigma \in \mathscr{W}$. We have

$$\sigma(q * ch_{\lambda}) = \sigma(q) * \sigma(ch_{\lambda}) = (-1)^{|\sigma|} q * ch_{\lambda}.$$

Also,

Hence, $q * ch_{Z(\lambda)} = e_{\lambda+\delta}$, and thus

$$q * \operatorname{ch}_{V(\lambda)} = \sum_{\mu \in \theta(\lambda)} c(\mu) e_{\mu+\delta}$$

Since \mathscr{W} acts on $\{\mu + \delta \mid \mu \in \theta(\lambda)\}$ transitively, $c(\mu) = (-1)^{|\sigma|}$, where $\sigma(\mu + \delta) = \lambda + \delta$. So we get

$$q * \mathrm{ch}_{\lambda} = \sum_{\sigma \in \mathscr{W}} (-1)^{|\sigma|} e_{\sigma(\lambda + \delta)}.$$

Definition 15.3. (a) A Lie group G is a (C^{∞}) manifold such that its group law

$$\begin{array}{ccc} G \times G & \longrightarrow & G \\ (g,h) & \longmapsto & gh^{-1} \end{array}$$

is C^{∞} .

- (b) $f: G \to H$ is a Lie group homomorphism if it is a group homomorphism and C^{∞} .
- (c) If f is an immersion, i.e., the tangent map $df_a: T_a G \to T_{f(a)} H$ is injective, we call $G \hookrightarrow H$ an (immersed) Lie subgroup.

If $f(G) \subseteq H$ is closed, then $\mathsf{Top}(G)$ is diffeomorphic to $\mathsf{Top}(H)|_{f(G)}$.

Main example. $\operatorname{GL}(n, F) \subseteq \operatorname{M}_{n \times n}(F) \cong F^{n^2}$. Since $y^{-1} = \operatorname{adj} y / \det y, y^{-1}$ is a rational function in y_i^j 's, which is C^{∞} outside $\det^{-1}(0)$. Hence, $\operatorname{GL}(n, F)$ is a Lie group (in fact an algebraic group).

For the quaternion numbers \mathbb{H} , we define

$$M_{n \times n}(\mathbb{H}) = \{ g : \mathbb{H}^n \to \mathbb{H}^n \text{ (right) linear over } \mathbb{H} \},\$$
$$GL(n, \mathbb{H}) = \{ g \in M_{n \times n}(\mathbb{H}) \text{ invertible } \}.$$

If we write $\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$:

$$a + bi + cj + dk = (a + bi) + j(c - di),$$

then we can view $\operatorname{GL}(n, \mathbb{H})$ as a subgroup of $\operatorname{GL}(2n, \mathbb{C})$: since

$$(u+jv)\cdot j = j\overline{u} - \overline{v} = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \begin{pmatrix} \overline{u} \\ \overline{v} \end{pmatrix} =: J \begin{pmatrix} \overline{u} \\ \overline{v} \end{pmatrix},$$

 $g \in M_{n \times n}(\mathbb{H})$ if and only if

$$g \in \operatorname{GL}(2n, \mathbb{C})_{\mathbb{H}} := \{Y \in \operatorname{M}_{n \times n}(\mathbb{C}) \mid YJ = J\overline{Y}\} = \{Y = \begin{pmatrix} A & -B \\ B & -\overline{A} \end{pmatrix}\}.$$

Compact Lie groups.

$$O(n) = \{g \in \operatorname{GL}(n, \mathbb{R}) \mid g^{\mathsf{T}}g = \operatorname{id}\} \supseteq \operatorname{SO}(n) = \{g \in \operatorname{O}(n) \mid \det g = 1\},\$$
$$U(n) = \{g \in \operatorname{GL}(n, \mathbb{C}) \mid g^*g = \operatorname{id}\} \supseteq \operatorname{SU}(n) = \{g \in \operatorname{U}(n) \mid \det g = 1\},\$$

where $g^* = \overline{g}^{\mathsf{T}}$. Since O(n) and SO(n) are defined by polynomials, we can define O(n, F)and SO(n, F) over every field F.

The **symplectic group** is defined by

$$\operatorname{Sp}(n) = \{g \in \operatorname{M}_{n \times n}(\operatorname{H}) \mid g^*g = \operatorname{id}\} \subseteq \operatorname{GL}(n, \operatorname{\mathbb{H}}),$$

where $\overline{a+bi+cj+dk} = a - bi - cj - dk$, i.e., $g \in \operatorname{Sp}(n)$ preserves the inner product $(z,w) = \sum \overline{z}_i w_i$. Under the identification $\mathbb{H} = \mathbb{C} \oplus j\mathbb{C}$, we have

$$\operatorname{Sp}(n) = \operatorname{SU}(2n) \cap \operatorname{M}_{2n \times 2n}(\mathbb{C})_{\mathbb{H}} = \operatorname{SU}(2n) \cap \operatorname{Sp}_{2n},$$

where

$$\operatorname{Sp}_{2n} := \{ g \in \operatorname{GL}(n, \mathbb{C}) \mid g^{\mathsf{T}} J g = J \}.$$

(Note that under the condition $g^*g = 1$, $gJ = J\overline{g}$ if and only if $g^{\mathsf{T}}Jg = J$.)

By definition, $\operatorname{Sp}(1) = \operatorname{SU}(2) \cong S^3$, where $\begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix}$ is mapped to $(a, b) \in \mathbb{C}^2 \cong \mathbb{R}^4$. In fact, there is a 2-1 cover from $\operatorname{Sp}(1)$ to $\operatorname{SO}(3)$. Moreover, since $\pi_1(\operatorname{SO}(n)) = \mathbb{Z}/2\mathbb{Z}$ for all $n \geq 3$, there exists a simply connected double cover $\operatorname{Spin}_n(\mathbb{R}) \to \operatorname{SO}(n)$ called the spin group. When n = 3, $\operatorname{Spin}_3(\mathbb{R})$ is just $\operatorname{Sp}(1)$.

Definition 15.4. The Clifford algebra on $V = (\mathbb{R}^n, (-, -))$ is

$$\operatorname{Cl}_n(\mathbb{R}) = \operatorname{Cl}(V) := T(V) / \langle x \otimes x + (x, x) \rangle,$$

i.e., xy + yx = -2(x, y).

Examples. $\operatorname{Cl}_0(\mathbb{R}) \cong \mathbb{R}$, $\operatorname{Cl}_1(\mathbb{R}) \cong \mathbb{C}$, $\operatorname{Cl}_2(\mathbb{R}) \cong \mathbb{H}$.

Let e_1, \ldots, e_n be a basis of V. Then $\operatorname{Cl}(V)$ has basis $\{e_{i_1} \cdots e_{i_k} \mid i_1 < \cdots < i_k\}$. As a vector space, $\operatorname{Cl}(V)$ is isomorphic to $\bigwedge V$.

Definition 15.5. Clifford module structure on $\bigwedge V$: for $x \in V$, $c(x) = \epsilon(x) - \iota(x) = (x \land) - (x \sqcup)$. Here,

$$x \sqcup (y_1 \wedge \dots \wedge y_k) = \sum_{i=1}^k (-1)^{i-1} (x, y_i) y_1 \wedge \dots \wedge \widehat{y}_i \wedge \dots y_k.$$

By checking on standard basis, we can show that $c(x)^2 = -(x, x)$.

Definition 15.6. We define the homomorphisms

$$\Phi: \quad \operatorname{Cl}(V) \longrightarrow \operatorname{End}(\bigwedge V)$$
$$x_1 \cdots x_k \longmapsto c(x_1) \cdots c(x_k)$$

and

$$\begin{split} \Psi \colon & \operatorname{Cl}(V) \longrightarrow \bigwedge V \\ & v \longmapsto v \cdot 1. \end{split}$$

Now, we construct $\operatorname{Spin}_n(\mathbb{R})$:

Facts. Sp(n) for $n \ge 1$ and SU(n) for $n \ge 2$ are simply connected. $\pi_1(SO(2)) = \mathbb{Z}$, $\pi_1(SO(n)) = \mathbb{Z}/2\mathbb{Z}$ for $n \ge 3$. Indeed, for a Lie group G and its Lie subgroup H, we can consider the homogeneous space (coset space) G/H. There is a fiber bundle

$$\begin{array}{c} H \longrightarrow G \\ & \downarrow^{\pi} \\ & G/H, \end{array}$$

so hence an induced long exact sequence

$$\cdots \longrightarrow \pi_k(H) \longrightarrow \pi_k(G) \longrightarrow \pi_k(G/H) \longrightarrow \pi_{k-1}(H) \longrightarrow \cdots$$

For the case G = SO(n) and $G/H = S^{n-1}$, $H \cong Stab(x) \cong SO(n-1)$ for all $x \in G/H$. Thus, the statement $\pi_1(SO(n)) = \mathbb{Z}/2\mathbb{Z}$ for $n \ge 4$ is equivalent to $\pi_1(SO(3)) = \mathbb{Z}/2\mathbb{Z}$.

To show that SO(3) $\cong S^3/\{\pm 1\}$, we note that SO(3) = O(Im \mathbb{H})°. So the adjoint map

Ad:
$$\operatorname{Sp}(1) \longrightarrow \operatorname{SO}(3)$$
,

where

$$\operatorname{Ad}(g)(u) = gug^{-1} = gu\overline{g},$$

is well-defined. For $\{i, j, k\}$ is an orthogonal basis of Im H. By checking on this basis, Ad $(\cos \theta + v \sin \theta)$ is equal to the rotation $R_{2\theta}$ in *i*-*j* plane. We see that Ad is surjective and ker Ad = $\{\pm 1\}$. Hence, Spin₃(\mathbb{R}) = SU(2) = Sp(1) = S³.

Definition 15.7. Write $\operatorname{Cl}(V) = \operatorname{Cl}(V)^+ \oplus \operatorname{Cl}(V)^-$ (under the identification $\bigwedge V = (\bigwedge V)^+ \oplus (\bigwedge V)^-$). There is a main involution α defined by

$$\alpha(x_1\cdots x_k)=x_1\cdots x_k.$$

It is easy to see that α is a homomorphism. The conjugation on Cl(V) is defined to be

$$(x_1\cdots x_k)^* = \alpha(x_k\cdots x_1).$$

The spin group and the pin group are now defined to be

$$Spin(V) = \{g \in Cl(V)^+ \mid gg^* = id, \ gVg^* = V\}$$
$$Pin(V) = \{g \in Cl(V) \mid gg^* = id, \ gVg^* = V\}.$$

These groups lie in $\operatorname{Cl}(V)^{\times}$, and hence are Lie subgroups.

Theorem 15.8. There are exact sequences

$$\begin{split} &1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Pin}_{n}(\mathbb{C}) \xrightarrow{\rho} \operatorname{O}(n) \longrightarrow 1, \\ &1 \longrightarrow \{\pm 1\} \longrightarrow \operatorname{Spin}_{n}(\mathbb{C}) \xrightarrow{\rho} \operatorname{SO}(n) \longrightarrow 1, \end{split}$$

where $\rho(g)(v) = \alpha(g)vg^*$. Moreover, $\operatorname{Pin}_n(\mathbb{R})$ has 2 connected components and $\operatorname{Pin}_n(\mathbb{R}) = \operatorname{Spin}_n(\mathbb{R})^\circ$.

Proof. For $\operatorname{Pin}_n(\mathbb{R})$,

$$|\rho(g)x|^2 = -\alpha(g)xg^*(\alpha(g)xg^*)^* = \alpha(g)xg^*g^{**}x^*\alpha(g)^* = \alpha(g)|x|^2\alpha(g)$$

- ρ surjects reflections: $r_x := \rho(x)$.
- ker ρ = {±1}: it suffices to show ker ρ ⊆ ℝ. Let g ∈ ker ρ, so that α(g)x = xg for all x ∈ V. Write g = e₁a + b, where b has no e₁ in its products. Take x = e₁, we get

$$-e_1\alpha(a)e_1 + \alpha(b)e_1 = -a + e_1b.$$

Since $-e_1\alpha(a)e_1 = a$, $\alpha(b)e_1 = e_1b$, we get a = 0. By symmetry, there is no e_i component in g for each i. Hence, $g \in \mathbb{R}$.

So

$$\operatorname{Pin}_{n}(\mathbb{R}) = \{x_{1} \cdots x_{k} \mid |x_{i}| = 1, \ k \leq 2n\}$$

and

$$\operatorname{Spin}_{n}(\mathbb{R}) = \{ x_{1} \cdots x_{k} \mid |x_{i}| = 1, \ k \text{ even } \}.$$

Finally, $\operatorname{Spin}_n(\mathbb{R})$ is connected (for $n \geq 2$):

$$\gamma(t) = \cos t + e_1 e_2 \sin t = e_1(-e_1 \cos t + e_2 \sin t) \in \operatorname{Spin}_n(\mathbb{R})$$

connects ker $\rho = \{\pm 1\}$. Also, $\operatorname{Pin}_n(\mathbb{R}) = x \operatorname{Spin}_n(\mathbb{R}) \sqcup \operatorname{Spin}_n(\mathbb{R})$ for any $x \in S^{n-1}$.

16 Integration, 11/7

Proposition 16.1. Let G be a connected Lie group. Then $G = \bigcup_{n \ge 1} U^n$, where U is any neighborhood of the identity $e \in G$. In particular, G is second countable.

Proof. Let $V = U \cap U^{-1}$, which is open, $H = \bigcup_{n \ge 1} V^n \subseteq G$. For each $g \in G$, gH is also open. Hence, $G = \bigsqcup_{\alpha \in G/H} g_{\alpha} H$. Since G is connected, G = eH = H.

Proposition 16.2. Let H be a discrete normal subgroup of a connected Lie group G. Then H lies in the center of G.

Proof. For $h \in H$, consider the set $C_h = \{ghg^{-1} \mid g \in G\} \subseteq H$. Since G is connected, C_h is connected. Since H is discrete, $C_h = \{h\}$, which implies $h \in Z(G)$.

Theorem 16.3. Let G be a connected Lie group. The universal cover \widetilde{G} of G is a Lie group, such that the canonical map $\pi : \widetilde{G} \to G$ is a group homomorphism. In particular, $K := \ker \pi$ is a normal discrete subgroup of G, hence abelian.

Proof. We only need to define the Lie group structure on \widetilde{G} . Fix $\widetilde{e} \in \pi^{-1}(e)$. Consider

$$M : \widetilde{G} \times \widetilde{G} \longrightarrow G$$
$$(\widetilde{g}, \widetilde{h}) \longrightarrow \pi(\widetilde{g}) \pi(\widetilde{h})^{-1}$$

There exists a unique map $\tilde{s}: M \to \tilde{G}$ such that $\pi \circ \tilde{s} = s$. This \tilde{s} defines the group structure on \tilde{G} (and that π is a group homomorphism).

Example. Let G be a Lie group. Then $\pi_k(G)$ is abelian for each $k \ge 1$, $\pi_0(G) \cong G/G^\circ$, where G° is the connected component of G. The composition law in π_k is equal to the group law in G.

Indeed, let $\phi_1, \phi_2 : (I^k, \partial I^k) \to (G, e)$ be 2 continuous maps. Then

$$\phi_1 * \phi_2 \sim (\phi_1 * \phi_0) * (\phi_0 * \phi_2) = \phi_1 \cdot \phi_2,$$

where the \cdot is the group law in G.

To show that π_k is abelian for $k \ge 2$, simply note that

ϕ_1	ϕ_2	~	ϕ_1	id	~	id	ϕ_1	~~	ϕ_2	ϕ_1	
			id	ϕ_2		ϕ_2	id				

Fact. The tangent bundle TG is trivial, i.e., $TG \cong_{C^{\infty}} G \times T_eG$, for example, via left invariant vector fields. For $v \in T_eG$, let $\tilde{v}(g) = \ell_{g*}v$, where ℓ_g is the left translation, while r_g is the right translation. \tilde{v} is a left invariant vector fields by its value at T_eG . Using this construction, we can also define left invariant metric $\langle -, - \rangle$, left invariant volume form, denoted by $\omega_g = dg$, unique up to scalar. If G is compact, we can choose a unique dgsuch that

$$\int_G dg = 1.$$

Theorem 16.4. If G is compact, then dg is also right invariant and inversion invariant.

Proof. Since dg is left invariant,

$$\ell_g^*(r_h^*dg) = r_h^*\ell_g^*dg = r_h^*dg$$

is also left invariant, and hence there exists $c(h) \in \mathbb{R}^{\times}$ such that $r_h^* dg = c(h)^{-1} dg$. Then $c: G \to \mathbb{R}^{\times}$ is a homomorphism. Since G is compact, $\operatorname{Im} c \subseteq \{\pm 1\}$. Note that c(h) = -1 if and only if r_h is orientation reversing.

Now,

$$\int_{G} f(gh) \, dg = \int_{G} f(gh) \, d(gh) \cdot c(h) = \int_{G} f(g) \, dg.$$

Theorem 16.5 (Fubini). Let G be a compact Lie group, $H \subseteq G$ a closed subgroup. If $\ell_h^* = \text{id on } \bigwedge^{\text{top}}(G/H)_{\overline{e}}$, then G/H has a unique left invariant volume form $\omega_{G/H} = d(gH) = d\overline{g}$ such that

$$\int_{G/H} F \, d\overline{g} = \int_G (F \circ \pi) \, dg$$

where $\pi: G \to G/H$ is the quotient map. Moreover,

$$\int_{G} f(g) \, dg = \int_{G/H} \int_{H} f(gh) \, dh \, d(gH).$$

17 Representation of Lie groups, 11/9

A group representation (π, V) of G is a (continuous) homomorphism $\pi : G \to \operatorname{GL}(V)$, where G is a Lie group and V is a finite dimensional vector space over \mathbb{C} . For two representations $(\pi, V), (\pi', V')$, the set of morphisms between them are

$$\operatorname{Hom}_{G}(V,V') = \{T \colon V \to V' \mid T \circ \pi(g) = \pi'(g) \circ T, \forall g \in G\}.$$

Examples.

- 1) Standard representation: If G is a subgroup of $\operatorname{GL}(n, F)$, $F = \mathbb{R}$, \mathbb{C} , then the inclusion $G \hookrightarrow \operatorname{GL}(n, F)$ is a representation, where $V = \mathbb{C}^n$. Also, G acts on functions on V by $(g \cdot f)(v) = f(g^{-1}v)$.
- 2) Let $V_m(\mathbb{R}^n) = \mathbb{R}[x_1, \dots, x_n]_m$, the space of homogeneous degree *m* polynomials. We see that dim $V_m(\mathbb{R}^n) = \binom{n+m-1}{m}$. Let $G = O(n) \subseteq \operatorname{GL}(n, \mathbb{R})$. Then elements in *G* commutes with the Laplacian $\Delta = \sum \partial_i^2$, i.e.,

$$\triangle(g \cdot f) = g(\triangle f).$$

Hence, G acts on the harmonic polynomials $\mathscr{H}_m(\mathbb{R}^n) = \{ f \in V_m(\mathbb{R}^n) \mid \Delta f = 0 \}.$

3) Consider the action of G = SU(2) on $V_n(\mathbb{C}^2) = \mathbb{C}[z_1, z_2]_2$. This is an irreducible representation. In fact,

$$g \cdot f = \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} \cdot z_1^k z_2^{n-k} = z_1^k z_2^{n-k} \circ \begin{pmatrix} \overline{a} & \overline{b} \\ -b & a \end{pmatrix} = (\overline{a}z_1 + \overline{b}z_2)^k (-bz_1 + az_2)^{n-k}$$

and it is easy to see that every nonzero element in $V_n(\mathbb{C}^2)$ generates $V_n(\mathbb{C}^2)$ under G.

Alternatively, consider $V'_n = \operatorname{Hol}_0(\mathbb{C})_{\leq n} = \{a_0 + a_1 z + \cdots + a_n z^n\}$, which is isomorphic to $V_n(\mathbb{C}^2)$ as an vector space via Möbius transformation. Hence, the action of G on V'_n is

$$(g \cdot f)(z) = (-bz + a)^n f\left(\frac{\overline{a}z + \overline{b}}{-bz + a}\right)$$

Since holomorphic functions on \mathbb{C} corresponds to harmonic functions on \mathbb{R}^2 , we know that $\mathscr{H}_m(\mathbb{R}^2) = 2$.

4) Consider the 2-1 cover $G = \operatorname{Spin}_n(\mathbb{R}) \to \operatorname{SO}(n)$. A genuine representation is a representation not from $\operatorname{SO}(n)$. Let $V = (\mathbb{R}^n, (-, -)) \otimes \mathbb{C}$, where $(z, w) = \sum z_i w_i$. Let $m = \lfloor \frac{n}{2} \rfloor$. We can write $V = W \oplus W'$ if n = 2m and $V = W \oplus W' \oplus \mathbb{C}e_n$ if n = 2m + 1, where

$$W = \{(z_1, \dots, z_m, iz_1, \dots, iz_m)\}, \quad W' = \{(z_1, \dots, z_m, -iz_1, \dots, -iz_m)\}.$$

Theorem 17.1. Let $S = \bigwedge^{\bullet}(W)$ be the spinor. Then

$$\operatorname{Cl}(V) \cong \begin{cases} \operatorname{End} S, & \text{if } n = 2m, \\ \operatorname{End} S \oplus \operatorname{End} S, & \text{if } n = 2m+1 \end{cases}$$

as an algebra. Since $\operatorname{Spin}(\mathbb{R})$ is a subset of $\operatorname{Cl}(V)$, we get a faithful representation of $\operatorname{Spin}_n(\mathbb{R})$.

Proof. For *n* even, define $\varphi : V \to \text{End } S$ by $\varphi(z) = \alpha \epsilon(w) - \beta \iota(w')$, where z = w = w' with $w \in W$, $w' \in W'$ and α , β are two numbers such that $\alpha \beta = 2$. We see that

$$\varphi(z)^{2} = -2(\epsilon(w)\iota(w') + \iota(w')\epsilon(w)) = -2(w, w') = -(z, z),$$

and hence φ defines a map $\operatorname{Cl}(V) \to \operatorname{End} S$. Note that $\dim \operatorname{Cl}(V) = \dim \operatorname{End} S$. Hence, to show that it is an isomorphism, it suffices to show that it is surjective.

Take a basis $\{w_i\}$ of W and a basis $\{w'_i\}$ of W' such that $(w_i, w'_j) = \delta_{ij}$. Note that $w_{i_1} \cdots w_{i_k} w'_{i_1} \cdots w'_{i_k} \max \bigwedge^p W$ to 0 if p < k, onto $w_{i_1} \wedge \cdots \wedge w_{i_k}$ if p = k, and an induction shows that it is surjective it p > k.

For n odd, write $z = w + w' + \zeta e_n$ and define

$$\varphi^{\pm}(z) = \alpha \epsilon(w) - \beta \iota(w') \pm (-1)^p i\zeta$$

on $\bigwedge^p W$. Again, these defines maps $\varphi^{\pm} \colon \operatorname{Cl}(V) \to \operatorname{End}(S)$ and these maps are surjective.

Theorem 17.2. As an algebra,

$$\operatorname{Cl}(V) \cong \begin{cases} \operatorname{End} S^+ \oplus \operatorname{End} S^-, & \text{if } n = 2m, \\ \operatorname{End} S, & \text{if } n = 2m+1. \end{cases}$$

Proof. For n even, φ preserves S^{\pm} on $\operatorname{Cl}^+(V)$. So $\varphi : \operatorname{Cl}^+(V) \hookrightarrow \operatorname{End} S^+ \oplus \operatorname{End} S^-$. Since they have same dimensions, φ is an isomorphism.

For n odd, the definition of φ^{\pm} mixes degree. So φ^{\pm} does not preserve S^{\pm} . But take one piece φ^{+} and dimension count, we still get an isomorphism.

Example. For n = 3, m = 1, $\operatorname{Spin}_3(\mathbb{R}) = \operatorname{SU}(2) = S^3$. $S = \bigwedge W = \mathbb{C}^2$ and there is a map $\operatorname{Spin}_3(\mathbb{R}) \to \operatorname{End} S = M_{2 \times 2}(\mathbb{C})$.

Since $-1 \in \text{Spin}_n(\mathbb{R}) \subseteq \text{Cl}^+(V)$ maps to $1 \in \text{SO}(n)$, and -1 is nontrivial on S, S is a genuine module.

18 Representation of Lie groups II, 11/21

Let G acts on finite dimensional \mathbb{C} -vector spaces V, W. There is a natural action on $V \otimes_{\mathbb{C}} W$ by Leibniz rule:

$$g \cdot (v \otimes w) = gv \otimes w + v \otimes gw.$$

Let $\rho: G \to \operatorname{GL}(V)$ be the representation, $\mathcal{B} = \{v_1, \ldots, v_n\}$ a basis of V. Write $M_g = [\rho(g)]_{\mathcal{B}}^{\mathcal{B}}$. Then $(M_g)_i^j = v^j(gv_i)$, where $\mathcal{B}^{\vee} = \{v^i\} \subseteq V^{\vee}$ is the dual basis of \mathcal{B} . Hence,

$$((M_g^{\vee})^{\mathsf{T}})_i^j = v_i(gv^j) = v^j(g^{-1}v_i) = (M_{g^{-1}})_i^j = (M_g^{-1})_i^j,$$

i.e., $M_g^{\vee} = (M_g^{-1})^{\mathsf{T}}$.

For \overline{V} , the same abelian group as V but with different G-module structure: $z \odot v = \overline{z} \cdot v$, where \odot , \cdot denote the multiplications on \overline{V} , V, respectively. Then there is a representation $\overline{\rho} \colon G \to \overline{V}$.

For G compact, there exists a G-invariant inner product (-, -) on V by taking

$$(v,w) = \int_G \langle gv, gw \rangle \, dg,$$

where $\langle -, - \rangle$ is any inner product on V. We may choose v_i to be an orthonormal (unitary) basis. Then ρ maps G into $U(n) \subseteq \operatorname{GL}(n) \cong \operatorname{GL}(V)$. Hence, $\rho(g)^{-1} = \overline{\rho(g)}^{\mathsf{T}}$ and as G-modules, $V^{\vee} \cong \overline{V}$. Also, we get Weyl's completely reducibility theorem: for a Gsubmodule $W \subseteq V$, we see that $W^{\perp} \subseteq V$ is also a G-module. We say that a G-module Vis irreducible if every G-submodule of V is either $\{0\}$ or V. **Theorem 18.1** (Schur's Lemma). Let V, W be irreducible finite dimensional G-modules. Then

$$\operatorname{Hom}_{G}(V, W) = \begin{cases} \mathbb{C}, & \text{if } V \cong W, \\ 0, & \text{else.} \end{cases}$$

Proof. For a nonzero G-homomorphism $T \in \text{Hom}_G(V, W)$, ker T = 0 and Im T = W. So $V \cong W$ as G-modules. Fix a G-isomorphism $T_0: V \to W$. For any $T: V \to W$, since $\det(TT_0^{-1} - \lambda I) \neq 0$, we get $TT_0^{-1} = \lambda I$ for some λ .

Corollary 18.2. Let G be a compact Lie group. Then a finite dimensional G-module V is irreducible if and only if $\operatorname{Hom}_G(V, V) \cong \mathbb{C}$. In this case, the G-invariant inner product (-, -) is unique up to scalar.

Proof. If V is not irreducible, say $V = V_1 \oplus V_2$ with $V_1, V_2 \neq 0$, then

$$\dim \operatorname{Hom}_{G}(V, V) \ge \dim \operatorname{Hom}_{G}(V_{1}, V_{1}) + \dim \operatorname{Hom}_{G}(V_{2}, V_{2}) \ge 2.$$

Given two G-invariant inner products $(-, -)_1$, $(-, -)_2$. These give us two isomorphisms

$$T_i \in \operatorname{Hom}(\overline{V}, V^{\vee}) \cong \mathbb{C}$$

by sending $v \in \overline{V}$ to $(-, v)_i$, i = 1, 2. Then $T_1 = cT_2$ for some $c \neq 0$.

Corollary 18.3. Let V_1 , V_2 be irreducible *G*-submodules of (V, (-, -)), where (-, -) is a *G*-invariant inner product. If V_1 and V_2 are non-isomorphic, then $V_1 \perp V_2$.

Proof. If not, then $W = \{v \in V_1 \mid v_1 \perp v_2\}$ is a proper submodule of V_1 , which is 0 by the irreducibility of V_1 . Hence, $(-, -): V_1 \otimes V_2 \to \mathbb{C}$ is a nondegenerate pairing, and thus $\overline{V}_1 \cong V_2^{\vee} \cong \overline{V}_2$.

Let \widehat{G} be the set of equivalence elements of irreducible (unitary) representation (π, E_{π}) 's. For a finite dimensional *G*-module *V*, let $V_{[\pi]}$ be the π -isotropic component, i.e., the largest subspace of *V* which is isomorphic to $E_{\pi}^{m_{\pi}}$ for some $m_{\pi} \ge 0$.

Theorem 18.4. There is an isomorphism ι_{π} : Hom_G(E_{π}, V) $\otimes E_{\pi} \to V_{[\pi]}$ by sending

 $T \otimes v$ to Tv. Hence

$$\bigoplus_{\pi \in \widehat{G}} \operatorname{Hom}_{G}(E_{\pi}, V) \otimes E_{\pi} \xrightarrow{\sim} \bigoplus_{\pi \in \widehat{G}} V_{[\pi]} = V,$$

called the canonical decomposition of V.

Proof. Let $T \in \text{Hom}_G(E_{\pi}, V)$ be a nonzero element. Then ker T = 0 and therefore $E_{\pi} \cong T(E_{\pi})$. By the definition of $V_{[\pi]}, T(E_{\pi}) \subseteq V_{[\pi]}$. Since ι_{π} is a *G*-morphism, onto, so we only have to check that it is injective.

Since

$$\dim \operatorname{Hom}_G(E_{\pi}, V) = \dim \operatorname{Hom}_G(E_{\pi}, V_{[\pi]}) = m_{\pi}$$

by Schur's lemma, dim LHS = $m_{\pi} \cdot \dim E_{\pi} = \dim V_{[\pi]}$.

Finally,
$$V = \sum_{[\pi] \in \widehat{G}} V_{[\pi]} = \bigoplus_{[\pi] \in \widehat{G}} V_{[\pi]}.$$

Examples.

- (1) The action of SU(2) on $V_n(\mathbb{C}^2)$ is irreducible.
- (2) The action of SO(n) on $\mathscr{H}_m(\mathbb{R}^n)$ is irreducible for $n \geq 3$. For n = 2, only O(2) irreducible.

Fact 1. Under the algebra isomorphism

$$V(\mathbb{R}^n) \longrightarrow D(\mathbb{R}^n)$$
$$x_i \longmapsto \partial_{x_i},$$

where $D(\mathbb{R}^n)$ is the space of differential operator with constant coefficient, define $(p,q) = \overline{\partial_q}p$, which is a hermitian inner product on $V_m(\mathbb{R}^n)$. There is an orthonormal basis $x_1^{k_1} \cdots x_n^{k_n}$ with $\sum k_i = m$. Also,

$$\mathscr{H}_m(\mathbb{R}^n) = \left(|x|^2 V_{m-2}(\mathbb{R}^n) \right)^{\perp}.$$

Indeed,

$$(p, |x|^2 q) = \overline{\partial_{|x|^2 q}} p = \overline{\partial_q} \triangle p = (\triangle p, q).$$

As a consequence,

$$V_m(\mathbb{R}^n) = \mathscr{H}_m(\mathbb{R}^n) \oplus^{\perp} |x|^2 V_{m-2}(\mathbb{R}^n) = \mathscr{H}_m(\mathbb{R}^n) \oplus \mathscr{H}_{m-2}(\mathbb{R}^n) \oplus \cdots$$

as O(n)-modules.

Fact 2. Under $O(n-1) \hookrightarrow O(n), g \mapsto \begin{pmatrix} 1 & 0 \\ 0 & g \end{pmatrix}$,

$$\mathscr{H}_m(\mathbb{R}^n)|_{\mathcal{O}(n-1)} = \mathscr{H}_m(\mathbb{R}^{n-1}) \oplus \mathscr{H}_{m-1}(\mathbb{R}^{n-1}) \oplus \mathscr{H}_{m-2}(\mathbb{R}^{n-1}) \oplus \cdots$$

Write $V_m(\mathbb{R}^n) \ni p = \sum x_1^k p_k$, where $p_k \in V_{m-k}(\mathbb{R}^{n-1})$. Then $V_m(\mathbb{R}^n) \cong \bigoplus V_{m-k}(\mathbb{R}^{n-1})$ as O(n-1)-modules. So

$$V_m(\mathbb{R}^n)|_{\mathcal{O}(n-1)} \cong \mathscr{H}(\mathbb{R}^n)|_{\mathcal{O}(n-1)} \oplus V_{m-2}(\mathbb{R}^n)|_{\mathcal{O}(n-1)}$$
$$\cong \mathscr{H}(\mathbb{R}^n)|_{\mathcal{O}(n-1)} \oplus \bigoplus V_{m-2-k}(\mathbb{R}^{n-1}).$$

On the other hand,

$$V_m(\mathbb{R}^n)|_{\mathcal{O}(n-1)} \cong \bigoplus V_{m-k}(\mathbb{R}^{n-1}) \oplus \bigoplus V_{m-2-k}(\mathbb{R}^{n-1}).$$

So it suffices to show the "cancellation": if G is a compact Lie group and $V \oplus U \cong W \oplus U$, then $V \cong W$. This is true by the canonical decomposition.

Now, we show that $\mathscr{H}_m(\mathbb{R}^n)$ is an irreducible $\mathrm{SO}(n)$ -module. If $f \in \mathscr{H}_m(\mathbb{R}^n)$ is $\mathrm{SO}(n)$ -invariant, then $f = c|x|^m$ and $\Delta f = 0$. which implies that m = 0 or c = 0. It follows from Fact 2 that $\mathscr{H}_m(\mathbb{R}^n)|_{\mathrm{SO}(n-1)}$ has a unique $\mathrm{SO}(n-1)$ -invariant function, up to scalar.

Claim. For an SO(n)-invariant finite dimensional subspace V of $C^0(S^{n-1})$, there exists a (nonzero) SO(n - 1)-invariant function $f \in V$.

Indeed, there exists $f \in V$ such that $f(1, 0, ..., 0) \neq 0$ (otherwise V = 0). Let

$$\tilde{f}(s) = \int_{\mathrm{SO}(n-1)} f(gs) \, dg,$$

 $\{f_i\}$ a basis of V. Since $gf = \sum c^i(g)f_i$ for some functions $c^i \colon G \to \mathbb{C}, \ \tilde{f} = \sum \left(\int_{\mathrm{SO}(n-1)} c^i(g) dg\right) f_i \in V$. So \tilde{f} is the desired function since $\tilde{f}(1, 0, \dots, 0) \neq 0$. Now, if $\mathscr{H}_m(\mathbb{R}^n) = V_1 \oplus V_2$ with V_i being $\mathrm{SO}(n)$ -invariant, $V_i|_{S^{n-1}}$ contains a nonzero $\mathrm{SO}(n-1)$ -invariant function $f_i, i = 1, 2$, which contradicts the uniqueness of such functions (up to scalar).

(3) For *n* even, the action of $\text{Spin}_n(\mathbb{R})$ on S^{\pm} is irreducible. For *n* odd, the action of $\text{Spin}_n(\mathbb{R})$ on *S* is irreducible.

19 Character theory, 11/23

Let G be a compact Lie group. Then there is a G-invariant metric on G and hence a G-invariant volume form (Haar measure) dg. We normalize the form so that

$$|G| = \int_G dg = 1.$$

Let $\rho: G \to \operatorname{GL}(V), \ \rho': G \to \operatorname{GL}(V')$ be representations, where V, V' are finite dimensional \mathbb{C} -vector spaces. Consider $\rho'': G \to \operatorname{GL}(\operatorname{Hom}(V, V')), \ \rho''(g)(e) = \rho'(g) \circ e \circ \rho(g^{-1}).$

Lemma 19.1 (Symmetrization). For a homomorphism $e: V \to V'$, the element $\eta(e) = \int_G \rho''(g)(e) \, dg$ lies in $\operatorname{Hom}_G(V, V')$.

Proof. By definition

$$\rho'(h)\eta(e) = \int_{G} \rho'(hg)e\rho(g^{-1}) \, dg = \int_{G} \rho'(g)e\rho(h^{-1}g)^{-1} \, d(h^{-1}g)$$
$$= \int_{G} \rho'(g)e\rho(g)^{-1} \, dg \, \rho(h) = \eta(e)\rho(h).$$

Corollary 19.2. If ρ , ρ' are irreducible, then

- (i) $\rho \not\cong \rho'$ implies $\eta(e) = 0$ for all $e \in \text{Hom}(V, V')$;
- (ii) $\rho \cong \rho'$ implies $\eta(e) \cong cI_V$ under an identification $V \cong V'$.

Theorem 19.3 (Schur's orthogonality relations). Let (ρ, V) , (ρ', V') be irreducible representations. Write $\rho(g) = (T_j^i(g)), \ \rho'(g) = (T'_\ell^k(g))$ in some basis $\mathcal{B} \subset V, \ \mathcal{B}' \subset V'$. Then

$$\int_{G} T_{j}^{i}(g) T_{\ell}^{\prime k}(g^{-1}) dg = \begin{cases} 0, & \text{if } \rho \not\cong \rho', \\ \frac{|G|}{\dim V} \delta_{\ell}^{i} \delta_{j}^{k}, & \text{if } \rho = \rho', \ \mathcal{B} = \mathcal{B}' \end{cases}$$

Proof. Let $e = e_j^k$ be the elementary matrix. Then the integral

$$\int_{G} T_{j}^{i}(g) T_{\ell}^{\prime k}(g^{-1}) \, dg = \int_{G} \rho^{\prime}(g^{-1}) e_{j}^{k} \rho(g) \, dg = (\eta(e_{j}^{k}))_{\ell}^{i}$$

When $\rho \not\cong \rho'$, this is 0. For the case $\rho = \rho'$, $(\eta(e_j^k))_{\ell}^i = c_j^k \cdot \delta_{\ell}^i$ for some c_j^k . So

$$c_j^k = \frac{1}{\dim V} \int_G \sum_{i=\ell} (T_j^i(g) T_\ell^k(g)^{-1}) \, dg = \frac{1}{\dim V} \int_G T_j^i(g) T_i^k(g)^{-1} \, dg = |G| \cdot \delta_j^k.$$

Now we set $\chi_{\rho} = \chi_{V} := \operatorname{tr} \circ \rho \colon G \to \mathbb{C}$, called the character of (ρ, V) . Then $\chi_{\rho} \in C^{\infty}(G)$ and $\chi_{\rho}(e) = \dim V$.

Let \mathbb{C} be the trivial representation, i.e., $G \to {id} \subset GL(\mathbb{C})$. Then $\chi_{\mathbb{C}} \equiv 1$.

 χ defines a map from Rep G to $C^{\infty}(G)$. We see that $\chi_{V\oplus V'} = \chi_V + \chi_{V'}$ and $\chi_{V\otimes V'} = \chi_V \cdot \chi_{V'}$. Since $\chi_V(hgh^{-1}) = \chi_V(g)$, χ_V is a class function. Also,

$$\chi_{V^{\vee}}(g) = \chi_{\overline{V}}(g) = \chi_{V}(g) = \chi_{V}(g^{-1})$$

by taking a unitary basis.

Theorem 19.4. Let V, W be finite dimensional *G*-representations over \mathbb{C} .

- (1) $\langle \chi_V, \chi_W \rangle := \int_G \chi_V(g) \overline{\chi_W(g)} \, dg = \dim \operatorname{Hom}_G(V, W).$
- (2) $V \cong W$ if and only if $\chi_V = \chi_W$.

Proof. Choose a unitary bases of V, W, etc.. If V, W are irreducible, we get $\overline{T}'(g) = T'^{\mathsf{T}}(g^{-1})$. So

$$\langle \chi_V, \chi_W \rangle = \begin{cases} 0, & \text{if } V \not\cong W, \\ \frac{1}{\dim V} \delta^i_\ell \delta^k_j \delta^j_i \delta^\ell_k = 1, & \text{if } V \cong W. \end{cases}$$

In general, write $V = \bigoplus E_{\pi}^{m_{\pi}}, W = \bigoplus E_{\pi}^{m'_{\pi}}$. Then $\chi_V = \sum m_{\pi} \chi_{\pi}, \chi_W = \sum m'_{\pi} \chi_{\pi}$. So

$$\langle \chi_V, \chi_W \rangle = \operatorname{Hom}(V, W).$$

Since $\{m_{\pi}\}$ (resp. $\{m'_{\pi}\}$) determines the isomorphic type of V (resp. W) and

$$m_{\pi} = \langle \chi_{\pi}, \chi_V \rangle, \quad m'_{\pi} = \langle \chi_{\pi}, \chi_W \rangle,$$

we get (2).

Corollary 19.5. Let V^G be the *G*-invariant vectors in *V*. Then

$$\int_{G} \chi_{V}(g) \, dg = \langle \chi_{V}, \chi_{\mathbb{C}} \rangle = \dim V^{G}$$

since $V^G = \text{Hom}_G(\mathbb{C}, V)$. Also, V is irreducible if and only if $\|\chi_V\| = 1$.

Theorem 19.6. For compact Lie groups G_1 , G_2 , a finite dimensional representation W of $G_1 \times G_2$ is irreducible if and only if $W \cong V_1 \otimes V_2$, where V_i is a irreducible G_i -representation, i = 1, 2.

Proof. Let V_i be a irreducible G_i -representation, i = 1, 2. The invariant measure on $G_1 \times G_2$ is given by $dg_1 \wedge dg_2$. So

$$\chi_{V_1 \otimes V_2}(g_1 g_2) = \chi_{V_1}(g_1) \cdot \chi_{V_2}(g_2)$$

implies that $\|\chi_{V_1 \otimes V_2}\| = \|\chi_{V_1}\| \cdot \|\chi_{V_2}\| = 1.$

Conversely, let W be an irreducible $G_1 \times G_2$ -representation. Write

$$W = \bigoplus_{[\pi] \in \widehat{G}_2} \operatorname{Hom}_{G_2}(E_{\pi}, W) \otimes E_{\pi}$$

as G_2 -modules. The equation above is in fact a $G_1 \times G_2$ -morphism, since $\operatorname{Hom}_{G_2}(E_{\pi}, W)$ has a natural G_1 action. Since W is irreducible, $W = \operatorname{Hom}_{G_2}(E_{\pi}, W) \otimes E_{\pi}$ for some π .

Be more concern with your character than your representation!

20 Peter-Weyl theorem, 11/28

Let G be a compact Lie group. Then C(G) is a Banach space with respect to

$$||f||_{C(G)} = \sup_{g \in G} |f(g)|;$$

 $L^2(G)$ is a Hilbert space with respect to

$$\langle f_1, f_2 \rangle = \int_G f_1 \overline{f}_2 \, dg, \quad \|f\|_{L^2(G)} = \left(\int_G |f|^2 \, dg\right)^{1/2}.$$

Since G is compact, C(G) is dense in $L^2(G)$. There are two natural action of G on C(G), $L^2(G)$:

$$\ell: \quad G \times C(G) \longrightarrow C(G)$$

$$(g, f) \longmapsto \ell_g f = [h \mapsto f(g^{-1}h)],$$

$$r: \quad G \times C(G) \longrightarrow C(G)$$

$$(g, f) \longmapsto r_g f = [h \mapsto f(hg)].$$

The action of G on C(G) is continuous: for each $h \in G$, since f_1 is uniformly continuous,

$$\begin{aligned} |\ell_{g_1} f_1(h) - \ell_{g_2} f_2(h)| &= |f_1(g_1^{-1}h) - f_2(g_2^{-1}h)| \\ &\leq |f_1(g_1^{-1}h) - f_1(g_2^{-1}h)| + |f_1(g_2^{-1}h) - f_2(g_2^{-1}h)| \to 0 \end{aligned}$$

as (g_1, f_1) tends to (g_2, f_2) . The action of G on $L^2(G)$ is also continuous:

$$\begin{split} \|\ell_{g_1}f_1 - \ell_{g_2}f_2\|_{L^2(G)} &= \|f_1 - \ell_{g_1^{-1}g_2}f_2\|_{L^2(G)} \\ &\leq \|f_1 - f_2\|_{L^2(G)} + \|f_2 - \ell_{g_1^{-1}g_2}f_2\|_{L^2(G)} + \|\ell_{g_1}f_2 - \ell_{g_2}f_2\|_{L^2(G)} \\ &\leq \|\ell_{g_1}f_2 - \ell_{g_1}f\|_{L^2(G)} + \|\ell_{g_1}f - \ell_{g_2}f\|_{L^2(G)} + \|\ell_{g_2}f - \ell_{g_2}f_2\|_{L^2(G)} \\ &\leq \|f_2 - f\|_{L^2(G)} + \|\ell_{g_1}f - \ell_{g_2}f\|_{L^2(G)} + \|f_2 - f\|_{L^2(G)} \\ &\leq \|\ell_{g_1}f - \ell_{g_2}f\|, \end{split}$$

where $f \in C(G)$ is an element such that $f \to f_2$ in L^2 -norm.

Definition 20.1. Let $\{V_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a family of Hilbert spaces with inner product $\langle -, - \rangle_{\alpha}$ on V_{α} . We define

$$\widehat{\bigoplus_{\alpha \in \mathcal{A}}} V_{\alpha} = \left\{ (v_{\alpha}) \, \middle| \, v_{\alpha} \in V_{\alpha}, \, \sum_{\alpha \in \mathcal{A}} \|v_{\alpha}\|_{\alpha}^{2} < \infty \right\}$$

and

$$\langle (v_{\alpha}), (v'_{\alpha}) \rangle = \sum_{\alpha} \langle v_{\alpha}, v'_{\alpha} \rangle_{\alpha}.$$

Then $\bigoplus_{\alpha} V_{\alpha}$ is dense in $\widehat{\bigoplus}_{\alpha} V_{\alpha}$ and $V_{\alpha} \perp V_{\beta}$ for all $\alpha \neq \beta$.

Let T be a bounded self-adjoint on operator on V. The spectral projection of T is the family $\{P_{\Omega} = \chi_{\Omega}(T)\}$ where χ_{Ω} is the indicator function of the Borel measurable set Ω such that

- (1) P_{Ω} is an orthogonal projection;
- (2) $P_{\emptyset} = 0, P_{(-a,a)} = \text{id for some } a > 0;$
- (3) If $\Omega = \bigsqcup_{i=1}^{\infty} \Omega_i$, then $\lim_{N \to \infty} \sum_{i=1}^{N} P_{\Omega_i} = P_{\Omega}$.

(The spectrum of T is the set

$$\{\lambda \in \mathbb{C} \mid \lambda I - T \text{ is not invertible }\},\$$

and $P_{\lambda} = \chi_{\lambda}(T)$.)

For each $v \in V$, $\lambda \mapsto \langle v, P_{\lambda}v \rangle$ is a measure. Since T is self-adjoint,

$$\langle v, Tv \rangle = \int_{\mathbb{R}} \lambda \, d(\langle v, \mathbb{P}_{\lambda} v \rangle).$$

Fact. There is a one-to-one correspondence

{ projection valued measures }
$$\longrightarrow$$
 { bounded self-adjoint operators }
{ P_{Ω} } $\longmapsto \langle v, Tw \rangle = \int_{\mathbb{R}} \lambda \, d(\langle v, P_{\lambda}w \rangle).$

Lemma 20.2 (Schur's lemma for Hilbert spaces). If V is irreducible, then $\operatorname{Hom}_G(V, V) = \mathbb{C} \cdot \operatorname{id}$.

Proof. For a G-operator T, write

$$T = \frac{T + T^*}{2} - i \frac{T - T^*}{2i}.$$

Since T is a G-operator, then T^* is also a G-operator. So we may assume that T is self-adjoint. For each $g \in G$, $g \circ T = T \circ g$ implies that $g \circ P_{\Omega} = P_{\Omega} \circ g$, so ker g and Im g are G-submodules. Hence, $P_{\Omega} = id$ or 0.

Now, $P_{(-a,a)} = \text{id}$ for some a > 0. So there exists λ such that $P_{\lambda} = \text{id}$. Hence, $T = \lambda \cdot \text{id}$.

Theorem 20.3. Let V be a Hilbert space and $\rho: G \to \operatorname{GL}(V)$ an irreducible representation. Then there exists finite dimensional irreducible G-submodules $V_{\alpha} \subseteq V$ such that $V = \bigoplus_{\alpha} V_{\alpha}$.

This shows that every irreducible unitary representation of G are all finite dimensional, and the set of G-finite vectors (i.e., $v \in V$ such that $\dim \langle Gv \rangle < \infty$) is dense in V.

Fact. Let (ρ, V) be a unitary representation of G on V. Then there exists a nonzero G-subspace of V with dim $W < \infty$.

Proof. Let T_0 be a nonzero finite rank projection (self-adjoint, positive, compact) in Hom(V, V),

$$T = \int_G \rho(g) \circ T_0 \circ \rho(g)^{-1} \, dg.$$

Then T is G-invariant. Since T_0 is positive,

$$\langle Tv, v \rangle = \int_G (T \circ \rho(g)^{-1}(v), \rho(g)^{-1}v) \, dg$$

shows that T is positive. Since T_0 is self-adjoint, T is self-adjoint. If T is compact, self-adjoint, then there exists $\lambda \in \mathbb{C}$ such that dim ker $(T - \lambda I) < \infty$ and we know that ker $(T - \lambda I)$ is a G-submodule.

Now, consider

$$\mathcal{S} = \{\{V_{\alpha} \mid \alpha \in \mathcal{A}, \dim V_{\alpha} < \infty, V_{\alpha} \perp V_{\beta} \text{ for } \alpha \neq \beta\}\}.$$

By Zorn's lemma, there exists a maximal element $\{V_{\alpha} \mid \alpha \in \mathcal{A}\}$ in \mathcal{S} .

Claim. $\widehat{\bigoplus}_{\alpha \in \mathcal{A}} V_{\alpha} = V.$

If not, the orthogonal complement of $\widehat{\bigoplus}_{\alpha \in \mathcal{A}} V_{\alpha}$ is closed and *G*-invariant. So it contains a finite dimensional subspace V_{γ} , a contradiction.

Consider the π -isotypic component $V_{[\pi]}$ of V. $\operatorname{Hom}_G(E_{\pi}, V)$ forms a Hilbert space: $\langle T_1, T_2 \rangle_{\operatorname{Hom}} \operatorname{id} = T_2^* \circ T_1$. For $x_1, x_2 \in E_{\pi}$,

$$\langle T_1 x, T_2 x_2 \rangle_V = \langle T_2^* T_1 x_1, x_2 \rangle_{E_\pi} = \langle \langle T_1, T_2 \rangle_{\operatorname{Hom}} x_1, x_2 \rangle = \langle T_1, T_2 \rangle_{\operatorname{Hom}} \langle x_1, x_2 \rangle_{E_\pi}$$

Definition 20.4. For V_1 , V_2 , we define $V_1 \otimes V_2$ to be the completion of $V_1 \otimes V_2$ with respect to

$$\langle v_1 \otimes v_2, v'_1 \otimes v'_2 \rangle = \langle v_1, v'_1 \rangle \langle v_2, v'_2 \rangle$$

Hence,

$$V = \widehat{\bigoplus}_{[\pi]\in\widehat{G}} V_{[\pi]} = \widehat{\bigoplus}_{[\pi]\in\widehat{G}} \operatorname{Hom}_{G}(E_{\pi}, V) \widehat{\otimes} E_{\pi}.$$

21 Peter-Weyl theorem II, 11/30

Theorem 21.1. As $G \times G$ -modules,

$$L^2(G) \cong \widehat{\bigoplus}_{[\pi]\in\widehat{G}} E_{\pi}^{\vee} \otimes E_{\pi}.$$

Proof. Recall that

$$L^{2}(G) = \widehat{\bigoplus}_{[\pi]\in\widehat{G}} L^{2}(G)_{[\pi]} = \widehat{\bigoplus}_{[\pi]\in\widehat{G}} \operatorname{Hom}_{G}(E_{\pi}, L^{2}(G)) \widehat{\otimes} E_{\pi}.$$

Consider $C(G)_{G-\text{fin}} \subseteq C(G) \subseteq L^2(G)$, where $C(G)_{G-\text{fin}}$ contains the elements that has finite dimensional *G*-orbit.

Lemma 21.2. We have

- (1) $\operatorname{Hom}_G(E_{\pi}, C(G)_{G-\operatorname{fin}}) \cong E_{\pi}^{\vee}$, and
- (2) $C(G)_{G-\text{fin}} \cong \bigoplus_{[\pi] \in \widehat{G}} E_{\pi}^{\vee} \otimes E_{\pi}.$

Proof of Lemma. We see that $C(G)_{G-\text{fin}}$ is equal to MC(G), the set of functions of the form

$$f_{u,v}^V \colon g \mapsto \langle gu, v \rangle,$$

where V is a finite dimensional unitary representation of G. Indeed, via the left action $\ell: G \to \operatorname{GL}(C(G)),$

$$(\ell_g f_{u,v}^V)(h) = f_{u,v}^V(g^{-1}h) = \langle g^{-1}hu, v \rangle = \langle hu, gv \rangle = f_{u,gv}^V(h)$$

So

$$\langle \ell_g f_{u,v}^V \mid g \in G \rangle \subseteq \langle f_{u,v'}^V \mid v' \in V \rangle \in \mathrm{Ob}(\mathsf{Vect}_{\mathrm{fin}}),$$

and hence $f_{u,v}^V \in C(G)_{G-\text{fin}}$. Conversely, if $f \in C(G)_{G-\text{fin}}$, say dim $V < \infty$ and $f \in V$. Consider $\overline{V} = \{\overline{f} \mid f \in V\}$ with action $g \cdot \overline{f} = \overline{g \cdot f}$. Then \overline{V} is a *G*-submodule of C(G)and \overline{V} has an induced norm from $L^2(G)$. Now, for each $\overline{f} \in \overline{V}$, $\overline{f}(e) \in \mathbb{C}$, so there is exist an $\overline{f}_0 \in \overline{V}$ such that $\overline{f}(e) = \langle \overline{f}, \overline{f}_0 \rangle$ for all $\overline{f} \in \overline{V}$. Hence,

$$\overline{f}(g) = \ell_{g^{-1}}\overline{f}(e) = \langle \ell_{g^{-1}}\overline{f}, \overline{f}_0 \rangle = \langle \overline{f}, \ell_g\overline{f}_0 \rangle$$

implies that

$$f_{\overline{f_0},\overline{f}}^{\overline{V}}(g) = \langle g\overline{f}_0,\overline{f}\rangle = \overline{\overline{f}(g)} = f(g),$$

i.e., $f \in MC(G)$.

From the proof above, we also see that $C(G)_{G\text{-fin}}$ with respect to ℓ is equal to $C(G)_{G\text{-fin}}$ with respect to r. Indeed, for $f \in C(G)_{G\text{-fin}}$ with respect to r, there exists $V \in C(G)$ with dim $V < \infty$ and $f \in V$. Similarly, there exists $f_0 \in V$ such that $f(e) = (f, f_0)$ for all $f \in V$. So $f(g) = r_g f(e) = \langle r_g f, f_0 \rangle$ implies that $f = f_{f,f_0}^V \in MC(G)$.

Now,

$$C(G)_{G-\operatorname{fin}} = \bigoplus_{\pi \in \widehat{G}} \operatorname{Hom}_{G}(E_{\pi}, C(G)_{G-\operatorname{fin}}) \otimes E_{\pi}$$

as left G-modules. In fact, $C(G)_{G-\text{fin}}$ is a $G \times G$ -module by

$$((g_1, g_2)f)(h) = (r_{g_1}\ell_{g_2}f)(h) = f(g_2^{-1}hg_1).$$

The second G-action on $\operatorname{Hom}_G(E_{\pi}, C(G)_{G-\operatorname{fin}}) \otimes E_{\pi}$ is trivial on the second component and is defined by

$$(gT)(x) = r_g(T(x))$$

on the first component $(\ell_{g'}(Tg)(x) = \ell_{g'}r_gT(x) = r_gT(\ell_{g'}x) = (Tg)(\ell_{g'}x)).$

Recall that E_{π}^{\vee} is a (left) *G*-module: for $\lambda \in E_{\pi}^{\vee}$, $(\lambda g)(x) = \lambda(g^{-1}x)$.

Consider

$$\operatorname{Hom}_{G}(E_{\pi}, C(G)_{G-\operatorname{fin}}) \xrightarrow{\varphi} E_{\pi}^{*}$$

$$T \xrightarrow{\psi} \lambda_{T} \colon x \mapsto (Tx)(e)$$

$$T_{\lambda} \colon x \mapsto [h \mapsto \lambda(h^{-1}x)] \longleftrightarrow \lambda$$

We see that φ is a *G*-morphism:

$$(\lambda_T g)(x) = \lambda_T (g^{-1}x) = T(g^{-1}x)(e) = (\ell_{g^{-1}}(Tx))(e)$$
$$= (Tx)(g) = ((Tx)g)(e) = ((Tg)(x))(e) = \lambda_{Tg}(x).$$

 $T_{\lambda} \in LHS:$

$$\ell_g(T_\lambda(x))(h) = T_\lambda(x)(g^{-1}h) = \lambda(h^{-1}gx) = (T_\lambda(gx))(h),$$

so $\ell_g(T_\lambda(x)) = T_\lambda(gx)$. Similarly, ψ is a *G*-morphism.

It is easy to check that $\varphi \circ \psi = \text{id}$ and $\psi \circ \varphi = \text{id}$: $\lambda_{T_{\lambda}}(x) = (T_{\lambda}(x))(e) = \lambda(x)$,

$$(T_{\lambda_T}(x))(h) = \lambda_T(h^{-1}x) = (T(h^{-1}x))(e) = (\ell_{h^{-1}}(T(x)))(e) = T(x)(h).$$

This proves (1). For (2), consider

$$\bigoplus_{[\pi]\in\widehat{G}} E_{\pi}^{\vee} \otimes E_{\pi} \longrightarrow C(G)_{G-\mathrm{fin}}$$
$$\lambda \otimes v \longmapsto f_{\lambda \otimes v} \colon g \mapsto \lambda(g^{-1}v).$$

This is a $G \times G$ -morphism.

First, we check that φ is surjective. Since $MC(G) = C(G)_{G-\text{fin}}$ is generated by $f_{v_i^{\pi}, v_j^{\pi}}^{E_{\pi}}$, where $\{v_i^{\pi}\}$ is a basis of E_{π} , it suffices to show that $f_{v_i^{\pi}, v_j^{\pi}}^{E_{\pi}}$ lies in the image. Pick $\lambda = \langle -, u \rangle \in E_{\pi}^{\vee}$. Then

$$f_{\lambda\otimes v}(g) = \lambda(g^{-1}v) = \langle g^{-1}v, u \rangle = \langle v, gu \rangle = f_{u,v}^{E_{\pi}}(g),$$

as desired.

Suppose that φ is not injective, say $0 \neq \sum \lambda_i \otimes v_i \in \ker \varphi$. We may assume that $\sum \lambda_i \otimes v_i \in \sum_{j=1}^N E_{\pi_j}^{\vee} \otimes E_{\pi_j}$ for some $\pi_j \in \widehat{G}$. Then $\langle \sum \lambda_{ji} \otimes v_{ji} \rangle_{G \times G} \subseteq E_{\pi_j}^{\vee} \otimes E_{\pi_j}$. But for $0 \neq \lambda \otimes v \in E_{\pi_i}^{\vee} \otimes E_{\pi_i}$, there exists h such that $f_{\lambda \otimes v}(h) \neq 0$, a contradiction. \Box

We claim that $C(G)_{G-\text{fin}}$ is dense in C(G) and thus in $L^2(G)$. By Stone-Weierstrass theorem, we only need to show that $C(G)_{G-\text{fin}}$ separates points, i.e., for each $g_0 \in G$, there exists $f \in C(G)_{G-\text{fin}}$ such that $f(g_0) \neq f(e)$.

Choose $e \in U \subseteq G$ such that $U \cap g_0 U = \emptyset$. Let χ_U be the characteristic function of U. Then $\ell_{g_0}\chi_U = \chi_{g_0U}$ implies that $\langle \ell_{g_0}\chi_U, \chi_U \rangle = 0$. Since $\langle \chi_U, \chi_U \rangle > 0$, $\ell_{g_0} \neq \operatorname{id}_{L^2(G)}$. Also, $L^2(G) = \bigoplus V_{\alpha}$ implies that there exists V_{α_0} and $x \in V_{\alpha_0}$ such that $\ell_{g_0}x \neq x$. So there exists $y \in V_{\alpha_0}$ such that $\langle \ell_{g_0}x, y \rangle \neq \langle x, y \rangle$. Pick $f = f_{x,y}^{V_{\alpha_0}}$. We get $f(g_0) \neq f(e)$, as desired.

Let

$$\iota \colon \bigoplus_{[\pi] \in \widehat{G}} \operatorname{Hom}_{G}(E_{\pi}, L^{2}(G)) \widehat{\otimes} E_{\pi} \xrightarrow{\sim} L^{2}(G).$$

We need to show that the inclusion $\kappa \colon E_{\pi}^{\vee} \to \operatorname{Hom}_{G}(E_{\pi}, L^{2}(G))$ is an isomorphism.

If not, $\operatorname{Im} \kappa \subsetneqq \operatorname{Hom}_G(E_{\pi}, L^2(G))$. Since ι is an isomorphism and $\dim E_{\pi}^{\vee} < \infty$, so the inclusion

$$\iota(\kappa(E_{\pi}^{\vee})\otimes E_{\pi}) \subsetneqq \iota(\operatorname{Hom}_{G}(E_{\pi}, L^{2}(G))\otimes E_{\pi})$$

is closed. Pick $f \neq 0$ lies in the orthogonal complement of the LHS in the RHS. Then

$$f \in \left(\bigoplus_{[\pi']\in\widehat{G}}\iota(\kappa(E_{\pi'}^{\vee})\otimes E_{\pi'})\right)^{\perp} = \left(C(G)_{G\text{-fin}}\right)^{\perp},$$

a contradiction.

22 Applications of Peter-Weyl theorem, 12/5

Let G be a compact Lie group. Then there is a decomposition (21.1)

$$L^{2}(G) = \bigoplus_{[\pi]\in\widehat{G}} E_{\pi}^{\vee} \otimes E_{\pi} = \bigoplus_{[\pi]\in\widehat{G}} \operatorname{End} E_{\pi}.$$

For $f \in L^2(G)$, what is the corresponding element in End E_{π} ? For $G = S^1$, this is Fourier series (note that $\widehat{S^1} \cong \mathbb{Z}$). What is the algebra structure in the RHS corresponds to the algebra structure (via convolution) in the LHS?

1. Let $f_{ij}^{E_{\pi}}$ be the matrix coefficient of E_{π} . Then

$$\left\{\sqrt{\dim E_{\pi}}f_{ij}^{E_{\pi}} \mid [\pi] \in \widehat{G}\right\}$$

is an orthonormal basis of $L^2(G)$.

2. There exists a finite dimensional faithful representation $\rho: G \hookrightarrow GL(V)$, and hence G is isomorphic to a subgroup of U(N) $(N = \dim V)$.

If dim G > 0, take $e \neq g_1 \in G^\circ$. Then there exists a representation (ρ_1, V_1) such that $\pi_1(g_1) \neq I_V$ (by P-W). Then $G_1 := \ker \pi_1$ is a closed subgroup of G (and hence a compact submanifold) that contains g_1 . Since G_1 cannot contain a neighborhood of e, dim $G_1 < \dim G$. If dim $G_1 > 0$, then continue this process to get $(\rho_i, V_i)_{i=1}^N$. Then dim $\ker(\rho_1 \oplus \cdots \oplus \rho_N) = 0$, so $\ker(\rho_1 \oplus \cdots \oplus \rho_N) = \{h_j\}_{j=1}^M$ is a finite group. For each $i = 1, \ldots, M$, choose $\rho_{N+i}(h_i) \neq id$. Then $\rho_1 \oplus \cdots \oplus \rho_{N+M}$ is the desired representation.

- 3. Let $\underline{\chi}$ be the set of irreducible characters $\chi_{\pi}, \pi \in \widehat{G}$.
 - (3.1) $\langle \chi \rangle = C_{\rm cl}(G)_{G-{\rm fin}}$, the set of *G*-finite class functions.

Indeed, there is an isomorphism

$$C_{\mathrm{cl}}(G)_{G\operatorname{-fin}} \cong \bigoplus_{[\pi]\in\widehat{G}} (\operatorname{End} E_{\pi})_{\mathrm{cl}}.$$

For $f \in C(G)$, $f \in C(G)_{cl}$ if and only if the diagonal action $g \cdot f = f$, where $g \cdot f(h) := f(g^{-1}hg)$, i.e., f corresponds to $\{T_{\pi} \in \operatorname{End}_{G} E_{\pi}\}_{[\pi]\in\widehat{G}}$. By Schur's lemma, $T_{\pi} = \lambda_{\pi}(g)I_{E_{\pi}}$.

Note that $I_{E_{\pi}} = \sum_{i} \langle -, e_i \rangle \otimes e_i \in E_{\pi}^{\vee} \otimes E_{\pi}$ maps to

$$g \mapsto \sum_{i} \langle g^{-1}e_i, e_i \rangle = \sum_{i} \langle e_i, ge_i \rangle = \sum_{i} \overline{\langle ge_i, e_i \rangle},$$

i.e., $\overline{\chi}_{\pi}$.

(3.2) $\langle \chi \rangle$ is dense in $C_{\rm cl}(G)$.

Indeed, for $f \in C(G)$ and for each $\varepsilon > 0$, there exists $\varphi \in C(G)_{G-\text{fin}}$ such that the sup norm $||f - \varphi||_0 < \varepsilon$. Let

$$\widetilde{\varphi}(h) = \int_G \pi(g^{-1}hg) \, dg \in C_{\mathrm{cl}}(G),$$

then

$$\|f - \widetilde{\varphi}\|_0 \le \sup_{h \in G} \int_G |f(g^{-1}hg) - \varphi(g^{-1}hg)| \, dg \le \|f - \varphi\|_0 < \varepsilon.$$

Now, $\widetilde{\varphi}$ is *G*-finite: write

$$\varphi(h) = \sum_{i} \langle h x_i, y_i \rangle,$$

where $x_i, y_i \in E_{\pi_i}$ and the sum is finite. Then

$$\begin{split} \widetilde{\varphi}(h) &= \sum_{i} \int_{G} \langle g^{-1} h g x_{i}, y_{i} \rangle \, dg \\ &= \sum_{i} \left\langle \int_{G} g^{-1} h g \, dg \cdot x_{i}, y_{i} \right\rangle \\ &= \sum_{i} \frac{\chi_{i}}{\dim E_{\pi_{i}}} \langle x_{i}, y_{i} \rangle, \end{split}$$

where $\chi_i = \chi_{\pi_i} = \operatorname{tr} \pi_i$. Here, we use the fact that

$$\int_G \pi(g^{-1}hg) \, dg \in \operatorname{End}_G E_\pi = \mathbb{C} \cdot \operatorname{id}$$

and that

$$\operatorname{tr}\left(\int_{G} \pi(g^{-1}hg) \, dg\right) = \int_{G} \operatorname{tr} \pi(g^{-1}hg) \, dg = \int_{G} \operatorname{tr} \pi(h) \, dg = \chi(h).$$

(3.3) $\underline{\chi}$ is an orthonormal basis of $L^2_{\mathrm{cl}}(G)$, i.e., for $f \in L^2_{\mathrm{cl}}(G)$,

$$f = \sum_{[\pi]\in\widehat{G}} \langle f, \chi_{\pi} \rangle \chi_{\pi}.$$

Indeed, choose $\varphi \in C(G)_{G-\text{fin}}$ such that $||f - \varphi||_2 < \varepsilon$ by P-W theorem. As above, $\tilde{\varphi} \in \langle \underline{\chi} \rangle$. Also,

$$\begin{split} \|f - \widetilde{\varphi}\|_2 &= \left(\int_G |f(h) - \widetilde{\varphi}(h)|^2 \, dh\right)^{1/2} \\ &= \left(\int_G \left|\int_G f(g^{-1}hg) - \varphi(g^{-1}hg) \, dg\right|^2 \, dh\right)^{1/2} \\ &\leq \int_G \left(\int_G \left|f(g^{-1}hg) - \varphi(g^{-1}hg)\right|^2 \, dh\right)^{1/2} \, dg = \|f - \varphi\|_2 < \varepsilon \end{split}$$

4. As a corollary, we have $\mathbb{N} \cong \widehat{\mathrm{SU}(2)}$ by mapping $n \in \mathbb{N}$ to $V_n(\mathbb{C}^2)$.

The isomorphism

$$L^2(G) \cong \widehat{\bigoplus}_{[\pi]\in\widehat{G}} \operatorname{End} E_{\pi}$$

can be extended to an unitary/algebra isomorphism. The inner product on $L^2(G)$ is the natural one, and the product structure on $L^2(G)$ is the convolution:

$$(f_1 * f_2)(g) = \int_G f_1(gh^{-1}) f_2(h) \, dh$$

The inner product on the RHS is the Hilbert-Schmidt inner product:

$$\langle (T_{\pi}), (S_{\pi}) \rangle = \sum \operatorname{tr}(S_{\pi}^* \circ T_{\pi}).$$

The product structure on $L^2(G)$ is the operator product structure:

$$(T_{\pi}) \cdot (S_{\pi}) = \left(\frac{T_{\pi} \circ S_{\pi}}{\sqrt{\dim E_{\pi}}}\right)$$

On one component $[\pi] \in \widehat{G}$, let $\pi \colon L^2(G) \to \operatorname{End} E_{\pi}$ be

$$\pi(f) \cdot v := \int_G f(g) \cdot gv \, dg.$$

Then in fact

- (1) $\pi(f_1 * f_2) = \pi(f_1) \circ \pi(f_2)$, and
- (2) $\pi(f)^* = \pi(\tilde{f})$, where $\tilde{f}(g) = \overline{f(g^{-1})}$.

Indeed, this follows from

$$\pi(f_1 * f_2) \cdot v = \int_G \int_G f_1(gh^{-1}) f_2(h)g \cdot v \, dhdg$$
$$= \int_G f_1(g) \left(g \cdot \int_G f_2(h)hv\right) \, dhdg = \pi(f_1) \circ \pi(f_2) \cdot v,$$

and

$$\langle \pi(f_1)v, w \rangle = \int_G f(g) \langle gv, w \rangle \, dg = \int_G \langle v, \overline{f(g)}g^{-1}w \rangle \, dg = \langle v, \pi(\tilde{f}) \cdot w \rangle.$$

Definition 22.1. The operator valued Fourier transform is

$$L^2(G) \xrightarrow{\mathcal{F}} \operatorname{Op}(\widehat{G}),$$

where $\operatorname{Op}(\widehat{G})$ is just $\widehat{\bigoplus} \operatorname{End} E_{\pi}$ with the inner product structure and the product structure,

$$\mathcal{F}f := \left(\sqrt{\dim E_{\pi}} \cdot \pi(f)\right)_{\pi \in \widehat{G}},$$
$$\mathcal{G}(T_{\pi}) := \sum_{\pi} \sqrt{\dim E_{\pi}} \cdot \operatorname{tr}(T_{\pi} \circ \pi(g^{-1})).$$

Theorem 22.2 (Plancherel). The maps \mathcal{F} and \mathcal{G} are unitary, algebra, $G \times G$ -isomorphisms and inverse to each other.

Corollary 22.3. We have

- (1) $||f||^2 = \sum \dim E_{\pi} \cdot ||\pi(f)||^2;$
- (2) $\mathcal{G}I_{E_{\pi}} = \sqrt{\dim E_{\pi}} \cdot \chi_{\overline{E}_{\pi}};$
- (3) $f = \sum \dim E_{\pi} \cdot f * \chi_{\pi};$
- (4) $\langle f_1, f_2 \rangle = \sum \dim E_{\pi} \cdot \operatorname{tr} \pi(\tilde{f}_2 * f_1).$

Definition 22.4. For $f \in L^2(G)$, its scalar valued Fourier transform is

$$\widehat{f}(\pi) := \operatorname{tr} \pi(f) = \sum_{i} \langle \pi(f)v_i, v_i \rangle = \int_G f(g) \sum_{i} \langle gv_i, v_i \rangle \, dg = \langle f, \chi_{\overline{E}_{\pi}} \rangle$$

Corollary 22.5. There is an isomorphism

$$L^2_{\rm cl}(G) \xrightarrow{\widehat{}} \ell^2(\widehat{G})$$
$$f \longmapsto \widehat{f}.$$

23 Lie algebras coming from Lie groups, 12/7

Let G be a Lie group. Then the Lie algebra of G, denoted by Lie G or \mathfrak{g} , is the left invariant vector field on G under Lie bracket:

$$[X,Y]f = XYf - YXf.$$

If $X = a^i \frac{\partial}{\partial x^i}$ and $Y = b^j \frac{\partial}{\partial x^j}$, then

$$[X,Y] = XY - YX = a^{i} \frac{\partial b^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}} - b^{i} \frac{\partial a^{i}}{\partial x^{j}} \frac{\partial}{\partial x^{i}}$$

Since X, Y are left invariant, [X, Y] is also left invariant.

Fact. $\mathfrak{gl}(n,\mathbb{R}) = \operatorname{GL}(n,\mathbb{R})$, i.e., $[\widetilde{A},\widetilde{B}]_e = AB - BA$, where \widetilde{A} (resp. \widetilde{B}) is the left invariant vector field determined by $A \in T_e \operatorname{GL}(n,\mathbb{R})$ (resp. B). Indeed, let h be a curve on $G = \operatorname{GL}(n,\mathbb{R})$ such that h'(0) = A. Then (gh(t))' = gh'(t). So in particular $\ell_{g*}A = gA$. Write $A = \left(a_j^i \frac{\partial}{\partial x_j^i}\right), g = (x_j^i(g))$. Notice that

$$\frac{\partial}{\partial x_j^i}(x_m^k b_\ell^m) = \delta_i^k \delta_m^j b_\ell^m = \delta_i^k b_\ell^j$$

So

$$\begin{split} [\widetilde{A}, \widetilde{B}]_e &= \left. a_j^i \frac{\partial}{\partial x_j^i} (gB)_\ell^k \frac{\partial}{\partial x_\ell^k} - b_j^i \frac{\partial}{\partial x_j^i} (gA)_\ell^k \frac{\partial}{\partial x_\ell^k} \right|_{g=e} \\ &= \left. (AB - BA)_\ell^i \frac{\partial}{\partial x_\ell^i} \right|_e. \end{split}$$

Consider the (unique) curve γ with $\gamma(0) = e, \gamma'(0) = X \in T_eG, \gamma'(t) = \widetilde{X}_{\gamma(t)}$. If $G \subseteq \operatorname{GL}(n, \mathbb{C})$, then in fact $\gamma(t) = e^{tX}$:

$$\gamma'(t) = e^{tX}X = \gamma(t)X = \widetilde{X}_{\gamma(t)}.$$

This says that \widetilde{X} determines an one parameter group of diffeomorphism on G by right translations.

Fact. The exponential map exp: $X \mapsto \gamma(1) = e^X$ is complete, i.e., $\gamma(t)$ is defined for all $t \in \mathbb{R}$ and is a diffeomorphism.

Proof. Notw that $\frac{d}{dt}e^{tX}|_{t=0} = X$ implies $(d \exp)_0|_0 = id$. The result then follows from the inverse function theorem.

Caution: $\exp \mathfrak{g}$ generate a neighborhood of G, hence generate G° . But it may not be onto. True if G is compact!

Example 23.1. $\mathfrak{sl}(n, F)$: det $e^{tX} = e^{t \operatorname{tr} X}$. So det $e^{tX} = 1$ for all t if and only if $\operatorname{tr} X = 0$.

$$\mathfrak{su}(n) = \mathfrak{u}(n) \cap \mathfrak{sl}(n, \mathbb{C}): e^{tX}(e^{tX})^* = e^{tX}e^{tX^*} = 1 \text{ for all } t \text{ if and only if } X^* = -X.$$

Note that $\dim_{\mathbb{R}} \mathfrak{sl}(n,\mathbb{R}) = \dim_{\mathbb{R}} \mathfrak{su}(n) = n^2 - 1$. In fact, $\mathfrak{sl}(n,\mathbb{C}) \cong \mathfrak{su}(n) \otimes_{\mathbb{R}} \mathbb{C}$.

 $\mathfrak{so}(n) = \mathfrak{o}(n)$: we have $X^{\mathsf{T}} = -X$, and note that this implies tr X = 0 automatically. $\mathfrak{sp}(n)$: reading. **Proposition 23.2.** Let $\varphi \colon H \to G$ be a Lie group homomorphism, i.e., a C^{∞} group homomorphism. Then $d\varphi \colon \mathfrak{h} \to \mathfrak{g}$ is a Lie algebra homomorphism, the diagram

$$\begin{split} \mathfrak{h} & \stackrel{d\varphi}{\longrightarrow} \mathfrak{g} \\ \downarrow^{\exp} & \downarrow^{\exp} \\ H & \stackrel{\varphi}{\longrightarrow} G \end{split}$$

commutes, and if H is connected, then d: $\operatorname{Hom}(H,G) \to \operatorname{Hom}(\mathfrak{h},\mathfrak{g})$ is injective.

Proof. $d\varphi([X,Y]) = [d\varphi(X), d\varphi(Y)]$ follows from the C^{∞} structure. Since $\varphi(gg') = \varphi(g)\varphi(g'), \varphi \circ \ell_g = \ell_{\varphi(g)} \circ \varphi$. By chain rule,

$$d\varphi \circ d\ell_g = d\ell_{\varphi(g)} \circ d\varphi$$

i.e., left invariant vector field are compatible with $d\varphi$, hence also integral curve. This implies that the diagram commutes by the construction of exp. Then the injectivity of d follows from the commutative diagram.

Consider the inner automorphism $I_g = \ell_g r_{g^{-1}}$. The adjoint representation is

$$\begin{array}{ccc} G & \xrightarrow{\operatorname{Ad}} & \operatorname{Aut} \mathfrak{g} \\ g & \longmapsto & dI_g, \end{array}$$

this is a Lie group homomorphism. If Z(G) is trivial, then $G \hookrightarrow GL(\mathfrak{g})$, and hence G is a matrix group. We define

ad =
$$d$$
 Ad: $\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$.

Fact. Explicit formulas for matrix groups. They are all as expected.

$$Ad(g)(X) = (ge^{tX}g^{-1})'(0) = gXg^{-1}$$
$$ad(X)Y = (e^{tX}Ye^{-tX})'(0) = XY - YX = [X, Y].$$

Also, $\operatorname{Ad} e^X = e^{\operatorname{ad} X}$.

Theorem 23.3. There is a one to one correspondence between subalgebras \mathfrak{h} of \mathfrak{g} and connected Lie subgroup H of G.

Proof. Fix a basis $\{X_i\}$ of \mathfrak{h} . We get a distribution $\mathscr{H}_g = \langle \widetilde{X}_{ig} \rangle$ for each $g \in G$. Let $\mathscr{H} = \bigsqcup_{g \in G} \mathscr{H}_g$. We show that this distribution is integrable:

$$\left[f^{i}\widetilde{X}_{i},g^{j}\widetilde{X}_{j}\right] = f^{i}g^{j}[\widetilde{X}_{i},\widetilde{X}_{j}] + f^{i}(\widetilde{X}_{i}g^{j})\widetilde{X}_{j} - g^{j}(\widetilde{X}_{j}f^{i})\widetilde{X}_{i} \in \mathscr{H}_{g}.$$

Take H to be the maximal integral submanifold that contains e. It is easy to check that H is indeed a subgroup.

Corollary 23.4. If *H* is simply connected, *G* is connected, then there exists natural bijection between Hom(H, G) and $\text{Hom}(\mathfrak{h}, \mathfrak{g})$.

Proof. Let $\rho: H \to G$. Then the graph $\Gamma_{\rho} \subseteq H \times G$ is a group and $\Gamma_{\rho} \to H$ is a bijection. Then it can be reduced to the previous case.

24 Exponential map, 12/12

Consider $G \subseteq \operatorname{GL}(n, \mathbb{C})$. Then [X, Y] = 0 if and only if $e^{tX}e^{sY} = e^{tX+sY}$ for all $t, s \in \mathbb{R}$. Indeed, if the latter condition holds, then

$$e^{tX}e^{sY} = e^{sY}e^{tX}.$$

Applying $\partial_s \partial_t |_{s=t=0}$ on the both sides we get XY = YX. Hence,

Corollary 24.1. If $A \subseteq G$ is connected, then A is abelian if and only if $\mathfrak{a} := \text{Lie } A$ is abelian.

Definition 24.2. A (k-)torus is a Lie group $T^k := (S^1)^k = \mathbb{R}^k / \mathbb{Z}^k$.

Proposition 24.3. A compact abelian Lie group G is isomorphic to $T^k \times F$ for some k, where F is a finite abelian group.

Proof. Consider the exponential map exp: $\mathfrak{g} \to G^{\circ}$, which is a group homomorphism, and hence surjective. Since exp is locally diffeomorphic near 0, its kernel ker exp is discrete, and thus is isomorphic to $\mathbb{Z}^{\dim \mathfrak{g}}$ (since $\mathfrak{g}/\ker \exp \cong G^0$).

Now, G/G° is a finite abelian group $F \cong \prod \mathbb{Z}/n_i\mathbb{Z}$. Let $g_i \in G$ with $\overline{g}_i = 1 + n_i\mathbb{Z} \in \mathbb{Z}/n_i\mathbb{Z}$. Then $g_i^{n_i} \in G^{\circ}$ implies that there exists an x_i such that $e^{n_ix_i} = g_i^{n_i}$. Let $h_i = g_i e^{-x_i} \in g_i G^{\circ}$. Then $h_i^{n_i} = e$ and

$$G^{\circ} \times \prod \mathbb{Z}/n_i \mathbb{Z} \longrightarrow G$$

$$(g, (\overline{m_i})_i) \longmapsto g \prod h_i^{m_i}$$

is the desired isomorphism.

Definition 24.4. A maximal torus of a compact Lie group G is a maximal connected abelian group. A Cartan subalgebra of $\mathfrak{g} = \text{Lie } G$ is a maximal abelian subalgebra.

Corollary 24.5. Let T be a connected subgroup of a compact Lie group G. Then T is a maximal torus of G if and only if $\mathfrak{t} := \text{Lie } T$ is Cartan. In particular, \mathfrak{t} (and hence T) always exists!

Example 24.6. (1) Let

$$T = \{ \operatorname{diag}(e^{i\theta_1}, \dots, e^{i\theta_n}) \} \subseteq \mathrm{U}(n)$$
$$\mathfrak{t} = \{ \operatorname{diag}(i\theta_1, \dots, i\theta_n) \} \subseteq \mathfrak{u}(n).$$

Then T is a maximal torus of U(n), \mathfrak{t} is a Cartan subalgebra of $\mathfrak{u}(n)$. A similar results holds for SU(n) and $\mathfrak{su}(n)$ with additional condition $\sum \theta_i = 0$.

(2)

$$T = \left\{ \operatorname{diag} \left(\begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} \right) \right\} \subseteq \operatorname{SO}(2n),$$
$$\mathfrak{t} = \left\{ \operatorname{diag} \left(\begin{pmatrix} 0 & -\theta_i \\ \theta_i & 0 \end{pmatrix} \right) \right\} \subseteq \mathfrak{so}(2n).$$

(3)

$$T = \left\{ \operatorname{diag} \left(\begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix}, 1 \right) \right\} \subseteq \operatorname{SO}(2n+1),$$

$$\mathfrak{t} = \left\{ \operatorname{diag} \left(\begin{pmatrix} 0 & -\theta_i \\ \theta_i & 0 \end{pmatrix}, 0 \right) \right\} \subseteq \mathfrak{so}(2n+1).$$

Theorem 24.7. Let G be a compact Lie group, \mathfrak{t} a Cartan subalgebra. Then for each $X \in \mathfrak{g}$, there exists $g \in G$ such that $\operatorname{Ad}(g)X \in \mathfrak{t}$.

Proof. Any finite dimensional representation (ρ, V) has a *G*-invariant inner product, in particular for (Ad, \mathfrak{g}), we call it $\langle -, - \rangle$.

Lemma 24.8. Let $\mathfrak{t} = \mathfrak{z}(y)$ for some regular element $Y \in \mathfrak{g}$.

So we want to find $g \in G$ such that $[\operatorname{Ad}(g)X, Y] = 0$, i.e.,

$$\langle [\operatorname{Ad}(g)X, Y], Z \rangle = -\langle Y, [\operatorname{Ad}(g), Z] \rangle = 0$$

for all $Z \in \mathfrak{g}$. Let g_0 achieves the maximal of the C^{∞} function

$$f(g) = \langle Y, \operatorname{Ad}(g)X \rangle.$$

Then $t \mapsto \langle Y, \operatorname{Ad}(e^{tZ}) \operatorname{Ad}(g_0) X \rangle$, $t \in \mathbb{R}$, has maximum at t = 0 for each $Z \in \mathfrak{g}$. Hence,

$$0 = \frac{d}{dt}\Big|_{t=0} \langle Y, \operatorname{Ad}(e^{tZ}) \operatorname{Ad}(g_0)X \rangle = \langle Y, \operatorname{ad}(Z) \operatorname{Ad}(g_0)X \rangle = -\langle Y, [\operatorname{Ad}(g_0)X, Z] \rangle. \quad \blacksquare$$

Corollary 24.9. (a) Ad(G) acts transitively on the set of Cartan subalgbras.

(b) G acts transitively on maximal tori of G by conjugation.

Proof. For (a), let $\mathfrak{t}_1 = \mathfrak{z}(X)$, and let $g \in G$ such that $\mathrm{Ad}(g)X \in \mathfrak{t}_2$. Then

$$\operatorname{Ad}(g)\mathfrak{t}_1 = \{\operatorname{Ad}(g)Y \mid [Y,X] = 0\}$$

Write $Y' = \operatorname{Ad}(g)Y$. Then

$$[\operatorname{Ad}(g)^{-1}Y', X] = 0 \implies [Y', \operatorname{Ad}(g)X] = 0.$$

So $\mathfrak{t}_2 \subseteq \mathfrak{z}(\mathrm{Ad}(g)X)$. By the maximality of \mathfrak{t}_2 , $\mathrm{Ad}(g)\mathfrak{t}_1 = \mathfrak{t}_2$.

For (b), let $T_i = \exp \mathfrak{t}_i$. Then

$$gT_1g^{-1} = g\exp(\mathfrak{t}_1)g^{-1} = \exp(\operatorname{Ad}(g)\mathfrak{t}_1) = \exp(\mathfrak{t}_2) = T_2.$$

Recall that if G is connected, then $\operatorname{Ad}(g) = \operatorname{id}$ if and only if $g \in Z(G)$.

Theorem 24.10. Let G be a compact connected Lie group. Then $\exp \mathfrak{g} = G$ and for each $g_0 \in G$, there exists $g \in G$ such that $gg_0g^{-1} \in T$.

Proof. Indeed, g_0 lies in some maximal torus T', and $gT'g^{-1} = T$ for some $g \in G$.

Theorem 24.11. Let $G \subseteq GL(n, \mathbb{C}), \gamma \colon \mathbb{R} \to \mathfrak{g}$ a C^{∞} curve. Then

$$\frac{d}{dt}\gamma(t) = \left(\frac{e^{\operatorname{ad}\gamma(t)} - 1}{\operatorname{ad}\gamma(t)}\right)\gamma'(t) \cdot e^{\gamma(t)} = e^{\gamma(t)} \cdot \left(\frac{1 - e^{-\operatorname{ad}\gamma(t)}}{\operatorname{ad}\gamma(t)}\right)\gamma'(t)$$

Note that $(e^z - 1)/z$ and $(1 - e^{-z})/z$ are invertible power series in z.

Proof. Consider the C^{∞} function $\varphi(s,t) = e^{-s\gamma(t)} \frac{\partial}{\partial t} e^{s\gamma(t)}$. Then $\varphi(0,t) = 0$ and

$$\frac{\partial}{\partial s}\varphi(s,t) = -e^{-s\gamma}\gamma\frac{\partial}{\partial t}e^{s\gamma} + e^{-s\gamma}\frac{\partial}{\partial t}(\gamma e^{s\gamma}) = \operatorname{Ad}(e^{-s\gamma})\gamma' = e^{-s\operatorname{ad}\gamma}\gamma'$$

 So

$$e^{-\gamma(t)}\frac{\partial}{\partial t}e^{\gamma(t)} = \varphi(1,t) = \int_0^1 \frac{\partial}{\partial s}\varphi(s,t)\,ds = \int_0^1 e^{-s\operatorname{ad}\gamma}\gamma'\,ds$$
$$= \left(\int_0^1 \sum_n \frac{(-s)^n}{n!}(\operatorname{ad}\gamma)^n\right)\gamma' = \frac{1-e^{-\operatorname{ad}\gamma}}{\operatorname{ad}\gamma}\gamma'.$$

Corollary 24.12. The tangent map $(d \exp)_X$ is nonsingular if and only if

$$\operatorname{Spec}(\operatorname{ad} X) \subseteq (\mathbb{C} \setminus 2\pi i\mathbb{Z}) \cup \{0\}.$$

Proof. Simply take $\gamma(t) = X + tY$ with $(\operatorname{ad} X)Y = \lambda Y$. Then

$$\left(\frac{1-e^{-\operatorname{ad} X}}{\operatorname{ad} X}\right)Y = \begin{cases} \frac{1-e^{-\lambda}}{\lambda}Y, & \text{if } \lambda \neq 0, \\ Y, & \text{if } \lambda = 0. \end{cases}$$

Theorem 24.13 (Dynkin's formula). For any $X, Y \in \mathfrak{gl}(n)$, we have $e^X e^Y = e^Z$, where

$$Z = \sum_{i_k+j_k \ge 1} \frac{(-1)^{n+1}}{n} \frac{1}{(i_1+j_1)\cdots(i_k+j_k)} \cdot \frac{[X^{(i_1)}Y^{(j_1)}\cdots X^{(i_k)}Y^{(j_k)}]}{i_1!j_1!\cdots i_k!j_k!}.$$

Proof. There exists a unique C^{∞} function Z(t) such that $e^{Z(t)} = e^{tX}e^{tY}$ near t = 0. Then

$$\left(\frac{e^{\operatorname{ad} Z} - 1}{\operatorname{ad} Z}\right) Z' \cdot e^{Z} = Xe^{Z} + e^{Z}Y.$$

Hence,

$$Z' = \left(\frac{\operatorname{ad} Z}{e^{\operatorname{ad} Z} - 1}\right) (X + \operatorname{Ad}(e^Z)Y)$$
$$= \left(\frac{\operatorname{ad} Z}{e^{\operatorname{ad} Z} - 1}\right) (X + \operatorname{Ad}(e^{tX})Y) = \left(\frac{\operatorname{ad} Z}{e^{\operatorname{ad} Z} - 1}\right) (X + e^{t\operatorname{ad} X}Y).$$

Note that

ad
$$Z = \log(1 + (e^{\operatorname{ad} Z} - 1)) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (e^{\operatorname{ad} Z} - 1)^n$$
.

 So

$$\left(\frac{\operatorname{ad} Z}{e^{t \operatorname{ad} Z} - 1}\right) (X + e^{t \operatorname{ad} X}Y) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (e^{t \operatorname{ad} X} e^{t \operatorname{ad} Y} - 1)^{n-1} (X + e^{t \operatorname{ad} X}Y).$$

The result now follows by an easy calculation.

Corollary 24.14. Let $N \subseteq \operatorname{GL}(n, \mathbb{C})$ be a connected subgroup such that $\mathfrak{n} := \operatorname{Lie} N$ is contained in the set of strict upper triangular matrices. Then $N = \exp \mathfrak{n}$.

Proof. Consider the equation $e^X e^Y = e^Z$ near 0 (so that exp is one-to-one). The matrix coefficients of Z are polynomial in $X = (x_j^i)$, $Y = (y_j^i)$ by Dynkin's formula. So the equality holds everywhere. Hence, $(\exp \mathfrak{n})^2 \subseteq \exp \mathfrak{n}$. Since $\exp \mathfrak{n}$ generated N, $\exp \mathfrak{n} = N$.

Theorem 24.15. Let G be a compact Lie group. Then \mathfrak{g} is reductive.

Proof. Let $\langle -, - \rangle$ be a Ad-invariant inner product on \mathfrak{g} . Then $\mathfrak{a} \subseteq \mathfrak{g}$ implies $\mathfrak{a}^{\perp} \subseteq \mathfrak{g}$. Hence,

$$\mathfrak{g} = \mathfrak{s}_1 \oplus \cdots \oplus \mathfrak{s}_k \oplus \mathfrak{z}_1 \oplus \cdots \mathfrak{z}_k,$$

where dim $\mathfrak{s}_i \geq 2$ and dim $\mathfrak{z}_i = 1$. It is easy to check that $[\mathfrak{s}_i, \mathfrak{s}_j] = 0$ if $i \neq j$ and $Z(\mathfrak{g}) = \bigoplus \mathfrak{z}_j$.

- **Theorem 24.16** (Structure of compact Lie group). (a) Let G' be the normal subgroup generated by commutators $[g, h] = ghg^{-1}h^{-1}$. If G is compact connected, then G' is connected, closed in G and Lie $G' = [\mathfrak{g}, \mathfrak{g}]$.
 - (b) $G = G' \times Z(G)^{\circ}/F$, where $F = G' \cap Z(G)^{\circ}$ is a finite abelian group.
 - (c) For $\mathfrak{g}' = \bigoplus \mathfrak{s}_i$, $S_i = \exp(\mathfrak{s}_i) \leq G'$ is connect, closed, with only proper closed normal subgroup being finite central in G.

25 Reduce Lie group representations to Lie algebra representations, 12/14

Let G be a Lie subgroup of $\operatorname{GL}(n, \mathbb{C})$, $\rho \colon G \to \operatorname{GL}(V)$ a finite dimensional representation. Then $\rho(e^X) = e^{d\rho(X)}$, so $d\rho$ determines $\rho|_{G^\circ}$. Also, ρ determines $d\rho$. Hence, for G connected, $W \subseteq V$ is $\rho(G)$ -invariant if and only if W is $d\rho(\mathfrak{g})$ -invariant. For G compact connected, V is irreducible if and only if V is irreducible as a $\mathfrak{g}_{\mathbb{C}}$ -representation, where $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C} = \mathfrak{g} \oplus i\mathfrak{g}$.

Observation. We can put $\mathfrak{g} \subseteq \mathfrak{u}(n) \subseteq \mathfrak{gl}(n,\mathbb{C}) = \mathfrak{u}(n) \oplus i\mathfrak{u}(n) = \mathfrak{u}(n)_{\mathbb{C}}$. So there is a

natural inclusion $\mathfrak{g}_{\mathbb{C}} \to \mathfrak{u}(n)_{\mathbb{C}}$.

Note that elements in $\mathfrak{u}(n)$ are skew-Hermitian, while elements in $i\mathfrak{u}(n)$ are Hermitian. So elements in $\mathfrak{u}(n) \cup i\mathfrak{u}(n)$ are normal.

Example 25.1.

$$\begin{split} \mathfrak{su}(n)_{\mathbb{C}} &= \mathfrak{sl}(n, \mathbb{C}) \\ \mathfrak{so}(n)_{\mathbb{C}} &= \{ X^{\mathsf{T}} = -X \}, \\ \mathfrak{sp}(n)_{\mathbb{C}} &= (\mathfrak{u}(2n) \cap \mathfrak{sp}(n, \mathbb{C}))_{\mathbb{C}} = \mathfrak{sp}(n, \mathbb{C}). \end{split}$$

We see that SU(n), Sp(n) are real compact Lie groups, while SL(n), Sp(n) are noncompact.

Theorem 25.2. For any semisimple Lie algebra L over \mathbb{C} , there exists a compact real form, i.e., there exists a real compact Lie group G such that $L \cong \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$.

Let G be a compact Lie group that acts on V by ρ , $\langle -, - \rangle$ a G-invariant inner product on \mathbb{C} , $\mathfrak{t} \subseteq \mathfrak{g}$ a Cartan subalgebra. Then $\mathfrak{t}_{\mathbb{C}}$ acts on V as a family of commuting normal operators, and hence simultaneously diagonalizable. So the Cartan subalgebra defined here is same as the Cartan subalgebra defined in the theory of Lie algebra.

Now, fix a maximal torus $T \subseteq G$, $\mathfrak{t} = \operatorname{Lie} T$. For a *G*-module (ρ, V) , consider the weight space decomposition

$$V = \bigoplus_{\alpha \in \Phi(V)} V_{\alpha}, \quad H \cdot v = d\rho(H) \cdot v = \alpha(H) \cdot v, \quad \forall H \in \mathfrak{t}_{\mathbb{C}}, \ v \in V_{\alpha}.$$

Take $(\rho, V) = (Ad, \mathfrak{g}_{\mathbb{C}})$. Then we have the root decomposition

$$\mathfrak{g}_{\mathbb{C}} = \mathfrak{t}_{\mathbb{C}} \oplus igoplus_{lpha \in \Phi(\mathfrak{g}_{\mathbb{C}})^{ imes}} \mathfrak{g}_{lpha}.$$

Then $\Phi(\mathfrak{g}_{\mathbb{C}})^{\times}$ could be decomposed into the positive part Φ^+ and the negative part Φ^- .

Example 25.3. Let G = SU(n),

$$\mathbf{t} = \left\{ \operatorname{diag}(i\theta_1, \dots, i\theta_n) \middle| \sum \theta_i = 0 \right\}, \quad \mathbf{t}_{\mathbb{C}} = \left\{ \operatorname{diag}(z_1, \dots, z_n) \middle| \sum z_i = 0 \right\}$$

Then $\Phi = \{\pm(\varepsilon_i - \varepsilon_j) \mid i < j\}$, where $\varepsilon_i(\operatorname{diag}(z_j)) = z_i$. This is indeed A_{n-1} .

As in the Lie algebra representation, an element $v \in V_{\lambda_0}$ is a highest weight vector if $X \cdot v = 0$ for all $X \in \mathfrak{n}^+$. New feature: analytically integral weight,

$$A = A(T) = \{ \lambda \in (i\mathfrak{t})^{\vee} \mid \lambda(H) \in 2\pi i\mathbb{Z}, \ \forall e^H = \mathrm{id} \}.$$

We see that A is isomorphic to the character group $\chi(T) = \text{Hom}(T, \mathbb{C}^{\times})$ of T by $\xi_{\lambda}(e^{H}) = e^{\lambda(H)}$.

Theorem 25.4. Let G be a connected compact Lie group, V a finite dimensional irreducible representation. Then there exists a unique highest weight λ_0 which is dominant, integral, and analytically integral.

Definition 25.5. An element $g \in G$ is regular if $Z_G(g)^\circ$ is a maximal torus. The set of regular elements in G is denoted by G^{reg} , and is open dense in G.

For $t \in T$, define $d(t) = \prod_{\alpha \in \Phi} (1 - \xi_{-\alpha}(t))$, which is nonzero if and only if t is regular.

Theorem 25.6 (Weyl integral formula). For $f \in C(G)$,

$$\int_{G} f(g) \, dg = \frac{1}{|W(G)|} \int_{T} d(t) \int_{G/T} f(gtg^{-1}) \, d(gT) dt,$$

where $W(G) = N_G(T)/T$, which is in fact isomorphic to the Weyl group of $\mathfrak{g}_{\mathbb{C}}$ with respect to $\mathfrak{t}_{\mathbb{C}}$.

Proof. Consider

$$\psi \colon G/T \times T^{\mathrm{reg}} \longrightarrow G^{\mathrm{reg}}$$

by multiplication. This map is surjective, and is a |W(G)| to 1 local diffeomorphism. Now use

$$\psi^* \omega_G = d(t) \pi_1^* \omega_{G/T} \wedge \pi_2^* \omega_T.$$

Theorem 25.7. Let $V = V(\lambda)$ be the representation with highest weight λ . For $g \in G^{\text{reg}}$, g is conjugate to $e^H \in T$ for some $H \in \mathfrak{t}$, then

$$\chi_{\lambda}(g) = \Theta_{\lambda}(g) := \frac{\sum_{w \in W(G)} \det w \cdot e^{w(\lambda + \Phi)(H)}}{\prod_{\alpha \in \Phi^+} (e^{\alpha(H)/2} - e^{-\alpha(H)/2})},$$

where $\Phi = \frac{1}{2} \sum_{\alpha \succ 0} \alpha$.

26 Borel-Weil theorem, 12/19

Definition 26.1. Let G be a compact connected Lie group, T a maximal torus of G. Then we can embed G into $U(n) \subseteq GL(n, \mathbb{C})$. Fix $\Phi^+(\mathfrak{g}_{\mathbb{C}})$, we get a Borel subalgebra $\mathfrak{b} = \mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{n}^+$ and $\mathfrak{g}_{\mathbb{C}} = \mathfrak{n}^- \oplus \mathfrak{t}_{\mathbb{C}} \oplus \mathfrak{n}^+$. Let N, B, A, $G_{\mathbb{C}}$ be the connected Lie subgroup in $GL(n, \mathbb{C})$ correspond to \mathfrak{n}^+ , \mathfrak{b} , $\mathfrak{a} = i\mathfrak{t}$, $\mathfrak{g}_{\mathbb{C}} \subseteq \mathfrak{gl}(n, \mathbb{C}) = \mathfrak{u}(n)_{\mathbb{C}}$.

The Cartan involution θ (an abstact version of complex conjugation) is defined to be $\theta(x \otimes z) = x \otimes \overline{z}$. Hence, $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \oplus i\mathfrak{g}$ is the eigenspace decomposition of θ (with eigenvalue 1, -1, respectively). Since $\mathfrak{g} \subseteq \mathfrak{u}(n), \ \theta Z = -Z^*$:

$$Z = X + iY \quad \Longrightarrow \quad -Z^* = -X^* + iY^* = X - iY.$$

Proposition 26.2. Let $\alpha \in \Phi(\mathfrak{g}_{\mathbb{C}})$ be a root. Then α is purely imaginary on \mathfrak{t} , equivalently, α is real on \mathfrak{a} . In particular, $\theta \mathfrak{g}_{\alpha} = \mathfrak{g}_{-\alpha}$.

Proof. The first statement follows from the facts that α skew-hermitian on \mathfrak{t} and hermitian on $i\mathfrak{t}$. For $H \in \mathfrak{t}, Z = X + iY \in \mathfrak{g}_{\alpha}$,

$$\alpha(H)(X+iY) = [H,X] + i[H,Y]$$

implies that $\alpha(H)X = i[H, Y], \ \alpha(H)Y = [H, X]$. Hence,

$$\mathrm{ad}(H)(\theta Z) = [H, X] - i[H, Y] = -\alpha(H)(X - iY) = (-\alpha)(H)(\theta Z).$$

Remark 26.3. For \mathbb{G} compact, \mathfrak{g} semisimple, the Killing form $B(X, Y) = tr(\operatorname{ad} X \operatorname{ad} Y)$ is negative definite on \mathfrak{g} since

$$B(X,X) = \sum_{\alpha \in \Phi} \alpha(X)^2 < 0.$$

So we prefer to consider $\alpha \in \mathfrak{a}^*$, so that $\alpha(H) = B(H, u_\alpha)$ for some $u_\alpha \in \mathfrak{a}$, and get

$$h_{\alpha} = \frac{2}{B(u_{\alpha}, u_{\alpha})} \cdot u_{\alpha}, \quad \alpha(h_{\alpha}) = 2.$$

These give us the standard $\mathfrak{sl}(2,\mathbb{C})$ triple: take $e_{\alpha} \in \mathfrak{g}_{\alpha}$, $f_{\alpha} = -\theta e_{\alpha}$, then $[e_{\alpha}, f_{\alpha}] \parallel h_{\alpha}$ and we may assume that $[e_{\alpha}, f_{\alpha}] = h_{\alpha}$. Let M be a C^{∞} manifold, $\mathbf{V} \to M$ a complex vector bundle of rank n. Assume that a Lie group G acts on \mathbf{V} fiberwisely, i.e., $g \cdot \mathbf{V}_x \subseteq \mathbf{V}_{g(x)}$ for some $g(x) \in M$. We say that V is a **homogeneous vector bundle** if $\mathbf{V}_x \xrightarrow{g} \mathbf{V}_{g(x)}$ is a linear isomorphism. Then Gacts on M and on $\Gamma(M, \mathbf{V})$ by $(g \cdot s)(x) = g \cdot s(g^{-1}x)$.

Let $H \subseteq G$ be a closed subgroup, V a finite dimensional representation of H. Then

$$\mathbf{V} = G \times_H V := \overset{G}{\longrightarrow} V / \sim \longrightarrow M := G/H$$

is a homogeneous vector bundle, where $(gh, v) \sim (g, hv)$ and $g' \cdot [(g, v)] = [(g'g, v)]$.

Proposition 26.4. There is a 1-1 correspondence between homogeneous vector bundles over G/H and finite dimensional representations of H.

Proof. Indeed, \mathbf{V}_{eH} is a representation of H.

Definition 26.5. Let H be a closed subgroup of G, $\rho: H \to \operatorname{GL}(V)$ a representation. The **induced representation** $\operatorname{Ind}_{H}^{G}(\rho) = \operatorname{Ind}_{H}^{G}(V)$ of ρ (or V) is

$$\{f \colon G \to V \mid f(gh) = h^{-1} \cdot f(g)\}$$

with action $(g' \cdot f)(g) = f((g')^{-1}g)$.

Proposition 26.6. There is a natural *G*-isomorphism

$$\Gamma(G/H, G \times_H V) \xrightarrow{\sim} \operatorname{Ind}_H^G(V).$$

Proof. Identify $(G_H \times V)_{eH} \cong V$: $(h, v) \mapsto h^{-1}v$. For $s \in \Gamma(G/H, G \times_H V)$, it corresponds to $f_s(g) = g^{-1}s(gH)$. For $f \in \operatorname{Ind}_H^G(V)$, it corresponds to $s_f(gH) = (g, f(g))$.

Theorem 26.7 (Frobenius reciprocity). Let H be a closed subgroup of G, V an H-module, W a G-module. Then

$$\operatorname{Hom}_{G}(W, \operatorname{Ind}_{H}^{G}(V)) \cong \operatorname{Hom}_{H}(W|_{H}, V)$$

as \mathbb{C} -vector spaces.

Proof. Reading.

Lemma 26.8. The exponential maps exp: $\mathfrak{n}^+ \to N$, $\mathfrak{a} = i\mathfrak{t} \to A$ are bijections, N, B, A are closed subgroups of $G_{\mathbb{C}}$, and

$$T \times \mathfrak{a} \times \mathfrak{n}^+ \longrightarrow B$$
$$(t, iH, X) \longmapsto te^{iH} e^X$$

is a diffeomorphism.

Proof. This follows from Dynkin's formula.

Theorem 26.9. We have $G/T \cong G_{\mathbb{C}}/B$, hence it is a complex (homogeneous) manifold.

Proof. Since $\mathfrak{g} = \{X + \theta X \mid X \in \mathfrak{g}_{\mathbb{C}}\}$, $\mathfrak{g}/\mathfrak{t}$ and $\mathfrak{g}_{\mathbb{C}}/\mathfrak{b}$ both are spanned by the image of $X_{\alpha} + \theta X_{\alpha}$, where $X_{\alpha} \in g_{\alpha}$, $\alpha \in \Phi^+$. So $p: G \to G_{\mathbb{C}}/B$ has dp surjective at $e \in G$. Then Im p contains a neighborhood of eB and hence open and closed. Thus, p is surjective.

We claim that $G \cap B = T$. First of all, $\mathfrak{g} \cap \mathfrak{b} = \mathfrak{t}$ is known. Let $g \in G \cap B$. Then Ad(g) preserves $\mathfrak{t} = \mathfrak{g} \cap \mathfrak{b}$, hence T, i.e., $g \in N_G(T)$. Let w be the image of g in the Weyl group. Then $g \in B$ implies that w preserves Δ^{\perp} , hence preserves the fundamental Weyl chamber. Thus, w = I and g = T.

Definition 26.10. For $\lambda \in A(T)$, let \mathbb{C}_{λ} be the *T*-module corresponds to the character $\xi_{\lambda} \colon T \to \mathbb{C}^{\times}$, and $L_{\lambda} = G \times_T \mathbb{C}_{\lambda}$ the homogeneous line bundle over G/T. We extend ξ_{λ} to $\xi_{\lambda}^{\mathbb{C}} \colon B \to \mathbb{C}^{\times}$ by

$$\xi_{\lambda}^{\mathbb{C}}(te^{iH}e^X) = \xi_{\lambda}(t)e^{i\lambda(H)},$$

and still denote the corresponding *B*-module by \mathbb{C}_{λ} . Let $L_{\lambda}^{\mathbb{C}} = G_{\mathbb{C}} \times_B \mathbb{C}_{\lambda}$ be the homogeneous (holomorphic) line bundle over $G_{\mathbb{C}}/B$.

Lemma 26.11. We have

$$\operatorname{Ind}_{T}^{G}(\xi_{\lambda}) \cong \Gamma(G/T, L_{\lambda}) \cong \Gamma(G_{\mathbb{C}}/B, L_{\lambda}^{\mathbb{C}}) \cong \operatorname{Ind}_{B}^{G_{\mathbb{C}}}(\xi_{\lambda}^{\mathbb{C}})$$

as C^{∞} -sections.

Since $L^{\mathbb{C}}_{\lambda}$ is holomorphic over $G_{\mathbb{C}}/B$, we have $\Gamma_{\text{hol}}(G/T, L_{\lambda}) := \Gamma_{\text{hol}}(G_{\mathbb{C}}/B, L^{\mathbb{C}}_{\lambda})$.

Theorem 26.12 (Borel-Weil). The space

$$\Gamma_{\rm hol}(G/T, L_{\lambda}) = \begin{cases} V(-\lambda), & \text{if } -\lambda \text{ is dominant,} \\ 0, & \text{else.} \end{cases}$$

Proof. Use

$$C^{\infty}(G)_{G-\text{fin}} = \bigoplus_{\substack{\gamma \in A(T) \\ \text{dominant}}} V(\gamma)^{\vee} \otimes V(\gamma)$$

to read out holomorphic property in this decomposition.

Theorem 26.13 (Bott-Borel-Weil). Let $\lambda \in A(T)$, $\delta = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$. If $\lambda + \delta$ lies in a Weyl chamber wall, then

$$H^p(G/T = G_{\mathbb{C}}/B, L^{\vee}_{\lambda}) = 0, \quad p > 0.$$

Otherwise, let $w \in W(\Phi^+)$ such that $w * \lambda = w(\lambda + \delta) - \delta$ is dominant, and $\ell(w)$ be the length of w, which is equal to the number of $\alpha \in \Phi^+$ such that $B(\lambda + \delta, \alpha) < 0$. Then

$$H^{p}(G/T, L_{\lambda}^{\vee}) = \begin{cases} V(w * \lambda), & \text{if } p = \ell(w), \\ 0, & \text{else.} \end{cases}$$