KONTSEVICH'S PROOF OF WITTEN CONJECTURE

YOU-CHENG CHOU

0.1. nKdV-hierarchy. We consider the operator

$$
L=\partial_{x}^{n+1}+a_{1}(x) \partial_{x}^{n-1}+\cdots+a_{n}(x),
$$

For any pair

$$
(\alpha, p), \quad \alpha=1, \ldots, n, \quad p=0,1, \ldots
$$

we consider the following system of PDEs for functions $a_{1}(x, \underline{t}), \ldots, a_{n}(x, \underline{t})$:

$$
\partial_{t^{\alpha}, p} L=\left[L,\left(L^{\frac{\alpha}{n+1}+p}\right)_{+}\right],
$$

where $\left(L^{\frac{\alpha}{n+1}+p}\right)_{+}$denotes the differential part of the pseudodifferential operator $L^{\frac{\alpha}{n+1}+p}$.

To construct pseudodifferential operator $L^{\frac{\alpha}{n+1}+p}$, it suffice to construct

$$
L^{\frac{1}{n+1}}=\partial_{x}+l_{1}(x) \partial_{x}^{-1}+l_{2}(x) \partial_{x}^{-2}+\cdots,
$$

where ∂^{-1} is the inverse operator to ∂ and its commutator with function $f(x)$ is as follows:

$$
\left[\partial_{x}^{-1}, f(x)\right]=-f_{x} \partial_{x}^{-1}+f_{x x} \partial_{x}^{-2}-\ldots
$$

The last rule and equation $\left(L^{\frac{1}{n+1}}\right)^{n+1}=L$ allow us to solve $l_{i}(x)$ recursively.

0.2. Constructing Solutions to the KdV Hierarchy from the Sato Grass-

 manian.Definition 0.1. A Sato space is an infinite dimensional vector subspace $W \subset$ $\mathbb{C}((z))$ such that

$$
W=<f_{1}, f_{2}, \cdots>
$$

for some $f_{j}(z)=z^{-j}+\alpha z^{-j+1}+\cdots=z^{-j}(1+\circ(1))$.
Let T_{1}, T_{2}, \ldots be an infinite sequence of formal variables, and denote by $M\left(z ; T_{1}, T_{2}, \ldots\right)$ the function

$$
M\left(z ; T_{1}, T_{2}, \ldots\right)=e^{T_{1} z^{-1}+T_{2} z^{-2}+\ldots}
$$

For a Sato space $W=<f_{1}, f_{2}, \cdots>$, we define the τ-function associated it as the fraction

$$
\tau_{W}\left(T_{1}, T_{2}, \ldots\right)=\frac{\left(\cdots \wedge M f_{3} \wedge M f_{2} \wedge M f_{1}\right) \wedge z^{0} \wedge z^{1} \wedge z^{2} \ldots}{\cdots \wedge z^{-3} \wedge z^{-2} \wedge z^{-1} \wedge z^{0} \wedge z^{1} \wedge z^{2} \wedge \ldots}
$$

It depends on the space W itself, and not on the specific choice of the basis f_{1}, f_{2}, \ldots.

Proposition 0.2. Let W be a Sato space such that $z^{-2} W \subset W$. Then we have (1) $\tau_{W}\left(T_{1}, T_{2}, \ldots\right)$ does not depend on $T_{2 i}$ for $i>0$;
(2) the second order differential operators

$$
L=\partial_{x}^{2}+2 \partial_{T_{1}}^{2} \log \tau_{W}\left(-x+T_{1}, T_{3}, T_{5}, \ldots\right)
$$

satisfyies the KdV hierarchy

$$
\partial_{T_{2 k+1}} L=\left[L,\left(L^{\frac{2 k+1}{2}}\right)_{+}\right] .
$$

Proposition 0.3. Let W be a Sato space generated by $f_{i}=z^{-i}(1+\circ(1))$. Then for any $N \geq 0$,

$$
\frac{\operatorname{det}\left(f_{i}\left(z_{j}\right)\right)}{\operatorname{det} z_{j}^{-i}}=\tau_{W}\left(T_{1}\left(z_{*}\right), T_{2}\left(z_{*}\right), \ldots\right)
$$

where $T_{k}\left(z_{*}\right):=\frac{1}{k} \sum_{i=1}^{N} z_{i}^{k}$.

0.3. Witten's Conjecture.

Let $\mathcal{M}_{g, n}\left(\overline{\mathcal{M}}_{g, n}\right)$ be the moduli space of smooth (nodal) genus g, n-pointed stable curves, \mathcal{L}_{i} be line bundle on $\overline{\mathcal{M}}_{g, n}$ whose fiber at the moduli point $\left(C ; x_{1}, \ldots, c_{n}\right)$ is $T_{x_{i}}^{*} C$ and let $\psi_{i}:=c_{1}\left(\mathcal{L}_{i}\right)$.

The intersection number is defined by

$$
<\tau_{d_{1}} \cdots \tau_{d_{n}}>:=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}},
$$

where $g=\frac{\sum d_{i}+3-n}{3}$. We consider the formal power series of intersection number

$$
F\left(t_{0}, t_{1}, \ldots\right)=\sum_{n \geq 0} \sum_{d_{1} \geq 0, \ldots, d_{n} \geq 0} \frac{1}{n!}<\tau_{d_{1}} \cdots \tau_{d_{n}}>t_{d_{1}} \cdots t_{d_{n}}
$$

Theorem 0.4 (Witten's Conjecture). e^{F} is the τ-function for KdV with respect to variables $T_{2 i+1}=\frac{t_{i}}{(2 i+1)!!}$
Remark 0.5. $F\left(t_{0}, t_{1}, \ldots\right)$ is completely determined by $F\left(t_{0}, 0,0, \ldots\right)=\frac{1}{6} t_{0}^{3}$, KdV-hierarchy, string equation and dilaton equation.
0.4. Combinatorial Model. Let X be a compact Riemann surface and ρ be a meromorphic quadratic differential on X. Locally, $\rho=\phi(z)(d z)^{2}$, where $\phi(z)$ is a meromorphic function. In our case, we assume ϕ has only simple or double poles.

We define the horizontal line field as

$$
\left\{v \in T X \mid \phi(z)(d z(v))^{2}>0\right\}
$$

Its integral curve is called horizontal trajectory.
Remark 0.6. For a generic quadratic differential, a generic horizontal trajectory is nonclosed.

Here we define a special kind of quadratic differential:

Definition 0.7. A Jenkins-Strebel differential is a quadratic differential with only finite nonclosed horizontal trajectory.

By a local analysis, we can see that if z_{0} zero of order d of ρ, then there are $d+2$ horizontal trajectories issuing from z_{0}. If z_{0} is a simple pole, then there is a unique horizontal trajectory issuing from z_{0}. Finally, if z_{0} is a double pole with negative residue, then z_{0} is surrounded by closed horizontal trajectories. We further list some properties of Jenkins-Strebel differential that we will need later.

Proposition 0.8. Let X be a Riemann surface of finite type and $\rho(z)=\phi(z) d z^{2}$ be a Jenkin-Strebel differential on X. Then

- the connected component of $X \backslash$ \{graph of nonclosed horizontal trajectory\} is either open annulus or open disk;
- all closed horizontal trajectory in the same connected component have the same length. (We use the metric $d l^{2}=|\phi(z)||d z|^{2}$.)

Theorem 0.9. (Strebel) For any $2 n+1$-tuples $\left(X ; x_{1}, \ldots, x_{n} ; p_{1}, \ldots, p_{n}\right)$, where X is a Riemann surface of finite type, x_{i} are distinct points of $X, p_{i}>0$, and $n>\chi(X)$, there exists a unique Jenkins-Strebel differential such that

- it has double pole at x_{i} and no other poles;
- connected components of $X \backslash$ \{ graph of nonclosed horizontal trajectory \} are open disks;
- the length of horizontal trajectory associated to x_{i} is p_{i}.

We call the unique Jenkins-Strebel differential defined above the canonical Jenkins-Strebel differential.

Conversely, given an embedded graph (a graph in oriented topological surface X) with

- each valencies of vertex ≥ 3,
- face marked by x_{1}, \ldots, x_{n}
- fixed lengths of its edges,
- complement of embedded graph is a disjoint, union of open disks, there exists unique complex structure such that its corresponding canonical Jenkins-Strebel differential determines the given embedded graph.

Now, we define $M_{g, n}^{\text {comb }}:=\{$ the moduli space of genus g connected embedded graphs with each valencies of vertex $\geq 3, n$-marked faces, fixed lengths of its edges, and complement being a disjoint union of open disks \}.

Theorem 0.10. $\mathcal{M}_{g, n} \times \mathbb{R}_{+}^{n} \cong \mathcal{M}_{g, n}^{\text {comb }}$ as real orbifolds.
We can further generalize the above discussion to stable curve.
Definition 0.11. For a stable curve C with given perimeter on its marked points, the canonical Jenkins-Strebel differential on C is a quadratic differential ρ such that:

- $\rho \equiv 0$ on the unmarked components;
- ρ is the canonical Jenkins-Strebel differential on the puntured marked components.
$\overline{\mathcal{M}}_{g, n}^{\text {comb }}:=\{$ the space of stable genus g embedded graphs with vertices of valencies ≥ 3 on smooth point, at most one valency on nodal points, n marked faces, complement being disjoint union of open disks, and fixed length of edges on marked component and no graph on unmarked components.\}

To determine the relation between $\overline{\mathcal{M}}_{g, n}$ and $\overline{\mathcal{M}}_{g, n}^{\text {comb }}$, we introduce the equivalence relation as follows: Let C be a stable curve with genus g and n marked points. We can canonically decompose C as the union of two curves $C=C^{+} \cup C^{0}$, where C^{+}is the union of all the components of C containing marked points, and C^{0} is the union of those containing no marked points. Let ξ_{1}, \ldots, ξ_{u} be the points that C^{+}has in common with C^{0}. We say that $\left[\left(C ; x_{1}, \ldots, x_{n}\right)\right]$ is equivalent to $\left[\left(C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right]$ if there is a family of nodal curves $\left\{C_{s}^{0}\right\}_{s \in S}$ over a connected base S, together with sections of smooth points $\tau_{1}, \ldots, \tau_{u}$, with the property that ($C ; x_{1}, \ldots, x_{n}$) (resp.,($\left.C^{\prime}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$) can be obtained from C^{+}and C_{s}^{0} (resp., $C_{s^{\prime}}^{0}$) by identifying ξ_{i} with $\tau_{i}(s)$ (resp., $\tau_{i}\left(s^{\prime}\right)$) for $i=1, \ldots, u$.

It is easy to check that what we just defined is an equivalence relation. We let

$$
Q: \overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n}^{\prime}
$$

denote the projection via the equivalence relation. Now we can state the similar identifications for stable curves:

Theorem 0.12. $H: \overline{\mathcal{M}}_{g, n}^{\prime} \times \mathbb{R}_{+}^{n} \rightarrow \overline{\mathcal{M}}_{g, n}^{\text {comb }}$ is a homeomorphism.
0.5. Matrix Integral Model. We recall some facts about matrix integral.

Let B be a $n \times n$ positive definite symmetric matrix. We consider the integral

$$
c \int_{\mathbb{R}^{n}} e^{-\frac{1}{2}(B x, x)} \prod_{i=1}^{n} d x_{i},
$$

where c is chosen such that the integral equals 1 . With this normalization we have

$$
<x_{i} x_{j}>:=c \int_{\mathbb{R}^{n}} x_{i} x_{j} e^{-\frac{1}{2}(B x, x)} \prod_{i=1}^{n} d x_{i}=\left(B^{-1}\right)_{i j} .
$$

We can further generalized this computation.
Theorem 0.13 (Wick's formula). Let $f_{1}, \ldots, f_{2 k}$ be linear functions of x_{1}, \ldots, x_{n}. Then

$$
<f_{1} f_{2} \cdots f_{2 k}>=\sum_{\substack{p_{1}<\cdots<p_{k} \\ q_{1}<\cdots<q_{k}}}<f_{p_{1}} f_{q_{1}}>\cdots<f_{p_{k}} f_{q_{k}}>
$$

Let $\Lambda=\left(\Lambda_{i}\right)_{1 \leq i \leq N}$ be a diagonal matrix with $\operatorname{Re}\left(\Lambda_{i}\right)>0$ and $H=$ $\left(h_{i j}\right)=\left(x_{i j}+\sqrt{-1} y_{i j}\right)$ be a Hermitian matrix. We consider the following measure on the space of Hermitian matrices

$$
d \mu_{\Lambda}(H)=C_{\Lambda, N} e^{-\frac{1}{2} \operatorname{tr} H^{2} \Lambda} \prod_{i=1}^{N} d x_{i i} \prod_{i<j} d x_{i j} d y_{i j}
$$

where $C_{\Lambda, N}$ is chosen such that

$$
\int_{\mathcal{H}_{N}} d \mu_{\Lambda}(H)=1 .
$$

By direct computation, we have $C_{\Lambda, N}=(2 \pi)^{-\frac{N^{2}}{2}} \prod_{i=1}^{N} \Lambda_{i}^{\frac{1}{2}} \prod_{i<j}\left(\Lambda_{i}+\Lambda_{j}\right)$.
In coordinated $x_{i i}, x_{i j}, y_{i j}$, we can write $\operatorname{tr}\left(H^{2} \Lambda\right)=(B x, x)$, where

$$
B=\left(\begin{array}{llllllll}
\Lambda_{1} & & & & & & & \\
& \ddots & & & & & & \\
& & \Lambda_{N} & & & & & \\
& & & \Lambda_{1}+\Lambda_{2} & & & & \\
& & & & \ddots & & & \\
& & & & & \Lambda_{N-1}+\Lambda_{N} & & \\
& & & & & & \Lambda_{1}+\Lambda_{2} & \\
\\
& & & & & & & \ddots
\end{array}\right]
$$

Hence we have

$$
<x_{i i}^{2}>_{\Lambda, N}:=\int_{\mathcal{H}_{N}} x_{i i}^{2} d \mu_{\Lambda}(H)=\frac{1}{\Lambda_{1}}, \quad<x_{i j}^{2}>_{\Lambda, N}=<y_{i j}^{2}>_{\Lambda, N}=\frac{1}{\Lambda_{i}+\Lambda_{j}},
$$

and similarly

$$
<h_{i j} h_{j i}>_{\Lambda, N}=\frac{2}{\Lambda_{i}+\Lambda_{j}},<h_{i j} h_{k l}>_{\Lambda, N}=0 \text { if }(i, j) \neq(l, k)
$$

Now we compute

$$
<e^{\frac{\sqrt{-1}}{6}} \operatorname{tr}\left(H^{3}\right)>_{\Lambda, N}=<\left(1-\frac{1}{2!} \frac{1}{6^{2}}\left(\operatorname{tr}\left(H^{3}\right)\right)^{2}+\frac{1}{4!} \frac{1}{6^{4}}\left(\operatorname{tr}\left(H^{3}\right)\right)^{4}\right)-\cdots>_{\Lambda, N} .
$$

By Wick's formula, the right hand side can be presented as the monomial of $\left.<h_{i_{n} j_{n}} h_{i_{m} k_{m}}\right\rangle$. Notice that each term can correspond to the gluing of 3-stars.

In this case an edge of the gluing corresponds to a pair $<h_{i_{n} j_{n}} h_{i_{m} k_{m}}>$. We define the weight of an gluing the product

$$
\prod \frac{2}{\Lambda_{i}+\Lambda_{j}}
$$

taken over all edges of the gluing.
Now we can rewrite the Kontsevich's model into graph sum:

$$
<e^{\frac{\sqrt{-1}}{6}} \operatorname{tr}\left(H^{3}\right)>_{\Lambda, N} \sim \sum_{G \in \mathcal{G}^{3}, N} \frac{\left(\frac{\sqrt{-1}}{2}\right)^{|V(G)|}}{|\operatorname{AutG}|} \prod_{e \in E(G)} \frac{2}{\Lambda_{e}+\Lambda_{e}^{\prime}},
$$

where $\mathcal{G}^{3, N}$ is set of equivalent class with 3 -valent graphs and with N possible colors $\Lambda_{1}, \cdots, \Lambda_{N}$ drawing on the face.

It can be observed by the following proposition:

Proposition 0.14.

$<(\operatorname{tr} H)^{\alpha_{1}} \cdots\left(\operatorname{tr}\left(H^{k}\right)\right)^{\alpha_{k}}>_{\Lambda, N}=\alpha_{1}!\cdots \alpha_{k}!2^{\alpha_{2}} \cdots k^{\alpha_{k}} \sum_{G \in \mathcal{G}^{N}} \frac{1}{\mid \operatorname{AutG|}} \prod_{e \in E(G)} \frac{2}{\Lambda_{e}+\Lambda_{e}^{\prime}}$.
0.6. Proof of Witten conjecture. The first step of the proof is to give a combinatorial formula for ψ_{i}. Let $\bar{\pi}_{i}: S^{1}\left(\mathcal{L}_{i}^{\text {comb }}\right) \rightarrow \overline{\mathcal{M}}_{g, n}^{\text {comb }}$. We want to find a closed 2 -form w_{i} on $\overline{\mathcal{M}}_{g, n}^{\text {comb }}$ such that $\bar{\pi}_{i}^{*}\left(w_{i}\right)=d \phi$ and $\left.\int_{S^{1}} \phi\right|_{\text {fiber }}=1$.

Fix $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{+}^{n}$, we have the commutative diagram:

By the way Q was constructed, the line bundle \mathcal{L}_{i} restricts to a trivial line bundle on the fibers of Q and therefore drops to a well-defined line bundle \mathcal{L}_{i}^{\prime} on $\overline{\mathcal{M}}_{g, n}^{\prime}$ with $Q^{*}\left(\mathcal{L}_{i}^{\prime}\right)=\mathcal{L}_{i}$. Let $\mathcal{L}_{i}^{\text {comb }}$ be the pullback of \mathcal{L}_{i}^{\prime} via h^{-1}, so that

$$
h^{*}\left(\mathcal{L}_{i}^{\text {comb }}\right)=\mathcal{L}_{i}^{\prime}, f^{*}\left(\mathcal{L}_{i}^{\text {comb }}\right)=\mathcal{L}_{i} .
$$

Now our goal becomes giving the combinatorial expression for its first Chern class.

Let $|a| / \Gamma_{a}$ be an orbisimplex of $\overline{\mathcal{M}}_{g, n}^{\text {comb }}(p)$, where a corresponds to an embedded graph $\left(G_{a} ; x_{1}, \ldots, x_{n}\right)$ whose i-th perimeter is equal to p_{i} and $\Gamma_{a}=\operatorname{Aut}\left(\left(G_{a} ; x_{1}, \ldots, x_{n}\right)\right)$. The coordinates relative to the simplex $|a|$ are the lengths

$$
\left\{l_{e}\right\}_{e \in E\left(G_{a}\right)}
$$

of the edges of G_{a}. At each point x_{i}, we consider a cyclically ordered set of oriented edges of G_{a}

$$
\left(e_{1}, \ldots, e_{v}\right)
$$

with possible repetitions. A repetition happens when the edge bounds the same component of G_{a}. We set

$$
\left(w_{i}\right)_{|a|}=\sum_{1 \leq s<t \leq v-1} d\left(\frac{l_{e_{s}}}{p_{i}}\right) \wedge d\left(\frac{l_{e_{t}}}{p_{i}}\right)
$$

Lemma 0.15. For each x_{i} and $p \in \mathbb{R}_{+}^{n}$,

$$
\left[w_{i}\right]=c_{1}\left(\mathcal{L}_{i}^{\text {comb }}\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n}^{\text {comb }}(p)\right) .
$$

In particular,

$$
\left[f^{*}\left(w_{i}\right)\right]=c_{1}\left(\mathcal{L}_{i}\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n}\right) .
$$

Now we can rewrite the intersection number

$$
\begin{aligned}
<\tau_{d_{1}}, \ldots, \tau_{d_{n}}>=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{d_{1}} \cdots \psi_{n}^{d_{n}} & =\int_{\overline{\mathcal{M}}_{g, n} \text { comb }(p)} w_{1}^{d_{1}} \cdots w_{n}^{d_{n}} \\
& =\int_{\mathcal{M}_{g, n}^{c o m b}(p)} w_{1}^{d_{1}} \cdots w_{n}^{d_{n}}
\end{aligned}
$$

The last equality is true since the boundary is measure zero.
Let $\Omega=\sum_{i=1}^{n} p_{i}^{2} w_{i}$.

$$
\begin{aligned}
& \int_{\mathbb{R}_{\geq 0}^{n}} e^{-\sum \lambda_{i} p_{i}}\left(\int_{\mathcal{M}_{g, n}^{c o m b}(p)} \frac{\Omega^{d}}{d!}\right) d p_{1} \cdots d p_{n} \\
= & \sum_{d_{1}+\cdots d_{n}=d}<\tau_{d_{1}} \cdots \tau_{d_{n}}>\prod_{i=1}^{n} \frac{2 d_{i}!}{d_{i}!} \lambda_{i}^{-2\left(d_{i}+1\right)}=(1),
\end{aligned}
$$

where $\operatorname{Re}\left(\lambda_{i}\right)>0$ and $d=3 g-3+n$.
We use the combinatorial theorem due to Kontsevich.
Theorem 0.16. $\frac{\Omega^{d}}{d!} d p_{1} \wedge \cdots \wedge d p_{n}=2^{2 n+5 g-5} d l_{e_{1}} \wedge \cdots \wedge d l_{e_{6 g-6+3 n}}$.
We have

$$
\begin{aligned}
(1) & =\int_{\mathbb{R}_{\geq 0}^{n}} e^{-\sum \lambda_{i} p_{i}}\left(\int_{\mathcal{M}_{g, n}^{c o m b}(p)} 2^{2 n+5 g-5} d l_{e_{1}} \wedge \cdots \wedge d l_{e_{6 g-6+3 n}}\right) \\
& =\sum_{G \in \mathcal{G}_{8, n}^{3, c}} \frac{2^{2 n+5 g-5}}{|\operatorname{Aut} G|} \int_{|a(G)|} e^{-\sum \lambda_{i} p_{i}} d l_{e_{1}} \wedge \cdots \wedge d l_{e_{g-6+3 n},}
\end{aligned}
$$

where $\mathcal{G}_{g, n}^{3, c}$ is the isomorphism class of connected 3-valent embedded graph with genus g and n-marked points. We further do some change of variables.

$$
\sum_{i=1}^{n} \lambda_{i} p_{i}=\sum_{e \in E(G)}\left(\lambda_{e}+\lambda_{e}^{\prime}\right) l_{e}
$$

where λ_{e} and λ_{e}^{\prime} are the perimeter of the two faces adjacent to the edge e.
Now we have the relation (*)

$$
\sum_{\mathcal{G}_{8, n}^{3, c}} \frac{2^{-|V(G)|}}{|\operatorname{Aut}(G)|} \prod_{e \in E(G)} \frac{2}{\lambda_{e}+\lambda_{e}^{\prime}}=\sum_{d_{1}+\cdots+d_{n}=d}<\tau_{d_{1}} \cdots \tau_{d_{n}}>\prod_{i=1}^{n} \frac{\left(2 d_{i}-1\right)!!}{\lambda_{i}^{2 d_{i}+1}}
$$

Theorem 0.17. Let $F\left(t_{0}, t_{1}, \cdots\right)=\sum_{n \geq 0} \sum_{d_{1}, \ldots, d_{n} \geq 0} \frac{1}{n!}<\tau_{d_{1}} \cdots \tau_{d_{n}}>t_{d_{1}} \cdots t_{d_{n}}$.
Set $\Lambda=\operatorname{diag}\left(\Lambda_{1}, \ldots \Lambda_{N}\right)$ with $\operatorname{Re}\left(\Lambda_{i}\right)>0$ and $t_{i}(\Lambda)=-(2 i-1)!!\operatorname{Tr}\left(\Lambda^{-2 i-1}\right)$. Then

$$
F\left(t_{0}(\Lambda), t_{1}(\Lambda), \ldots\right)=\sum_{G \in \mathcal{G}^{3, c, N}} \frac{\left(\frac{\sqrt{-1}}{2}\right)^{|V(G)|}}{|\operatorname{Aut}(G)|} \prod_{e \in E(G)} \frac{2}{\Lambda_{e}+\Lambda_{e}^{\prime}}
$$

where $\mathcal{G}^{3, c, N}$ is the isomorphism class of connected 3-valent embedded graph with N-possible colors $\Lambda_{1}, \cdots, \Lambda_{N}$ drawing on the face.
Corollary 0.18. $F\left(t_{0}(\Lambda), t_{1}(\Lambda), \cdots\right)$ is the asymptotic expansion of $\log <e^{\frac{\sqrt{-1}}{6}} \operatorname{tr} H^{3}>_{\Lambda, N}$ as $\Lambda^{-1} \rightarrow 0$.

Here we recall some properties of Airy function. We first study its asymptotic behaviour by stationary phase method.

$$
\begin{aligned}
a(y) & =\int_{-\infty}^{\infty} e^{\sqrt{-1}\left(x^{3} / 3-x y\right)} d x \\
& \sim \int_{U\left(y^{1 / 2}\right)} e^{\sqrt{-1}\left(x^{3} / 3-x y\right)} d x+\int_{U\left(-y^{1 / 2}\right)} e^{\sqrt{-1}\left(x^{3} / 3-x y\right)} d x \\
& \sim \text { const } \cdot \sum_{ \pm y^{1 / 2}} y^{\frac{-3}{4}} e^{-\frac{2 \sqrt{-1}}{3} y^{\frac{3}{2}}} f_{1}\left(y^{-\frac{1}{2}}\right)
\end{aligned}
$$

and similarly we have

$$
\begin{aligned}
a^{j-1}(y) & =\int_{-\infty}^{\infty}(-\sqrt{-1} x)^{j-1} e^{\sqrt{-1}\left(x^{3} / 3-x y\right)} d x \\
& \sim \text { const } \cdot \sum_{ \pm y^{1 / 2}} y^{\frac{-3}{4}} e^{-\frac{2 \sqrt{-1}}{3} y^{\frac{3}{2}}} f_{j}\left(y^{-\frac{1}{2}}\right)
\end{aligned}
$$

where $f_{j}(y)=y^{-j}(1+\circ(1))$.
We have similar expression for matrix Airy function:

$$
\begin{aligned}
A(Y) & =\int_{\mathcal{H}_{N}} e^{\sqrt{-1} \operatorname{tr}\left(X^{3} / 3-X Y\right)} d X \\
& \sim \sum_{Y^{1 / 2}} \int_{U\left(Y^{\frac{1}{2}}\right)} e^{\sqrt{-1} \operatorname{tr}\left(X^{3} / 3-X Y\right)} d X \\
& =\sum_{Y^{1 / 2}} \int_{U(0)} e^{\sqrt{-1} \operatorname{tr}\left(\left(X+Y^{1 / 2}\right)^{3} / 3-\left(X+Y^{1 / 2}\right) Y\right)} d X \\
& =\sum_{Y^{1 / 2}} e^{-\frac{2 \sqrt{-1}}{3} \operatorname{tr} Y^{3 / 2}} \int_{U(0)} e^{\sqrt{-1} \operatorname{tr}\left(X^{3} / 3-X^{2} Y^{1 / 2}\right)} d X \\
& \sim \text { const } \cdot \sum_{Y^{1 / 2}} e^{-\frac{2 \sqrt{-1}}{3} \operatorname{tr} Y^{3 / 2}} Y_{i}^{-1 / 4} \prod_{i<j}\left(Y_{i}^{1 / 2}+Y_{j}^{1 / 2}\right)^{-1 / 2} e^{F\left(\tilde{\left.t_{0}\left(Y^{1 / 2}\right), \cdots\right)}-(1)\right.}
\end{aligned}
$$

where $\tilde{t}_{i}\left(Y^{1 / 2}\right)=2^{-(2 i+1) / 3}(2 i-1)!!\operatorname{tr}\left(Y^{-i-1 / 2}\right)$. We can express matrix Airy function in another form.

Lemma 0.19. If Φ is a conjugacy invariant function on \mathcal{H}_{N}, then for any diagonal real matrix Y,

$$
\begin{aligned}
& \int_{\mathcal{H}_{N}} \Phi(X) e^{-\sqrt{-1} \operatorname{tr} X Y} d X \\
& =\frac{(-2 \pi \sqrt{-1})^{N(N-1) / 2}}{\operatorname{det} Y_{i}^{j-1}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \Phi(D) e^{-\sqrt{-1} \operatorname{tr} D Y} \operatorname{det} D_{i}^{j-1} d D_{1} \cdots d D_{N}
\end{aligned}
$$

Now we have

$$
\begin{aligned}
A(Y) & =\frac{(-2 \pi \sqrt{-1})^{N(N-1) / 2}}{\operatorname{det} Y_{i}^{j-1}} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{i} e^{\sqrt{-1} \operatorname{tr}\left(D_{i}^{3} / 3-D_{i} Y_{i}\right)} \operatorname{det} D_{i}^{j-1} d D_{1} \cdots d D_{N} \\
& \sim \text { const } \cdot \sum_{Y^{1 / 2}} e^{-\frac{2 \sqrt{-1}}{3} \operatorname{tr} Y^{3 / 2}} \prod_{i=1}^{N} Y_{i}^{-\frac{3}{4}} \frac{\operatorname{det} f_{j}\left(Y_{i}^{-1 / 2}\right)}{\operatorname{det} Y_{i}^{j-1}}-(2)
\end{aligned}
$$

We can compare (1) and (2). Then we get

$$
e^{F\left(t_{0}(\Lambda), \ldots\right)} \sim \frac{\operatorname{det}\left(f_{j}\left(\Lambda_{i}\right)\right)}{\operatorname{det}\left(\Lambda_{i}^{-j}\right)}
$$

We conclude that $e^{F\left(t_{0}(\Lambda), \ldots\right)}$ safisties KdV hierarchy with respect to variables:

$$
T_{2 i+1}=\frac{1}{2 i+1} \operatorname{Tr} \Lambda^{-2 i-1}=\frac{(-1)^{2 i+1} t_{i}}{(2 i+1)!!}
$$

Finally, notice that $T_{i} \rightarrow c^{i} T_{i}$ also satisfies KdV hierarchy. This proves Witten conjecture.

References

[1] Enrico Arbarello, maurizio Cornalba, Pillip A. Griffiths: Geometry of Algebraic Curves, vol. 2, chap. 20.
[2] S. K. Lando, A.K. Zvonkin: Graphs on Surfaces and their Applications, chap.3, 4.
[3] M. Kontsevich: Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function.

