KONTSEVICH’S PROOF OF WITTEN CONJECTURE

YOU-CHENG CHOU

0.1. nKdV-hierarchy. We consider the operator
L=0""+a(x) 1+ +a,(x),
For any pair
(a,p), a=1,...,n, p=0,1,...
we consider the following system of PDEs for functions a; (x, £), ..., a,(x,t):

sl = [L, (LF17P)],

where (L#1+7) . denotes the differential part of the pseudodifferential op-
erator La+1 1P,
To construct pseudodifferential operator L#1TP it suffice to construct

Lt = 9y + 11 (x)7  + L(x)072 + - - -,

where 97! is the inverse operator to d and its commutator with function
f(x) is as follows:

051, f(x)] = —fx0: ' + fuxdy? — ..
The last rule and equation (Ln%l )1 = L allow us to solve [;(x) recursively.

0.2. Constructing Solutions to the KdV Hierarchy from the Sato Grass-
manian.

Definition 0.1. A Sato space is an infinite dimensional vector subspace W C
C((z)) such that
W:<f1/f2/"' >

for some fj(z) =z +az T 4+ = z7(1+o(1)).

Let T1, Ty, . .. be an infinite sequence of formal variables, and denote by
M(z; Ty, Ty, .. .) the function

M(Zl Tl/ TZ/ “ e ) - eT1271+T2272+,,,‘
For a Sato space W =< fi, f»,- - - >, we define the T-function associated it
as the fraction
(- AMfzEAMA{AMA)AZPAZEAZZ .
TW(Tl/ TZ/"‘) = A -3 -2 -1 0 1 2 ’
e ANZTIANZTEANZTEAZIANZE AN ZE AL

It depends on the space W itself, and not on the specific choice of the basis

fi, fo, e
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Proposition 0.2. Let W be a Sato space such that z—>W C W. Then we have
(1) tw(Th, Ty, - . . ) does not depend on Ty; for i > 0;
(2) the second order differential operators

L= 8326 + 282Tllogrw(—x +Ty,T3,Ts,... )
satisfyies the KAV hierarchy
2k+1
oty L =1[L,(L77 )]

Proposition 0.3. Let W be a Sato space generated by f; = z7'(1+ o(1)). Then
forany N > 0,

det(fi(z)))

detz].”

where Ty(z.) := § ¥V, 2k,

= Tw(Tl(Z*), Tz(Z*), ce ),

0.3. Witten’s Conjecture.
Let Mg (ﬂg,n) be the moduli space of smooth (nodal) genus g, n-pointed
stable curves, £; be line bundle on ﬂg,n whose fiber at the moduli point
(Cx1,...,cn)is Ty,C and let ¢; := c1(L;).

The intersection number is defined by

,_ d d
< le "'Td,, >i= [ lpll ...lpnn,
Mg
where ¢ = W. We consider the formal power series of intersection
number

1
F(to,tl,...)zz Z E<Td1"'TdW>td1"'tdy,-

n>0dy>0,....dy >0 1

Theorem 0.4 (Witten’s Conjecture). e’ is the T-function for KdV with respect

to variables Ty; 1 = W

Remark 0.5. F(to,t1,...) is completely determined by F(ty,0,0,...) = %tg,
KdV-hierarchy, string equation and dilaton equation.

0.4. Combinatorial Model. Let X be a compact Riemann surface and p be
a meromorphic quadratic differential on X. Locally, p = ¢(z)(dz)?, where
¢(z) is a meromorphic function. In our case, we assume ¢ has only simple
or double poles.

We define the horizontal line field as

{veTX|¢(z)(dz(v))* > 0}.
Its integral curve is called horizontal trajectory.

Remark 0.6. For a generic quadratic differential, a generic horizontal trajec-
tory is nonclosed.

Here we define a special kind of quadratic differential:
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Definition 0.7. A Jenkins-Strebel differential is a quadratic differential with only
finite nonclosed horizontal trajectory.

By a local analysis, we can see that if zg zero of order d of p, then there
are d + 2 horizontal trajectories issuing from zy. If zg is a simple pole, then
there is a unique horizontal trajectory issuing from zo. Finally, if zg is a dou-
ble pole with negative residue, then zj is surrounded by closed horizontal
trajectories. We further list some properties of Jenkins-Strebel differential
that we will need later.

Proposition 0.8. Let X be a Riemann surface of finite type and p(z) = ¢(z)dz>
be a Jenkin-Strebel differential on X. Then

e the connected component of X\ {graph of nonclosed horizontal trajectory}
is either open annulus or open disk;

e all closed horizontal trajectory in the same connected component have the
same length. (We use the metric dI> = |¢(z)||dz|?.)

Theorem 0.9. (Strebel) For any 2n + 1-tuples (X; x1,...,Xn; P1, - ., Pn), Where
X is a Riemann surface of finite type, x; are distinct points of X, p; > 0, and
n > x(X), there exists a unique Jenkins-Strebel differential such that

e it has double pole at x; and no other poles;

e connected components of X\ { graph of nonclosed horizontal trajectory }
are open disks;

o the length of horizontal trajectory associated to x; is p;.

We call the unique Jenkins-Strebel differential defined above the canoni-
cal Jenkins-Strebel differential.

Conversely, given an embedded graph (a graph in oriented topological
surface X) with

e each valencies of vertex > 3,

face marked by xq,...,x,

fixed lengths of its edges,

complement of embedded graph is a disjoint, union of open disks,

there exists unique complex structure such that its corresponding canonical
Jenkins-Strebel differential determines the given embedded graph.

Now, we define M?,),Tb := {the moduli space of genus ¢ connected em-
bedded graphs with each valencies of vertex > 3, n-marked faces, fixed
lengths of its edges, and complement being a disjoint union of open disks

}.
Theorem 0.10. M, x RL = M as real orbifolds.

We can further generalize the above discussion to stable curve.

Definition 0.11. For a stable curve C with given perimeter on its marked points,
the canonical Jenkins-Strebel differential on C is a quadratic differential p such
that:
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e o = 0 on the unmarked components;
e 0 is the canonical Jenkins-Strebel differential on the puntured marked com-

ponents.
ﬂ;ﬂ’f b= { the space of stable genus g embedded graphs with vertices

of valencies > 3 on smooth point, at most one valency on nodal points, n-
marked faces, complement being disjoint union of open disks, and fixed
length of edges on marked component and no graph on unmarked compo-
nents. }

To determine the relation between ﬂg,n and M;”,T b, we introduce the
equivalence relation as follows: Let C be a stable curve with genus g and
n marked points. We can canonically decompose C as the union of two
curves C = CtT UCY where CT is the union of all the components of
C containing marked points, and C° is the union of those containing no
marked points. Let ¢3,...,¢, be the points that C* has in common with
CP. We say that [(C;x1,...,%,)] is equivalent to [(C’,x],...,x},)] if there is
a family of nodal curves {C0};cs over a connected base S, together with
sections of smooth points 1, ..., T, with the property that (C;x1,...,xy)
(resp.,(C’,x},...,x],)) can be obtained from C* and CY (resp.,Cg,) by identi-
fying &; with 7;(s) (resp.,7;(s')) fori =1,...,u.

It is easy to check that what we just defined is an equivalence relation.
We let

- —

Q: Mg, — M o
denote the projection via the equivalence relation. Now we can state the
similar identifications for stable curves:

- ——comb . ,
Theorem 0.12. H : M;/n x R — M;o,T is a homeomorphism.

0.5. Matrix Integral Model. We recall some facts about matrix integral.
Let B be a n x n positive definite symmetric matrix. We consider the
integral

c/ —2(Bxx) del,

where ¢ is chosen such that the integral equals 1. With this normalization
we have

< xxj >i= c/ X; x]e_i (Bx,x) del = )ij-
R
We can further generalized this computation.

Theorem 0.13 (Wick’s formula). Let fi, ..., for be linear functions of x1, . .., x,.
Then
<f1f2"'f2k >= 2 <fP1f‘11>"'<kaf‘Jk>

p1<--<Ppk
q1<--<gx
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Let A = (Aj)1<i<n be a diagonal matrix with Re(A;) > 0 and H =
(hij) = (xij + v/ —1y;;) be a Hermitian matrix. We consider the following
measure on the space of Hermitian matrices

N
d}lA<H) = CA,Nef%terA deii deijd]/ij/
i=1 i<

where Cp y is chosen such that

AN dun(H) = 1.

2 1
By direct computation, we have Ca v = (271)~ 2 [T, A} TTici(Ni + A).
In coordinated x;;, x;j, yij, we can write tr(H?A) = (Bx, x), where

Ay
AN
A+ Ay
B =
AN-1+ AN
A+ Ao
AN-1+ AN
Hence we have
1 1
2 2 2 2
< Xj; >AN /7{an dup(H) A <xl] >AN <y1] >AN Ai‘f‘/\]‘/
and similarly
2 e
< hijhji >AN= A; +A]" < hijhkl >AN=0 if (l,]) # (l,k).
Now we compute
VT 4 3 11 11
<eT ) 5 =< (1- i@(tr(H?’))z + E@(tr(H?’))‘l) — AN

By Wick’s formula, the right hand side can be presented as the monomial
of < hj,j,hi,x, >. Notice that each term can correspond to the gluing of
3-stars.

I I 2 2 20 Jon

ki | i1 ky | i kon | ion
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In this case an edge of the gluing corresponds to a pair < h; j,h;,
define the weight of an gluing the product

2
Al‘—l—A]'

ky = We

taken over all edges of the gluing.
Now we can rewrite the Kontsevich’s model into graph sum:

< S Y (Ve 2
N B A AL A A

where G*V is set of equivalent class with 3-valent graphs and with N pos-
sible colors Ay, - - - , ANy drawing on the face.
It can be observed by the following proposition:

Proposition 0.14.
1 2

ar .., kyyak =l 2% kK - -
< (trH) (tr(H"))™ >pN=ar!- - al2 Ky AutG| EEI;IG) AT AL

GegN

0.6. Proof of Witten conjecture. The first step of the proof is to give a com-
——comb

binatorial formula for ;. Let 77; : S'(L£"?) — M gn - We want to find a

closed 2-form w; on ﬂ;o,T b such that 7] (w;) = d¢ and f st }|tiber = 1.
Fix p = (p1,...,pn) € R, we have the commutative diagram:

Mg

&N
— E ——comb
M gn M gn (p)
By the way Q was constructed, the line bundle £; restricts to a trivial line
bundle on the fibers of Q and therefore drops to a well-defined line bundle
L} on Mlgln with Q*(L!) = L;. Let £ be the pullback of £/ via i1, so
that

B (L0 = £, f(L0) = L
Now our goal becomes giving the combinatorial expression for its first
Chern class.

Let |a|/T, be an orbisimplex of ﬂg};ﬂ h(p), where a corresponds to an
embedded graph (G; x1, ..., x,) whose i-th perimeter is equal to p; and
I'y = Aut((Gg x1,...,x,)). The coordinates relative to the simplex |a| are
the lengths

{le}eck(c,)
of the edges of G,. At each point x;, we consider a cyclically ordered set of
oriented edges of G,

(e1,...,ev)
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with possible repetitions. A repetition happens when the edge bounds the
same component of G,. We set

I, 1,
(wi) al — d A d
a= 2 dG)naCy)
Lemma 0.15. For each x; and p € R",
m ——comb
[w;] = (L") € HX(Mg, (p))-
In particular, o
[f* (wi)] = c1(Li) € H* (M)

Now we can rewrite the intersection number

d d d
< le’ . Td >= / 17[] e 17011” = /—comb wll e wnn

qu (P)
d

fr— w « o e w
Mg (p)

dn
n

The last equality is true since the boundary is measure zero.
Let Q) =Y, p?w;.

Qd
—LAipi
/i;oe (/Mcamb( ) d' )dp1 dp

= Z < le Tdn > H d d +1 (1)’

d1+-dn=d

where Re(A;)> 0and d =3¢ —3 +n.
We use the combinatorial theorem due to Kontsevich.

Theorem 0.16. %ddpl A Ndpy = 2287541, A - Adl
We have

= — X Aipi 2n+5¢—5
(1) = e, & ( /Mﬂlb(p) DXl N Nl s, )

92n+5g—5

€6g—6-+3n"

“LAPigL A Ad
o5 TAWCT Ju@© T
where g is the isomorphism class of connected 3-valent embedded graph
with genus g and n-marked points. We further do some change of vari-
ables.

Z Aipi = Z (Ae + Aé)le/
ecE(G)
where A, and A/, are the perimeter of the two faces adjacent to the edge e.
Now we have the relation (x)

2-IV(G)| 2 (2d; — 1)!
~ fhaon o=, B <m0 A

G e€E(G) ¢ e ditetdy=d
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1
Theorem 0.17. Let F(to,t,---) = Y Y, < Ty T, > by tay

n>0dy,...,dn>0 .
Set A = diag(Ay,... An) withRe(A;) > 0and t;(A) = —(2i — l)!!Tr(A‘zz_l).
Then

(oA (A = Y LI 2
F(to(A), t1(A),...) = Y2 o
ne o AW(G)] G Ae A

where G>“N is the isomorphism class of connected 3-valent embedded graph with
N-possible colors Ay, - - - , AN drawing on the face.

Corollary 0.18. F(to(A),t1(A), - - ) is the asymptotic expansion of
log < e Ve >Aanas A7 =0,

Here we recall some properties of Airy function. We first study its as-
ymptotic behaviour by stationary phase method.

y) = / " VI A gy

N/ V=1(x3/3—xy dx+/ ﬁ(xS/S—xy)dx
y1/2) —y

1/2

~ const- Z yTe)e*Ty fl(yf%),

iyl/z

and similarly we have

i (y) = / " (/T leV I ) gy
_2v 3 _1
fity ),

=3
~const- ) yie

iyl/z

where f;(y) =y /(1+o(1)).
We have similar expression for matrix Airy function:

A(Y) — EMtr(X3/3—XY)dX
Hn

- Z/ 1 oV 1t(X3/3-XY) g
yi2 JU(Y2)

/ oV T ((X+YV2)3 /3 (X+Y12)Y) 3¢

Y1/2
_ Zefgtrw/z/ oV T (X /3-X2Y12) 1y
Y172 u(o)
— 2V Ty3/2, /4 1/2 1/2\—=1/2 ,F(f5(Y/?),--
~const- Y e 3 Y / H(Yi/ +Y]./) 120E(b(Y'%), ) _ (1),

Y1/2 i<j

where £;(Y1/2) = 27ZHD/3(2 — 1)!1tr(Y~1~1/2). We can express matrix
Airy function in another form.
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Lemma 0.19. If @ is a conjugacy invariant function on Hy, then for any diagonal
real matrix 'Y,

/ q)(X)e_\/jltrXYdX
JHN

(27.[\/7 N1/2/ /

- V-IuDYdetD] " dD; - - - dDy
detY]

Now we have

A(Y) _ (—27'[\/ _1)‘N(N71)/2 /oo . /oo He\/?ltr(D?/:%_DiYi)detD{:_lle ..

detYi] -1

1/2
~ const- ) o 2 Y2 11—\]1 Y, 7detf]( )
Y12 il detYi] !

— (2.

We can compare (1) and (2). Then we get

i detlf(80)
det(A;7)
We conclude that ef(?o(A)) safisties KAV hierarchy with respect to vari-

ables: (1)
1 ‘ —1)77,
Toig = s TrA 2 =2 2 1
A TR (2i+ 1)
Finally, notice that T; — ¢'T; also satisfies KdV hierarchy. This proves Wit-
ten conjecture.
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