Integrable Deformations and Frobenius Manifolds

Tang-Kai Lee

2018.6

0 Basic Notations and Definitions

Let M be a connected complex manifold, \mathcal{O}_{M} be the sheaf of holomorphic functions on M, and Z be a smooth hypersurface in M.

- For a holomorphic vector bundle E of rank d over M, it corresponds to a locally free sheaf of \mathcal{O}_{M}-modules of rank d, which will be denoted by \mathcal{E}, and is also called a "bundle." We define Θ_{M} to be the one corresponding to the tangent bundle $T M$.
- $\mathcal{O}_{M}(* Z)$ is the smallest sheaf containing all $\mathcal{O}_{M}(k Z)(k \in \mathbb{Z})$ as subsheaves, Ω_{M}^{k} is the sheaf of holomorphic k-forms on M, and $\Omega_{M}^{k}(* Z):=\Omega_{M}^{k} \otimes_{\mathcal{O}_{M}} \mathcal{O}_{M}(* Z)$
- A meromorphic bundle \mathcal{M} on M with poles along Z is a locally free sheaf of $\mathcal{O}_{M}(* Z)$-modules of finite rank.
- For a holomorphic vector bundle E on X, it corresponds to a meromorphic bundle $\mathcal{E}(* Z):=\mathcal{E} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(* Z)$.
- A meromorphic connection ∇ on a meromorphic bundle \mathcal{M} with poles along Z is a \mathbb{C}-linear morphism $\mathcal{M} \rightarrow \Omega_{M}^{1} \otimes_{\mathcal{O}_{M}} \mathcal{M}$ with its entries in $\Omega_{M}^{1}(* Z)$ with respect to a local frame.

1 Frobenius Structures Induces by Infinitesimal Period Mappings

Infinitesimal period mappings provide a way to construct Frobenius structures from a family of bundles on \mathbb{P}^{1} with flat meromorphic connections. In this section, M is always a connected complex manifold.

1.1 Higgs Fields and the Induced Product Structures

Definition 1 (Higgs fields). Let E be a holomorphic vector bundle on M. A Higgs field on E is an \mathcal{O}_{M}-linear morphism

$$
\Phi: \mathcal{E} \rightarrow \Omega_{M}^{1} \otimes_{\mathcal{O}_{M}} \mathcal{E}
$$

with the integrability condition $\Phi \wedge \Phi=0$.
For a holomorphic vector field ξ on an open subset U of M, we will write $\Phi_{\xi}:\left.\left.\mathcal{E}\right|_{U} \rightarrow \mathcal{E}\right|_{U}$ to denote the restricted morphism contracted with ξ.

Now assume $\Phi: \Theta_{M} \rightarrow \Omega_{M}^{1} \otimes \Theta_{M}$ is a Higgs field on the tangent bundle $T M$. We can view it as a morphism $\Theta_{M} \otimes \Theta_{M} \rightarrow \Theta_{M}$ and see if it is symmetric.
The Higgs field can define a product structure on $T M$ by $(\xi, \eta) \mapsto \xi \cdot \eta:=-\Phi_{\xi}(\eta)$.
Proposition 1. Φ is symmetric \Leftrightarrow the product • is associative and commutative.
Proof: On a local chart we can write $\Phi=\sum \Phi^{i} \otimes d z_{i}$ where $\Phi^{i}:=\Phi_{\partial_{i}}$. Then the integrability condition is equivalent to that for all i and $j, \Phi^{i} \circ \Phi^{j}=\Phi^{j} \circ \Phi^{i}$. Then if Φ is symmetric,

$$
\partial_{i} \cdot\left(\partial_{j} \cdot \partial_{k}\right)=\partial_{i} \cdot\left(\partial_{k} \cdot \partial_{j}\right)=\Phi^{i}\left(\Phi^{k}\left(\partial_{j}\right)=\Phi^{k}\left(\Phi^{i}\left(\partial_{j}\right)=\partial_{k} \cdot\left(\partial_{i} \cdot \partial_{j}\right)=\left(\partial_{i} \cdot \partial_{j}\right) \cdot \partial_{k}\right.\right.
$$

The commutativity is clear.

1.2 Residue Endomorphisms

Let F be a bundle on M of rank $d:=\operatorname{dim} M$. Then it induces a bundle $E:=\pi^{*} F$ on $\mathbb{P}^{1} \times M$ by the canonical projection $\pi: \mathbb{P}^{1} \times M \rightarrow M$. Assume there is a flat meromorphic connection $\widetilde{\nabla}$ on E with a pole of order 1 along $\{0\} \times M$ and a logarithmic pole along $\{\infty\} \times M$. We will write $E_{0}:=i_{0}^{*} E$ where $i_{0}: M \simeq\{0\} \times M \hookrightarrow$ $\mathbb{P}^{1} \times M$ and likewise for E_{∞}. Of course $E_{0} \simeq E_{\infty} \simeq F$.

- The restricted connection ∇ and the induced residue endomorphism R_{∞} on E_{∞} :

In a local chart $U \times M$ with U a neighborhood of $\infty \in \mathbb{P}^{1}$, the connection matrix of $\widetilde{\nabla}$ with respect to a local frame has the form (in the chart ∞ is at $z^{1}=0$)

$$
\Omega=\Omega^{1} \frac{d z_{1}}{z_{1}}+\sum_{i \geq 2} \Omega^{i} d z_{i},
$$

where each Ω^{j} has holomorphic entries. Then we define a holomorphic connection ∇ on $\{0\} \times M$, whose local matrix representation is

$$
\sum_{i \geq 2} \Omega^{i}\left(0, z_{2}, \cdots, z_{d+1}\right) d z_{i} .
$$

Let $R_{\infty}: i_{\infty}^{*} \mathcal{E} \rightarrow i_{\infty}^{*} \mathcal{E}$ be the endomorphism on E_{∞} whose local matrix representation is $\Omega^{1}\left(0, z_{2}, \cdots, z_{d}\right)$.
Fact 1. Regarded as a section of the bundle $\operatorname{Hom}\left(E_{\infty}, E_{\infty}\right)$ equipped with the natural flat connection induced by ∇, R_{∞} is a horizontal section.

- The induced Higgs field Φ and the residue endomorphism R_{0} on E_{0} :

In a local chart $U^{\prime} \times M$ with U^{\prime} a neighborhood of $0 \in \mathbb{P}^{1}$, the connection matrix of $\widetilde{\nabla}$ with respect to a local frame has the form

$$
\Omega^{\prime}=\frac{1}{z_{1}}\left(\Omega^{\prime 1} \frac{d z_{1}}{z_{1}}+\sum_{i \geq 2} \Omega^{\prime i} d z_{i}\right),
$$

where each $\Omega^{\prime j}$ has holomorphic entries. Then we define an endomorphism-valued 1-form $\Phi: \mathcal{E}_{0} \rightarrow \Omega_{M}^{1} \otimes$ \mathcal{E}_{0} whose local matrix representation is

$$
\sum_{i \geq 2} \Omega^{\prime i}\left(0, z_{2}, \cdots, z_{d+1}\right) d z_{i} .
$$

Let $R_{0}: i_{0}^{*} \mathcal{E} \rightarrow i_{0}^{*} \mathcal{E}$ be the endomorphism on E_{0} whose local matrix representation is $\Omega^{\prime 1}\left(0, z_{2}, \cdots, z_{d}\right)$.

1.3 Infinitesimal Period Mappings and the Induced Product Structure

Following the setting in the section 1.2 , we regard all the objects ∇, Φ, R_{0} and R_{∞} on E_{0}. Besides, we further assume E_{0} has a metric g and they satisfy

$$
\begin{equation*}
\nabla g=0, \Phi^{*}=\Phi, R_{0}^{*}=R_{0} \text { and } R_{\infty}+R_{\infty}^{*}=-w \cdot \operatorname{id}_{E_{0}} \tag{}
\end{equation*}
$$

for some w where $(\cdot)^{*}$ is the adjoint with respect to the metric, and

$$
\begin{equation*}
\nabla^{2}=0, \nabla R_{\infty}=0, \Phi \wedge \Phi=0,\left[R_{0}, \Phi\right]=0, \nabla \Phi=0 \text { and } \nabla R_{0}+\Phi=\left[\Phi, R_{\infty}\right] . \tag{**}
\end{equation*}
$$

For a ∇-horizontal section ω of E_{0}, we define the associated infinitesimal period mapping

$$
\begin{aligned}
\phi_{\omega}: T M & \rightarrow E_{0} \\
\xi & \mapsto-\Phi_{\xi}(\omega) .
\end{aligned}
$$

Such an ω is called primitive if ϕ_{ω} is an isomorphism, and homogeneous if ω is an eigenvector of R_{∞}.
Theorem 1. If E_{0} admits a primitive and homogeneous section ω, then ϕ_{ω} equips M a Frobenius structure.
Proof: Since ϕ_{ω} is an isomorphism, we can carry on $T M$ the structures on E_{0} through it.

- The torsion-free flat connection ${ }^{\omega} \nabla$ on $T M$: For $\xi \in T M$, we define

$$
{ }^{\omega} \nabla \xi:=\phi_{\omega}^{-1} \nabla\left(\phi_{\omega}(\xi)\right)
$$

Indeed, fix a local ∇-horizontal frame of E_{0} with a local coordinate z^{1}, \cdots, z^{d}, we can write $\Phi=\sum \Phi^{i} \otimes d z_{i}$. Then

$$
{ }^{\omega} \nabla_{\partial_{i}} \partial_{j}=\phi_{\omega}^{-1}\left(\nabla_{\partial_{i}}\left(\phi_{\omega}\left(\partial_{j}\right)\right)\right)=\phi_{\omega}^{-1}\left(\nabla_{\partial_{i}}\left(-\Phi^{j}(\omega)\right)\right),
$$

which is symmetric in i and j since $\nabla \Phi=0$ and $\nabla \omega=0$. Thus ${ }^{\omega} \nabla$ is torsion-free.
Remark 1. Note that the torsion-freeness of ${ }^{\omega} \nabla$ is equivalent to the ∇-horizontality of ϕ_{ω} since

$$
\nabla \phi_{\omega}(\xi, \eta)=\nabla_{\xi} \phi_{\omega}(\eta)+\nabla_{\eta} \phi_{\omega}(\xi)-\phi_{\omega}([\xi, \eta])
$$

- The commutative associative product structure with the ${ }^{\omega} \nabla$-flat unit: For ξ and $\eta \in T M$, we define

$$
\xi \cdot \eta:=\phi_{\omega}^{-1}\left(-\Phi_{\xi}\left(\phi_{\omega}(\eta)\right)\right.
$$

In a local coordinate,

$$
\partial_{i} \cdot \partial_{j}=\phi_{\omega}^{-1}\left(-\Phi_{\partial_{i}}\left(\phi_{\omega}\left(\partial_{j}\right)\right)=\phi_{\omega}^{-1}\left(\Phi^{i}\left(\Phi^{j}(\omega)\right)\right)\right.
$$

and the conclusion follows with $\Phi \wedge \Phi=0$.
Let $e:=\phi_{\omega}^{-1}(\omega)$. Then

$$
{ }^{\omega} \nabla e=\phi_{\omega}^{-1}(\nabla \omega)=0
$$

and for any ξ,

$$
\xi \cdot e=\phi_{\omega}^{-1}\left(-\Phi_{\xi}\left(\phi_{\omega}(e)\right)\right)=\phi_{\omega}^{-1}\left(-\Phi_{\xi}(\omega)\right)=\xi
$$

- The flat metric ${ }^{\omega} g$:

For ξ and η on $T M$, we define

$$
{ }^{\omega} g(\xi, \eta):=g\left(\phi_{\omega}(\xi), \phi_{\omega}(\eta)\right)
$$

Then ${ }^{\omega} \nabla^{\omega} g=0$ since $\nabla g=0$ and $\nabla \phi_{\omega}=0$. Moreover by the torsion-freeness, ${ }^{\omega} \nabla$ is the Levi-Civita connection of ${ }^{\omega} g$.

- The euler vector field E : Let $E:=\phi_{\omega}^{-1}\left(R_{0}(\omega)\right)$ and say $R_{\infty} \omega=-q \omega$ by the homogeneity.
(1) ${ }^{\omega} \nabla\left({ }^{\omega} \nabla E\right)=0$:

Locally

$$
\begin{aligned}
{ }^{\omega} \nabla_{\partial_{i}}(E) & =\phi_{\omega}^{-1}\left(\nabla_{\partial_{i}}\left(R_{0}(\omega)\right)\right) \\
& =\phi_{\omega}^{-1}\left(\partial_{i}\left(R_{0}\right)(\omega)\right) \\
& =\phi_{\omega}^{-1}\left(\left(\left[\Phi^{i}, R_{\infty}\right]-\Phi^{i}\right)(\omega)\right) \\
& =\phi_{\omega}^{-1}\left((-1-q) \Phi^{i}(\omega)-R_{\infty}\left(\Phi^{i}(\omega)\right)\right) \\
& =(1+q) \partial_{i}+{ }^{\omega} R_{\infty}\left(\partial_{i}\right)
\end{aligned}
$$

by $\nabla R_{0}+\Phi=\left[\Phi, R_{\infty}\right]$, where ${ }^{\omega} R_{\infty}:=\phi_{\omega}^{-1} \circ R_{\infty} \circ \phi_{\omega}$. Hence ${ }^{\omega} \nabla(E)=(1+q) \mathrm{id}_{T M}+{ }^{\omega} R_{\infty}$. By $\nabla R_{\infty}=0, \nabla \phi_{\omega}=0$ and the torsion-freeness of ${ }^{\omega} \nabla$, we have

$$
\begin{aligned}
{ }^{\omega} \nabla^{\omega} R_{\infty}(\xi, \eta) & =\phi_{\omega}^{-1}\left(\nabla\left(R_{\infty} \circ \phi_{\omega}\right)(\xi, \eta)\right) \\
& =\phi_{\omega}^{-1}\left(\nabla_{\xi}\left(R_{\infty}\left(\phi_{\omega}(\eta)\right)\right)-\nabla_{\eta}\left(R_{\infty}\left(\phi_{\omega}(\xi)\right)\right)-R_{\infty}\left(\phi_{\omega}([\xi, \eta])\right)\right) \\
& =\phi_{\omega}^{-1}\left(R_{\infty}\left(\nabla_{\xi}\left(\phi_{\omega}(\eta)\right)-\nabla_{\eta}\left(\phi_{\omega}(\xi)\right)\right)-R_{\infty}\left(\phi_{\omega}([\xi, \eta])\right)\right) \\
& =\phi_{\omega}^{-1}\left(R_{\infty}\left(\phi_{\omega}([\xi, \eta])\right)-R_{\infty}\left(\phi_{\omega}([\xi, \eta])\right)\right)=0 .
\end{aligned}
$$

Thus ${ }^{\omega} \nabla^{\omega} R_{\infty}=0$, so ${ }^{\omega} \nabla\left({ }^{\omega} \nabla E\right)=0$.
We have the new relations from the old ones (*):

$$
{ }^{\omega} \nabla^{\omega} g=0, \Phi^{*}=\Phi,\left({ }^{\omega} R_{0}\right)^{*}={ }^{\omega} R_{0} \text { and }{ }^{\omega} R_{\infty}+\left({ }^{\omega} R_{\infty}\right)^{*}=-w \cdot \mathrm{id}_{T M}
$$

where the adjoint is respect to the metric ${ }^{\omega} g$. Note these imply the symmetry of ${ }^{\omega} \nabla c$ where $c\left(\xi_{1}, \xi_{2}, \xi_{3}\right):=$ ${ }^{\omega} g\left(\xi_{1} \cdot \xi_{2}, \xi_{3}\right)$.
(2) $L_{E}\left({ }^{\omega} g\right)=D \cdot \omega_{g}$ for some D, where L means the Lie derivative:

From (1), we have

$$
{ }^{\omega} \nabla E=(1+q) \mathrm{id}_{T M}+{ }^{\omega} R_{\infty} .
$$

Then taking the adjoint gives

$$
\left({ }^{\omega} \nabla E\right)^{*}=(1+q) \operatorname{id}_{T M}+\left({ }^{\omega} R_{\infty}\right)^{*}=(1+q-w) \operatorname{id}_{T M}-{ }^{\omega} R_{\infty} .
$$

Then for ξ and η in $T M$,

$$
{ }^{\omega} g\left({ }^{\omega} \nabla_{\tilde{\xi}} E, \eta\right)+{ }^{\omega} g\left(\xi,{ }^{\omega} \nabla_{\eta} E\right)={ }^{\omega} g\left(\left({ }^{\omega} \nabla E\right)(\xi), \eta\right)+{ }^{\omega} g\left(\left({ }^{\omega} \nabla E\right)^{*}(\xi), \eta\right)=(2+2 q-w)^{\omega} g(\xi, \eta) .
$$

Let $D:=2+2 q-w$ and we have

$$
\begin{aligned}
L_{E}\left({ }^{\omega} g\right)(\xi, \eta) & =E\left({ }^{\omega} g(\xi, \eta)\right)-{ }^{\omega} g\left(L_{E} \xi, \eta\right)-{ }^{\omega} g\left(\xi, L_{E} \eta\right) \\
& =E\left({ }^{\omega} g(\xi, \eta)\right)-{ }^{\omega} g\left({ }^{\omega} \nabla_{E} \xi-{ }^{\omega} \nabla_{\xi} E, \eta\right)-{ }^{\omega} g\left(\xi,{ }^{\omega} \nabla_{E} \eta-{ }^{\omega} \nabla_{\eta} E\right) \\
& =E\left({ }^{\omega} g(\xi, \eta)\right)-{ }^{\omega} g\left({ }^{\omega} \nabla_{E} \xi, \eta\right)-{ }^{\omega} g\left(\xi,{ }^{\omega} \nabla_{E} \eta\right)+{ }^{\omega} g\left({ }^{\omega} \nabla_{\xi} E, \eta\right)+{ }^{\omega} g\left(\xi,{ }^{\omega} \nabla_{\eta} E\right) \\
& ={ }^{\omega} \nabla_{E}\left({ }^{\omega} g\right)(\xi, \eta)+(2+2 q-w)^{\omega} g(\xi, \eta) \\
& =D \cdot{ }^{\omega} g(\xi, \eta)
\end{aligned}
$$

(3) $L_{E}(\cdot)=\cdot$ where \cdot means the product structure:

First we claim that ${ }^{\omega} R_{0}:=\phi_{\omega}^{-1} \circ R_{0} \circ \phi_{\omega}$ is exactly the endomorphism $\xi \mapsto \xi \cdot E$. Indeed, by $\left[R_{0}, \Phi\right]=0$,

$$
\xi \cdot E=\phi_{\omega}^{-1}\left(-\Phi_{\xi}\left(\phi_{\omega}\left(\phi_{\omega}^{-1}\left(R_{0}(\omega)\right)\right)\right)=\phi_{\omega}^{-1}\left(-R_{0}\left(\Phi_{\xi}(\omega)\right)\right)=\phi_{\omega}^{-1}\left(R_{0}\left(\phi_{\omega}(\xi)\right)\right)={ }^{\omega} R_{0}(\xi) .\right.
$$

Since $\nabla \phi_{\omega}=0$, the old relation $\nabla R_{0}+\Phi=\left[\Phi, R_{\infty}\right]$ gives, after composing with ϕ_{ω}^{-1} and ϕ_{ω},

$$
{ }^{\omega} \nabla_{\tilde{\xi}}(\eta \cdot E)-\left({ }^{\omega} \nabla_{\xi}\right) \cdot E-\xi \cdot \eta=\xi \cdot\left({ }^{\omega} \nabla_{\eta} E-(1+q) \eta\right)-\left({ }^{\omega} \nabla_{\tilde{\xi} \cdot \eta} E-(1+q) \xi \cdot \eta\right)=\xi \cdot{ }^{\omega} \nabla_{\eta} E-{ }^{\omega} \nabla_{\tilde{\xi} \cdot \eta} E .
$$

By $\nabla \Phi=0$, the above result simplifies to

$$
L_{E}(\xi \cdot \eta)-\left(L_{E} \xi\right) \cdot \eta-\xi \cdot\left(L_{E} \eta\right)=\xi \cdot \eta .
$$

Thus the theorem follows.

2 Universal Semisimple Frobenius Structures

We aim at establishing the following theorem.
Theorem 2 ([Dub96]). There is a one-to-one correspondence
\{semisimple simply connected Frobenius manifolds $\} \leftrightarrow\left\{\left(B_{0}^{o}, B_{\infty}, \omega^{o}, U\right)\right.$ satisfying the (\star) conditions $\}$
with the (\star) conditions that B_{0}^{o} is regularly semisimple, that $B_{\infty}+B_{\infty}^{*}=w I_{d}$ for some $w \in \mathbb{Z}$, that w^{o} is an eigenvector of B_{∞}, whose components don't vanish on the eigenbases of B_{0}^{o}, and that U is a simply connected open set of $\widetilde{X}_{d} \backslash \Theta_{\omega^{0}}$.
In the theorem, $X_{d}:=\left\{\left(x^{1}, \cdots, x^{d}\right) \in \mathbb{C}^{d} \mid x^{i} \neq x^{j}\right.$ for all $\left.i<j\right\}$ and \widetilde{X}_{d} is its universal cover. Fix $x^{0}=$ $\left(x_{1}^{o}, \cdots, x_{d}^{o}\right) \in X_{d}$ and a lifted point $\widetilde{x}^{0} \in \widetilde{X}_{d}$, i.e., $\pi\left(\widetilde{x}^{o}\right)=x^{o}$ where $\pi: \widetilde{X}_{d} \rightarrow X_{d}$ is the covering map.
Proof: Suppose we are given $B_{\infty}+B_{\infty}^{*}=w I_{d}$ for some $w \in \mathbb{Z}, B_{0}^{o}=\operatorname{diag}\left(x_{1}^{o}, \cdots, x_{d}^{o}\right)$, thus regularly semisimple, and an eigenvector ω^{o} of B_{∞}, all components of which are non-zero.
Theorem 3 ([Mal83]). Given such B_{0}^{o} and B_{∞}, there exist a unique holomorphic bundle E on $\mathbb{P}^{1} \times \widetilde{X}_{d}$ and a flat meromorphic connection ∇ with a pole of order 1 along $\{0\} \times \widetilde{X}_{d}$ and a logarithmic pole along $\{\infty\} \times \widetilde{X}_{d}$, such that
(1) the restriction $\left(E^{o}, \nabla^{o}\right)$ of (E, ∇) at \widetilde{x}^{0} has a global frame with respect to which the matrix representation of ∇^{0} is

$$
\left(\frac{B_{0}^{o}}{z}+B_{\infty}\right) \frac{d z}{z} ;
$$

(2) for any $\widetilde{x} \in \widetilde{X}_{d}$, the eigenvalues of the residue endomorphism R_{0} at \widetilde{x} are the components of $\pi(\widetilde{x})$.

Theorem 4 ([Sab08]). Let X be a connected complex analytic manifold and F a holomorphic vector bundle on $\mathbb{P}^{1} \times X$ such that for any $x \in X$, the restriction $\left.F\right|_{\mathbb{P}^{1} \times\{x\}}$ has degree 0 .
(1)(The nontriviality divisor) The set

$$
\Theta:=\left\{x \in M:\left.F\right|_{\mathbb{P}^{1} \times\{x\}} \text { is non-trivial }\right\}
$$

is \varnothing, X or a hypersurface of X.
(2)(The canonical identification between the restriction to 0 and ∞) We have

$$
\left.\left.i_{0}^{*} F\right|_{\mathbb{P}^{1} \times(X \backslash \Theta)} \simeq i_{\infty}^{*} F\right|_{\mathbb{P}^{1} \times(X \backslash \Theta)} .
$$

Theorem 5. ([Sab17]) Let X be a simply connected complex manifold and (F, ∇) a bundle on $D \times X$ with a pole of order 1 along $\{0\} \times X$. Suppose R_{0} is the residue endomorphism and $(\hat{F}, \hat{\nabla})$ is its associated formal bundle.
(1)(the unique decomposition) If R_{0} is regularly semisimple, $(\hat{F}, \hat{\nabla})$ has a unique decomposition to line bundles

$$
(\hat{F}, \hat{\nabla}) \simeq \bigoplus_{j}\left(\hat{F}_{j}, \hat{\nabla}\right) .
$$

(2)(equivalence) For line bundles, the formalism $(F, \nabla) \mapsto(\hat{F}, \hat{\nabla})$ is an equivalence of categories.

By the theorem 3, we can, following the section 1.3, obtain ∇ and R_{∞} on E_{∞}, Φ and R_{0} on E_{0}. Via the theorem 4, we get a bundle E on $\widetilde{X}_{d} \backslash \Theta$ with objects ∇, Φ, R_{∞} and R_{0}.
Since \widetilde{X}_{d} is simply connected and ∇ is a flat connection on E_{∞}, it's trivial and thus we can find a ∇-horizontal ω on \widetilde{X}_{d} such that $\omega\left(\widetilde{x}^{o}\right)=\omega^{0}$. Later we will let ω be its restriction to $\widetilde{X}_{d} \backslash \Theta$.
By the theorem 3 again, the residue R_{0} is regular semisimple everywhere, so E_{0}, on $\{0\} \times \widetilde{X}_{d}$, can be decomposed to a direct sum of eigenbundles of rank one, each of which can be equipped with a flat connection by the theorem 5, and hence admits a global frame. We collect these d section, forming a global frame $\mathbf{e}=\left\{e_{1}, \cdots, e_{d}\right\}$ of E_{0}.
Restrict the frame on $\widetilde{X}_{d} \backslash \Theta$, also denoted by \mathbf{e}, and let ω^{i} be the components of ω with respect to e. We set

$$
\Theta_{\omega^{0}}:=\Theta \cup\left(\bigcup_{i=1}^{d}\left\{\text { the zero locus of } \omega^{i}\right\}\right)
$$

By our definition of $\Theta_{\omega^{0}}$, the sections

$$
u^{i}:=\omega^{i} e_{i}
$$

form a basis of $\left.E\right|_{\tilde{X}_{d} \backslash \Theta_{\omega 0}}$. Then the infinitesimal period mapping associated to ω gives

$$
\begin{aligned}
\phi_{\omega}: T\left(\widetilde{X}_{d} \backslash \Theta_{\omega^{0}}\right) & \left.\rightarrow E\right|_{\tilde{X}_{d} \backslash \Theta_{\omega^{o}}} \\
\partial_{i} & \mapsto-\Phi_{\partial_{i}}(\omega)=u_{i}
\end{aligned}
$$

where the fact that $-\Phi_{\partial_{i}}(\omega)=u_{i}$ comes from the matrix representation of Φ with respect to \mathbf{e}, which will be explained in the proceeding sections.
Therefore, ϕ_{ω} is an isomorphism, and by the construction in the section 1.3, $\widetilde{X}_{d} \backslash \Theta_{\omega^{o}}$ admits a Frobenius structure. Note that we have the unit

$$
e=\phi_{\omega}^{-1}(\omega)=\phi_{\omega}^{-1}\left(\sum u_{i}\right)=\sum \partial_{i}
$$

and the Euler vector field

$$
E=\phi_{\omega}^{-1}\left(R_{0}(\omega)\right)=\phi_{\omega}^{-1}\left(\sum x_{i} u_{i}\right)=\sum x_{i} \partial_{i}
$$

for the matrix representation of R_{0} with respect to \mathbf{e} is $\operatorname{diag}\left(x_{1}, \cdots, x_{d}\right)$, which will also be explained.
Besides, we have

$$
\partial_{i} \cdot \partial_{j}=\phi_{\omega}^{-1}\left(-\Phi_{\partial_{i}}\left(\phi_{\omega}\left(\partial_{j}\right)\right)\right)=\phi_{\omega}^{-1}\left(-\Phi_{\partial_{i}}\left(u_{j}\right)\right)=\phi_{\omega}^{-1}\left(\delta_{i j} u_{i}\right)=\delta_{i j} \partial_{i} .
$$

This proves one direction of the theorem.
Remark 2. We didn't check that the objects satisfy the condition $\left(^{*}\right)$ and $\left({ }^{* *}\right)$, which would be clear after we show the solvability of the Birkhoff's problem in a family.

For the other way around, let M be a semisimple simply connected Frobenius manifold. Then we can define Φ by $\Phi_{\xi}(\eta):=-\xi \cdot \eta, R_{0}:=-\Phi(E)$, and $R_{\infty}:=\nabla E$. The semisimplicity means that at each point R_{0} is regularly semisimple, so its eigenvalues define d functions $\left(x_{1}, \cdots, x_{d}\right): M \rightarrow X_{d}$.
Theorem 6 ([Mal83]). Let X be a simply connected complex manifold with a fixed base point $x^{0} \in X$, $\lambda_{1}, \cdots, \lambda_{d} d$ holomorphic functions $X \rightarrow \mathbb{C}$ such that $\lambda_{i}(x) \neq \lambda_{j}(x)$ for all $i \neq j$ and $x \in X,\left(E^{o}, \nabla^{o}\right)$ a bundle on D with a connection having a pole of order 1 at the origin, and the residue R_{0}^{o} whose eigenvalues are $\lambda_{1}\left(x^{0}\right), \cdots, \lambda_{d}\left(x^{0}\right)$. Then there exists a unique bundle (E, ∇) on $D \times X$ with a connection having a pole of order 1 along $\{0\} \times X$ such that
(1) for any $x \in X, R_{0}(x)$ has eigenvalues $\lambda_{1}(x), \cdots, \lambda_{d}(x)$, and
(2) $\left.(E, \nabla)\right|_{D \times\left\{x^{0}\right\}} \simeq\left(E^{0}, \nabla^{0}\right)$.

By the theorem 6, we can as above construct a basis $\mathbf{e}=\left\{e_{1} \cdots, e_{d}\right\}$, with respect to which the matrix of Φ is exactly $-d R_{0}$ (also will be clarified later), i.e.,

$$
\Phi\left(e_{i}\right)=-d x_{i} \otimes e_{i}
$$

therefore, for all i and j,

$$
e_{i} \cdot e_{j}=-\Phi_{e_{j}} e_{i}=L_{e_{j}}\left(x_{i}\right) \cdot e_{i} .
$$

By the commutativity of the product, $L_{e_{j}}\left(x_{i}\right)=0$ for $i \neq j$. Besides, $\lambda_{i}:=L_{e_{i}}\left(x_{i}\right)$ is non-vanishing:
Write the unit vector field e as $e=\sum a_{i} e_{i}$. Then

$$
e_{i}=e_{i} \cdot e=e_{i} \cdot \sum a_{i} e_{i}=a_{i} \lambda_{i} .
$$

Thus $a_{i} \lambda_{i} \equiv 1$ so λ_{i} is non-vanishing.
Now we get a holomorphic map

$$
\left(x_{1}, \cdots, x_{d}\right): M \rightarrow X_{d}
$$

Since M is simply connected, it can be lifted to

$$
f:=\left(x_{1}, \cdots, x_{d}\right): M \rightarrow \widetilde{X}_{d}
$$

which is a submersion, thus an open map, so it is proper. Since it's a proper local homeomorphism between locally compact Hausdorff spaces, it's a covering map, with the number of sheets

$$
\left[\pi_{1}(f(M)): \pi_{1}(M)\right]=1
$$

because M is simply connected and the image of a simply connected domain under a biholomorphic map is simply connected. Thus, f is isomorphic to an open subset of \widetilde{X}_{d}, and the conclusion of the theorem 2 follows.
Remark 3. Note that by the canonicality of the product structure defined above, this (\cdot, e, E) is independent of the choice of ω^{0} with the non-zero condition.

3 Birkhoff's Problem on \mathbb{P}_{1}

In this section, X is a simply-connected complex analytic manifold of dimension n.
We write $\mathbb{P}^{1}=U_{0} \cup U_{\infty}$ with $U_{0}:=\mathbb{P}^{1} \backslash\{\infty\}$ and $U_{\infty}:=\mathbb{P}^{1} \backslash\{0\}$ and let τ and τ^{\prime} be the coordinate on them respectively.
Let $D=B_{r}(0)$ be an open disc in $U_{0} \simeq \mathbb{C}$ for some $r>0$, and $(\widetilde{E}, \widetilde{\nabla})$ be a holomorphic bundle of rank d on $U:=D \times X$, with a flat meromorphic connection $\widetilde{\nabla}$ having a pole of order 1 along $\{0\} \times X$, in the sense that its restriction to $\left(U_{\infty} \cap D\right) \times X$ is a flat connection on the holomorphic bundle $\left.\widetilde{E}\right|_{\left(U_{\infty} \cap D\right) \times X}$.
Fix a point $x^{0} \in X$ and let $\left(\left(\widetilde{E}^{o}, \widetilde{\nabla}^{o}\right)\right.$ be the restriction of $(\widetilde{E}, \widetilde{\nabla})$ to $U^{0}:=D \times\left\{x^{o}\right\}$.
Definition 2 (Birkhoff's problem). Let $A(\tau)$ be a $d \times d$ matrix function on D with $\tau^{r+1} A(\tau)$ having holomorphic entries, one of which doesn't vanish at $\tau=0$, for some $r \geq 0$. We say that Birkhoff's problem can be solved for $A(\tau)$ if there exists some $P(\tau) \in \mathrm{GL}_{d}\left(\mathcal{O}_{U}\right)$ such that the matrix $B(\tau):=P^{-1} A P+P^{-1} P^{\prime}$ can be written as

$$
B(\tau)=\frac{B_{-(r+1)}}{\tau^{-(r+1)}}+\cdots+\frac{B_{-1}}{\tau}
$$

for some $B_{-1}, \cdots, B_{-(r+1)} \in M_{d}(\mathbb{C})$.

The following theorem says that there's a canonical solution to Birkhoff's problem for almost every values in \mathbb{P}^{1} if we are given a solution for a particular value.

Theorem 7. Assume Birkhoff's problem can be solved for $\left(\widetilde{E}^{o}, \widetilde{\nabla}^{o}\right)$ at x^{o}, i.e., we can take a global frame ϵ^{o} of \widetilde{E}^{o} with respect to which the connection matrix of $\widetilde{\nabla}^{o}$ can be written as

$$
\Omega^{o}=\left(\frac{B_{0}^{o}}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau}
$$

for some B_{0}^{o} and $B_{\infty} \in M_{d}(\mathbb{C})$. Then there exist a hypersurface Θ of X not containing x^{0} and a unique basis ϵ of $\widetilde{\mathcal{E}}(*(D \times \Theta))$ which coincides with ϵ^{o} at x^{o} and in which the connection matrix of $\widetilde{\nabla}$ takes the form

$$
\Omega=\left(\frac{B_{0}(x)}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau}+\frac{C(x)}{\tau}
$$

where $B_{0}(x)$ and $C(x)$ are a meromorphic matrix function and 1-form on X and holomorphic on $X \backslash \Theta$ with $B_{0}\left(x^{o}\right)=B_{0}^{o}$.

Proof:

First we prove the existence.

- Constructions of a bundle on $\mathbb{P}^{1} \times X$ by sheaves gluing:

Let $D^{\prime} \subseteq U_{\infty}$ be an open disc centered at ∞ such that $A:=D \cap D^{\prime} \neq \varnothing$. Recall τ^{\prime} is the coordinate on D^{\prime}, i.e., $\tau^{\prime}=1 / \tau$ on A. On $A \times X$, since $\left.(\widetilde{E}, \widetilde{\nabla})\right|_{A \times X}$ is a flat bundle, it is determined by its monodromy. On the other hand, for X is simply-connected, $\pi_{1}(A \times X)=\pi_{1}(A)$. Thus $\left.(\widetilde{E}, \widetilde{\nabla})\right|_{A \times X}$ is isomorphic to $\left.p^{*}\left(\widetilde{E}^{o}, \widetilde{\nabla}^{o}\right)\right|_{A}$ where p is the projection $A \times X \rightarrow A$.
By the change of variable, the restriction of the trivial bundle $\mathcal{O}_{D^{\prime} \times X}^{d}$ with the connection matrix

$$
-\left(\tau^{\prime} B_{0}^{o}+B_{\infty}\right) \frac{d \tau^{\prime}}{\tau^{\prime}}
$$

to $A \times X$ is isomorphic to $\left.(\widetilde{E}, \widetilde{\nabla})\right|_{A \times X}$ since they are both isomorphic to $\left.p^{*}\left(\widetilde{E}^{o}, \widetilde{\nabla}^{o}\right)\right|_{A}$. Thus we can glue them up to get a bundle (E, ∇) on $\mathbb{P}^{1} \times X$ with a flat meromorphic connection having poles on $\{0, \infty\} \times X$.

- The nontriviality divisor Θ of X :

Since $\left.E\right|_{\mathbb{P}^{1} \times\left\{x^{o}\right\}}=E^{o}$ is trivial, its degree is 0 so we can apply the theorem 4 of the nontriviality divisor to X and get $\Theta \subsetneq X$ because $x^{0} \notin \Theta$.

- Extensions of a basis:

Since ∇ has a logarithmic pole along $\{\infty\} \times X$, there's an induced holomorphic flat connection ∇_{∞} on $i_{\infty}^{*} \mathcal{E}$. Fact 2 (the canonical identification between the restrictions to 0 and ∞). Let π be the projection $\mathbb{P}^{1} \times X \rightarrow X$. Then for \mathcal{E} above, there exist canonical isomorphisms

$$
\mathcal{E}\left(* \pi^{-1} \Theta\right) \simeq \pi^{*} i_{0}^{*} \mathcal{E}\left(* \pi^{-1} \Theta\right) \simeq \pi^{*} i_{\infty}^{*} \mathcal{E}\left(* \pi^{-1} \Theta\right)
$$

where $i_{0}:\{0\} \times X \hookrightarrow \mathbb{P}^{1} \times X$ and $i_{\infty}:\{\infty\} \times X \hookrightarrow \mathbb{P}^{1} \times X$.
By the triviality of $i_{\infty}^{*} \mathcal{E}$ and the above isomorphisms, we can extend ϵ^{o} to a basis ϵ of the bundle $\mathcal{E}\left(* \pi^{-1} \Theta\right)$.

- On U the connection matrix of ∇ takes the desired form.

Since the connection matrix Ω has order 1 at $\{0\} \times X$ in the basis ϵ, it can be written as

$$
\left(\frac{B_{0}(x)}{\tau}+B_{\infty}(\tau, x)\right) \frac{d \tau}{\tau}+C_{0}(\tau, x)+\frac{C(x)}{\tau}
$$

where B_{∞} and C_{0} are holomorphic function and 1-form.
Note after a change of variables, at infinity the connection matrix is of the form

$$
\left(-B_{0}(x) \tau^{\prime}-B_{\infty}\left(\frac{1}{\tau^{\prime}}, x\right)\right) \frac{d \tau^{\prime}}{\tau^{\prime}}+C_{0}\left(\frac{1}{\tau^{\prime}}, x\right)+C(x) \tau^{\prime}
$$

Since the connection has a logarithmic pole at $\{\infty\} \times X$, we have B_{∞} and C_{0} are independent of τ^{\prime}, i.e., independent of τ.
Restricted to infinity, the basis ϵ is ∇_{∞}-horizontal, where the connection matrix is by definition $C_{0}(x)$, so $C_{0}(x)=0$.
By the fact 1 , because the endomorphism R_{∞} is horizontal, we have

$$
\nabla\left(R_{\infty} \epsilon^{i}\right)=R_{\infty}\left(\nabla \epsilon^{i}\right)
$$

for $i=1, \cdots, d$ if the basis ϵ consists of $\left\{\epsilon^{1}, \cdots, \epsilon^{d}\right\}$. Note the matrix representation of R_{∞} with respect to the basis is $\left.\left(-B_{0}(x) \tau^{\prime}-B_{\infty}(x)\right)\right|_{\tau^{\prime}=0}=-B_{\infty}(x)$. Thus if we write $B_{i}:=$ the i-th column of $-B_{\infty}(x)$,

$$
\nabla\left(R_{\infty} \epsilon^{i}\right)=\nabla\left(\epsilon \cdot B_{i}\right)=(\nabla \epsilon) \cdot B_{i}+\epsilon \cdot d B_{i}
$$

and

$$
R_{\infty}\left(\nabla \epsilon^{i}\right)=(\nabla \epsilon) \cdot B_{i} .
$$

where $\epsilon:=\left(\epsilon_{1} \cdots \epsilon_{d}\right)$ and $\nabla \epsilon:=\left(\nabla \epsilon_{1} \cdots \nabla \epsilon_{d}\right)$. Thus $d B_{i}(x)=0$ for all i, so B_{∞} is constant in x. Hence we get the desired form

$$
\left(\frac{B_{0}(x)}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau}+\frac{C(x)}{\tau} .
$$

For the uniqueness, suppose $\left(\epsilon^{\prime}, \Theta^{\prime}\right)$ and $\left(\epsilon^{\prime}, \Theta^{\prime}\right)$ satisfy the theorem. Let $\Theta:=\Theta^{\prime} \cup \Theta^{\prime \prime}$ and $X^{o}:=X \backslash \Theta$. Then we get an isomorphism

$$
\mathcal{O}_{D \times X}^{d}(*(D \times \Theta)) \xrightarrow{P} \mathcal{O}_{D \times X}^{d}(*(D \times \Theta))
$$

via the base change P. Since the induced homomorphism $\pi_{1}\left(D \times X^{o}\right) \rightarrow \pi_{1}\left(\mathbb{P}^{1} \times X^{o}\right)$ is an isomorphism, by the proof of existence, P can be extended holomorphicly to the isomorphism between $\mathcal{O}_{\mathbb{P}^{1} \times X}^{d}\left(*\left(\mathbb{P}^{1} \times \Theta\right)\right)$. Note if the matrix of the two connections are Ω and Ω^{\prime}, we have $\Omega^{\prime}=P^{-1} \Omega P+P^{-1} d P$, i.e.,

$$
d P=P \Omega^{\prime}-\Omega P
$$

Thus if we write P as column vectors, we can write the system as

$$
d P=\left(\left(A_{1}+\tau^{\prime} A_{2}(x)\right) \frac{d \tau^{\prime}}{\tau^{\prime}}+D(x) \tau^{\prime}\right) \cdot P
$$

near the infinity. If write $P(x)=\sum_{l \geq l_{0}} \tau^{\prime l} P_{l}(x)$, then we have $d P_{l}=D P_{l-1}$.
Suppose $l_{0}<0$, then $d P_{l_{0}}=D P_{l_{0}-1}=0$, so $P_{l_{0}} \equiv P_{l_{0}}\left(x^{0}\right)=0$ since at $x^{o} P$ is identity. Hence the entries of P are holomorphic. Hence $P\left(\tau^{\prime}, x\right)=P_{0}(x)$. Besides, $d P_{0}=D P_{-1}=0$, so $P\left(\tau^{\prime}, x\right)=P_{0}(x) \equiv P_{0}\left(x^{0}\right)=\mathrm{id}$.
Remark 4. With respect to the basis ϵ, the matrix representation connection takes the form above, that of R_{0} is $B_{0}(x)$, that of R_{∞} is $-B_{\infty}$, and that of Φ is $C(x)$.
Besides, the integrability condition exactly tells

$$
d C=0, C \wedge C=0,\left[B_{0}, C\right]=0, \text { and } d B_{0}+C=\left[B_{\infty}, C\right]
$$

which gives the condition $\left({ }^{(* *)}\right.$ in the section 1.3.
We use the idea of this proof to prove the theorem 3 that was applied.
Theorem 3. Given $x^{o}=\left(x_{1}^{o}, \cdots, x_{d}^{o}\right)=\pi\left(\widetilde{x}^{o}\right) \in X_{d}$ and $B_{0}^{o}:=\operatorname{diag}\left(x_{1}^{o}, \cdots, x_{d}^{o}\right), B_{\infty} \in M_{d}(\mathbb{C})$, there exist a unique holomorphic bundle E on $\mathbb{P}^{1} \times \widetilde{X}_{d}$ and a flat meromorphic connection ∇ with a pole of order 1 along $\{0\} \times \widetilde{X}_{d}$ and a logarithmic pole along $\{\infty\} \times \widetilde{X}_{d}$, such that
(1) the restriction $\left(E^{0}, \nabla^{0}\right)$ of (E, ∇) at \widetilde{x}^{0} has a global frame with respect to which the matrix representation of ∇^{0} is

$$
\left(\frac{B_{0}^{o}}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau} ;
$$

(2) for any $\widetilde{x} \in \widetilde{X}_{d}$, the eigenvalues of the residue endomorphism R_{0} at \widetilde{x} are the components of $\pi(\widetilde{x})$.

Proof:

We will again apply the theorem 6 :

Theorem 6. Let X be a simply connected complex manifold with a fixed base point $x^{0} \in X, \lambda_{1}, \cdots, \lambda_{d}$ d holomorphic functions $X \rightarrow \mathbb{C}$ such that $\lambda_{i}(x) \neq \lambda_{j}(x)$ for all $i \neq j$ and $x \in X,\left(E^{o}, \nabla^{o}\right)$ a bundle on D with a connection having a pole of order 1 at the origin, and the residue R_{0}^{o} whose eigenvalues are $\lambda_{1}\left(x^{o}\right), \cdots, \lambda_{d}\left(x^{0}\right)$. Then there exists a unique bundle (E, ∇) on $D \times X$ with a connection having a pole of order 1 along $\{0\} \times X$ such that
(1) for any $x \in X, R_{0}(x)$ has eigenvalues $\lambda_{1}(x), \cdots, \lambda_{d}(x)$, and
(2) $\left.(E, \nabla)\right|_{D \times\left\{x^{0}\right\}} \simeq\left(E^{o}, \nabla^{o}\right)$.

To begin with, let D be an open disk centered at the origin in \mathbb{P}^{1}, and let $\left(E^{o}, \nabla^{o}\right)$ be the trivial bundle \mathcal{O}_{D}^{d} with the connection matrix of ∇^{o} being

$$
\left(\frac{B_{0}^{o}}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau} .
$$

Define $\lambda_{i}:=p_{i} \circ \pi$ where p_{i} is the projection $\left(x_{1}, \cdots, x_{d}\right) \in X_{d} \mapsto x_{i} \in \mathbb{C}$. Then by the theorem 6 we get a bundle ($\widetilde{E}, \widetilde{\nabla})$ on $D \times \widetilde{X}_{d}$. Then the argument of the previous proof works.

4 Universal Integrable Deformations for Birkhoff's Problems

Let $\left(E^{o}, \nabla^{o}\right)$ be a bundle on \mathbb{P}^{1} with a pole of order one along 0 and a logarithmic pole along ∞.

- Let X be a complex manifold. An integrable deformation of $\left(E^{o}, \nabla^{o}\right)$ parametrized by $\left(X, x^{o}\right)$ is a bundle (E, ∇) with a flat meromorphic connection on $\mathbb{P}^{1} \times X$ with a pole of order one along $\{0\} \times X$ and a logarithmic pole along $\{\infty\} \times X$ such that $\left.(E, \nabla)\right|_{\mathbb{P}^{1} \times\left\{x^{0}\right\}}=\left(E^{0}, \nabla^{0}\right)$.
- An integrable deformation (E, ∇) of $\left(E^{o}, \nabla^{o}\right)$ is called complete at x^{0} if for any other integrable deformation $\left(E^{\prime}, \nabla^{\prime}, x^{\prime}\right)$ of $\left(E^{0}, \nabla^{0}\right)$ parametrized by $\left(X^{\prime}, x^{\prime}\right)$, there exist neighborhoods V and V^{\prime} of x^{0} and x^{\prime} and an analytic map $f:\left(V^{\prime}, x^{\prime}\right) \rightarrow\left(V, x^{0}\right)$ such that $\left.\left(E^{\prime}, \nabla^{\prime}\right)\right|_{\mathbb{P}^{1} \times V^{\prime}}=\left.\left(\operatorname{id}_{\mathbb{P}^{1}} \times f\right)^{*}(E, \nabla)\right|_{\mathbb{P}^{1} \times V}$. Moreover, such a deformation is called universal at x^{0} if such an f is unique.

4.1 Local Universal Deformations

Theorem 8. Let $B_{0}^{o}, B_{\infty} \in M_{d}(\mathbb{C})$ and $\left(E^{o}, \nabla^{o}\right)$ be the trivial bundle of rank d on \mathbb{P}^{1} with the connection matrix

$$
\Omega^{o}=\left(\frac{B_{0}^{o}}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau}
$$

in the canonical basis. If the matrix B_{0}^{o} is regular, i.e., its all eigenvalues have one Jordan block, then there exists a germ of universal deformation of $\left(E^{0}, \nabla^{0}\right)$.
Proof: Inspired by the ideas of the theorem 7, we consider the system, near x^{0} in a manifold X,

$$
\begin{equation*}
d C=0,\left[B_{0}, C\right]=0, \text { and } d B_{0}+C=\left[B_{\infty}, C\right] \tag{***}
\end{equation*}
$$

with $B_{0}\left(x^{0}\right)=B_{0}^{o}$. Locally $d C(x)=0$ can be solved by $C(x)=d \Gamma(x)$ with $\Gamma\left(x^{0}\right)=0$. Hence the system is equivalent to

$$
\left[B_{0}, d \Gamma\right]=0 \text { and } d\left(B_{0}+\Gamma\right)=\left[B_{\infty}, d \Gamma\right] .
$$

Note the second condition is exactly $B_{0}=B_{0}^{o}-\Gamma+\left[B_{\infty}, \Gamma\right]$ since $\Gamma\left(x^{o}\right)=0$, the system reduces to

$$
\left[B_{0}^{o}-\Gamma+\left[B_{\infty}, \Gamma\right], d \Gamma\right]=0 .
$$

- The system above is integrable on $M_{d}(\mathbb{C})$:

Consider vectors

$$
\xi_{1}=\sum_{i, j} \xi_{1}^{i j} \frac{\partial}{\partial \gamma_{i j}} \text { and } \xi_{2}=\sum_{i, j} \xi_{2}^{i j} \frac{\partial}{\partial \gamma_{i j}} .
$$

Then to show the system $\left[B_{0}, d \Gamma\right]=0$ is integrable, it suffices to verify that for any ξ_{1} and ξ_{2} annihilated by $\left[B_{0}, d \Gamma\right]_{m n}$ for all m and $n,\left(d\left[B_{0}, d \Gamma\right]\right)_{m n}\left(\xi_{1}, \xi_{2}\right)=0$ for all m and n also. Thus first we calculate (remember $\left.B_{0}=B_{0}^{o}-\Gamma+\left[B_{\infty}, \Gamma\right]\right)$

$$
d\left[B_{0}, d \Gamma\right]=d B_{0} \wedge d \Gamma+d \Gamma \wedge d B_{0}=-2 d \Gamma \wedge d \Gamma+2\left[B_{\infty}, d \Gamma \wedge d \Gamma\right] .
$$

Let $\Xi_{k}:=\left(\xi_{k}^{i j}\right)_{i, j}$ for $k=1$ and 2 . Then ξ_{1} and ξ_{2} are annihilated by all the entries of $\left[B_{0}, d \Gamma\right]$ if and only if

$$
\left[B_{0}, \Xi_{1}\right]=\left[B_{0}, \Xi_{2}\right]=0
$$

and likewise $\left(\xi_{1}, \xi_{2}\right)$ is annihilated by all the entries of $d\left[B_{0}, d \Gamma\right]$ if and only if

$$
-2\left[\Xi_{1}, \Xi_{2}\right]+2\left[B_{\infty},\left[\Xi_{1}, \Xi_{2}\right]\right]=0
$$

So it amounts to proving

$$
\left[B_{0}, \Xi_{1}\right]=\left[B_{0}, \Xi_{2}\right]=0 \Rightarrow-2\left[\Xi_{1}, \Xi_{2}\right]+2\left[B_{\infty},\left[\Xi_{1}, \Xi_{2}\right]\right]=0
$$

Since B_{0}^{o} is regular, for x near x^{0} we have $B_{0}(x)=B_{0}^{o}-\Gamma+\left[B_{\infty}, \Gamma\right]$ is also regular for Γ near 0 . For these Γ, that $\left[B_{0}, \Xi_{1}\right]=\left[B_{0}, \Xi_{2}\right]=0$ means Ξ_{1} and Ξ_{2} are both polynomials in B_{0}. So Ξ_{1} and Ξ_{2} also commute and the claim follows.

- The integrable deformation:

Let Y be the integral submanifold of the system going through 0 . Let (F, ∇) be the trivial bundle of rank d on Y with the connection matrix

$$
\left(\frac{B_{0}}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau}+\frac{d \Gamma}{\tau}
$$

where $B_{0}:=B_{0}^{o}-\Gamma+\left[B_{\infty}, \Gamma\right]$. By the construction it's an integrable deformation of $\left(E^{o}, \nabla^{o}\right)$.

- The deformation is universal:

Let $(E, \widetilde{\nabla})$ be an integrable deformation of $\left(E^{o}, \nabla^{o}\right)$ parametrized by $\left(X, x^{o}\right)$. Since the problem is local, we may assume X is a simply connected open subset in \mathbb{C}^{n} and E is trivial, by the rigidity of trivial bundle on P^{1}. Then by the same argument as that in the theorem 7 , there exists a unique basis of E in which the matrix of $\widetilde{\nabla}$ takes the form

$$
\left(\frac{B_{0}(x)}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau}+\frac{C(x)}{\tau}
$$

with $B_{0}\left(x^{0}\right)=B_{0}$ and $d C(x)=0$ (the latter again by the integrability condition). Hence there's a holomorphic map $\Gamma: X \rightarrow M_{d}(\mathbb{C})$ such that $d \Gamma=C$ and $\Gamma\left(x^{0}\right)=0$. Since $\left(B_{0}, C\right)$ also satisfies the system $\left({ }^{* * *}\right)$, the image of Γ is contained in Y, and by the construction $(E, \widetilde{\nabla})=\Gamma^{*}(F, \nabla)$. Hence the deformation is complete. Besides, by the uniqueness of the basis, such a map $\Gamma: X \rightarrow V$ is unique. Hence its a universal deformation.

4.2 Global Universal deformations

Recall that we have proven
Theorem 3. Given $x^{o}=\left(x_{1}^{o}, \cdots, x_{d}^{o}\right)=\pi\left(\widetilde{x}^{o}\right) \in X_{d}$ and $B_{0}^{o}:=\operatorname{diag}\left(x_{1}^{o}, \cdots, x_{d}^{o}\right), B_{\infty} \in M_{d}(\mathbb{C})$, there exist a unique holomorphic bundle E on $\mathbb{P}^{1} \times \widetilde{X}_{d}$ and a flat meromorphic connection ∇ with a pole of order 1 along $\{0\} \times \widetilde{X}_{d}$ and a logarithmic pole along $\{\infty\} \times \widetilde{X}_{d}$, such that
(1) the restriction $\left(E^{0}, \nabla^{0}\right)$ of (E, ∇) at \widetilde{x}^{0} has a global frame with respect to which the matrix representation of ∇^{0} is

$$
\left(\frac{B_{0}^{o}}{\tau}+B_{\infty}\right) \frac{d \tau}{\tau}
$$

(2) for any $\widetilde{x} \in \widetilde{X}_{d}$, the eigenvalues of the residue endomorphism R_{0} at \widetilde{x} are the components of $\pi(\widetilde{x})$.

Now we want to use this to get a global universal deformation under a more restricted condition than the regularity.

Theorem 9 ([Mal83]). Let $B_{0}^{o}, B_{\infty} \in M_{d}(\mathbb{C})$. If $B_{0}^{o}=\operatorname{diag}\left(x_{1}^{o}, \cdots, x_{d}^{o}\right)$ has distinct eigenvalues, then there exist a hyperplane Θ of \widetilde{X}_{d} and a unique aolution $\left(B_{0}, C\right)$, meromorphic on \widetilde{X}_{d} with poles along Θ, of the system $\left(^{* * *}\right)$ such that $B_{0}\left(x^{o}\right)=B_{0}^{o}$ and for $\widetilde{x} \in \widetilde{X}_{d} \backslash \Theta, B_{0}(\widetilde{x})$ has eigenvalues x_{1}, \cdots, x_{d} where $\pi(\widetilde{x})=\left(x_{1}, \cdots, x_{d}\right)$.

Proof: First we get a bundle (E, ∇) satisfying the conditions in the theorem 3 . Then by the theorem 7 of the Birkhoff's problem, we can get a hyperplane Θ and a solution $\left(B_{0}, C\right)$ of $\left({ }^{* * *}\right)$ meromorphic along Θ. By the condition (2) of the theorem 3, the existence follows.

For the uniqueness, assume $\left(B_{0}(\widetilde{x}), C(\widetilde{x})\right)$ is a solution of $\left.{ }^{* * *}\right)$ satisfying the conditions of the theorem.
Let V be a small open neighborhood of \widetilde{x}^{0}, on which there is a solution $\Gamma(\widetilde{x})$ such that $d \Gamma=C$ and $\Gamma\left(\widetilde{x}^{0}\right)=0$. If let $(Y, 0)$ be the local universal deformation of $\left(E^{0}, \nabla^{0}\right):=\left.(E, \nabla)\right|_{\mathbb{P}^{1} \times\left\{\tilde{x}^{0}\right\}}$, whose existence is by the previous theorem 8 since B_{0}^{o} now is in particular regular, then Γ define a map

$$
f:\left(V, \widetilde{x}^{0}\right) \rightarrow\left(M_{d}(\mathbb{C}), 0\right)
$$

has image in Y.
On the other hand, the eigenvalues of $B_{0}:=B_{0}^{o}-\Gamma+\left[B_{\infty}, \Gamma\right]$ defines a holomorphic map $(Y, 0) \rightarrow\left(X_{d}, x^{0}\right)$, and by shrinking Y to a simply connected neighborhood of 0 , we may assume it can be lifted to

$$
g:(Y, 0) \rightarrow\left(\widetilde{X}_{d}, \tilde{x}^{0}\right) .
$$

By the construction, since for each $\widetilde{x} \in \widetilde{X}_{d}$, the eigenvalues of B_{0} are exactly the component of $\pi(\widetilde{x})$, we have

$$
g \circ f=\operatorname{id}_{V}
$$

Then we get the relation of their tangent maps

$$
d g_{0} \circ d f_{\tilde{x}^{0}}=\operatorname{id}_{T_{0} V} .
$$

Since both $T_{0} V$ and $T_{\widetilde{x}^{0}} \widetilde{X}_{d}$ have dimensions d, g and f are inverse to each other in some open neighborhoods of 0 and \widetilde{x}^{0}. Thus f is uniquely determined by g, i.e., Γ, and hence C and B_{0} are also uniquely determined by g.
Now we show that for the bundle (E, ∇) given by the theorem 3 and any $\tilde{x} \in \widetilde{X}_{d} \backslash \Theta,(E, \nabla)$ induces a universal deformation of its restriction $\left.(E, \nabla)\right|_{\mathbb{P}^{1} \times\{\tilde{x}\}}$.
In fact, for any $\tilde{x} \in \widetilde{X}_{d} \backslash \Theta$, since the bundle constructed from $\left.(E, \nabla)\right|_{\mathbb{P}^{1} \times\left\{\tilde{x}^{0}\right\}}$ and that from $\left.(E, \nabla)\right|_{\mathbb{P}^{1} \times\{\tilde{x}\}}$ are isomorphic due to the uniqueness, it suffices to prove the universality at \widetilde{x}^{0}.
Let $\left(E^{\prime}, \nabla^{\prime}, x^{\prime}\right)$ be an integrable deformation of $\left(E^{o}, \nabla^{o}\right)$. Then the residue R_{0}^{\prime} of the former is regularly semisimple in a small neighborhood V^{\prime} of x^{\prime} since it's an open condition. Then its eigenvalues define uniquely a map

$$
f:\left(V^{\prime}, x^{\prime}\right) \rightarrow\left(\widetilde{X}_{d}, \widetilde{x}^{o}\right)
$$

Then we have $f^{*}(E, \nabla)$ and $\left.\left(E^{\prime}, \nabla^{\prime}\right)\right|_{\mathbb{P}^{1} \times V^{\prime}}$ are isomorphic by the unique from the initial condition $\left(E^{o}, \nabla^{o}\right)$.

5 The Proofs of the Two Facts

Let X be a simply connected complex manifold.
Fact 1. Let $(E, \widetilde{\nabla})$ be a bundle on $D \times X$ with $\widetilde{\nabla}$ flat and having a logarithmic pole along $\{\infty\} \times X$, and $\left(E_{\infty}, \nabla\right)$ be its restriction to $\{\infty\} \times X$. Then regarded as a section of the bundle $\operatorname{Hom}\left(E_{\infty}, E_{\infty}\right)$ equipped with the natural flat connection induced by ∇, R_{∞} is a horizontal section.

Proof: Let

$$
\Omega=\frac{1}{z_{1}} \Omega^{1}(z) d z_{1}+\sum_{i \geq 2} \Omega^{i}(z) d z_{i}
$$

be the connection matrix of $\widetilde{\nabla}$ with respect to a local frame, where ∞ is at $z_{1}=0$. Then the matrix of ∇R_{∞} is

$$
\left.\sum_{i \geq 2}\left(\frac{\partial \Omega^{1}(z)}{\partial z_{i}}+\left[\Omega^{i}(z), \Omega^{1}(z)\right]\right)\right|_{z_{1}=0} .
$$

On the other hand, we have

$$
\left[\Omega^{1}(z), \Omega^{i}(z)\right]=\left[z_{1}\left(\frac{1}{z_{1}} \Omega^{1}(z)\right), \Omega^{i}(z)\right]=\frac{\partial \Omega^{1}(z)}{\partial z_{i}}-z^{1} \frac{\partial \Omega^{i}}{\partial z^{1}}
$$

for $i \geq 2$. Thus for $z_{1}=0$, we have

$$
\left.\left[\Omega^{1}(z), \Omega^{i}(z)\right]\right|_{z_{1}=0}=\left.\frac{\partial \Omega^{1}(z)}{\partial z_{i}}\right|_{z_{1}=0}
$$

so $\nabla R_{\infty}=0$.
Fact 2. Let E be a bundle on $\mathbb{P}^{1} \times X$ and π be the projection $\mathbb{P}^{1} \times X \rightarrow X$. If for some $x^{0} \in X,\left.E\right|_{\mathbb{P}^{1} \times\left\{x^{o}\right\}}$ is trivial, then there exist canonical isomorphisms

$$
\mathcal{E}\left(* \pi^{-1} \Theta\right) \simeq \pi^{*} i_{0}^{*} \mathcal{E}\left(* \pi^{-1} \Theta\right) \simeq \pi^{*} i_{\infty}^{*} \mathcal{E}\left(* \pi^{-1} \Theta\right)
$$

where $i_{0}:\{0\} \times X \hookrightarrow \mathbb{P}^{1} \times X, i_{\infty}:\{\infty\} \times X \hookrightarrow \mathbb{P}^{1} \times X$, and Θ is the nontriviality divisor.
Proof: First we apply a general fact.
Fact. If \mathcal{F} is an \mathcal{O}_{X}-coherent sheaf, locally free of rank d on $X \backslash \Theta$, then $\mathcal{O}_{X}(* \Theta) \otimes_{\mathcal{O}_{X}} \mathcal{F}$ is locally free of rank d as an $\mathcal{O}_{X}(* \Theta)$-module.
Applying the fact to the sheaf $\pi_{*} \mathcal{E}$, for $x^{0} \in \Theta$, let e_{1}, \cdots, e_{d} be a basis of $\pi_{*} \mathcal{E}(* \Theta)_{x^{0}}=\left(\mathcal{O}_{X}(* \Theta) \otimes_{\mathcal{O}_{X}}\right.$ $\left.\pi_{*} \mathcal{E}\right)_{x^{0}}$. Then for a sufficiently small neighborhood V of x^{0}, the basis defines an isomorphism

$$
\left.\mathcal{O}_{\mathbb{P}^{1} \times V}^{d}\left(* \pi^{-1}(\Theta)\right) \xrightarrow{\sim} \mathcal{E}\left(* \pi^{-1}(\Theta)\right)\right|_{\mathbb{P}^{1} \times V} .
$$

Since the original problem can be check locally, this isomorphism makes the conclusion clear.

References

[Dub96] B. Dubrovin. Geometry of 2D topological field theory. Lect. Notes in Math., vol. 1260, Springer-Verlag, 1996.
[Mal83] B. Malgrange. Sur les déformations isomonodromiques, I, II. Séminaire E.N.S. Mathématique et Physique, pages 401-438, 1983.
[Sab08] C. Sabbah. Isomonodromic Deformations and Frobenius Manifolds, an Introduction. Springer-Verlag London, 2008.
[Sab17] C. Sabbah. Frobenius manifolds: isomonodromic deformations and infinitesimal period mappings. 2017.

