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0 Basic Notations and Definitions

Let M be a connected complex manifold,OM be the sheaf of holomorphic functions on M, and Z be a smooth
hypersurface in M.
• For a holomorphic vector bundle E of rank d over M, it corresponds to a locally free sheaf of OM-modules
of rank d, which will be denoted by E , and is also called a “bundle.” We define ΘM to be the one correspond-
ing to the tangent bundle TM.
• OM(∗Z) is the smallest sheaf containing all OM(kZ)(k ∈ Z) as subsheaves, Ωk

M is the sheaf of holomor-
phic k-forms on M, and Ωk

M(∗Z) := Ωk
M ⊗OM OM(∗Z)

• A meromorphic bundleM on M with poles along Z is a locally free sheaf of OM(∗Z)-modules of finite
rank.
• For a holomorphic vector bundle E on X, it corresponds to a meromorphic bundle E(∗Z) := E ⊗OX OX(∗Z).
• A meromorphic connection ∇ on a meromorphic bundleM with poles along Z is a C-linear morphism
M→ Ω1

M ⊗OM M with its entries in Ω1
M(∗Z) with respect to a local frame.

1 Frobenius Structures Induces by Infinitesimal Period Mappings

Infinitesimal period mappings provide a way to construct Frobenius structures from a family of bundles on
P1 with flat meromorphic connections. In this section, M is always a connected complex manifold.

1.1 Higgs Fields and the Induced Product Structures

Definition 1 (Higgs fields). Let E be a holomorphic vector bundle on M. A Higgs field on E is an OM-linear
morphism

Φ : E → Ω1
M ⊗OM E

with the integrability condition Φ ∧Φ = 0.

For a holomorphic vector field ξ on an open subset U of M, we will write Φξ : E |U → E |U to denote the
restricted morphism contracted with ξ.

Now assume Φ : ΘM → Ω1
M ⊗ΘM is a Higgs field on the tangent bundle TM. We can view it as a morphism

ΘM ⊗ΘM → ΘM and see if it is symmetric.
The Higgs field can define a product structure on TM by (ξ, η) 7→ ξ · η := −Φξ(η).

Proposition 1. Φ is symmetric⇔ the product · is associative and commutative.

Proof: On a local chart we can write Φ = ∑ Φi ⊗ dzi where Φi := Φ∂i . Then the integrability condition is
equivalent to that for all i and j, Φi ◦Φj = Φj ◦Φi. Then if Φ is symmetric,

∂i · (∂j · ∂k) = ∂i · (∂k · ∂j) = Φi(Φk(∂j) = Φk(Φi(∂j) = ∂k · (∂i · ∂j) = (∂i · ∂j) · ∂k.

The commutativity is clear.
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1.2 Residue Endomorphisms

Let F be a bundle on M of rank d := dim M. Then it induces a bundle E := π∗F on P1×M by the canonical
projection π : P1×M → M. Assume there is a flat meromorphic connection ∇̃ on E with a pole of order 1
along {0} ×M and a logarithmic pole along {∞} ×M. We will write E0 := i∗0 E where i0 : M ' {0} ×M ↪→
P1×M and likewise for E∞. Of course E0 ' E∞ ' F.

• The restricted connection ∇ and the induced residue endomorphism R∞ on E∞:
In a local chart U ×M with U a neighborhood of ∞ ∈ P1, the connection matrix of ∇̃ with respect to a local
frame has the form (in the chart ∞ is at z1 = 0)

Ω = Ω1 dz1

z1
+ ∑

i≥2
Ωidzi,

where each Ωj has holomorphic entries. Then we define a holomorphic connection ∇ on {0} ×M, whose
local matrix representation is

∑
i≥2

Ωi(0, z2, · · · , zd+1)dzi.

Let R∞ : i∗∞ E → i∗∞ E be the endomorphism on E∞ whose local matrix representation is Ω1(0, z2, · · · , zd).
Fact 1. Regarded as a section of the bundle Hom(E∞, E∞) equipped with the natural flat connection induced
by ∇, R∞ is a horizontal section.

• The induced Higgs field Φ and the residue endomorphism R0 on E0:
In a local chart U′ ×M with U′ a neighborhood of 0 ∈ P1, the connection matrix of ∇̃ with respect to a local
frame has the form

Ω′ =
1
z1
(Ω′1

dz1

z1
+ ∑

i≥2
Ω′idzi),

where each Ω′j has holomorphic entries. Then we define an endomorphism-valued 1-form Φ : E0 → Ω1
M ⊗

E0 whose local matrix representation is

∑
i≥2

Ω′i(0, z2, · · · , zd+1)dzi.

Let R0 : i∗0 E → i∗0 E be the endomorphism on E0 whose local matrix representation is Ω′1(0, z2, · · · , zd).

1.3 Infinitesimal Period Mappings and the Induced Product Structure

Following the setting in the section 1.2, we regard all the objects∇, Φ, R0 and R∞ on E0. Besides, we further
assume E0 has a metric g and they satisfy

∇g = 0, Φ∗ = Φ, R∗0 = R0 and R∞ + R∗∞ = −w · idE0 (*)

for some w where (·)∗ is the adjoint with respect to the metric, and

∇2 = 0, ∇R∞ = 0, Φ ∧Φ = 0, [R0, Φ] = 0, ∇Φ = 0 and ∇R0 + Φ = [Φ, R∞]. (**)

For a ∇-horizontal section ω of E0, we define the associated infinitesimal period mapping

φω : TM→E0

ξ 7→ −Φξ(ω).

Such an ω is called primitive if φω is an isomorphism, and homogeneous if ω is an eigenvector of R∞.

Theorem 1. If E0 admits a primitive and homogeneous section ω, then φω equips M a Frobenius structure.

Proof: Since φω is an isomorphism, we can carry on TM the structures on E0 through it.
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• The torsion-free flat connection ω∇ on TM: For ξ ∈ TM, we define

ω∇ξ := φ−1
ω ∇(φω(ξ)).

Indeed, fix a local ∇-horizontal frame of E0 with a local coordinate z1, · · · , zd, we can write Φ = ∑ Φi ⊗ dzi.
Then

ω∇∂i ∂j = φ−1
ω (∇∂i(φω(∂j))) = φ−1

ω (∇∂i(−Φj(ω))),

which is symmetric in i and j since ∇Φ = 0 and ∇ω = 0. Thus ω∇ is torsion-free.
Remark 1. Note that the torsion-freeness of ω∇ is equivalent to the ∇-horizontality of φω since

∇φω(ξ, η) = ∇ξφω(η) +∇ηφω(ξ)− φω([ξ, η]).

• The commutative associative product structure with the ω∇-flat unit: For ξ and η ∈ TM, we define

ξ · η := φ−1
ω (−Φξ(φω(η)).

In a local coordinate,
∂i · ∂j = φ−1

ω (−Φ∂i(φω(∂j)) = φ−1
ω (Φi(Φj(ω)))

and the conclusion follows with Φ ∧Φ = 0.
Let e := φ−1

ω (ω). Then
ω∇e = φ−1

ω (∇ω) = 0

and for any ξ,
ξ · e = φ−1

ω (−Φξ(φω(e))) = φ−1
ω (−Φξ(ω)) = ξ.

• The flat metric ωg:
For ξ and η on TM, we define

ωg(ξ, η) := g(φω(ξ), φω(η)).

Then ω∇ωg = 0 since ∇g = 0 and ∇φω = 0. Moreover by the torsion-freeness, ω∇ is the Levi-Civita
connection of ωg.

• The euler vector field E: Let E := φ−1
ω (R0(ω)) and say R∞ω = −qω by the homogeneity.

(1) ω∇(ω∇E) = 0:
Locally

ω∇∂i(E) = φ−1
ω (∇∂i(R0(ω)))

= φ−1
ω (∂i(R0)(ω))

= φ−1
ω (([Φi, R∞]−Φi)(ω))

= φ−1
ω ((−1− q)Φi(ω)− R∞(Φi(ω)))

= (1 + q) ∂i +
ωR∞(∂i)

by ∇R0 + Φ = [Φ, R∞], where ωR∞ := φ−1
ω ◦ R∞ ◦ φω. Hence ω∇(E) = (1 + q)idTM + ωR∞.

By ∇R∞ = 0, ∇φω = 0 and the torsion-freeness of ω∇, we have

ω∇ωR∞(ξ, η) = φ−1
ω (∇(R∞ ◦ φω)(ξ, η))

= φ−1
ω (∇ξ(R∞(φω(η)))−∇η(R∞(φω(ξ)))− R∞(φω([ξ, η])))

= φ−1
ω (R∞(∇ξ(φω(η))−∇η(φω(ξ)))− R∞(φω([ξ, η])))

= φ−1
ω (R∞(φω([ξ, η]))− R∞(φω([ξ, η]))) = 0.

Thus ω∇ωR∞ = 0, so ω∇(ω∇E) = 0.

We have the new relations from the old ones (*):

ω∇ωg = 0, Φ∗ = Φ, (ωR0)
∗ = ωR0 and ωR∞ + (ωR∞)

∗ = −w · idTM

where the adjoint is respect to the metric ωg. Note these imply the symmetry of ω∇c where c(ξ1, ξ2, ξ3) :=
ωg(ξ1 · ξ2, ξ3).
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(2) LE(
ωg) = D · ωg for some D, where L means the Lie derivative:

From (1), we have
ω∇E = (1 + q)idTM + ωR∞.

Then taking the adjoint gives

(ω∇E)∗ = (1 + q)idTM + (ωR∞)
∗ = (1 + q− w)idTM − ωR∞.

Then for ξ and η in TM,

ωg(ω∇ξ E, η) + ωg(ξ, ω∇ηE) = ωg((ω∇E)(ξ), η) + ωg((ω∇E)∗(ξ), η) = (2 + 2q− w)ωg(ξ, η).

Let D := 2 + 2q− w and we have

LE(
ωg)(ξ, η) = E(ωg(ξ, η))− ωg(LEξ, η)− ωg(ξ, LEη)

= E(ωg(ξ, η))− ωg(ω∇Eξ − ω∇ξ E, η)− ωg(ξ, ω∇Eη − ω∇ηE)
= E(ωg(ξ, η))− ωg(ω∇Eξ, η)− ωg(ξ, ω∇Eη) + ωg(ω∇ξ E, η) + ωg(ξ, ω∇ηE)
= ω∇E(

ωg)(ξ, η) + (2 + 2q− w)ωg(ξ, η)

= D · ωg(ξ, η)

(3) LE(·) = · where ·means the product structure:
First we claim that ωR0 := φ−1

ω ◦ R0 ◦ φω is exactly the endomorphism ξ 7→ ξ · E. Indeed, by [R0, Φ] = 0,

ξ · E = φ−1
ω (−Φξ(φω(φ

−1
ω (R0(ω)))) = φ−1

ω (−R0(Φξ(ω))) = φ−1
ω (R0(φω(ξ))) =

ωR0(ξ).

Since ∇φω = 0, the old relation ∇R0 + Φ = [Φ, R∞] gives, after composing with φ−1
ω and φω,

ω∇ξ(η · E)− (ω∇ξ) · E− ξ · η = ξ · (ω∇ηE− (1 + q)η)− (ω∇ξ·ηE− (1 + q)ξ · η) = ξ · ω∇ηE− ω∇ξ·ηE.

By ∇Φ = 0, the above result simplifies to

LE(ξ · η)− (LEξ) · η − ξ · (LEη) = ξ · η.

Thus the theorem follows.

2 Universal Semisimple Frobenius Structures

We aim at establishing the following theorem.
Theorem 2 ([Dub96]). There is a one-to-one correspondence

{semisimple simply connected Frobenius manifolds} ↔ {(Bo
0, B∞, ωo, U) satisfying the (?) conditions}

with the (?) conditions that Bo
0 is regularly semisimple, that B∞ + B∗∞ = wId for some w ∈ Z, that wo is an

eigenvector of B∞, whose components don’t vanish on the eigenbases of Bo
0, and that U is a simply connected

open set of X̃d \Θωo .

In the theorem, Xd := {(x1, · · · , xd) ∈ Cd |xi 6= xj for all i < j} and X̃d is its universal cover. Fix xo =
(xo

1, · · · , xo
d) ∈ Xd and a lifted point x̃o ∈ X̃d, i.e., π(x̃o) = xo where π : X̃d → Xd is the covering map.

Proof: Suppose we are given B∞ + B∗∞ = wId for some w ∈ Z, Bo
0 = diag(xo

1, · · · , xo
d), thus regularly

semisimple, and an eigenvector ωo of B∞, all components of which are non-zero.
Theorem 3 ([Mal83]). Given such Bo

0 and B∞, there exist a unique holomorphic bundle E on P1×X̃d and a
flat meromorphic connection∇with a pole of order 1 along {0}× X̃d and a logarithmic pole along {∞}× X̃d,
such that
(1) the restriction (Eo,∇o) of (E,∇) at x̃o has a global frame with respect to which the matrix representation
of ∇o is

(
Bo

0
z

+ B∞)
dz
z

;

(2) for any x̃ ∈ X̃d, the eigenvalues of the residue endomorphism R0 at x̃ are the components of π(x̃).
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Theorem 4 ([Sab08]). Let X be a connected complex analytic manifold and F a holomorphic vector bundle
on P1×X such that for any x ∈ X, the restriction F|

P1×{x} has degree 0.
(1)(The nontriviality divisor) The set

Θ := {x ∈ M : F|
P1×{x} is non-trivial}

is ∅, X or a hypersurface of X.
(2)(The canonical identification between the restriction to 0 and ∞) We have

i∗0 F|
P1×(X\Θ) ' i∗∞F|

P1×(X\Θ).

Theorem 5. ([Sab17]) Let X be a simply connected complex manifold and (F,∇) a bundle on D× X with a
pole of order 1 along {0} × X. Suppose R0 is the residue endomorphism and (F̂, ∇̂) is its associated formal
bundle.
(1)(the unique decomposition) If R0 is regularly semisimple, (F̂, ∇̂) has a unique decomposition to line
bundles

(F̂, ∇̂) '
⊕

j

(F̂j, ∇̂).

(2)(equivalence) For line bundles, the formalism (F,∇) 7→ (F̂, ∇̂) is an equivalence of categories.

By the theorem 3, we can, following the section 1.3, obtain∇ and R∞ on E∞, Φ and R0 on E0. Via the theorem
4, we get a bundle E on X̃d \Θ with objects ∇, Φ, R∞ and R0.
Since X̃d is simply connected and∇ is a flat connection on E∞, it’s trivial and thus we can find a∇-horizontal
ω on X̃d such that ω(x̃o) = ωo. Later we will let ω be its restriction to X̃d \Θ.
By the theorem 3 again, the residue R0 is regular semisimple everywhere, so E0, on {0} × X̃d, can be decom-
posed to a direct sum of eigenbundles of rank one, each of which can be equipped with a flat connection
by the theorem 5, and hence admits a global frame. We collect these d section, forming a global frame
e = {e1, · · · , ed} of E0.
Restrict the frame on X̃d \Θ, also denoted by e, and let ωi be the components of ω with respect to e. We set

Θωo := Θ ∪
( d⋃

i=1

{the zero locus of ωi}
)
.

By our definition of Θωo , the sections
ui := ωiei

form a basis of E|X̃d\Θωo
. Then the infinitesimal period mapping associated to ω gives

φω : T(X̃d \Θωo)→ E|X̃d\Θωo

∂i 7→ −Φ∂i(ω) = ui

where the fact that −Φ∂i(ω) = ui comes from the matrix representation of Φ with respect to e, which will
be explained in the proceeding sections.
Therefore, φω is an isomorphism, and by the construction in the section 1.3, X̃d \ Θωo admits a Frobenius
structure. Note that we have the unit

e = φ−1
ω (ω) = φ−1

ω (∑ ui) = ∑ ∂i

and the Euler vector field
E = φ−1

ω (R0(ω)) = φ−1
ω (∑ xiui) = ∑ xi ∂i

for the matrix representation of R0 with respect to e is diag(x1, · · · , xd), which will also be explained.
Besides, we have

∂i · ∂j = φ−1
ω (−Φ∂i(φω(∂j))) = φ−1

ω (−Φ∂i(uj)) = φ−1
ω (δijui) = δij ∂i .

This proves one direction of the theorem.
Remark 2. We didn’t check that the objects satisfy the condition (*) and (**), which would be clear after we
show the solvability of the Birkhoff’s problem in a family.
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For the other way around, let M be a semisimple simply connected Frobenius manifold. Then we can define
Φ by Φξ(η) := −ξ · η, R0 := −Φ(E), and R∞ := ∇E. The semisimplicity means that at each point R0 is
regularly semisimple, so its eigenvalues define d functions (x1, · · · , xd) : M→ Xd.
Theorem 6 ([Mal83]). Let X be a simply connected complex manifold with a fixed base point xo ∈ X,
λ1, · · · , λd d holomorphic functions X → C such that λi(x) 6= λj(x) for all i 6= j and x ∈ X, (Eo,∇o) a
bundle on D with a connection having a pole of order 1 at the origin, and the residue Ro

0 whose eigenvalues
are λ1(xo), · · · , λd(xo). Then there exists a unique bundle (E,∇) on D× X with a connection having a pole
of order 1 along {0} × X such that
(1) for any x ∈ X, R0(x) has eigenvalues λ1(x), · · · , λd(x), and
(2) (E,∇)|D×{xo} ' (Eo,∇o).

By the theorem 6, we can as above construct a basis e = {e1 · · · , ed}, with respect to which the matrix of Φ
is exactly −dR0 (also will be clarified later), i.e.,

Φ(ei) = −dxi ⊗ ei,

therefore, for all i and j,
ei · ej = −Φej ei = Lej(xi) · ei.

By the commutativity of the product, Lej(xi) = 0 for i 6= j. Besides, λi := Lei(xi) is non-vanishing:
Write the unit vector field e as e = ∑ aiei. Then

ei = ei · e = ei ·∑ aiei = aiλi.

Thus aiλi ≡ 1 so λi is non-vanishing.
Now we get a holomorphic map

(x1, · · · , xd) : M→ Xd.

Since M is simply connected, it can be lifted to

f := (x1, · · · , xd) : M→ X̃d,

which is a submersion, thus an open map, so it is proper. Since it’s a proper local homeomorphism between
locally compact Hausdorff spaces, it’s a covering map, with the number of sheets

[π1( f (M)) : π1(M)] = 1

because M is simply connected and the image of a simply connected domain under a biholomorphic map
is simply connected. Thus, f is isomorphic to an open subset of X̃d, and the conclusion of the theorem 2
follows.
Remark 3. Note that by the canonicality of the product structure defined above, this (·, e, E) is independent
of the choice of ωo with the non-zero condition.

3 Birkhoff’s Problem on P1

In this section, X is a simply-connected complex analytic manifold of dimension n.
We write P1 = U0 ∪U∞ with U0 := P1 \{∞} and U∞ := P1 \{0} and let τ and τ′ be the coordinate on them
respectively.
Let D = Br(0) be an open disc in U0 ' C for some r > 0, and (Ẽ, ∇̃) be a holomorphic bundle of rank d on
U := D× X, with a flat meromorphic connection ∇̃ having a pole of order 1 along {0}×X, in the sense that
its restriction to (U∞ ∩ D)× X is a flat connection on the holomorphic bundle Ẽ|(U∞∩D)×X.
Fix a point xo ∈ X and let ((Ẽo, ∇̃o) be the restriction of (Ẽ, ∇̃) to Uo := D× {xo}.

Definition 2 (Birkhoff’s problem). Let A(τ) be a d× d matrix function on D with τr+1A(τ) having holomor-
phic entries, one of which doesn’t vanish at τ = 0, for some r ≥ 0. We say that Birkhoff’s problem can be
solved for A(τ) if there exists some P(τ) ∈ GLd(OU) such that the matrix B(τ) := P−1AP + P−1P′ can be
written as

B(τ) =
B−(r+1)

τ−(r+1)
+ · · ·+ B−1

τ

for some B−1, · · · , B−(r+1) ∈ Md(C).
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The following theorem says that there’s a canonical solution to Birkhoff’s problem for almost every values
in P1 if we are given a solution for a particular value.

Theorem 7. Assume Birkhoff’s problem can be solved for (Ẽo, ∇̃o) at xo, i.e., we can take a global frame εo

of Ẽo with respect to which the connection matrix of ∇̃o can be written as

Ωo = (
Bo

0
τ

+ B∞)
dτ

τ

for some Bo
0 and B∞ ∈ Md(C). Then there exist a hypersurface Θ of X not containing xo and a unique basis

ε of Ẽ(∗(D×Θ)) which coincides with εo at xo and in which the connection matrix of ∇̃ takes the form

Ω = (
B0(x)

τ
+ B∞)

dτ

τ
+

C(x)
τ

where B0(x) and C(x) are a meromorphic matrix function and 1-form on X and holomorphic on X \Θ with
B0(xo) = Bo

0.

Proof:
First we prove the existence.
• Constructions of a bundle on P1×X by sheaves gluing:
Let D′ ⊆ U∞ be an open disc centered at ∞ such that A := D ∩ D′ 6= ∅. Recall τ′ is the coordinate on D′,
i.e., τ′ = 1/τ on A. On A× X, since (Ẽ, ∇̃)|A×X is a flat bundle, it is determined by its monodromy. On the
other hand, for X is simply-connected, π1(A× X) = π1(A). Thus (Ẽ, ∇̃)|A×X is isomorphic to p∗(Ẽo, ∇̃o)|A
where p is the projection A× X → A.
By the change of variable, the restriction of the trivial bundle Od

D′×X with the connection matrix

−(τ′Bo
0 + B∞)

dτ′

τ′

to A×X is isomorphic to (Ẽ, ∇̃)|A×X since they are both isomorphic to p∗(Ẽo, ∇̃o)|A. Thus we can glue them
up to get a bundle (E,∇) on P1×X with a flat meromorphic connection having poles on {0, ∞} × X.

• The nontriviality divisor Θ of X :
Since E|

P1×{xo} = Eo is trivial, its degree is 0 so we can apply the theorem 4 of the nontriviality divisor to X
and get Θ ( X because xo 6∈ Θ.

• Extensions of a basis:
Since∇ has a logarithmic pole along {∞} × X, there’s an induced holomorphic flat connection∇∞ on i∗∞ E .
Fact 2 (the canonical identification between the restrictions to 0 and ∞). Let π be the projection P1×X → X.
Then for E above, there exist canonical isomorphisms

E(∗π−1Θ) ' π∗i∗0 E(∗π−1Θ) ' π∗i∗∞ E(∗π−1Θ)

where i0 : {0} × X ↪→ P1×X and i∞ : {∞} × X ↪→ P1×X.

By the triviality of i∗∞ E and the above isomorphisms, we can extend εo to a basis ε of the bundle E(∗π−1Θ).

• On U the connection matrix of ∇ takes the desired form.
Since the connection matrix Ω has order 1 at {0}×X in the basis ε, it can be written as

(B0(x)
τ

+ B∞(τ, x)
)dτ

τ
+ C0(τ, x) +

C(x)
τ

where B∞ and C0 are holomorphic function and 1-form.
Note after a change of variables, at infinity the connection matrix is of the form

(−B0(x)τ′ − B∞(
1
τ′

, x))
dτ′

τ′
+ C0(

1
τ′

, x) + C(x)τ′.
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Since the connection has a logarithmic pole at {∞} × X, we have B∞ and C0 are independent of τ′, i.e.,
independent of τ.
Restricted to infinity, the basis ε is ∇∞-horizontal, where the connection matrix is by definition C0(x), so
C0(x) = 0.
By the fact 1, because the endomorphism R∞ is horizontal, we have

∇(R∞εi) = R∞(∇εi)

for i = 1, · · · , d if the basis ε consists of {ε1, · · · , εd}. Note the matrix representation of R∞ with respect to
the basis is (−B0(x)τ′ − B∞(x))|τ′=0 = −B∞(x). Thus if we write Bi := the i-th column of −B∞(x),

∇(R∞εi) = ∇(ε · Bi) = (∇ε) · Bi + ε · dBi

and
R∞(∇εi) = (∇ε) · Bi.

where ε := (ε1 · · · εd) and ∇ε := (∇ε1 · · · ∇εd). Thus dBi(x) = 0 for all i, so B∞ is constant in x. Hence we
get the desired form

(
B0(x)

τ
+ B∞)

dτ

τ
+

C(x)
τ

.

For the uniqueness, suppose (ε′, Θ′) and (ε′, Θ′) satisfy the theorem. Let Θ := Θ′ ∪ Θ′′ and Xo := X \ Θ.
Then we get an isomorphism

Od
D×X(∗(D×Θ))

P→ Od
D×X(∗(D×Θ))

via the base change P. Since the induced homomorphism π1(D×Xo)→ π1(P
1×Xo) is an isomorphism, by

the proof of existence, P can be extended holomorphicly to the isomorphism between Od
P1×X(∗(P

1×Θ)).
Note if the matrix of the two connections are Ω and Ω′, we have Ω′ = P−1ΩP + P−1dP, i.e.,

dP = PΩ′ −ΩP.

Thus if we write P as column vectors, we can write the system as

dP = ((A1 + τ′A2(x))
dτ′

τ′
+ D(x)τ′) · P

near the infinity. If write P(x) = ∑
l≥l0

τ′l Pl(x), then we have dPl = DPl−1.

Suppose l0 < 0, then dPl0 = DPl0−1 = 0, so Pl0 ≡ Pl0(xo) = 0 since at xo P is identity. Hence the entries of P
are holomorphic. Hence P(τ′, x) = P0(x). Besides, dP0 = DP−1 = 0, so P(τ′, x) = P0(x) ≡ P0(xo) = id.
Remark 4. With respect to the basis ε, the matrix representation connection takes the form above, that of R0
is B0(x), that of R∞ is −B∞, and that of Φ is C(x).
Besides, the integrability condition exactly tells

dC = 0, C ∧ C = 0, [B0, C] = 0, and dB0 + C = [B∞, C],

which gives the condition (**) in the section 1.3.

We use the idea of this proof to prove the theorem 3 that was applied.

Theorem 3. Given xo = (xo
1, · · · , xo

d) = π(x̃o) ∈ Xd and Bo
0 := diag(xo

1, · · · , xo
d), B∞ ∈ Md(C), there exist a

unique holomorphic bundle E on P1×X̃d and a flat meromorphic connection∇with a pole of order 1 along
{0} × X̃d and a logarithmic pole along {∞} × X̃d, such that
(1) the restriction (Eo,∇o) of (E,∇) at x̃o has a global frame with respect to which the matrix representation
of ∇o is

(
Bo

0
τ

+ B∞)
dτ

τ
;

(2) for any x̃ ∈ X̃d, the eigenvalues of the residue endomorphism R0 at x̃ are the components of π(x̃).

Proof:
We will again apply the theorem 6:
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Theorem 6. Let X be a simply connected complex manifold with a fixed base point xo ∈ X, λ1, · · · , λd
d holomorphic functions X → C such that λi(x) 6= λj(x) for all i 6= j and x ∈ X, (Eo,∇o) a bundle
on D with a connection having a pole of order 1 at the origin, and the residue Ro

0 whose eigenvalues are
λ1(xo), · · · , λd(xo). Then there exists a unique bundle (E,∇) on D × X with a connection having a pole of
order 1 along {0} × X such that
(1) for any x ∈ X, R0(x) has eigenvalues λ1(x), · · · , λd(x), and
(2) (E,∇)|D×{xo} ' (Eo,∇o).

To begin with, let D be an open disk centered at the origin in P1, and let (Eo,∇o) be the trivial bundle Od
D

with the connection matrix of ∇o being

(
Bo

0
τ

+ B∞)
dτ

τ
.

Define λi := pi ◦ π where pi is the projection (x1, · · · , xd) ∈ Xd 7→ xi ∈ C. Then by the theorem 6 we get a
bundle (Ẽ, ∇̃) on D× X̃d. Then the argument of the previous proof works.

4 Universal Integrable Deformations for Birkhoff’s Problems

Let (Eo,∇o) be a bundle on P1 with a pole of order one along 0 and a logarithmic pole along ∞.

• Let X be a complex manifold. An integrable deformation of (Eo,∇o) parametrized by (X, xo) is a bun-
dle (E,∇) with a flat meromorphic connection on P1×X with a pole of order one along {0} × X and a
logarithmic pole along {∞} × X such that (E,∇)|

P1×{xo} = (Eo,∇o).

• An integrable deformation (E,∇) of (Eo,∇o) is called complete at xo if for any other integrable deforma-
tion (E′,∇′, x′) of (Eo,∇o) parametrized by (X′, x′), there exist neighborhoods V and V ′ of xo and x′ and
an analytic map f : (V ′, x′) → (V, xo) such that (E′,∇′)|

P1×V′ = (id
P1 × f )∗(E,∇)|

P1×V . Moreover, such a
deformation is called universal at xo if such an f is unique.

4.1 Local Universal Deformations

Theorem 8. Let Bo
0, B∞ ∈ Md(C) and (Eo,∇o) be the trivial bundle of rank d on P1 with the connection

matrix
Ωo = (

Bo
0

τ
+ B∞)

dτ

τ

in the canonical basis. If the matrix Bo
0 is regular, i.e., its all eigenvalues have one Jordan block, then there

exists a germ of universal deformation of (Eo,∇o).

Proof: Inspired by the ideas of the theorem 7, we consider the system, near xo in a manifold X,

dC = 0, [B0, C] = 0, and dB0 + C = [B∞, C] (***)

with B0(xo) = Bo
0. Locally dC(x) = 0 can be solved by C(x) = dΓ(x) with Γ(xo) = 0. Hence the system is

equivalent to
[B0, dΓ] = 0 and d(B0 + Γ) = [B∞, dΓ].

Note the second condition is exactly B0 = Bo
0 − Γ + [B∞, Γ] since Γ(xo) = 0, the system reduces to

[Bo
0 − Γ + [B∞, Γ], dΓ] = 0.

• The system above is integrable on Md(C):
Consider vectors

ξ1 = ∑
i,j

ξ
ij
1

∂

∂γij
and ξ2 = ∑

i,j
ξ

ij
2

∂

∂γij
.

Then to show the system [B0, dΓ] = 0 is integrable, it suffices to verify that for any ξ1 and ξ2 annihilated by
[B0, dΓ]mn for all m and n, (d[B0, dΓ])mn(ξ1, ξ2) = 0 for all m and n also. Thus first we calculate (remember
B0 = Bo

0 − Γ + [B∞, Γ])

d[B0, dΓ] = dB0 ∧ dΓ + dΓ ∧ dB0 = −2dΓ ∧ dΓ + 2[B∞, dΓ ∧ dΓ].
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Let Ξk := (ξ
ij
k )i,j for k = 1 and 2. Then ξ1 and ξ2 are annihilated by all the entries of [B0, dΓ] if and only if

[B0, Ξ1] = [B0, Ξ2] = 0,

and likewise (ξ1, ξ2) is annihilated by all the entries of d[B0, dΓ] if and only if

−2[Ξ1, Ξ2] + 2[B∞, [Ξ1, Ξ2]] = 0.

So it amounts to proving

[B0, Ξ1] = [B0, Ξ2] = 0⇒ −2[Ξ1, Ξ2] + 2[B∞, [Ξ1, Ξ2]] = 0.

Since Bo
0 is regular, for x near xo we have B0(x) = Bo

0 − Γ + [B∞, Γ] is also regular for Γ near 0. For these Γ,
that [B0, Ξ1] = [B0, Ξ2] = 0 means Ξ1 and Ξ2 are both polynomials in B0. So Ξ1 and Ξ2 also commute and the
claim follows.

• The integrable deformation:
Let Y be the integral submanifold of the system going through 0. Let (F,∇) be the trivial bundle of rank d
on Y with the connection matrix

(
B0

τ
+ B∞)

dτ

τ
+

dΓ
τ

where B0 := Bo
0 − Γ + [B∞, Γ]. By the construction it’s an integrable deformation of (Eo,∇o).

• The deformation is universal:
Let (E, ∇̃) be an integrable deformation of (Eo,∇o) parametrized by (X, xo). Since the problem is local, we
may assume X is a simply connected open subset in Cn and E is trivial, by the rigidity of trivial bundle on
P1. Then by the same argument as that in the theorem 7, there exists a unique basis of E in which the matrix
of ∇̃ takes the form

(
B0(x)

τ
+ B∞)

dτ

τ
+

C(x)
τ

with B0(xo) = B0 and dC(x) = 0 (the latter again by the integrability condition). Hence there’s a holo-
morphic map Γ : X → Md(C) such that dΓ = C and Γ(xo) = 0. Since (B0, C) also satisfies the system (***),
the image of Γ is contained in Y, and by the construction (E, ∇̃) = Γ∗(F,∇). Hence the deformation is
complete. Besides, by the uniqueness of the basis, such a map Γ : X → V is unique. Hence its a universal
deformation.

4.2 Global Universal deformations

Recall that we have proven
Theorem 3. Given xo = (xo

1, · · · , xo
d) = π(x̃o) ∈ Xd and Bo

0 := diag(xo
1, · · · , xo

d), B∞ ∈ Md(C), there exist a
unique holomorphic bundle E on P1×X̃d and a flat meromorphic connection∇with a pole of order 1 along
{0} × X̃d and a logarithmic pole along {∞} × X̃d, such that
(1) the restriction (Eo,∇o) of (E,∇) at x̃o has a global frame with respect to which the matrix representation
of ∇o is

(
Bo

0
τ

+ B∞)
dτ

τ
;

(2) for any x̃ ∈ X̃d, the eigenvalues of the residue endomorphism R0 at x̃ are the components of π(x̃).

Now we want to use this to get a global universal deformation under a more restricted condition than the
regularity.

Theorem 9 ([Mal83]). Let Bo
0, B∞ ∈ Md(C). If Bo

0 = diag(xo
1, · · · , xo

d) has distinct eigenvalues, then there exist
a hyperplane Θ of X̃d and a unique aolution (B0, C), meromorphic on X̃d with poles along Θ, of the system
(***) such that B0(xo) = Bo

0 and for x̃ ∈ X̃d \Θ, B0(x̃) has eigenvalues x1, · · · , xd where π(x̃) = (x1, · · · , xd).

10



Proof: First we get a bundle (E,∇) satisfying the conditions in the theorem 3. Then by the theorem 7 of the
Birkhoff’s problem, we can get a hyperplane Θ and a solution (B0, C) of (***) meromorphic along Θ. By the
condition (2) of the theorem 3, the existence follows.

For the uniqueness, assume (B0(x̃), C(x̃)) is a solution of (***) satisfying the conditions of the theorem.
Let V be a small open neighborhood of x̃o, on which there is a solution Γ(x̃) such that dΓ = C and Γ(x̃o) = 0.
If let (Y, 0) be the local universal deformation of (Eo,∇o) := (E,∇)|

P1×{x̃o}, whose existence is by the
previous theorem 8 since Bo

0 now is in particular regular, then Γ define a map

f : (V, x̃o)→ (Md(C), 0)

has image in Y.
On the other hand, the eigenvalues of B0 := Bo

0 − Γ + [B∞, Γ] defines a holomorphic map (Y, 0) → (Xd, xo),
and by shrinking Y to a simply connected neighborhood of 0, we may assume it can be lifted to

g : (Y, 0)→ (X̃d, x̃o).

By the construction, since for each x̃ ∈ X̃d, the eigenvalues of B0 are exactly the component of π(x̃), we have

g ◦ f = idV .

Then we get the relation of their tangent maps

dg0 ◦ d f x̃o = idT0V .

Since both T0V and Tx̃o X̃d have dimensions d, g and f are inverse to each other in some open neighborhoods
of 0 and x̃o. Thus f is uniquely determined by g, i.e., Γ, and hence C and B0 are also uniquely determined by
g.

Now we show that for the bundle (E,∇) given by the theorem 3 and any x̃ ∈ X̃d \ Θ, (E,∇) induces a
universal deformation of its restriction (E,∇)|

P1×{x̃}.

In fact, for any x̃ ∈ X̃d \Θ, since the bundle constructed from (E,∇)|
P1×{x̃o} and that from (E,∇)|

P1×{x̃} are
isomorphic due to the uniqueness, it suffices to prove the universality at x̃o.
Let (E′,∇′, x′) be an integrable deformation of (Eo,∇o). Then the residue R′0 of the former is regularly
semisimple in a small neighborhood V ′ of x′ since it’s an open condition. Then its eigenvalues define
uniquely a map

f : (V ′, x′)→ (X̃d, x̃o).

Then we have f ∗(E,∇) and (E′,∇′)|
P1×V′ are isomorphic by the unique from the initial condition (Eo,∇o).

5 The Proofs of the Two Facts

Let X be a simply connected complex manifold.
Fact 1. Let (E, ∇̃) be a bundle on D × X with ∇̃ flat and having a logarithmic pole along {∞} × X, and
(E∞,∇) be its restriction to {∞}×X. Then regarded as a section of the bundle Hom(E∞, E∞) equipped with
the natural flat connection induced by ∇, R∞ is a horizontal section.

Proof: Let
Ω =

1
z1

Ω1(z)dz1 + ∑
i≥2

Ωi(z)dzi

be the connection matrix of ∇̃ with respect to a local frame, where ∞ is at z1 = 0. Then the matrix of∇R∞ is

∑
i≥2

(
∂ Ω1(z)

∂ zi
+ [Ωi(z), Ω1(z)])|z1=0.

On the other hand, we have

[Ω1(z), Ωi(z)] = [z1(
1
z1

Ω1(z)), Ωi(z)] =
∂ Ω1(z)

∂ zi
− z1 ∂ Ωi

∂ z1 .
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for i ≥ 2. Thus for z1 = 0, we have

[Ω1(z), Ωi(z)]|z1=0 =
∂ Ω1(z)

∂ zi
|z1=0

so ∇R∞ = 0.
Fact 2. Let E be a bundle on P1×X and π be the projection P1×X → X. If for some xo ∈ X, E|

P1×{xo} is
trivial, then there exist canonical isomorphisms

E(∗π−1Θ) ' π∗i∗0 E(∗π−1Θ) ' π∗i∗∞ E(∗π−1Θ)

where i0 : {0} × X ↪→ P1×X, i∞ : {∞} × X ↪→ P1×X, and Θ is the nontriviality divisor.

Proof: First we apply a general fact.
Fact. If F is anOX-coherent sheaf, locally free of rank d on X \Θ, thenOX(∗Θ)⊗OX F is locally free of rank
d as an OX(∗Θ)-module.

Applying the fact to the sheaf π∗ E , for xo ∈ Θ, let e1, · · · , ed be a basis of π∗ E(∗Θ)xo = (OX(∗Θ) ⊗OX

π∗ E)xo . Then for a sufficiently small neighborhood V of xo, the basis defines an isomorphism

Od
P1×V(∗π

−1(Θ))
∼→ E(∗π−1(Θ))|

P1×V .

Since the original problem can be check locally, this isomorphism makes the conclusion clear.
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