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0 Basic Notations and Definitions

Let M be a connected complex manifold, Oy be the sheaf of holomorphic functions on M, and Z be a smooth
hypersurface in M.

e For a holomorphic vector bundle E of rank 4 over M, it corresponds to a locally free sheaf of Oy-modules
of rank d, which will be denoted by £, and is also called a “bundle.” We define ®), to be the one correspond-
ing to the tangent bundle TM.

e O (*Z) is the smallest sheaf containing all Oy (kZ)(k € Z) as subsheaves, Of, is the sheaf of holomor-
phic k-forms on M, and Q% (xZ) := Ok, ®0,, Om(*Z)

e A meromorphic bundle M on M with poles along Z is a locally free sheaf of Op(*Z)-modules of finite
rank.

e For a holomorphic vector bundle E on X, it corresponds to a meromorphic bundle £ (xZ) := £ ®p, Ox(*Z).
e A meromorphic connection V on a meromorphic bundle M with poles along Z is a C-linear morphism
M = Q) ®0,, M with its entries in Q},(*Z) with respect to a local frame.

1 Frobenius Structures Induces by Infinitesimal Period Mappings

Infinitesimal period mappings provide a way to construct Frobenius structures from a family of bundles on
P! with flat meromorphic connections. In this section, M is always a connected complex manifold.

1.1 Higgs Fields and the Induced Product Structures

Definition 1 (Higgs fields). Let E be a holomorphic vector bundle on M. A Higgs field on E is an O;-linear
morphism
b £ — Q}\/I ®oy €

with the integrability condition ® A & = 0.

For a holomorphic vector field ¢ on an open subset U of M, we will write ®¢: & lu = & |u to denote the
restricted morphism contracted with ¢.

Now assume ®: @y — Q) ® Oy is a Higgs field on the tangent bundle TM. We can view it as a morphism
Op ® Op — Op and see if it is symmetric.
The Higgs field can define a product structure on TM by (&,77) — & -1 := —Dg(17).

Proposition 1. ® is symmetric < the product - is associative and commutative.

Proof: On a local chart we can write ® = Y &' ® dz; where &' := ®,,. Then the integrability condition is
equivalent to that for all i and j, ' o &/ = &/ o @'. Then if P is symmetric,

9; - (9 k) = 9; - (9 - 9j) = (DK (9)) = DF(P'(9)) = 9 - (3; - 9) = (3 - ) - By

The commutativity is clear. O



1.2 Residue Endomorphisms

Let F be a bundle on M of rank d := dim M. Then it induces a bundle E := 7r*F on P! x M by the canonical
projection 71: P! x M — M. Assume there is a flat meromorphic connection V on E with a pole of order 1
along {0} x M and a logarithmic pole along {oo} x M. We will write Ej := i;E where ip: M ~ {0} x M —
P! x M and likewise for Eo.. Of course Ey ~ Es ~ F.

e The restricted connection V and the induced residue endomorphism Re, on Ec:
In a local chart U x M with U a neighborhood of co € IP!, the connection matrix of V with respect to a local
frame has the form (in the chart co is at z! = 0)

Q= Ql@ + Z O'dz;,
21 >

where each O/ has holomorphic entries. Then we define a holomorphic connection V on {0} x M, whose
local matrix representation is '
Y ON0,z0,- -+, z411)dz;

i>2

Let Reo: 13, € — i}, € be the endomorphism on E,, whose local matrix representation is ol (0,22, ,z4)-
Fact 1. Regarded as a section of the bundle Hom(E, E«) equipped with the natural flat connection induced
by V, R is a horizontal section.

¢ The induced Higgs field ® and the residue endomorphism R on E:
In a local chart U’ x M with U’ a neighborhood of 0 € P!, the connection matrix of V with respect to a local
frame has the form
/ 1 ndz /i
=" =+ Odz),
21 21 i

where each ) has holomorphic entries. Then we define an endomorphism-valued 1-form ®: £y — Q}M ®
&o whose local matrix representation is

Z Q,i(ol 23, Izd+1)d‘zi'

i>2

Let Ro: ij € — i} € be the endomorphism on Ey whose local matrix representation is ()’ 1 (0,22, ,24)-

1.3 Infinitesimal Period Mappings and the Induced Product Structure

Following the setting in the section 1.2, we regard all the objects V, ®, Ry and Re on Ey. Besides, we further
assume Ey has a metric ¢ and they satisfy

Vg=0, & =P, Rj = Rpand R + R, = —w - idg, *)
for some w where (-)* is the adjoint with respect to the metric, and
V2=0, VR =0, DAP =0, [Ry,®] =0, V® = 0and VR + ® = [®, Reo)]. (**)
For a V-horizontal section w of Ey, we define the associated infinitesimal period mapping

Pw: TM —E
C — —@g(ﬁ)).

Such an w is called primitive if ¢, is an isomorphism, and homogeneous if w is an eigenvector of Re..

Theorem 1. If Ey admits a primitive and homogeneous section w, then ¢, equips M a Frobenius structure.

Proof: Since ¢, is an isomorphism, we can carry on TM the structures on Ej through it.



e The torsion-free flat connection “V on TM: For ¢ € TM, we define

“VE =95V ($u(E))-

Indeed, fix a local V-horizontal frame of Ey with a local coordinate z', - - - ,z%, we can write ® = Y. &' ® dz;.
Then

0, 9] = 0 (Va, (90 (9)))) = ¢! (Va, (=P (w))),
which is symmetric in i and j since V& = 0 and Vw = 0. Thus “V is torsion-free.
Remark 1. Note that the torsion-freeness of “V is equivalent to the V-horizontality of ¢, since

Vo (G = Vedo () + Vydo() = ¢u([S 1))

e The commutative associative product structure with the “’ V-flat unit: For ¢ and 7 € TM, we define

&= ¢, (—Pe(Pu(1))-

In a local coordinate,

3i+0; = ¢, (= P5,(9(9))) = ¢, (P(P ()
and the conclusion follows with ® A ® = 0.
Lete := ¢, (w). Then

“Ve = ¢, (Vw) =0

and for any ¢,

Cre=du (—Pe(Pule)) = o' (—Pg(w)) = ¢
e The flat metric “g:
For ¢ and 7 on TM, we define

“g(& 1) = 8(¢uw (), pu(n))-

Then “V¥g = 0 since Vg = 0 and V¢, = 0. Moreover by the torsion-freeness, “’V is the Levi-Civita
connection of “g.

e The euler vector field E: Let E := ¢, (Ro(w)) and say Row = —qw by the homogeneity.

(1) “V(“VE) = 0:
Locally

by VRo + @ = [®, Reo], where “Re := ¢,! 0 Reo © ¢p,. Hence “V(E) = (1 + q)idrm + “Reo.
By VR = 0, V¢, = 0 and the torsion-freeness of “V, we have

“VYReo(&,17) = i (V(Reo 0 90) (8, 17))
=<Pw1(V§( oo (Pw(17))) = Vi (Roo (P (C)))—Roo(qbw([é,n])))
= ¢ (Reo(Ve(@ (1)) = Vi (00(€))) — R (18, 7])))
= ¢ (Roo (P ([E,1])) — Reo (9 ([E,7]))) = O.

Thus “V“Re = 0,80 “V(YVE) = 0.
We have the new relations from the old ones (*):
“’V‘*’g =0, 90" =9, (C‘}RQ))‘< = “Rpand “Re + (wRoo)* = —w-idtm

where the adjoint is respect to the metric “g. Note these imply the symmetry of “Vc¢ where ¢(&1, 82, §3) =
w
8(81-G2,83)-



(2) Lg(“g) = D - “g for some D, where L means the Lie derivative:
From (1), we have
“VE = (1 + q)idTM + “Re.

Then taking the adjoint gives
(“VE)" = (1+q)idtm + (“Reo)” = (1 +q — w)idrs — “Reo.
Then for ¢ and 7 in TM,
“g(“VeE ) +“8(8,“VyE) = “g((“VE)(8), 1) +“g((“VE)*(¢), 1) = (2429 —w)“g(&, 1)-
Let D := 2+ 2g — w and we have

Le(“8)(S,m) = E(“g(&, 1)) — “8(Leg, 1) —“g(&, Len)
= E(“g(8,m)) = “8(“VEG = “VE, 1) = “g(8,“Ven —“V,E)
= E(“g(Z,n) = “8(“VEed,n) —“g(Z,“Ven) + “g(“VE, n) +“g(,“ VyE)
= “VEe(“8)(& ) + (2429 —w)“g(¢,n)
=D-“g(&n)
(3) Lg(+) = - where - means the product structure:

First we claim that “Rg := ¢,! o Ry o ¢, is exactly the endomorphism & — ¢ - E. Indeed, by [Ro, ®] = 0,

§E = g0 (=Pe(9u(@u’ (Ro(@)))) = ¢! (=Ro(Pz(w))) = 9" (Ro(¢(£))) = “Ro(&).
Since V¢, = 0, the old relation VR + ® = [®, R gives, after composing with ¢! and ¢,,,
Vel E) = (“Ve) E=Gn =8 (“VyE—(1+q)y) = (“VeyE = (1+9)¢-1) = §-“VyE =¥V, E.
By V® = 0, the above result simplifies to

Le(G-1) — (Le§)-n —¢&- (Len) =G - 1.

Thus the theorem follows. 0

2 Universal Semisimple Frobenius Structures

We aim at establishing the following theorem.
Theorem 2 ([Dub96]). There is a one-to-one correspondence

{semisimple simply connected Frobenius manifolds} <+ {(Bf, B, w’, U) satisfying the (x) conditions}

with the (%) conditions that By is regularly semisimple, that B + B, = wl; for some w € Z, that w’ is an
eigenvector of B, whose components don’t vanish on the eigenbases of Bj, and that U is a simply connected
open set of X; \ Op.

In the theorem, X, := {(x!,---,x%) € C%|x’ # «/ foralli < j} and X; is its universal cover. Fix x° =
(x9,---,x9) € X; and a lifted point X° € Xy, ie., m(X°) = x° where 71: X; — X, is the covering map.
Proof: Suppose we are given By + B, = wl; for some w € Z, Bf = diag(x{,---,xj), thus regularly
semisimple, and an eigenvector w’ of B, all components of which are non-zero.
Theorem 3 ([Mal83]). Given such Bjj and B, there exist a unique holomorphic bundle E on P! xX,; and a
flat meromorphic connection V with a pole of order 1 along {0} x X, and a logarithmic pole along {0} x X,
such that
(1) the restriction (E°, V°) of (E, V) at X° has a global frame with respect to which the matrix representation
of V°is .

(& + Be) &,

z z

(2) for any ¥ € X, the eigenvalues of the residue endomorphism Ry at ¥ are the components of 77(X).



Theorem 4 ([Sab08]). Let X be a connected complex analytic manifold and F a holomorphic vector bundle
on P! x X such that for any x € X, the restriction F | pt {x} has degree 0.
(1)(The nontriviality divisor) The set

O:={xeM:F|pn y is non-trivial}

x{x
is @, X or a hypersurface of X.
(2)(The canonical identification between the restriction to 0 and co) We have

10F|]Pl x(X\@) = ~i F’]Pl x(X\@)*

Theorem 5. ([Sab17]) Let X be a simply connected complex manifold and (F, )
pole of order 1 along {0} x X. Suppose Ry is the residue endomorphism and (F,
bundle.

(1)(the unique decomposition) If Ry is regularly semisimple, (E, @) has a unique decomposition to line
bundles

bundle on D x X with a
)i

a
V) is its associated formal

(2)(equivalence) For line bundles, the formalism (F, V) + (F, V) is an equivalence of categories.

By the theorem 3, we can, following the section 1.3, obtain V and R« on Eo,, @ and R on Ey. Via the theorem
4, we get a bundle E on X4\ © with objects V, ®, Re, and R.

Since X, is simply connected and V is a flat connection on E, it’s trivial and thus we can find a V-horizontal
w on X, such that w(X°) = w®. Later we will let w be its restriction to X, \ ©.

By the theorem 3 again, the residue Ry is regular semisimple everywhere, so Eg, on {0} x X, can be decom-
posed to a direct sum of eigenbundles of rank one, each of which can be equipped with a flat connection
by the theorem 5, and hence admits a global frame. We collect these d section, forming a global frame
e = {61, ed} of EO

Restrict the frame on X, \ @, also denoted by e, and let w' be the components of w with respect to e. We set

d
O := O U (| J{the zero locus of w'}).
i=1
By our definition of @0, the sections ' ‘
u' = w'e;

form a basis of E| X\Opo” Then the infinitesimal period mapping associated to w gives

al‘ — —Cbai(a)) = U;
where the fact that —®; (w) = u; comes from the matrix representation of ® with respect to e, which will
be explained in the proceeding sections.

Therefore, ¢, is an isomorphism, and by the construction in the section 1.3, )Nid \ Ou0 admits a Frobenius
structure. Note that we have the unit

€= 4’«; ¢w Zu Z
and the Euler vector field
E=¢,' (Ro(w)) = ¢ (3 xii) = Y x; 9;

for the matrix representation of Ry with respect to e is diag(xy, - - - , x;), which will also be explained.
Besides, we have

9i-0j = P (=D, (90 (9)))) = i (=D, (u})) = ¢, (Bijui) = 6 0 -

This proves one direction of the theorem.
Remark 2. We didn’t check that the objects satisfy the condition (*) and (**), which would be clear after we
show the solvability of the Birkhoff’s problem in a family.
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For the other way around, let M be a semisimple simply connected Frobenius manifold. Then we can define
® by ®¢(y7) := —¢ -1, Rp := —P(E), and R := VE. The semisimplicity means that at each point Ry is
regularly semisimple, so its eigenvalues define d functions (x1,- -+ ,x;): M — Xj.

Theorem 6 ([Mal83]). Let X be a simply connected complex manifold with a fixed base point x° € X,
A, -+, Ag d holomorphic functions X — C such that A;(x) # Aj(x) foralli # jand x € X, (E°, V’) a
bundle on D with a connection having a pole of order 1 at the origin, and the residue R whose eigenvalues
are A1(x°),---,A4(x°). Then there exists a unique bundle (E, V) on D x X with a connection having a pole
of order 1 along {0} x X such that

(1) for any x € X, Ro(x) has eigenvalues Aq(x),- -+, A4(x), and

2) (Erv)|D><{x”} = (Eo/ VO)'

By the theorem 6, we can as above construct a basis e = {¢; - - - ,¢;}, with respect to which the matrix of ®
is exactly —dRy (also will be clarified later), i.e.,

O(e;) = —dx; ®e;,

therefore, for all i and j,

e; - 6]' = —CDe],ei = Le].(xi) - €.
By the commutativity of the product, L,;(x;) = 0 for i # j. Besides, A; := L, (x;) is non-vanishing:
Write the unit vector field e as e = }_a;e;. Then

e =¢ e =¢;- Zuiei = ui/\i.

Thus a;A; = 1 so A; is non-vanishing.
Now we get a holomorphic map
(x1,- -+, xg): M — X

Since M is simply connected, it can be lifted to
f = (x1,~- ,xd): M — }?d/

which is a submersion, thus an open map, so it is proper. Since it’s a proper local homeomorphism between
locally compact Hausdorff spaces, it’s a covering map, with the number of sheets

[ (f(M)) s i (M)] =1

because M is simply connected and the image of a simply connected domain under a biholomorphic map
is simply connected. Thus, f is isomorphic to an open subset of X;, and the conclusion of the theorem 2
follows. O
Remark 3. Note that by the canonicality of the product structure defined above, this (-, e, E) is independent
of the choice of w’ with the non-zero condition.

3 Birkhoff’s Problem on P,

In this section, X is a simply-connected complex analytic manifold of dimension 7.

We write P! = Uy U Us, with Uy := IP*\ {co} and U, := P!\ {0} and let T and 7’ be the coordinate on them
respectively.

Let D = B,(0) be an open disc in Uy ~ C for some r > 0, and (E, V) be a holomorphic bundle of rank d on
U := D x X, with a flat meromorphic connection V having a pole of order 1 along {0} x X, in the sense that
its restriction to (U N D) x X is a flat connection on the holomorphic bundle E| (UnND) x X

Fix a point x° € X and let ((E°, V°) be the restriction of (E, V) to U° := D x {x°}.

Definition 2 (Birkhoff’s problem). Let A(T) be a d x d matrix function on D with "' A(7) having holomor-
phic entries, one of which doesn’t vanish at T = 0, for some r > 0. We say that Birkhoff’s problem can be
solved for A(T) if there exists some P(7) € GL;(Oy) such that the matrix B(t) := P~'AP + P~'P’ can be
written as

B —(r+1) B4

Br)= gttt

forsome B_q,- -, B_(,41) € M, (C).



The following theorem says that there’s a canonical solution to Birkhoff’s problem for almost every values
in IP! if we are given a solution for a particular value.

Theorem 7. Assume Birkhoff’s problem can be solved for (EO, 60) at x°, i.e,, we can take a global frame €’
of E° with respect to which the connection matrix of V° can be written as

dt

for some B and B., € M,;(C). Then there exist a hypersurface ® of X not containing x° and a unique basis
€ of £(x(D x ®)) which coincides with €° at x° and in which the connection matrix of V takes the form
Bo(x) dt  C(x)

+ Boo)— +
T T T

0= (

where By(x) and C(x) are a meromorphic matrix function and 1-form on X and holomorphic on X \ © with
Bo(x") = Bg.

Proof:

First we prove the existence.

e Constructions of a bundle on P! x X by sheaves gluing:

Let D' C U be an open disc centered at oo such that A := DN D’ # @. Recall 7’ is the coordinate on D’,
ie, T =1/ton A.On A x X, since (E, %) |axx is a flat bundle, it is determined by its monodromy. On the
other hand, for X is simply-connected, 71 (A x X) = 711(A). Thus (E, V)| axx is isomorphic to p*(E°, V°)| 4
where p is the projection A x X — A.

By the change of variable, the restriction of the trivial bundle O, y with the connection matrix

dt’

T’

(B} + Bx)

to A x X is isomorphic to (E, V)| x since they are both isomorphic to p*(E?, V°)| 4. Thus we can glue them
up to get a bundle (E, V) on P! x X with a flat meromorphic connection having poles on {0, 00} x X.

e The nontriviality divisor ® of X :
Since E|p1 ,, (v} = E°is trivial, its degree is 0 so we can apply the theorem 4 of the nontriviality divisor to X
and get © C X because x° € O.

e Extensions of a basis:

Since V has a logarithmic pole along {oo} x X, there’s an induced holomorphic flat connection V on i, £ .
Fact 2 (the canonical identification between the restrictions to 0 and o). Let 7 be the projection P! xX — X.
Then for £ above, there exist canonical isomorphisms

E(xm71O) ~ il E(xm71O) ~ ik, E(x11O)
where ig: {0} x X < P! xX and ix: {00} x X < P! xX.

By the triviality of i, € and the above isomorphisms, we can extend €° to a basis € of the bundle £ (x71~10@).

e On U the connection matrix of V takes the desired form.
Since the connection matrix () has order 1 at {0} x X in the basis €, it can be written as

(Boix) + BOQ(T,x))dTT + Co(T,x) + C(Tx)

where By, and Cy are holomorphic function and 1-form.
Note after a change of variables, at infinity the connection matrix is of the form

1 dt’ 1
(—Bo(x)t' — Boo(?,x))? + Co(?,x) + C(x)T'.
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Since the connection has a logarithmic pole at {oo} x X, we have B and Cj are independent of 7/, i.e.,
independent of T.

Restricted to infinity, the basis € is V-horizontal, where the connection matrix is by definition Cy(x), so
Co(x ) =0.

By the fact 1, because the endomorphism R is horizontal, we have

V(Rw€') = Roo(VEe')

fori = 1,---,d if the basis € consists of {61,~ e }. Note the matrix representation of R with respect to
the basis is (—By(x)T' — Beo(x))|r/=0 = —Boo(x). Thus if we write B; := the i-th column of —Be(x),

V(Rwe') = V(e - B;) = (Ve) - B; + € - dB;

and '
R« (Ve') = (Ve) - B;.

where € := (€1 --€4) and Ve := (Ve --- Vey). Thus dB;(x) = 0 for all i, so B is constant in x. Hence we

get the desired form

For the uniqueness, suppose (¢/,0’) and (¢/, @) satisfy the theorem. Let @ := @' U®” and X° := X \ O.
Then we get an isomorphism
Obx(+(D x ©)) = Ob,.x(+(D x ©))

via the base change P. Since the induced homomorphism 7r1(D x X°) — 71 (P! x X°) is an isomorphism, by
the proof of existence, P can be extended holomorphicly to the isomorphism between Ogﬂ o (% (P! x@)).
Note if the matrix of the two connections are Q) and (), we have () = P~1QP + P~ 1dP, i.e,,

dP = PQ)' — QP.
Thus if we write P as column vectors, we can write the system as

dP = ((A1 + T’Az(x))c{;/ +D(x)t)- P

near the infinity. If write P(x) = Y 7'P;(x), then we have dP, = DP,_;.
1>l

Suppose Iy < 0, then dP;, = DP;,_1 = 0, s0 P, = P;,(x°) = 0 since at x° P is identity. Hence the entries of P
are holomorphic. Hence P(7, x) = Py(x). Besides, dPy = DP_1 = 0,s0 P(7/,x) = Py(x) = Py(x°) =id. O
Remark 4. With respect to the basis €, the matrix representation connection takes the form above, that of Ry
is Bp(x), that of R is —Beo, and that of ® is C(x).

Besides, the integrability condition exactly tells

dC =0, CAC=0, [By,C] =0, and dBy + C = B, C],

which gives the condition (**) in the section 1.3.

We use the idea of this proof to prove the theorem 3 that was applied.

Theorem 3. Given x° = (x{,---,x%) = 71(x°) € Xy and Bfj := diag(x], -, x3), Bo € My(C), there exist a
unique holomorphic bundle E on P! x X; and a flat meromorphic connection V with a pole of order 1 along
{0} x X, and a logarithmic pole along {co} x X, such that

(1) the restriction (E°, V°) of (E, V) at X° has a global frame with respect to which the matrix representation
of V%is 5o
-0
T

at
Boo i

(2 +Bo) 2
(2) for any X € X, the eigenvalues of the residue endomorphism Ry at ¥ are the components of 77(%).

Proof:
We will again apply the theorem 6:



Theorem 6. Let X be a simply connected complex manifold with a fixed base point x° € X, Ay,---, A4
d holomorphic functions X — C such that A;(x) # Aj(x) foralli # jand x € X, (E°, V’) a bundle
on D with a connection having a pole of order 1 at the origin, and the residue Rj whose eigenvalues are
A1(x9), -+, Ag(x?). Then there exists a unique bundle (E, V) on D x X with a connection having a pole of
order 1 along {0} x X such that

(1) for any x € X, Ro(x) has eigenvalues A;(x),---,A4(x), and

2) (Efv)|D><{x‘7} ~ (E°, VU)'

To begin with, let D be an open disk centered at the origin in P!, and let (E°, V°) be the trivial bundle O%,
with the connection matrix of V° being

BY d
(22 + Bo) 2
T T
Define A; := p; o T where p; is the projection (x1,---,x4) € Xy — x; € C. Then by the theorem 6 we get a
bundle (E, V) on D x X;. Then the argument of the previous proof works. O

4 Universal Integrable Deformations for Birkhoff’s Problems

Let (E°, V°) be a bundle on P! with a pole of order one along 0 and a logarithmic pole along co.

e Let X be a complex manifold. An integrable deformation of (E°, V°) parametrized by (X, x°) is a bun-
dle (E, V) with a flat meromorphic connection on P! x X with a pole of order one along {0} x X and a
logarithmic pole along {co} x X such that (E, V)[p1 , 1,0y = (E°, V°).

x{x0
e An integrable deformation (E, V) of (E?, V°) is called complete at x° if for any other integrable deforma-
tion (E/, V', x) of (E°, V°) parametrized by (X', x"), there exist neighborhoods V and V' of x° and x’ and
an analytic map f: (V’,x") = (V,x°) such that (E', V')|p1 ., = (idp1 x f)*(E, V)|p1 - Moreover, such a
deformation is called universal at x° if such an f is unique.

4.1 Local Universal Deformations

Theorem 8. Let BY, B € M;(C) and (E°, V°) be the trivial bundle of rank d on P! with the connection
matrix Bo p

20 4 By

T T

in the canonical basis. If the matrix Bj is regular, i.e., its all eigenvalues have one Jordan block, then there
exists a germ of universal deformation of (E°, V°).

Q0 = (

Proof: Inspired by the ideas of the theorem 7, we consider the system, near x° in a manifold X,
dC =0, [By,C] =0, and dBy + C = [Bs, C] (***)

with By(x°) = B§. Locally dC(x) = 0 can be solved by C(x) = dI'(x) with T'(x°) = 0. Hence the system is
equivalent to
[Bo,dT] = 0and d(By 4+ I') = [Bw, dI’].

Note the second condition is exactly By = Bj — I + [Boo, I'] since I'(x°) = 0, the system reduces to
[B§ — I + [Bwo, I'],dI’] = 0.

e The system above is integrable on M;(C):
Consider vectors
Gi=)Y.¢
ij

Then to show the system [By, dT'| = 0 is integrable, it suffices to verify that for any ¢; and ¢, annihilated by
[Bo, dT]un for all m and n, (d[By, dT'|)mn(&1,&2) = 0 for all m and n also. Thus first we calculate (remember
By = By — T + [Beo, T))

0
97ij

ii 0
and & =Y &) .
ZZ]; 2 97ij

d[By,dI'| = dBy AdT +dT' NdBy = —2dT’ A dTl’ + 2[Beo, dT’ A dT].
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Let 5y := (glij)i,j for k = 1 and 2. Then &; and ¢, are annihilated by all the entries of [By, dI'] if and only if
[Bo, E1] = [Bo, E2] =0,
and likewise (&1, &2) is annihilated by all the entries of d[By, dI'] if and only if
—2[B1, E2] 4 2[Beo, [E1, E2]] = 0.
So it amounts to proving
[Bo, E1] = [Bo, E2] = 0 = —2[E1, E2] + 2[Beo, [E1, E2]] = 0.

Since B is regular, for x near x° we have By(x) = B} — I + [Bw, I'] is also regular for I near 0. For these T,
that [By, Z1] = [Bo, E2] = 0 means &; and &, are both polynomials in By. So &; and &, also commute and the
claim follows.

e The integrable deformation:
Let Y be the integral submanifold of the system going through 0. Let (F, V) be the trivial bundle of rank d

on Y with the connection matrix
BO dt dr
(22 +Bu) =+
T T T

where By := B} — I' 4+ [B, I']. By the construction it’s an integrable deformation of (E°, V°).

e The deformation is universal:

Let (E, V) be an integrable deformation of (E°, V°) parametrized by (X, x°). Since the problem is local, we
may assume X is a simply connected open subset in C" and E is trivial, by the rigidity of trivial bundle on
P!. Then by the same argument as that in the theorem 7, there exists a unique basis of E in which the matrix
of V takes the form

(

with By(x°) = By and dC(x) = 0 (the latter again by the integrability condition). Hence there’s a holo-
morphic map I': X — M;(C) such that dI' = C and I'(x°) = 0. Since (By, C) also satisfies the system (***),
the image of T is contained in Y, and by the construction (E,V) = I'*(F,V). Hence the deformation is
complete. Besides, by the uniqueness of the basis, such a map I': X — V is unique. Hence its a universal
deformation. O

Bo(X) +Boo)dl + C(X)
T T T

4.2 Global Universal deformations

Recall that we have proven
Theorem 3. Given x° = (x9,---,x%) = 71(X°) € X, and Bfj := diag(x],- -, x3), Bo € My(C), there exist a
unique holomorphic bundle E on P! x X; and a flat meromorphic connection V with a pole of order 1 along
{0} x X, and a logarithmic pole along {co} x X, such that

(1) the restriction (E°, V°) of (E, V) at x° has a global frame with respect to which the matrix representation
of V%is .
By
T

d
+ Boo)l;
T

(

(2) for any ¥ € X, the eigenvalues of the residue endomorphism Ry at ¥ are the components of 77(X).

Now we want to use this to get a global universal deformation under a more restricted condition than the
regularity.

Theorem 9 ([Mal83]). Let Bf, B € M;(C).If Bf = diag(x{, - - - , x§) has distinct eigenvalues, then there exist
a hyperplane @ of X,; and a unique aolution (By, C), meromorphic on X,; with poles along ©, of the system
(***) such that By(x°) = Bj and for X € X; \ ©®, By(X) has eigenvalues x1, - - - , x4 where 71(X) = (x1,- -+, x4).
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Proof: First we get a bundle (E, V) satisfying the conditions in the theorem 3. Then by the theorem 7 of the
Birkhoff’s problem, we can get a hyperplane ® and a solution (By, C) of (***) meromorphic along ©. By the
condition (2) of the theorem 3, the existence follows.

For the uniqueness, assume (By(X), C(X)) is a solution of (***) satisfying the conditions of the theorem.

Let V be a small open neighborhood of x°, on which there is a solution I'(X) such that dI' = C and T'(x°) = 0.
If let (Y,0) be the local universal deformation of (E°,V°) := (E,V)|p1,, (), whose existence is by the
previous theorem 8 since Bj now is in particular regular, then I' define a map

[ (V,X%) = (My(C),0)

has image in Y.
On the other hand, the eigenvalues of By := B} — I' + [Bw, I'| defines a holomorphic map (Y,0) — (Xg,x°),
and by shrinking Y to a simply connected neighborhood of 0, we may assume it can be lifted to

g: (Y,0) = (Xy,5°).
By the construction, since for each ¥ € X, the eigenvalues of B are exactly the component of 77(X), we have
go f=idy.
Then we get the relation of their tangent maps
dgo o dfy = idpyv.

Since both TyV and Ty X, have dimensions d, ¢ and f are inverse to each other in some open neighborhoods
of 0 and x°. Thus f is uniquely determined by g, i.e., I', and hence C and By are also uniquely determined by
g O

Now we show that for the bundle (E, V) given by the theorem 3 and any ¥ € X;\ ©, (E, V) induces a
universal deformation of its restriction (E, V)|p1 , (-
In fact, for any ¥ € X, \ ©, since the bundle constructed from (E, V) |p1 () and that from (E, V)|p1 (5 are
isomorphic due to the uniqueness, it suffices to prove the universality at x°.
Let (E’,V',x’) be an integrable deformation of (E°, V°). Then the residue R{, of the former is regularly
semisimple in a small neighborhood V' of x’ since it’s an open condition. Then its eigenvalues define
uniquely a map

F (V) = (X4,3°).

Then we have f*(E, V) and (E’, V')|p1 .+ are isomorphic by the unique from the initial condition (E°, V°).

5 The Proofs of the Two Facts

Let X be a simply connected complex manifold.

Fact 1. Let (E, V) be a bundle on D x X with V flat and having a logarithmic pole along {co} x X, and
(Ew, V) be its restriction to {oo} x X. Then regarded as a section of the bundle Hom(E«, E« ) equipped with
the natural flat connection induced by V, R, is a horizontal section.

Proof: Let 1
Q= Zﬂl (z)dz1 + ) O (z)dz;

i>2
be the connection matrix of V with respect to a local frame, where co is at z; = 0. Then the matrix of VR« is

1 z )
ECSE 4 0@, 0 @ o

On the other hand, we have

‘ | ) l_
[0'(2), Q' (2)] = [Zl(zllQl(Z)),Q’(Zﬂ = 8(82;2) —21?9?1.
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for i > 2. Thus for z; = 0, we have

00 (z)
aZi ’2120

[ (2), Y (2)]|z1-0 =

s0 VR = 0. O
Fact 2. Let E be a bundle on P! x X and 7 be the projection P! xX — X. If for some x° € X, E|p « [xo} 1
trivial, then there exist canonical isomorphisms

E(xm71O) ~ il E(xm1O) ~ ik, E(x1 @)
where ig: {0} x X < P! xX, is: {00} x X < P! x X, and @ is the nontriviality divisor.

Proof: First we apply a general fact.
Fact. If F is an Ox-coherent sheaf, locally free of rank d on X \ ©, then Ox(*®) ®¢, F is locally free of rank
d as an Ox(*©®)-module.

Applying the fact to the sheaf 7. &, for x° € O, let ey, - - ,¢; be a basis of 7, £(¥0)x = (Ox(x0) ®p,
7 €)xo. Then for a sufficiently small neighborhood V of x°, the basis defines an isomorphism

0%, GH@) 5 EGxH(O)) |pt -

Since the original problem can be check locally, this isomorphism makes the conclusion clear. O
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