Complex Analysis II, Final Reports

王金龍

2015 Spring semester, NTU

Week I

[1] June 9 黃哲宏 Big Picard Theorem

[2] June 11 李昱陞 Modular Forms and Moduli Problem

[3] June 11 林肱慶 (Confluent) Hypergeometric Functions

Week II

[4] June 16 黃庭瀚 Sum of Squares

[5] June 16 古晉丞 Fundamental Groups and Covering Spaces

[6] June 18 高尉庭 Topological Classification of Compact Surfaces

[7] June 18 李自然 Frobenius Method for ODE with Regular Singularities

[8] June 19 陳學儀 Hecke Operators on Modular Forms

[9] June 19 江泓 Asymptotic of Airy Function

Week III

[10] June 23 唐爾晨 Mandelbrot Sets and Julia Sets

[11] June 23 林東成 Asymptotic of Partition Function

[12] June 25 廖偉恩 Dirichlet Theorem with Density

[13] June 25 李龍欣 Dirichlet Principle

Julia and Mandelbrot set, 唐爾曼 Fon $f: U \rightarrow U$, $f:= f \circ f \circ f \circ f$ denote its high iteration Notation • A normal family F of meromorphic functions on region DEC: for any {fin} EF, 3 subsequence {finite uniformly converges on cpt subsets. Recall · Montel's thm: if F is a family of meromorphic func, omitting 3 values, then F is normal, (preaf) by a fractional linear transform, we can assume F omite 0.1,00, use the fact that λ H -> (110,12 is a universal cover, and that D + H to lift to g D for each geF conformal Now V seq. {f. } In F, {F.} IS unifield, = equicantinuity by Cauchy thm So I subsey. {f.} + f uniformly on cpt set. f. A -) To Dif in fact f: R-D, then {for } -> Nop-f unit, on cpt set. Qif not by Hurmitz thm, f= const. then ffor } -> 0 or 1 or 00 unit. * For a menomorphic function $f: C^{*} \to C^{*}$ (i.e. a rational function) • Fatou set $F(f) := \{ Z \in C^{*} | \{f^{(n)}\} \}$ form a normal family on a nod of $Z \}$ Def'n • Julia set $\mathcal{J}(f) := \mathcal{C}^* \setminus \mathcal{F}(f)$ 1. Fatou set is open. Julia set is closed 2. both sets are totally f-invariant i.e f(J)-J=f'(J)... Facts 3. Julia set is honempty (proof) if J(f)= then {f⁽ⁿ⁾} is a normal family on C* (cotness argument) : I subseq $\{f^{(n_j)}\} \longrightarrow g$ uniformly on \mathbb{C}^* . So g is also rational function. Since $(\# \text{ of zeros of } f^{(n_j)}) \longrightarrow \infty$ but $(\# \text{ of zeros of } g) < \infty$ \longrightarrow 4 either J= (* or J has no interior, (modify Thm 2) Change of coordinates: let 9:0-1 V be a conformal map. Technique For $f: U \rightarrow U$, we associate $g = \varphi f \varphi^{-1} : V \rightarrow V$ We say f. g are conjugation equivalent. (f=g) Behavior of functions are similar under conjugation. Per-Dugt

Facts:	For fæg, a is critical pt of f (2) q(a) is critical pt of g a is fixed pt (2) q(a) is fixed pt And a q(a) has the same multiplier,			
Defin	if f(a)=a is a fixed pt, its multiplier := f(a)			
	• attracting fixed pt: 0< f(a) <			
	• ropelling 1) : (f(a)/>1			
	 repelling 11 : f(a) >1 Super-attracting 11 - f(a) =0 			
Theorem 1	if a is an attracting/repelling fixed pt of f with multiplier >			
	then I conformal map of from nod of a to nod of o, s.t. f = XZ.			
(proof)	First Consider the case when a : attracting fixed pt.			
	$W_{1L,0,G}$ let $u=0$, define $f_{m}(z) = \lambda^{h} f_{1}^{(m)}(z) = z + i$,			
	then forf = xth f(n+1) = x fn+1, we daim fn-1 f unit on a nod of o			
	[f(z)-λz ≤ (1212 in 12155 for some C, 5			
	So If(2) = (1x1+Co)121 and replace of smaller s.T. 1x1+Co<1			
	Solfier 5 if 12155, and If "(2) = (121+CB)"/21, if 121=5			
	pick & smaller s.t. (1>1+CF) 2<121			
	$\frac{pxk \delta smaller s.t. (1×1+C\delta)^{2} < \lambda }{ \lambda ^{1}} = \frac{1}{ \lambda ^{1}} \frac{1}{ \lambda ^{1}} \frac{1}{ \lambda ^{1}} = \frac{1}{ \lambda ^{1}} \frac{1}{ \lambda ^{1}} \frac{1}{ \lambda ^{1}} = \frac{1}{ \lambda ^{1}} \frac{1}{ \lambda ^{1}} \frac{1}{ \lambda ^{1}} \frac{1}{ \lambda ^{1}} = \frac{1}{ \lambda ^{1}} \frac{1}{ $			
	by Wiere Mtest Pn-> y unif. on 12 55 and 4 is conformal			
	$\varphi \neq \varphi^{\neg}(x) = \lambda \times \mathcal{A}$			
	If o is repelling, then of has 0 as an attracting fixed pt.			
	So f ~ 12 and so f ~ 22			
Proposition 1.	if a is (super) attracting fixed pt.			
	Define A(a):={zec f ^m (z) -> a}, called the basin of attraction of a			
	is nonempty. open. $A(a) \leq F(f)$ and $\partial A(a) = J(f)$			
(hwof)	If(z)-a < C z-al for some (< for 1z-al< 8 hence B(a, 8) = A(a) , F(f)			
	if $x \in A(\alpha)$ the $f^{(n)}(x) \in R(\alpha, \delta)$ if $h(\alpha) < C \cap A(\alpha) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} f^{(n)}(x) \cap C \cap A(\alpha, \delta) \end{pmatrix}$			
	if $x \in A(a)$ then $f^{(h)}(x) \in B(a, \delta)$ if $h \gg 1$ so $A(a) = \bigcup_{i=1}^{\infty} f^{(h)}(B(a, \delta))$ open, For $\mathbb{C}^{\times}(\overline{A(a)})$, $\{f^{(h)}\}$ omit $A(a)$ on each component, $\subseteq F(f)$			
	$=) (I^{*}(A(a) \leq F(f) \leq So f(f) \leq \partial A(a)).$			
	$\frac{1}{Per-Duet}$			
I				

YxedA(a), and ubd U of x f^(h)(z) a on UnA(a) but f^(h)(x) doesn't =) [f("] not hormal on U i, xe J(f) $\frac{p_{\text{reposition}2}}{(phof)} \frac{1 \neq q : repelling fixed pt}{(phof)} \frac{1 \neq q : repelling fixed pt}{(phof)}$ If a: Super-attracting fixed pt of f. (p=orda(f-a)) then J & conformal defined near a st. f ~ ZP (p=orda(f-a)) Theorem 1' (Boetcher) -(proof) by 2'= c, f(2-a) let f= 2+- - $\frac{1}{2^{5},5^{5}} = \frac{1}{5^{4}} = \frac{1}{5^{6}} = \frac{1}{5^{$ Set $f_n(z) = (f^{(n)}(z))^{p-n} = (zp^n + .) = z(1+.)$ $f_n \circ f = (f^{(n)} \circ f)^{p-n} = f_{n+1} / remains to claim f_n \longrightarrow f unif on a nbd.$ $\frac{q_{n+1}}{q_n} = \left(\frac{q_1 \circ f^{(n)}}{f^{(n)}}\right)^{p-n} = \left(1 + O(1f^{(n)})\right)^{p-n} = 1 + O(p^{-n})O(1(C_{121})^{p^n}) = 1 + O(p^{-n})$ if we let $1 \ge 1 \le C^{-1}$ So TI Jo Canv, unit. So y - y unit. so, Functional equation for φ . $\varphi(f(2)) = \varphi(2)^{p}$ $\Rightarrow \log |\varphi(f(2))| = p \log |\varphi(2)|$ i We can extend $\log |\varphi(2)| + A(\alpha)$ being harmonic Extend 9 (Bittcher) (Doct dinate Polynomial Case From now on, Consider only poly, f of deg d 22. co: super-attracting, and f(z)=00 (=) z=00, (and p=d) => In A(00), log141 has only log pole at a and harmonic electro Obsorre as Z -> dA(00)=J, log(4(2))->0 ·· logly(z)= G(Z, 0) is the green func, on A(00) ! Fast. 1. J(f) is bodd now. So is cpt. P. A(00) IS Connected (i.e it has no bod component) (proof) f(J)=J bdd. so V bdd component V of C*1J VIS bd by \mathcal{J} , max, prin, $\Rightarrow f(v)$ bd by $f(\mathcal{J}) = \mathcal{J}$. $\Rightarrow f(v)$, xeV never (onv. to ∞ , so $V \cap A(\infty) = \Phi$. Pr-Duet

Theorem 2. P if U open sit. Un J= d. then I m sit JEUU -f(m)(U) (fractal nature) VxEG, U f^{lut}(x) is dense in J of Julia set (proof) If (") cannot be normal on U Montel then If (") om it at most 1 value in C Case 1: {f"} omit no value => J = C = ~ f"(U) and by optness of J Case 2: If (1) alyomie yell, then f(z)=y => z=y 50 f(z)=y+k(z-y), then f(n)(z)=y+kp(z-y)p, (p=degf=2) So Inbdofy st file) -> Y unif => yeF, so J= Uf"(U). For any open set V st. VOJ = d. by above, ref (M/(V) for some m hence f^{mit}(x) oV = \$\$, this proves U f^{mit}(x) = 5 dense in 5 -> Boundary scanning method & inverse iteration method top drawing a Julia set by computer. Therem 3. All reportions of critical points remain bounded (=) of connected, (proof) O if critical points & A(00), recall Böttcher courd of. Green func, GI, I originally defined for 1212R>>0, we want to extend to all A(00) On A(00), a root function to of f is locally defined, and can be continued along all arcs. We start from the curve {G(2)= R.d } and define $\psi(z) = \psi(f(z))^r d$ along this curve, for fG(z) = R? then VR=0 we can do this and at last 4 is defined on [G12)>0)=A(00) As Z->>>A(00), [4(2)] -> 1, and no value taken twice. => 4: A(00) ~> C*1 D conformal. So A(00) simply connected so J= SA(00) Connected By the same method we can extend 4 until the curve [G(Z)=G(Co)} Cobeing a critical pt. By Roche's the, fizi=fic.) has 22 mosts at Co., implies. f(2)=f((-)+E has 22 mosts hear Co if D<E<<1. → {G(z)=G(r.)} n (ubd of co) has ≥4 curves linked to Co. So GI(LO, G(Co))) is divided into 22 disjoint open sets = J = GT(0) TS disconnected. Per-Dugt

All iterations of critical points -> 00 => Jis totally disconnected. Theorem 4. take large disk D=g st. f(C*iD) < C*ID, (proof) Find N Targe St. f^(N) maps all critical points to C* 1D, Yn=N. f(") has no critical values in D, so an inverse gn 13 defined : D-D once chosen a branch For any $x \in \mathcal{J}$, pick \mathcal{G}_n s-t. $\mathcal{G}_n(\mathcal{f}^{(m)}(x)) = x$ {9n} unified on D⁺ → Subseq {9np} → g on D M-utel thm but $\forall z \in D \cap A(\infty) = g_n(z) \longrightarrow \tilde{z} \in \partial A(\infty) = J$, So g(DnA(co)) < J, but g is an open mapping, and int(J) = 4. =) g= const.= x on P we conclude: Sg(D) > x $\mathfrak{Z}_{n}(\delta D) \cap \mathcal{T} = \varphi,$ Thus, J is totally disconnected. $dram(9_n(\overline{D})) \longrightarrow 0$ Note: Equivalence definitions for a cpt set of Rh to be Hatally disconnected. (1) K contains no continuum (2) VXEK, VE>0, JECK S.t. d(E,K)E) >0 and xEE and dram(E) - 90 Conollary For the simple case of deg= 2 polynomal. Jonly 2 critical point, So either I connected or totally disconverted. Definition M={CEC (22+c)(0) is bounded with NEN } is called the -{cel J(z+c) connected } Mandelboot Set where we denote Z+c as fc. 7(Z+c) as Jc The study of Mandelbrot set is often a correspondence between parameter space & and dynamic space Z. Proposition 3 CEM (=) | fe (0) | ≤ 2, VNEN Also Mir cpt and CIM is connected. (proof) Orf In'sA r=fc"(0) sectisty (1-1>2 (assume n smallest) $\frac{On |z|=|r|, |z^{2}+c| \geq |r|^{2}-|r| = (|r|-1)|z|}{\text{then } |z^{2}+c| \leq |r|^{2} \text{ on } |z|=|r| \text{ and } \longrightarrow 0 \text{ as } z \longrightarrow \infty =) \text{ inequality holds } \forall |z| z |r|$ =) f("+k) = (1+1-1) k | r | -1 00 as k->00 SO CEM The other Side is from defin of M Per-Duet

e so M⊆ { c ≤ 2 } Also M= no f cec | Petion ≤ 2 } is closed = M opt For all bodd region U st DUCM, VNEN, IP (10) =2 on 20 = by max. principle, on CEU, hence VCEU, Primon 52 Forall n = UEM " CIM has only unbounded components which is connected, Proposition. {clf. has attracting fixed points} is a cardiod (13 職為) C < M easy caculation gives C=12-2 [121<1] (prof) for each CEC for has attracting fixed pt => To not totally disconnected. More facts Each collection of c s.t. fc has "attracting h-cycle" also corresponds to a finite disjoint union of disks in M Misconnected. Theorem 5. (proof) For each CE CIM, we have Bottcher coordinate Pc(2) since ors the only critical pt, of f. felt can be extended to { Z | G_(Z) > Grelo) } analytrcally. in particular, Gelc) = 2 Gelo) > Gelo), so file is defined where $\varphi(c) = c \prod_{n=1}^{\infty} \left(\frac{f_c^{(n)}(c)}{f_c^{(n-1)}(c)} \right)^{2^{-h}} = c \prod_{n=0}^{\infty} \left(1 + \frac{c}{f_c^{(n)}(c)^2} \right)^{2^{-h-1}}$ is analytic denote $\phi(c) = \phi_{c}(c)$, it has simple pole at an $\log |E(c)| = G_{c}(c) = 2G_{c}(o) \longrightarrow 0$ as $c \longrightarrow M$. (G_{c}(2) jointly cont. in (.2) Hence \$: CIM ~ C*ID hence C*IM simply connected => M converted Complex Analy Six CHXII (Gramelin) (omplex Dynamics (Carleson & Gramelin) Par-Dugt

林東林 3 Asymptotics (>) Partition function Def (Stein, chapter 10 P.293) If NEW, let P(m) denote the numbers of ways n can be written as a sum of positive integers Theorem (Stein, chapter 10 P 293) If |X| < 1, then $\sum_{n=0}^{10} p(n) X^n = \frac{10}{10} \frac{1}{1-X^{10}}$ Theorem (Hardy-RamanyJan formula, 1918; (1) $P(n) \sim \frac{1}{4J_{3}n} e^{kJ_{1}} as n \rightarrow M$, where $k = \sqrt{3} \pi$ (2) More precisely, $P(n) = \frac{1}{2\pi \sqrt{2}} \frac{d}{dn} \left(\frac{e^{k(n-\frac{1}{2})^{\frac{1}{2}}}}{(n-\frac{1}{2})^{\frac{1}{2}}} \right) + O(e^{\frac{k}{2}\ln 2})$ -1+78 Y 1+78 <pf> Recall $\sum_{n=0}^{\infty} P(n) \omega^n = \frac{W}{m} \frac{1}{1 - \omega^n}$ Write $\omega = e^{2\pi i 3}$ self Then $\sum_{n=0}^{\infty} p(n) e^{2\pi i n 3} = f(s) = \frac{1}{n-1} \frac{1}{1-e^{2\pi i n 3}}$ $\Rightarrow \rho(n) = \int_{Y_{K_{normalised}}} f(s) e^{-s\pi i n s} ds \quad (s \text{ determined later})$ Recall (Stein, chapter 10 p. 292) Dedekind et a function $\int (z) = e^{\frac{\pi i z}{12}} \prod_{n=1}^{\infty} (1 - e^{2\pi i n z})$ for Im(z) > 0Prop If Im(2)>0, then J(1/2)= [2/] J(2) Therefore, $f(z) = e^{\frac{11z}{12}} \int(z)^{-1} \Rightarrow e^{\frac{\pi i}{12}} f(\sqrt[4]{z}) = \sqrt[3]{12} f(z)^{-1} \Rightarrow f(z) = \sqrt[3]{12} f(\sqrt[4]{z}) \longrightarrow f(\sqrt[4]{z})$ When $z \to 0$ since $Im(\frac{1}{2}) \to 10$, $f(\frac{1}{2}) \to 1$ Take $f_1(z) := \int_{1}^{z} e^{\frac{1}{12}} to approximate f(z)} (they have some behavior near <math>j=0$) Now write $p(n) = P_1(n) + E(n)$ $\begin{cases}
P_1(n) = \int_{V} \frac{|\delta|}{|\delta|}_{1} e^{\frac{\pi i (\delta + \delta)}{12}} e^{-2\pi i \ln \delta} d \delta \\
E(n) = \int_{V} \frac{|\delta|}{|\delta|}_{1} e^{\frac{\pi i (\delta + \delta)}{12}} e^{-2\pi i \ln \delta} (f(\lambda_{\delta}) - i) d \delta \end{cases}$ since If (x+iy) I & f(iy) and f(iy) T as y 1 estimate the Error E(n): • If $\xi \in Y$ $\left| \int_{T}^{T} e^{\frac{\pi i \left(\delta + \frac{1}{2}\right)}{12}} e^{2\pi n \delta} \right| \leq C e^{2\pi n \delta} e^{\frac{\pi i \delta}{12} \frac{\delta}{d + \chi^{2}}}$ • On the other hand, from $f(s) = 1 + O(e^{-2\pi s})$, $y \ge 1$, we know that $|f(t_s) - 1| \le Ce^{-2\pi \frac{s}{s+s}}$ $Tf = \frac{s}{s+s} \ge 1$ As for $y \le 1$, we already know that $|f(z)| \le f(zy) \le Ce^{\frac{\pi}{12y}}$ from (*) Therefore, $f(\frac{x}{\delta}) - 1 \le O(e^{\frac{\pi}{b}\frac{\delta}{\delta}}) = O(e^{\frac{\pi}{4\delta\delta}})$ for $y = \frac{\delta}{\frac{\delta}{\delta}} \le 1$ $(\frac{1}{2}|x| < \frac{1}{\delta})$

From above, when
$$\frac{1}{4\pi} \ge 3^{1}$$
 leads to contribution of $O(e^{2\pi 4})$
when $\frac{1}{4\pi\pi} \le 1$, leads to contribution of $O(e^{2\pi 4}, \frac{1}{4\pi})$
 \therefore below $O(e^{2\pi 4}, \frac{1}{4\pi\pi})$ by $AH \gg E(H)$ $\stackrel{n=1}{n=1}$ mulds for $2\pi\pi 2 = \frac{1}{44}$ $\stackrel{n=1}{2}$ $\stackrel{n=1}{2}$ $\stackrel{n=1}{4\pi\pi}$ $\stackrel{n=1}{4\pi\pi}$
 \therefore below $S = \frac{1}{4\pi\pi} \stackrel{n=1}{4\pi}$, $\frac{1}{2}(0) = O(e^{\frac{1}{2}\pi})$
 \therefore botom $S = \frac{1}{4\pi\pi} \stackrel{n=1}{4\pi}$, $\frac{1}{2}(0) = O(e^{\frac{1}{2}\pi})$
 \therefore botom $S = \frac{1}{4\pi\pi} \stackrel{n=1}{4\pi}$, $\frac{1}{2}(0) = O(e^{\frac{1}{2}\pi})$
 \therefore botom $S = \frac{1}{4\pi\pi} \stackrel{n=1}{4\pi}$, $\frac{1}{2}(0) = O(e^{\frac{1}{2}\pi})$
 \therefore botom suce change $f_1(0)$ as $\int_{1}^{1} \frac{1}{4\pi} \stackrel{n=1}{4\pi}$ to $O(O(swater run allowed curver)$
 \therefore Now use change $f_1(0)$ as $\int_{1}^{1} \frac{1}{4\pi} \stackrel{n=1}{4\pi}$ as $\int_{1}^{1} \frac{1}{4\pi} \stackrel{n=1}{4\pi} \frac{1}{4\pi} \stackrel{n=1}{4\pi} \stackrel{n=1}{4$

Now, back to (th), define
$$P_{1}(n) = \int_{Y_{n}} \sqrt{\beta} T e^{\frac{1}{12}e^{-2\pi i \pi y}} e^{-2\pi i \pi y} dz$$
 (Variation of contour $Y' to Y_{n}'$)
Write $P_{1}(n) = \frac{A}{An} \xi(n) + e(n)$ where $\xi(n) = \frac{1}{2\pi i} \int_{Y^{1}} (\frac{\delta}{2} T)^{\frac{1}{2}} e^{-2\pi i \pi y} dz$
After the same works $(\tau, e, P \mapsto P^{\frac{1}{2}}, s \mapsto \mu s)$, we have $\xi(n) = \frac{M^{\frac{1}{2}}}{2\pi i} \int_{P^{\frac{1}{2}}} e^{-AF(s)} (\frac{\delta}{2} T)^{-\frac{1}{2}} dz$
where $F(s) = \tau(s - \frac{1}{s})$ $A = \frac{\pi}{t_{v}} (n - \frac{1}{2v_{v}})^{\frac{1}{2}}$ $\mu = \frac{1}{2t_{v}} (n - \frac{1}{2v_{v}})^{\frac{1}{2}}$
let $g = e^{1\theta}$ then $P_{1}(n) = \frac{-M^{\frac{1}{2}}}{2\pi i} \int_{0}^{\pi} e^{2A\theta \sin \theta} e^{\frac{1}{2}} \frac{\pi}{1^{\frac{3}{2}}} ds = \frac{M^{\frac{1}{2}}}{2\pi i} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-4Ax^{\frac{3}{2}}} dx$
(note that usse $|-2\sin\frac{\pi}{2}$ $= \frac{M^{\frac{1}{2}}}{2\pi i} e^{2s} \left\{ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-4Ax^{\frac{3}{2}}} dx + O\left(\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-4Ax^{\frac{3}{2}}} dx)\right\}$
Therefore, $\frac{A}{AB} \left(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-4Ax^{\frac{3}{2}}} dx \right) = \frac{A}{AB} \left(\frac{\pi}{2\sqrt{3}} \right) + O(e^{-3s})$ and $e(n)$ is $O(1)$
 t' , $P(n) = \frac{A}{An} \left(\sqrt{k} \frac{e^{2s}}{\pi z + \frac{\pi}{2}} \right) + O(e^{-ss}) = \frac{1}{2\pi \sqrt{2}} \frac{A}{An} \left(\frac{e^{K(n-\frac{1}{2})^{\frac{1}{2}}}}{2\pi \sqrt{2}} \right) + O(e^{\frac{K}{2}(n)}) \pm 0$

Remark

- · Asymptotic guiding principle: (1) Deformation of contour (>) Laplace's method (3) Generating function
- · Approximate an integral

Laplace's method Jo e MfW ax M>>0 ~

n	61	62	63
P(n)	1121505	1300156	1505499
$\frac{1}{2\pi \lambda^2} \frac{d}{dn} \left(\frac{e^{k(n-\frac{1}{2}+1)k_2}}{(n-\frac{1}{2}+1)k_2} \right)$	11 >1 538.972	1300171,359	1505535,606

• If we compute
$$p(n)$$
 by $\int_{P} \frac{f(s)}{s^{n+1}}$ instead of $\int_{Y} f(s) e^{-2\pi i n s} ds$,

We can still get the same result

(reference http 11 prms oxfordjournals org content Sz-17/1 75. full. pdf)

Reference

Stein, complex analysis

Appendix (Asymptotic formulax in combinatory analysis by H Hardy and S Ramanujan)

• Ewler identity
$$\frac{1}{(1-x)(1-x^2)(1-x^2)\cdots} = 1 + \frac{x}{(1-x)^2} + \frac{x^4}{(1-x)^2(1-x^2)^2} + \cdots$$

⇒ e^{AVTI} < p(n) < e^{BVTI} for some A,B>0 for large n Hence, AVTI < log p(n) < BJTI Question = C st log p(n) ~ CJTI (YES',)

Theorem ("Tauberian")
If
$$g(x) = \sum a_n x^n$$
 with positive coefficient and $\log g(x) \sim \frac{A}{1-x}$ when $x \rightarrow 1$
Then $\log s_n = \log(a_0 + a_1 + \dots + a_n) \sim \sum \Delta n$ as $n \rightarrow p_0$

Since $C = \int_{\infty}^{\infty} \frac{k_0 p(n)}{\sqrt{n}}$ and if we write $g(x) = (1-x)\frac{1}{2}(x) = \sum_{k=2}^{\infty} \frac{1}{1-x^{k}} \qquad \sim \frac{1}{(1-x)^{k}} \sum_{k=1}^{\infty} \frac{1}{1-x}$ as $x \rightarrow (by using. <math>\sqrt{x^{k+1}}(1-x) < 1-x^{k} < v(1-x) \Rightarrow \frac{1}{1-x}\sum_{k=2}^{\frac{N}{2}} \frac{1}{1-x^{k}} \qquad \sim \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \frac{1}{1-x} = \frac{\pi^{k}}{1-x}$ as $x \rightarrow (by using. <math>\sqrt{x^{k+1}}(1-x) < 1-x^{k} < v(1-x) \Rightarrow \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \sqrt{x^{k}} < \log g(x) < \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \frac{1}{1-x} = \frac{\pi^{k}}{1-x}$ as $x \rightarrow (by using. <math>\sqrt{x^{k+1}}(1-x) < 1-x^{k} < v(1-x) \Rightarrow \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \sqrt{x^{k}} < \log g(x) < \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \frac{1}{x^{k}} = \frac{\pi^{k}}{1-x}$ as $x \rightarrow (by using. \sqrt{x^{k+1}}(1-x) < 1-x^{k} < v(1-x) \Rightarrow \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \sqrt{x^{k}} < \log g(x) < \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \frac{1}{x^{k}} = \frac{\pi^{k}}{1-x}$ as $x \rightarrow (by using. \sqrt{x^{k+1}}(1-x) < 1-x^{k} < v(1-x) \Rightarrow \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \sqrt{x^{k}} < \log g(x) < \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \frac{1}{x^{k}} = \frac{\pi^{k}}{1-x}}$ Therefore, $\log p(n) = a_{0} + a_{1} + u_{1} + a_{n} < c_{1}n$ where $C = \frac{2\pi}{1}$ $g(x) < \frac{1}{1-x}\sum_{k=1}^{\frac{N}{2}} \frac{\pi^{k}}{1-x}}$ (uxitiary function $F_{n}(x) := \frac{1}{\pi \sqrt{12}}\sum_{k=1}^{\frac{N}{2}} \sqrt{x}(n)x^{n}$ where $\gamma_{n}(n) := \frac{d}{An} \left(\frac{(\cosh k(n-\frac{1}{2})^{k})}{(n-\frac{1}{2})^{k}} \right)$ a > 0(the "principle branch" of F is regular for all plane except for x = 1) and $F(x) - \chi(x)$ is regular for x = 1 where $\chi(x) = \frac{\sqrt{\pi}}{\sqrt{12}} \int \log(\frac{\pi}{2} \frac{\pi^{k}}{1-x}})$ by transformed into an Compare $\chi(x)$ and f(x) and apply Cauchy's theorem on $\frac{1}{2}$. Fully, by Underloff we get $p(n) = \frac{1}{2\pi\sqrt{12}} \frac{d}{dn} \left(\frac{e^{k(n-\frac{1}{2})^{k}}}{(n-\frac{1}{2})^{k}}\right) + 0 (e^{\frac{k}{2}\sqrt{10}})$ $+ \frac{1}{\pi} \cos(\frac{1}{2}\pi n - \frac{1}{8}\pi) \frac{d}{dn} \left(\frac{e^{\frac{k}{2}k(n-\frac{1}{2})^{k}}}{(n-\frac{1}{2}\sqrt{12}}\right) + \frac{1}{\pi\sqrt{12}}} \int \frac{1}{2\pi\sqrt{12}} \frac{d}{2\pi\sqrt{12}} \left(\frac{e^{\frac{1}{2}k(n-\frac{1}{2})^{k}}}{(n-\frac{1}{2}\sqrt{12}}\right) + \frac{1}{\pi\sqrt{12}}}$ $+ \frac{1}{\pi} \cos(\frac{1}{2}\pi n - \frac{1}{8}\pi) \frac{d}{dn} \left(\frac{e^{\frac{1}{2}k(n-\frac{1}{2})^{k}}}{(n-\frac{1}{2}\sqrt{12}}\right) + \frac{1}{\pi\sqrt{12}}}$

Divichlet Theorem with Density
$$\overline{P}$$

Introduction: Given $m, a \in N$, with $(m, a) = 1$,
define $\Pi_a(x) := x \begin{cases} p \in N & p \leq a \text{ prome } f \times f \\ p \equiv a \pmod{m} \end{cases}$
our goal is to prove the following theorem.
 $\Pi_a(x) \sim \frac{x}{\Phi(m)\log x}$
Recall that we can prove $x \leq p \equiv a \operatorname{prome} f = bb$
by showing that $\frac{1}{2} + \frac{1}{2} + \frac{$

We may use

$$S_{1} = \sum \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{p} + \dots \rightarrow \infty$$

$$S_{2} = \frac{1}{2} + \sum \frac{1}{p} + \frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \qquad bounded$$
We want
We want

then we get
$$\Sigma = \int B dso whounded, so
 $p \equiv 1 \pmod{4} P$
 $S = p = 1 \pmod{4} = p = 10$
 $p \equiv 1 \pmod{4} = p = 10$$$

1.

· Characters of finite abelian groups: (Serve) . Def: Gis an abelian group, a character of Gisahomomorphism Z: G -> C* group * shour case, we may take G: Multiplicative group # shour case, we may take G: Multiplicative group me of C. . It is easy to see that all shavacters form an abelian group Hom (G, C*), denoted by G. Ques: How may characters? · Lemmal: Let H be a supgroup of G, then every character of H exteends to a character of G. proof: Induction on [G:H] Q [G:H]=] > H=G, nothing to prove, ⊙ [G:H]>1. choose x ∈ G-H, with n the Smallest interger>1 sit. x" EH Now for any character X of H, we may find we etsit w" = X(x") and defore character X' of H'2(H,x) $\chi'(h') = \chi(h) \ \omega^{\alpha} \ \text{where } h' = h x^{\alpha}$ X(h) is well-defined and it is a' character of H'. Sonce [G:H] < [G:H] welve done

' If we define the restriction p: Ĝ → Ĥ, then we just learned that p 3 surjective. Moreover, since keyp are the characters act trivial on H, hence keyp ~ Git, then we have exact sequence $\{i\} \rightarrow \hat{4}_{\mathcal{L}} \rightarrow \hat{4} \rightarrow \hat{4} \rightarrow \hat{\xi}_{1}\}$. Theorem 1: & have the same order as G proof: Induction on n, the order of G We know by above that |G| = (GAI · |AI, honce by induction we've done. A Lemma Z: For any x = G, x=1, there exists a character X of G s.t X(x)=1. With order n proof: Consider H=(x), since H3 cycl2, we can see X(x+):= ent is a character of H by Lemma 1, X can be extend to a character X' of G, with $\chi'(\alpha) = \chi(\alpha) = e^{\frac{2\alpha}{3}} \pm 1$ For G = Int, we extend any character X of Int to define on V_{mil} $\overline{X}(m) = \begin{cases} \overline{X}(m), & \text{if } (m,m) = 1\\ 0, & \text{otherwise} \end{cases}$

Theokenn 2. Let
$$n = \operatorname{ord} G$$
, χ a character then
(1) $\Sigma \chi(x) = \begin{cases} n \cdot f \chi = \chi_0 \cdot \operatorname{relevent} \\ x \in G \end{cases}$
(2) $\Sigma \chi(x) = \begin{cases} n \cdot f \chi = \chi_0 \\ 0 \cdot f \chi = \chi_0 \end{cases}$
(3) $\Sigma \chi(x) = \begin{cases} n \cdot f \chi = 1 \in G \\ \chi \in G \\ 0 \cdot f \chi = 1 \end{cases}$
(4) $\Sigma \chi = \chi_0, \quad \Sigma \chi(x) = 1 + 1 + - + 1 = n$
(5) $\Sigma \chi = \chi_0, \quad \Sigma \chi(x) = 1 + 1 + - + 1 = n$
(6) $\Sigma \chi = \chi_0, \quad \Sigma \chi(x) = \Sigma \chi(x)$
(7) $\Sigma \chi(x) = \Sigma \chi(x) = \Sigma \chi(x)$
(7) $\chi \in G \quad \chi \in G \\ \chi \in G \quad \chi \in G \end{cases}$
(7) By the same argument of (1), $T f \chi = 1$, then

- $\exists \psi \in \widehat{G} \text{ s.t. } \psi(x) \neq (\partial y \text{ Lemma 2})$ $\Rightarrow \psi(x) \sum \chi(x) = \sum \psi \chi(x) = \sum \chi(x)$
 - * $\psi(x) \sum \chi(x) = \sum \psi \chi(x) = \sum \chi(x)$ $\chi_{e\hat{q}}$ $\chi_{e\hat{q}}$ $\chi_{e\hat{q}}$ $\chi_{e\hat{q}}$

4.

 $= \sum_{\chi \in \widehat{G}} \chi(x) = 0$

Prime Number Theorem (Stein)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^{s}}$$
, $\Lambda(u) = \begin{cases} \log P, \frac{1}{2} n = P^{n}, pa prime. \\ 0, otherwise \end{cases}$
 $\Psi(x) = \sum_{1 \le n \le n} \Lambda(x)$, $\Psi_1(x) = \int_1^{\infty} \Psi(u) du$
Analytic continuation of ζ to $Re(s)^{-5} \circ O$
 $\zeta(s) = \frac{1}{51} + H(s)$, $H(s) = \sum_{n=1}^{\infty} S_n(s)$
 $\Gamma = \frac{1}{51} + H(s)$, $H(s) = \sum_{n=1}^{\infty} S_n(s)$
 $\Gamma = \frac{1}{51} + H(s)$, $H(s) = \sum_{n=1}^{\infty} S_n(s)$
 $\Gamma = \frac{1}{51} + H(s)$, $H(s) = \sum_{n=1}^{\infty} S_n(s)$
 $\Gamma = \frac{1}{51} + H(s)$, $H(s) = \sum_{n=1}^{\infty} S_n(s)$
 $\Gamma = \frac{1}{51} + H(s)$, $H(s) = \sum_{n=1}^{\infty} S_n(s)$
 $\Gamma = \frac{1}{51} + H(s)$, $H(s) = \sum_{n=1}^{\infty} S_n(s)$
 $\Gamma = \frac{1}{51} + H(s)$, $H(s) = \sum_{n=1}^{\infty} S_n(s)$
 $\Gamma = \frac{1}{51} + H(s)$, $H(s) = \frac{1}{51} + \frac{1}{5} + \frac{1}{5}$
 $\Gamma = \frac{1}{51} + \frac{1}{5} + \frac{1}$

The L- function
$$L(st) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^3}$$
 on $Re(s) > 0$
Observe that for $Re(s) > 1$, $\sum_{n=1}^{\infty} \frac{\chi(n)}{n^3}$ converges
absolutely sonce $\left|\frac{\chi(n)}{n^3}\right| \leq \frac{1}{N^{1/2}}$ where $s = 6 \approx 1$
and so the Euler Broduct formula implies
 $L(s, t) = \prod_{p \text{ prime}} \frac{1}{p^5}$
Thom 3 $\sum_{n=1}^{\infty} \frac{\chi(n)}{n^3}$ converges on $Re(s) > 0$, more over.
 $L(s, \chi)$ is holomorphic on $Re(s) > 0$. $(t^{-1}_{1}\chi + \chi_{0})$
breef:
 0 Let $A_{n,m} = \sum_{n=N}^{\infty} \chi(n)$, then $|A_{N,m}| \leq \phi(m)$
 $\Rightarrow \sum_{n=N}^{M} \frac{\chi(n)}{n^5} = \frac{1}{n^{-1}}A_{N,n} \left(\frac{1}{n^5} - \frac{1}{(N+1)^5}\right) + A_{N,m} \cdot \frac{1}{m^5}$
as the can see $\left|\frac{1}{N^5} - \frac{1}{(N+1)^5}\right| \leq \frac{1}{N^5+1}$
 $s_0 \left[\sum_{n=N}^{\infty} \frac{\chi(n)}{n^5}\right] \leq \phi(m) \sum_{n=N}^{M+1} \frac{1}{n^{-1}} \frac{1}{m^{-1}} + \frac{\phi(m)}{m^5} \xrightarrow{n > 0}$
 $\Rightarrow \sum_{n=N}^{\infty} \frac{\chi(n)}{n^5} = \phi(m) \sum_{n=N}^{M+1} \frac{1}{n^{-1}} \frac{1}{m^5} \xrightarrow{n > 0}$
 $\Rightarrow \sum_{n=N}^{\infty} \frac{\chi(n)}{n^5} = from above that \sum_{N=1}^{\infty} \frac{\chi(n)}{n^5} \xrightarrow{n < 0} \frac{\chi(n)}{n^5}$ is the lower phic by Thms, 2, Chap 2 in Stein.

Thm 4:
$$L(s, \chi_0)$$
 extends to a meromorphic
function for Re(S)>0, it has a unique simple
pole at S=1 with residue $\frac{\Phi(m)}{m}$,
proof: Obviously $L(s, \chi_0) = \zeta(s) \prod (1 - \frac{1}{p^s})$ for Res>1
Since $\zeta(s)$ extends to a meromorphic function on
Res>0, so does $L(s, \chi_0)$ (and so only a unique
On the other hand,
 $\chi(z(s, \chi_0), 1) = \prod (1 - \frac{1}{p}) \operatorname{res}(\zeta(s), 1) = \frac{\Phi(m)}{m}$

. •

Now we know L(S,X) is defined as a hold (Xormero) function on Re(S)>D We still need to define $\log L(s, \chi)$: sonce for Re(s)>1, we have [X(p)]<1, so take principle branch to define $\log \frac{1}{1 - \chi(p)} = \sum \frac{\left(\frac{\chi(p)}{ps}\right)^n}{N} \left(\log \frac{1}{1-s} \sum \frac{d^n}{N}\right)$ and define $log L(s,\chi) = \sum_{p} log \frac{1}{1-\frac{\chi(p)}{ps}}$ notice that $L(s,t) \neq 0$ on $Re(s) > 1 \Rightarrow log & nell - defined.$ From Eular Product $\log L(S,\chi) = \sum \log \frac{1}{1-p^{-1}}$ $= \sum_{p} \sum_{n} \frac{\chi_{cp}}{n} p^{ns} = \sum_{n,p} \frac{\chi_{cp}}{n} p^{ns}$ the series I X(p)" is obviously convergent, $S_{0} \frac{L(s,\chi)}{L(s,\chi)} = -\sum_{n=1}^{\infty} \frac{\chi(n)\Lambda(n)}{n^{s}}$ $\left(\operatorname{Remark} \cdot \frac{\zeta(s)}{\zeta(s)} = -\sum \frac{\Lambda(n)}{N^{s}} \right)$

Lemma 3
$$\log |L^{3}(\sigma, \chi_{0})L^{4}(\sigma_{0}\tau_{0}; \chi)L(\sigma_{1}2\tau_{0}; \chi^{2})| \ge 0$$

proof:
 $\log |L^{3}(\sigma, \chi_{0})L^{4}(\sigma_{1}\tau_{0}; \chi)L(\sigma_{1}2\tau_{0}; \chi^{2})|$
 $= 3\log |L(\sigma, \chi_{0})| + 4\log |L(\sigma_{1}\tau_{0}; \chi)| + \log |L(\sigma_{1}2\tau_{0}; \chi^{2})|$
 $= 3\log |L(\sigma, \chi_{0})| + 4\log |L(\sigma_{1}\tau_{0}; \chi)| + \log |L(\sigma_{1}2\tau_{0}; \chi^{2})|$
 $= 3\log |L(\sigma, \chi_{0})| + 4\operatorname{Re} \log |L(\sigma_{1}\tau_{0}; \chi)| + \operatorname{Re} \log |L(\sigma_{1}2\tau_{0}; \chi^{2})|$
 $= \sum_{n,p} \frac{(3\chi_{0}(p^{n}))}{np^{4n}} + \operatorname{Re} \frac{4\chi(p^{n})}{np^{n}(n+1)} + \operatorname{Re} \frac{\chi^{2}(p^{n})}{np^{n}(\sigma_{2}\tau_{0}; \chi)})$
 $= \sum_{n,p} \frac{3+4\cos((0n)+\cos 2n)}{np^{n}\sigma} \ge 0$
 $n+m$
 $= \sum_{n,p} \frac{2(1+\cos 6n)}{np^{n}\sigma} \ge 0$
where $O_{n} = \eta(p^{n}) - t\log(p^{n})$
 $\chi(p^{m}) = e^{-\eta(p^{m})}$
Then 5 $L(s,\chi)$ does not vanish on the law $\sigma = 1$
 $\operatorname{Proof} \operatorname{Prove}$ by contradiction i Suppose $\exists to \in \mathbb{R}$
 $s.t. L(1+it_{\sigma},\chi)|^{4} \in C(\sigma_{1})^{4}$ as $\tau \to 1$

and since S=1 is a pole for L(s, 26) (by Thm4) 9.

So that $|L(\sigma, \chi_{\bullet})|^{3} \leq C'(\sigma-1)^{3}$ as $\sigma \rightarrow |$ Finally, $|L(\sigma+\lambda)|$ remains bounded as $\sigma \rightarrow |$ $\Rightarrow |L_{1}^{3}(\sigma, \chi_{\bullet}) L_{1}^{4}(\sigma+\lambda) L(\sigma+\lambda) L(\sigma+\lambda)| \rightarrow 0$ as $\sigma \rightarrow |$ contradicted to Lemma 3

· Thm 6 : Suppose S= o+it with oit (R Then for each o., 05 Jos |, and every E>O, there exists a constant CE so that (i) $|L(s,\chi)| \leq C_2 |t|^{1-G+\epsilon}$, if $\sigma \leq \sigma$ and $|t| \geq 1$ $|||| |L(s,\chi)| \leq C_{2} |t|^{2}, \quad f \leq \sigma, \text{ and } |t| \geq 1$ Proof: The proof is basicly same with Props. 7 Chap 6. O For X=Xo, it is straight forward from Thm 4 and Prop 2.7 Chap 6 Stein @ If X = Xo, then we know that $L(S,X) = \sum_{N=1}^{\infty} A(n) \left(\frac{1}{N^{s}} - \frac{1}{(n+1)^{s}}\right) \text{ where } A(n) = \sum_{i \leq n} X(i)$ sin (s)

then
$$\langle |S_{n}(s)| \leq \frac{|S|}{n^{\sigma+1}}$$
 by mean value thun
 $\langle |S_{n}(s)| \leq \frac{2}{n^{\sigma}}$
 $\Rightarrow |S_{n}(s)| \leq \left(\frac{|S|}{n^{\sigma+1}}\right)^{S} \left(\frac{2}{n^{\sigma_{0}}}\right)^{(-S)} \leq \frac{2|S|^{S}}{n^{\sigma_{0}+S}}$
ehoose $S = 1 - s_{0} + \varepsilon$
 $\Rightarrow |Z_{(S,X)}| \leq \phi(m) 2 \cdot |S|^{-s_{0}+\varepsilon} \sum \frac{1}{n^{1+\varepsilon}}$
so (1) 3 proved
 $(Sacce_{0} \leq 1 + Y_{0} \text{ with } Y_{0} > 0, L(S,X) \otimes bdd.)$
 $(Shen$
 $\varepsilon = \frac{1}{2\pi Y} \int_{0}^{s_{1}} \sum (s + re^{i\delta}, \chi) e^{i\delta} do$
 $Choose Y = \varepsilon$ and apply U to get
 $|L'(S,X)| \leq \frac{1}{2\pi \varepsilon} \cdot 2\pi C_{\varepsilon} |t|^{\varepsilon}$
 $Thm 7. For every $\varepsilon > 0$, we have $|\frac{1}{L(S,\chi)}| \leq c_{\varepsilon} |t|^{\varepsilon}$ when
 $s = \sigma_{1} t, \sigma_{2} 1$ and $|t| \geq 1$
 $Proof:$
 $(From Lemma 3 we know $\frac{1}{T} \sigma_{2} 1, \frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1}{T} |\frac{\varepsilon}{T} |\frac{1}{T} |\frac{1$$$

Proof of threchlet Theorem with Density

$$A(a(n)) = \begin{cases} \log p \cdot f(n) = p^{t} \text{ and } p = a \pmod{m} \\ o \cdot otherwise \\ \forall a(x) = \int A(n) \\ n \leq x \end{cases}$$

 $\forall a(x) = \int_{1}^{x} \forall_{a}(u) du$
Then $8 : \forall a(x) \sim \frac{x}{\sqrt{q(w)}} \Rightarrow \operatorname{Tla}(x) \sim \frac{x}{\sqrt{q(w)}\log x}$
 $pf \cdot It suffices to show
 $I = \lim \pi f \operatorname{Tla}(x) \cdot \frac{d(m)\log x}{x} \text{ and } \lim \sup \operatorname{Tla}(x) \frac{t(m)\log x}{x} = 0$
 $\forall a(x) = \sum \left[\frac{\log x}{\log p} \right] \cdot \log p \leq \sum \log x \log p \\ p \leq x \log p \\ p \leq a(m) \sqrt{q(w)}\log x \\ x = 1 \end{cases}$
 $f(m) \frac{\psi(n)}{x} \leq \operatorname{Tla}(x) \frac{\psi(m)\log x}{x} = 1$
 $\Rightarrow \frac{\psi(m)}{x} \int \operatorname{Tla}(x) \frac{\psi(m)\log x}{x} \geq 1$
 $\Rightarrow \operatorname{Tla}(x) \log p \leq x \log p \\ p \leq x \log p \\ x \leq 1 \end{cases}$
 $hence \lim \inf \operatorname{Tla}(x) \frac{\psi(m)\log x}{x} \geq 1$
 $\Rightarrow \operatorname{Tix} o \leq \alpha \leq 1, \text{ note that} \\ \psi_{a}(x) \geq \sum \log p \geq \sum \log p \geq (\operatorname{Tla}(x) - \operatorname{Tla}(x)) \log x^{\alpha} \\ p \geq \alpha(\operatorname{mad}(m)) \quad p \geq \alpha(\operatorname{mb}(m)) \end{cases}$$

14.

· Recall Lemma 2.4, chap?, Stain:
If C>0, then

$$\frac{1}{2\pi r} \int_{C-ibo}^{C-ibo} \frac{a^{S}}{S(S+1)} dS = \begin{cases} 0, if 0 < a \leq 1\\ 1-\frac{1}{a}, if 1 \leq a \end{cases}$$
· This is the constant of the

٢\$.

3 1 (c+100 xS+1 (--X(a7))('15,X) c-100 S(S+1) (x q(m)) L(S,X)) dS $= \frac{\chi}{221} \int_{C=20}^{C+104} \frac{\chi^3}{5(5+1)} \int_{u=21}^{\infty} \frac{\Lambda_a(u)}{u^5}$ $= \chi \sum_{n=1}^{10} \Lambda_{a}(n) \cdot \frac{1}{2\pi i} \int_{C-\overline{100}}^{C+\overline{100}} \frac{(\frac{\chi}{10}) ds}{\overline{s(s+1)}}$ $= \chi \sum_{n \leq \chi} \Lambda_{a(n)} \left(1 - \frac{\eta}{\pi} \right)$ $= \sum_{n \leq x} \Lambda_{a(n)}(x-n) = \mathcal{U}_{ia}(x)$ Notice that $\sum_{n=1}^{10} \int_{cino}^{ctino} \left| \frac{\chi^s}{N^{s+1}}, \frac{\Lambda_a(n)}{N^{s}} \right| ds$ $\leq \sum_{n\geq 1}^{\infty} \frac{\Lambda_n(n)}{NC} \int_{C}^{C+ibo} \frac{\chi^C}{S(S+1)} dS$ $\leq A \sum_{n=1}^{\infty} \frac{\Lambda_n(n)}{n^c} < \infty$ · If we set $g_{a(S)} = \frac{\chi^{S+1}}{S(S+1)} \cdot \left(\sum_{\chi} \frac{\chi(a^{-1})}{\varphi(m)}, \frac{\chi'(\zeta,\chi)}{\chi'(\zeta,\chi)} \right)$ then In Gaile gals as = 4ia(x) since ((x) is hold of X = Xo. arguemen L(S, X. has a somple pole at S = 1we know ga(S) has a somple pole of orde $\frac{\chi^2}{2\varphi(m)}$ 16.

.

For
$$T_1, T_5$$
: we may take $\left|\frac{\mathcal{L}(s,\chi)}{\mathcal{L}(s,\chi)}\right| \le A \cdot |t|^{\frac{1}{2}}$
then we have $\left|\frac{1}{2\pi i}\int_{T_s} g_a(s)ds\right| \le C\chi^2 \int_{T_s}^{\infty} \frac{|t|^2}{t^2} dt$
So we can choose T so large s.t.
R.H.S. $\le \frac{2}{2}\chi^2$ for a fixed $\varepsilon > 0$.
Ys 3 sonitar.
For T_2 - Choose δ so small so that $\mathcal{L}(s,\chi) \neq 0$ Use T_3 .
Ubecause we have proved that $\mathcal{L}(\chi) \neq 0$ on $|t| \neq 1$.
Note that $|\chi|^{ns}| = \chi^{2-\delta}$
hence $\left(\frac{1}{2\pi i}\int_{T_3} g_a(s)ds\right| \le C_T\chi^{2-\delta}$.
Depend on T.

$$\left|\frac{1}{20}\int_{Y_2} g_{\alpha}(s)\right| \leq C_T \int_{1-s}^{1} \chi^{1+\sigma} d\sigma \leq C_T \frac{\chi^2}{1-s}$$

١8,

Serre A Course in Arithmetiz Stein Complex Analysis LeVeque, Topics In Number Theory Introduction to Analytic Number Apostol Theory

Hyung Kyu Jun The Density of Primes of The Form a+km

Dirichlet's Principle

李龍欣

2015.06.25

Notation. Let A, B be subsets of a topological space. We say $A \subset \subset B$ if \overline{A} , the closure of A, is contained in \mathring{B} , the interior of B.

Let (Ω, z) be a coordinate patch of a Riemann surface S. Then for some $a \in \mathbb{C}$ and r > 0, if $B(a; r) \subset (z(\Omega))$, then we call $B_z(a; r) := z^{-1}(B(a; r))$ a z-disk.

1 Das Dirichletsche Integral

Notation (p.107). Let S denote a connected (oriented) Riemann surface. Anything related to "K" denotes a z-disk for some z. In particular, we arbitrarily fix a point $p_0 \in S$, a coordinate map z_0 with $z_0(p_0) = 0$, and some appropriate $0 < R_0 < R'_0$. Then we call $K_0 := B_{z_0}(p_0; R_0)$ the hole, call $K'_0 := B_{z_0}(p_0; R'_0)$ the lid, call $K'_0 \setminus \overline{K_0}$ the lock-ring, and call $S \setminus \overline{K_0}$ the punched surface.

Recall (p93, p72). For $\eta = (\eta_1 dx + \eta_2 dy)$ and $\xi = (\xi_1 dx + \xi_2 dy)$ being two 1forms, we define $[\eta, \xi] := \eta \land (^*\xi) = (\eta_1\xi_1 + \eta_2\xi_2)(dx \land dy)$, which is symmetric and bilinear on the two inputs.

Definition (p.97). Let $A \subseteq S$ be a region, and $v, w \in C^1(A)$. The Dirichlet integral is defined to be $D_A(v, w) := \int_A [dv, dw]$. If v = w, we denote the integral by $D_A(v) := D_A(v, v) \ge 0$. The set of **admissible functions** is defined to be $\mathfrak{M}(A) := \{v \in C^1(\mathring{A}) \cap C^0(\overline{A}) : D_A(v) < \infty\}$

Notation (p.114). For $v \in \mathfrak{M}(K)$, define \overline{v} to be the harmonic function on K that agrees with v on ∂K (which may be derived from Poisson's integration formula).

Lemma 1 (p.97). $\forall v \in \mathfrak{M}(K), D_K(v) - D_K(\overline{v}) = D_K(v - \overline{v}) \ge 0.$ (hint: $D_K(\overline{v}, v - \overline{v}) = 0$)

Theorem 2 (p.106). Let Φ be a harmonic function on the lid which is regular in the lock-ring, and satisfies $\frac{\partial \Phi}{\partial n} = 0$ along ∂K_0 . There exists a harmonic function U such that U is regular in $S \setminus \overline{K_0}$ and that $U - \Phi$ is regular in K_0 . **Definition** (p.108). The set of **competing functions** is defined to be

$$\mathscr{F} := \{ (v, v^*) : v \in \mathfrak{M}(S \setminus \overline{K_0}), v^* \in \mathfrak{M}(K_0'), v \equiv v^* + \Phi \text{ in } K_0' \setminus \overline{K_0} \}$$

Whenever there is no ambiguity, we tend to use v in place of (v, v^*) . We define the **potential** to be $D(v) := D_{S \setminus \overline{K_0}}(v) + D_{K_0}(v^*)$.

Remark (p.108). The potential can be also derived by the following process: Let a smoothing function λ be fixed, which is identically 1 in the hole, and vanishes outside the lid. We define the 2-forms $\Psi = (1 - \lambda)[dv, dv] + \lambda[dv^*, dv^*]$ over S, and that $\Psi' = \lambda ([dv, dv] - [dv^*, dv^*])$ over $K'_0 \setminus \overline{K_0}$. Then D(v) can be given by the sum of $D_{\lambda}(v) := \int_S \Psi$ and $D'_{\lambda}(v) := \int_{K'_0 \setminus \overline{K_0}} \Psi'$.

Fact 3 (pp.108–109).

- 1. $\forall v \in \mathscr{F}, 0 \le D(v) < \infty$.
- 2. If U exists, then $(u, u^*) := (U|_{S \setminus \overline{K_0}}, U|_{K'_0} \Phi) \in \mathscr{F}$.
- 3. If Φ can be extended on an open disk K that contains the closure of the lid, then there exists a cut-off function λ such that $\lambda|_{K'_0} \equiv 1$ and $\lambda|_{S\setminus K} \equiv 0$. Therefore the pair (v_0, v_0^*) which is defined by $v_0^* \equiv 0$, $v_0 \equiv \lambda \Phi$ on $K \setminus K_0$, and $v_0 \equiv 0$ on $S \setminus K$ is a competing function.

In summary, we are free to assume $\mathscr{F} \neq \varnothing$

4. Let K be contained in the lid or the punched surface. Suppose that $v_1, v_2 \in \mathscr{F}$ coincide outside of K. That is, $v_1 \equiv v_2$ and $v_1^* \equiv v_2^*$ respectively on each of their domains except on K. Then

$$D(v_1) - D(v_2) = \begin{cases} D_K(v_1) - D_K(v_2) & \text{whenever } K \subseteq S \setminus \overline{K_0} \\ D_K(v_1^*) - D_K(v_2^*) & \text{whenever } K \subseteq K'_0 \end{cases}$$

(hint: for the second case, apply Green's theorem)

Observation 4 (p.110). $\mathscr{F} = v_0 + \mathfrak{M}(S)$ in the following senses:

First, for all $v_1, v_2 \in \mathscr{F}$, $v_1 - v_2$ and $v_1^* - v_2^*$ agree on the lock-ring, so they define an admissible function on S. Conversely, for all $v \in \mathscr{F}$ and $w \in \mathfrak{M}(S)$, $(v + w, v^* + w)$ lies in \mathscr{F} . Therefore for a fixed member $v_0 \in \mathscr{F}$, there is a one-to-one correspondence $\mathscr{F} \leftrightarrow \mathfrak{M}(S), v \mapsto v - v_0$

Second, define $T := K_0 + (S \setminus \overline{K_0})$ to be the direct sum of spaces, which may be identified with $S \setminus \partial K_0$ sometimes. We identify $v \in \mathscr{F}$ with the corresponding function in $\mathcal{C}^1(T)$, which is defined by

$$p \mapsto \begin{cases} v(p) & \text{if } p \in S \setminus \overline{K_0} \\ v^*(p) & \text{if } p \in K_0 \end{cases}$$

and satisfies $D_T(v) = D(v) < \infty$. Thus $v \in \mathfrak{M}(T)$.

Finally, notice that $(\mathfrak{M}^{(T)}/\sim, D_T(\cdot, \cdot))$ is a inner-product space over \mathbb{R} , where the equivalence relation \sim presents " $v_1 \sim v_2 \Leftrightarrow v_1 - v_2 = const.$ " In addition, $\mathfrak{M}(S)$, which is included in $\mathfrak{M}(T)$ by restriction, is a subspace. Therefore we can handle the problem as a problem of orthogonal projection: find $v_{\parallel} = w \in \mathfrak{M}(S)$ so that the norm of $v_{\perp} = u = v - w$ is minimized.

Proposition 5 (p.110, due to Beppo Levi). Define $d := \inf\{D(v) : v \in \mathscr{F}\}$. Then for all $v_1, v_2 \in \mathscr{F}$,

$$\sqrt{D_S(v_1 - v_2)} \le \sqrt{D(v_1) - d} + \sqrt{D(v_2) - d}$$

Proof. As mentioned, we identify \mathscr{F} as a subset of $\mathfrak{M}(T)$.

Let $\lambda \in \mathbb{R}$. If $\lambda \neq -1$, then $\frac{\lambda v_1 + v_2}{\lambda + 1} \in \mathscr{F}$. Hence $D_T(\frac{\lambda v_1 + v_2}{\lambda + 1}) = D(\frac{\lambda v_1 + v_2}{\lambda + 1}) \ge d$, so $D_T(\lambda v_1 + v_2) \ge (\lambda + 1)^2 d$. The last inequality remains valid when $\lambda = -1$.

In summary, the quadratic function on λ

$$\lambda^2 (D_T(v_1) - d) + 2\lambda (D_T(v_1, v_2) - d) + (D_T(v_2) - d)$$

is always ≥ 0 . Hence we have the discriminant

$$(D_T(v_1, v_2) - d)^2 - (D_T(v_1) - d)(D_T(v_2) - d) \le 0$$

It follows that

$$0 \leq D_T(v_1 - v_2)$$

= $D_T(v_1) - 2D_T(v_1, v_2) + D_T(v_2)$
= $(D_T(v_1) - d) + (D_T(v_2) - d) - 2(D_T(v_1, v_2) - d)$
 $\leq (D_T(v_1) - d) + (D_T(v_2) - d) + 2\sqrt{(D_T(v_1) - d)(D_T(v_2) - d)}$
= $\left(\sqrt{D_T(v_1) - d} + \sqrt{D_T(v_2) - d}\right)^2$
 $\Rightarrow \sqrt{D_T(v_1 - v_2)} \leq \sqrt{D_T(v_1) - d} + \sqrt{D_T(v_2) - d}$
 $\Rightarrow \sqrt{D_S(v_1 - v_2)} \leq \sqrt{D(v_1) - d} + \sqrt{D(v_2) - d}$

Corollary (p.111). If a minimizing function exists, it is unique up to an additive constant.

Notation (p.111). \lim_{v} means the limitation taken as $D(v) \to d$ among those $v \in \mathscr{F}'$, where $\mathscr{F}' := \left\{ v \in \mathscr{F} : \int_{\partial K_0} v^* \, \mathrm{d}s = 0 \right\}.$

2 Fourierreihe

Let $K = B_z(0; R)$ be a fixed z-disk, and $z = x + iy = re^{i\theta}$. For all $v, w \in \mathfrak{M}(K)$, define $J_{z,K}(v, w) := \iint_{z(K)} v(z)w(z) \, \mathrm{d}x \, \mathrm{d}y$, and that $J_{z,K}(v) := J_{z,K}(v, v)$.

Let $u = \overline{v}$ be the harmonic function on K that agree with $v \in \mathfrak{M}(K)$ on ∂K . Then u is the real part of an analytic function $f(z) = \sum_{n=0}^{\infty} c_n z^n$. Hence

$$u(z) = \operatorname{Re}(f(z)) = \sum_{n=0}^{\infty} \left(\operatorname{Re}(c_n)\operatorname{Re}(z^n) - \operatorname{Im}(c_n)\operatorname{Im}(z^n)\right)$$
$$= a_0 + \sum_{n=1}^{\infty} \left(a_n r^n \cos(n\theta) + b_n r^n \sin(n\theta)\right)$$

where $a_n = \operatorname{Re}(c_n)$ and $b_n = -\operatorname{Im}(c_n)$. Notice that $\int_0^{2\pi} f(re^{i\theta})e^{-ni\theta} d\theta = 2\pi r^n c_n$ for $n \ge 0$, and = 0 for n < 0. Hence for all n > 0,

$$a_{n} = \frac{1}{2\pi r^{n}} \operatorname{Re} \left(\int_{0}^{2\pi} f(re^{i\theta}) e^{-ni\theta} \, \mathrm{d}\theta \right)$$

$$= \frac{1}{2\pi r^{n}} \operatorname{Re} \left(\int_{0}^{2\pi} f(re^{i\theta}) (e^{-ni\theta} + e^{ni\theta}) \, \mathrm{d}\theta \right)$$

$$= \frac{1}{2\pi r^{n}} \int_{0}^{2\pi} \operatorname{Re} \left(f(re^{i\theta}) (2\cos(n\theta)) \right) \, \mathrm{d}\theta$$

$$= \frac{1}{\pi r^{n}} \int_{0}^{2\pi} u(re^{i\theta}) \cos(n\theta) \, \mathrm{d}\theta \qquad , \text{ and similarly,}$$

$$b_{n} = \frac{1}{\pi r^{n}} \int_{0}^{2\pi} u(re^{i\theta}) \sin(n\theta) \, \mathrm{d}\theta$$

Note that $a_0 = \frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta$

Define $P_n = \operatorname{Re}(z^n) = r^n \cos(n\theta), Q_n = \operatorname{Im}(z^n) = r^n \sin(n\theta) \in \mathfrak{M}(K)$. Observe that $dP_n = {}^* dQ_n$, so that by Green's formula,

$$D_{K}(v, P_{n}) = \int_{K} dv \wedge dQ_{n} = \int_{\partial K} v \, dQ_{n}$$

= $nR^{n} \int_{0}^{2\pi} v(Re^{i\theta}) \cos(n\theta) \, d\theta$
= $nR^{n} \int_{0}^{2\pi} u(Re^{i\theta}) \cos(n\theta) \, d\theta$
= $\pi nR^{2n} a_{n}$, and similarly,

 $D_K(v,Q_n) = \pi n R^{2n} b_n$

By setting $u = v = P_n$ or Q_n , we have the orthogonality relations

$$\begin{cases} D_K(P_m, Q_n) = 0 & \text{without exception} \\ D_K(P_m, P_n) = D_K(Q_m, Q_n) = 0 & \text{if } m \neq n \\ D_K(P_n) = D_K(Q_n) = \pi n R^{2n} & \text{without exception} \end{cases}$$

Also, by integrating under the polar coordinate, we have

$$\begin{cases} J_{z,K}(P_m, Q_n) = 0 & \text{without exception} \\ J_{z,K}(P_m, P_n) = J_{z,K}(Q_m, Q_n) = 0 & \text{if } m \neq n \\ J_{z,K}(P_n) = J_{z,K}(Q_n) = \frac{\pi}{2n+2}R^{2n+2} & \text{if } n > 0 \\ J_{z,K}(P_0) = \pi R^2 \end{cases}$$

Since $u(z) = a_0 + \sum_{n=1}^{\infty} (a_n P_n + b_n Q_n)$ converges uniformly, the orthogonality relation of D_K provides that

$$D_K(v) \ge D_K(u) = \sum_{n=1}^{\infty} \pi n R^{2n} (a_n^2 + b_n^2)$$

Similarly,

$$J_{z,K}(u) = \pi R^2 a_0^2 + \sum_{n=1}^{\infty} \frac{\pi}{2n+2} R^{2n+2} (a_n^2 + b_n^2)$$

Lemma 6 (p.103). For all $v \in \mathfrak{M}(K)$, $\exists a \in \mathbb{R}$ such that $J_{z,K}(v-a) \leq const.D_K(v)$

Proof. On one hand, take $a = a_0$ with respect to $u = \overline{v}$, then

$$J_{z,K}(u-a_0) = \sum_{n=1}^{\infty} \frac{\pi}{2n+2} R^{2n+2} (a_n^2 + b_n^2) \le \frac{R^2}{4} \sum_{n=1}^{\infty} \pi n R^{2n} (a_n^2 + b_n^2)$$
$$= \frac{R^2}{4} D_K(u)$$

On the other hand, for w = v - u, which vanishes on ∂K ,

$$w(\rho e^{i\theta}) = \int_R^{\rho} \frac{\partial w(z)}{\partial r} \,\mathrm{d}r$$

By Schwartz's inequality,

$$w(\rho e^{i\theta})^{2} = \left\{ \int_{R}^{\rho} \left[\frac{\partial w(z)}{\partial r} \sqrt{r} \right] \left[\frac{1}{\sqrt{r}} \right] dr \right\}^{2} \leq \int_{R}^{\rho} \left[\frac{\partial w(z)}{\partial r} \right]^{2} r dr \int_{R}^{\rho} \frac{1}{r} dr$$
$$= \int_{\rho}^{R} \left[\frac{\partial w}{\partial x} \cos \theta + \frac{\partial w}{\partial x} \sin \theta \right]^{2} r dr (\log R - \log \rho)$$
$$= \int_{\rho}^{R} 2 \left[\left(\frac{\partial w}{\partial x} \right)^{2} + \left(\frac{\partial w}{\partial y} \right)^{2} \right] r dr (\log R - \log \rho)$$

Next, integrate the previous equation in order to yield that

$$\begin{aligned} J_{z,K}(w) &\leq \int_0^R \int_0^{2\pi} \int_{\rho}^R 2\left[\left(\frac{\partial w}{\partial x}\right)^2 + \left(\frac{\partial w}{\partial x}\right)^2\right] r(\log R - \log \rho)\rho \,\mathrm{d}r \,\mathrm{d}\theta \,\mathrm{d}\rho \\ &= \int_0^R 2\left\{\int_{\rho \leq |z| \leq R} [\mathrm{d}w, \mathrm{d}w]\right\} (\log R - \log \rho)\rho \,\mathrm{d}\rho \\ &\leq 2D_K(w) \int_0^R (\log R - \log \rho)\rho \,\mathrm{d}\rho = \frac{R^2}{4} D_K(w) \end{aligned}$$

Finally,

$$J_{z,K}(v - a_0) = J_{z,K}((u - a_0) + w) \le 2(J_{z,K}(u - a_0) + J_{z,K}(w))$$
$$\le \frac{R^2}{2} [D_K(u) + D_K(w)] = \frac{R^2}{2} D_K(v)$$

Proposition 7 (p.112). For all $K = B_z(0; R)$, there is a constant C so that for every $w \in \mathfrak{M}(S)$ that satisfies

$$\int_{\partial K_0} w \,\mathrm{d}s = R_0 \int_0^{2\pi} w \left(z_0^{-1} \left(R_0 e^{i\theta} \right) \right) \,\mathrm{d}\theta = 0$$

we have $J_{z,K}(w) \leq CD_S(w)$.

Proof. Recall that K_0 is the hole. Let each $1 \leq j \leq n$ be corresponded with K_j , which is a z_j -disk with radius R_j , such that $K_n = K$, $z_n = z$, and that $\forall 1 \leq j \leq n$, $K_{j-1} \cap K_j \neq \emptyset$. Set the constants c_j so that $\int_{\partial K_j} (w - c_j) = 0 \, \mathrm{d}s$, where $c_0 = 0$.

We prove by induction. If n = 0, i.e., $K = K_0$, we take $C = \frac{R_0^2}{2}$ by Lemma 6. It suffices to prove that if our claim holds on K_{n-1} , then it holds on K_n . Let

 $k \subset K_{n-1} \cap K_n$ be a z_n -disk with radius tR_n , where 0 < t < 1. Let m be an upper bound for $\left| \frac{\mathrm{d}z_n}{\mathrm{d}z_{n-1}} \right|$ on k. By the inductive hypothesis, there is a constant C' which only depends on K_{n-1} such that

$$J_{z_{n,k}}(w) \le m^2 J_{z_{n-1},k}(w) \le m^2 C' D_S(w)$$

In addition, by Lemma 6, we have

$$J_{z_n,k}(w - c_n) \le J_{z_n,K_n}(w - c_n) \le \frac{1}{2}R_n^2 D_k(w) \le \frac{1}{2}R_n^2 D_S(w)$$

It follows that

$$\pi c_n^2 t^2 R_n^2 = J_{z_n,k}(c_n) \le 2(J_{z_n,k}(w) + J_{z_n,k}(w - c_n))$$
$$\le (2m^2 C' + R_n^2) D_S(w)$$

Finally, we have

$$J_{z,K}(w) \leq 2(J_{z_n,K_n}(w-c_n) + J_{z_n,K_n}(c_n))$$

$$\leq 2\left(\frac{1}{2}R_n^2 D_K(w) + \pi c_n^2 R_n^2\right)$$

$$\leq 2\left(\frac{1}{2}R_n^2 D_S(w) + \frac{2m^2 C' + R_n^2}{t^2} D_S(w)\right)$$

$$= \left(R_n^2 + \frac{4m^2 C' + 2R_n^2}{t^2}\right) D_S(w)$$

3 Die Mittelwertfunktion

Recall. Let z = x + iy be a local coordinate map and $K = B_z(0; R)$ be a open disk with "center" $p = z^{-1}(0)$. If v is harmonic, then

$$v(p) = \frac{1}{\pi R^2} \iint_K v(x+iy) \, \mathrm{d}x \, \mathrm{d}y$$

Notation (p.113). From now on, let a point $p \in S$, a coordinate map z at p be fixed. In addition, let $K = B_z(0; R)$ be contained in the punched surface or the lid. Define a map $\mathbf{M}_{z,K} : \mathfrak{M}(K) \to \mathbb{R}$, which is abbreviated to \mathbf{M} , as following:

$$\mathbf{M}_{z,K}(w) = \frac{1}{\pi R^2} \iint_K v(x+iy) \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} v(re^{i\theta}) \, r \, \mathrm{d}\theta \, \mathrm{d}r$$

If K is contained in the punched surface, one yields from Schwarz's inequality, and the Propositions 5 and 7 that for all $v_1, v_2 \in \mathscr{F}'$,

$$(\mathbf{M}(v_1) - \mathbf{M}(v_2))^2 = \left(\frac{1}{\pi R^2} \iint_K (v_1 - v_2) \, \mathrm{d}x \, \mathrm{d}y\right)^2$$

$$\leq \frac{1}{\pi R^2} \iint_K (v_1 - v_2)^2 \, \mathrm{d}x \, \mathrm{d}y = \frac{1}{\pi R^2} J_{z,K}(v_1 - v_2)$$

$$\leq \frac{C}{\pi R^2} \left(\sqrt{D(v_1) - d} + \sqrt{D(v_2) - d}\right)^2$$

That is,

$$|\mathbf{M}(v_1) - \mathbf{M}(v_2)| \le \frac{1}{R} \sqrt{\frac{C}{\pi}} \left(\sqrt{D(v_1) - d} + \sqrt{D(v_2) - d} \right)$$
(1)

Therefore $\lim_{v} \mathbf{M}(v)$ exists. We denote the limit by u(p). Then by the previous estimation,

$$|\mathbf{M}(v) - u(p)| \le \frac{1}{R} \sqrt{\frac{C}{\pi}} \sqrt{D(v) - d}$$
(2)

For all $q \in K$, let \mathbf{M}_q denote \mathbf{M}_{z,k_q} , where the disk $k_q := B_z(z(q); R - |z(q)|)$ is contained in K. Since we have an estimation which is similar to (1), the limit $u(q) := \lim_v \mathbf{M}_q(v)$ exists. Moreover, in place of (2),

$$|\mathbf{M}_q(v) - u(q)| \le \frac{1}{R - |z(q)|} \sqrt{\frac{C}{\pi}} \sqrt{D(v) - d}$$

It follows that $\mathbf{M}_q(v)$ converges uniformly to u(q) on $q \in k$, where $k \subset K$ is a disk (concentric with K).

Remark (p.114). If K is contained in the lid, we can compute $u^*(p) := \lim_{v} \mathbf{M}(v^*)$, which existence and estimations are given in a similar way. In particular, if K is contained in the lock-ring, $u = u^* + \Phi$ because Φ is harmonic.

Proposition 8 (p.114). $u: K \to \mathbb{R}$ or $u^*: K \to \mathbb{R}$ is harmonic (whenever any one of which is defined).

Proof. For simplicity, we suppose that $K \subseteq S \setminus \overline{K_0}$ and consider $v \in \mathscr{F}'$. A similar argument holds for $K \subset K'_0$ and v^* .

Recall that $\overline{v} \in \mathfrak{M}(K)$ is harmonic. We define $\widetilde{v} \in \mathscr{F}$ by applying a smoothing process so that \widetilde{v} coincides with v outside of K, but with \overline{v} in $k = B_z(0; r)$, where 0 < r < R. Let the smoothing be well chosen so that $D_K(\widetilde{v}) \to D_K(\overline{v})$ as $r \to R^-$.

By Lemma 1, $D_K(\overline{v}) \leq D_K(v)$, and it takes "=" if and only if v is harmonic, namely $v = \overline{v} = \widetilde{v}$. Therefore for sufficiently large r, we have $D_K(\widetilde{v}) \leq D_K(v)$. Notice that $\overline{v} = \overline{\widetilde{v}}$, so that $D_K(\overline{v}) \leq D_K(\widetilde{v})$. Hence $D_K(\overline{v}) \leq D_K(\widetilde{v}) \leq D_K(v)$. By Fact 3.4, $D(\widetilde{v}) \leq D(v)$.

We replace v_2 with $\widetilde{v_2}$ in Levi's inequality to yield that

$$\sqrt{D_K(v_1 - \widetilde{v_2})} \le \sqrt{D_S(v_1 - \widetilde{v_2})}$$
$$\le \sqrt{D(v_1) - d} + \sqrt{D(\widetilde{v_2}) - d}$$
$$\le \sqrt{D(v_1) - d} + \sqrt{D(v_2) - d}$$

Take $r \to R^-$. Thus

$$\sqrt{D_K(v_1 - \overline{v_2})} \le \sqrt{D(v_1) - d} + \sqrt{D(v_2) - d} \tag{3}$$

Similarly,

$$\sqrt{D_K(\overline{v_1} - \overline{v_2})} \le \sqrt{D(v_1) - d} + \sqrt{D(v_2) - d}$$

Repeat the argument for (1). So $\lim_{v} \mathbf{M}_{q}(\overline{v}) = u(q)$. Note that $\mathbf{M}_{q}(\overline{v}) = \overline{v}(q)$ because \overline{v} is harmonic. Hence in place of (2),

$$|\overline{v}(q) - u(q)| \le \frac{1}{R - |z(q)|} \sqrt{\frac{C}{\pi}} \sqrt{D(v) - d}$$

As a result, $\lim_{v} \overline{v}(q) = u(q)$ uniformly on $q \in k$ for any $k \subset K$. Therefore u is also harmonic.

Lemma 9 (p.115). For all $v \in \mathscr{F}'$, we have

- $D_K(v \overline{v}) \le 4(D(v) d)$
- $J_{z,K}(v-\overline{v}) \le R^2(D(v)-d)$

Proof. First, take $v_1 = v_2 = v$ in (3) to get the first estimation. Next, since $(v - \overline{v})$ vanishes on ∂K , $J_{z,K}(v - \overline{v}) \leq \frac{R^2}{4} D_K(v - \overline{v}) \leq R^2(D(v) - d)$ by the inequality for w in Lemma 6.

In order to make u an ansatz, we need one more step:

Claim (p.114). $u(p) := \lim_{v} \mathbf{M}_{z,K}(v)$ (or u^* , resp.) does not depend on z nor K. *Proof.* Let z' = x' + iy' be another coordinate, and $K' = B_{z'}(0; R')$ be a z'-disk with center p'. Observe that it suffices to prove for $K' \subset \subset K$ and p = p'. Note that $\left| \frac{\mathrm{d}z}{\mathrm{d}z'} \right|$ has an lower bound $\frac{1}{m} > 0$ on K'. Therefore

$$(\mathbf{M}_{z',K'}(v) - \mathbf{M}_{z',K'}(\overline{v}))^2 \leq \frac{1}{\pi R'^2} \iint_{K'} (v - \overline{v})^2 \, \mathrm{d}x' \, \mathrm{d}y'$$
$$\leq \frac{m^2}{\pi R'^2} \iint_{K} (v - \overline{v})^2 \, \mathrm{d}x \, \mathrm{d}y$$
$$= \frac{m^2}{\pi R'^2} J_{z,K} (v - \overline{v})$$
$$\leq \frac{m^2 R^2}{\pi R'^2} (D(v) - d)$$

Because \overline{v} is harmonic on K', we have $\mathbf{M}_{z',K'}(\overline{v}) = \overline{v}(p)$. Hence

$$u'(p) := \lim_{v} \mathbf{M}_{z',K'}(v) = \lim_{v} \overline{v}(p) = u(p)$$

Proof of Theorem 2. We claim that (u, u^*) minimizes $D(\cdot)$.

First, observe that for B, a smaller z-disk concentric with K (the radius of B is smaller than the radius of K), $\lim_{v} D_B(v - \overline{v}) = 0$ follows from Lemma 9, and $\lim_{v} D_B(\overline{v} - u) = 0$ follows from the fact that the derivatives of \overline{v} converge uniformly to those of u on B. Therefore $\lim_{v} D_B(v - u) = 0$ follows from the triangle inequality.

Next, associate each point p with a local coordinate z, a z-disk K = K(p), and a smaller z-disk B = B(p) such that $p \in B(p) \subset K(p)$. Since $\{B(p)\}_{p \in S}$ covers S, there is a countable subcover $\{B(p_i)\}_{i=1}^{\infty}$ (by Lindelöf's covering theorem).

Next, we construct Diudonné factors μ_i by $\{K(p_i)\}$ and $\{B(p_i)\}$ such that $\sum_i \mu_i \equiv 1$ with each $\mu_i \in \mathcal{C}^1(S, [0, 1])$, and vanishes outside $K(p_i)$. (See p.74)

The conclusions above lead to

$$\lim_{v} \int_{S} \mu_{i}[d(v-u), d(v-u)] \leq \lim_{v} \int_{K(p_{i})} [d(v-u), d(v-u)] = 0$$

$$\Rightarrow \lim_{v} \int_{S} \mu_{i}[d(v-u), d(v-u)] = 0$$
(4)

In the statements above, $v - u \in \mathcal{C}^1(S)$. Naturally, for all $v_1, v_2 \in \mathscr{F}$, we define

$$D_i(v_1, v_2) = \int_{S \setminus \overline{K_0}} \mu_i[\mathrm{d}v_1, \mathrm{d}v_2] + \int_{K_0} \mu_i[\mathrm{d}v_1^*, \mathrm{d}v_2^*]$$

Observe that the triangle inequality of $\sqrt{D_i(\cdot)}$ holds. Hence

$$\left|\sqrt{D_i(v)} - \sqrt{D_i(u)}\right| \le \sqrt{D_i(v-u)}$$

Combine this with (4). It follows that $\lim_{v} \sum_{i=1}^{n} D_i(v) = \sum_{i=1}^{n} D_i(u)$. Observe that for all $v, \sum_{i=1}^{\infty} D_i(v)$ increases to D(v). Therefore

$$D(u) = \lim_{n \to \infty} \sum_{i=1}^{n} D_i(u) = \lim_{n \to \infty} \lim_{v} \sum_{i=1}^{n} D_i(v) \le \lim_{n \to \infty} \lim_{v} D(v) = d$$

By the definition of d, $D(u) \ge d$, so D(u) = d. As a result, for all $w \in \mathfrak{M}(S)$ and $\varepsilon \in \mathbb{R}$, $(u + \varepsilon w) \in \mathscr{F}$ implies $D(u + \varepsilon w) \ge D(u)$, so D(u, w) = 0.

Finally, we claim that the function U, given by u on the punched surface and $u^* + \Phi$ on the lid, minimizes $D_S(\cdot)$. It suffices to take any $w \in \mathfrak{M}(S)$ that vanishes in some neighborhood of every singularity of Φ , and check that $D_S(U, w) = 0$. We derive from the equation D(u, w) = 0 that

$$0 = D(u, w) = \int_{S \setminus \overline{K_0}} [du, dw] + \int_{K_0} [du^*, dw]$$
$$= \int_{S \setminus \overline{K_0}} [dU, dw] + \int_{K_0} [d(U - \Phi), dw]$$
$$= \int_S [dU, dw] - \int_{K_0} [d\Phi, dw]$$
$$= D_S(U, w) - \int_{K_0} [d\Phi, dw]$$
$$= D_S(U, w) - \int_{\partial K_0} w \frac{\partial \Phi}{\partial n} ds$$
$$= D_S(U, w)$$

because $\frac{\partial \Phi}{\partial n} = 0$ along ∂K_0 .

References

 Hermann Weyl, The Concept of a Riemann Surface, 3rd ed., Dover edition, translated by Gerald R. MacLane, Dover, Mineola, N.Y., 2009. pp.73–74, 93–118.