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Dirichlet’s Principle

李龍欣

2015.06.25

Notation. Let A, B be subsets of a topological space. We say A ⊂⊂ B if A, the

closure of A, is contained in B̊, the interior of B.

Let (Ω, z) be a coordinate patch of a Riemann surface S. Then for some a ∈ C
and r > 0, if B(a; r) ⊂⊂ z(Ω), then we call Bz(a; r) := z−1 (B(a; r)) a z-disk.

1 Das Dirichletsche Integral

Notation (p.107). Let S denote a connected (oriented) Riemann surface. Any-

thing related to “K” denotes a z-disk for some z. In particular, we arbitrarily

fix a point p0 ∈ S, a coordinate map z0 with z0(p0) = 0, and some appropriate

0 < R0 < R′0. Then we call K0 := Bz0(p0;R0) the hole, call K ′0 := Bz0(p0;R′0)

the lid, call K ′0\K0 the lock-ring, and call S\K0 the punched surface.

Recall (p93, p72). For η = (η1dx + η2dy) and ξ = (ξ1dx + ξ2dy) being two 1-

forms, we define [η, ξ] := η ∧ (∗ξ) = (η1ξ1 + η2ξ2)(dx ∧ dy), which is symmetric

and bilinear on the two inputs.

Definition (p.97). Let A ⊆ S be a region, and v, w ∈ C1(A). The Dirichlet

integral is defined to be DA(v, w) :=
∫
A

[dv, dw]. If v = w, we denote the integral

by DA(v) := DA(v, v) ≥ 0. The set of admissible functions is defined to be

M(A) := {v ∈ C1(Å) ∩ C0(A) : DA(v) <∞}

Notation (p.114). For v ∈M(K), define v to be the harmonic function on K that

agrees with v on ∂K (which may be derived from Poisson’s integration formula).

Lemma 1 (p.97). ∀v ∈M(K), DK(v)−DK(v) = DK(v − v) ≥ 0.

(hint: DK(v, v − v) = 0)

Theorem 2 (p.106). Let Φ be a harmonic function on the lid which is regular in

the lock-ring, and satisfies ∂Φ
∂n = 0 along ∂K0. There exists a harmonic function

U such that U is regular in S\K0 and that U − Φ is regular in K0.
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Definition (p.108). The set of competing functions is defined to be

F := {(v, v∗) : v ∈M(S\K0), v∗ ∈M(K ′0), v ≡ v∗ + Φ in K ′0\K0}

Whenever there is no ambiguity, we tend to use v in place of (v, v∗). We define

the potential to be D(v) := DS\K0
(v) +DK0

(v∗).

Remark (p.108). The potential can be also derived by the following process: Let

a smoothing function λ be fixed, which is identically 1 in the hole, and vanishes

outside the lid. We define the 2-forms Ψ = (1 − λ)[dv, dv] + λ[dv∗, dv∗] over S,

and that Ψ′ = λ ([dv, dv]− [dv∗, dv∗]) over K ′0\K0. Then D(v) can be given by

the sum of Dλ(v) :=
∫
S

Ψ and D′λ(v) :=
∫
K′0\K0

Ψ′.

Fact 3 (pp.108–109).

1. ∀v ∈ F , 0 ≤ D(v) <∞.

2. If U exists, then (u, u∗) := (U |S\K0
, U |K′0 − Φ) ∈ F .

3. If Φ can be extended on an open disk K that contains the closure of the lid,

then there exists a cut-off function λ such that λ|K′0 ≡ 1 and λ|S\K ≡ 0.

Therefore the pair (v0, v
∗
0) which is defined by v∗0 ≡ 0, v0 ≡ λΦ on K\K0,

and v0 ≡ 0 on S\K is a competing function.

In summary, we are free to assume F 6= ∅

4. Let K be contained in the lid or the punched surface. Suppose that v1, v2 ∈
F coincide outside of K. That is, v1 ≡ v2 and v∗1 ≡ v∗2 respectively on each

of their domains except on K. Then

D(v1)−D(v2) =

{
DK(v1)−DK(v2) whenever K ⊆ S\K0

DK(v∗1)−DK(v∗2) whenever K ⊆ K ′0

(hint: for the second case, apply Green’s theorem)

Observation 4 (p.110). F = v0 + M(S) in the following senses:

First, for all v1, v2 ∈ F , v1 − v2 and v∗1 − v∗2 agree on the lock-ring, so they

define an admissible function on S. Conversely, for all v ∈ F and w ∈ M(S),

(v + w, v∗ + w) lies in F . Therefore for a fixed member v0 ∈ F , there is a

one-to-one correspondence F ↔M(S), v 7→ v − v0

Second, define T := K0 + (S\K0) to be the direct sum of spaces, which may

be identified with S\∂K0 sometimes. We identify v ∈ F with the corresponding

function in C1(T ), which is defined by

p 7→

{
v(p) if p ∈ S\K0

v∗(p) if p ∈ K0
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and satisfies DT (v) = D(v) <∞. Thus v ∈M(T ).

Finally, notice that ( M(T )/∼ , DT (·, ·) ) is a inner-product space over R, where

the equivalence relation ∼ presents “v1 ∼ v2 ⇔ v1 − v2 = const.” In addition,

M(S), which is included in M(T ) by restriction, is a subspace. Therefore we can

handle the problem as a problem of orthogonal projection: find v// = w ∈M(S)

so that the norm of v⊥ = u = v − w is minimized.

Proposition 5 (p.110, due to Beppo Levi). Define d := inf{D(v) : v ∈ F}.
Then for all v1, v2 ∈ F ,√

DS(v1 − v2) ≤
√
D(v1)− d+

√
D(v2)− d

Proof. As mentioned, we identify F as a subset of M(T ).

Let λ ∈ R. If λ 6= −1, then λv1+v2
λ+1 ∈ F . Hence DT (λv1+v2

λ+1 ) = D(λv1+v2
λ+1 ) ≥ d,

so DT (λv1 + v2) ≥ (λ+ 1)2d. The last inequality remains valid when λ = −1.

In summary, the quadratic function on λ

λ2(DT (v1)− d) + 2λ(DT (v1, v2)− d) + (DT (v2)− d)

is always ≥ 0. Hence we have the discriminant

(DT (v1, v2)− d)2 − (DT (v1)− d)(DT (v2)− d) ≤ 0

It follows that

0 ≤ DT (v1 − v2)

= DT (v1)− 2DT (v1, v2) +DT (v2)

= (DT (v1)− d) + (DT (v2)− d)− 2(DT (v1, v2)− d)

≤ (DT (v1)− d) + (DT (v2)− d) + 2
√

(DT (v1)− d)(DT (v2)− d)

=
(√

DT (v1)− d+
√
DT (v2)− d

)2

⇒
√
DT (v1 − v2) ≤

√
DT (v1)− d+

√
DT (v2)− d

⇒
√
DS(v1 − v2) ≤

√
D(v1)− d+

√
D(v2)− d

Corollary (p.111). If a minimizing function exists, it is unique up to an additive

constant.

Notation (p.111). lim
v

means the limitation taken as D(v) → d among those

v ∈ F ′, where F ′ :=
{
v ∈ F :

∫
∂K0

v∗ ds = 0
}

.
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2 Fourierreihe

Let K = Bz(0;R) be a fixed z-disk, and z = x+ iy = reiθ. For all v, w ∈M(K),

define Jz,K(v, w) :=
∫∫

z(K)
v(z)w(z) dx dy, and that Jz,K(v) := Jz,K(v, v).

Let u = v be the harmonic function on K that agree with v ∈M(K) on ∂K.

Then u is the real part of an analytic function f(z) =
∑∞

n=0 cnz
n. Hence

u(z) = Re(f(z)) =

∞∑
n=0

(Re(cn)Re(zn)− Im(cn)Im(zn))

= a0 +

∞∑
n=1

(anr
n cos(nθ) + bnr

n sin(nθ))

where an = Re(cn) and bn = −Im(cn). Notice that
∫ 2π

0
f(reiθ)e−niθ dθ = 2πrncn

for n ≥ 0, and = 0 for n < 0. Hence for all n > 0,

an =
1

2πrn
Re

(∫ 2π

0

f(reiθ)e−niθ dθ

)
=

1

2πrn
Re

(∫ 2π

0

f(reiθ)(e−niθ + eniθ) dθ

)
=

1

2πrn

∫ 2π

0

Re
(
f(reiθ)(2 cos(nθ))

)
dθ

=
1

πrn

∫ 2π

0

u(reiθ) cos(nθ) dθ , and similarly,

bn =
1

πrn

∫ 2π

0

u(reiθ) sin(nθ) dθ

Note that a0 = 1
2π

∫ 2π

0
u(reiθ) dθ

Define Pn = Re(zn) = rn cos(nθ), Qn = Im(zn) = rn sin(nθ) ∈ M(K). Ob-

serve that dPn = ∗dQn, so that by Green’s formula,

DK(v, Pn) =

∫
K

dv ∧ dQn =

∫
∂K

v dQn

= nRn
∫ 2π

0

v(Reiθ) cos(nθ) dθ

= nRn
∫ 2π

0

u(Reiθ) cos(nθ) dθ

= πnR2nan , and similarly,

DK(v,Qn) = πnR2nbn

By setting u = v = Pn or Qn, we have the orthogonality relations
DK(Pm, Qn) = 0 without exception

DK(Pm, Pn) = DK(Qm, Qn) = 0 if m 6= n

DK(Pn) = DK(Qn) = πnR2n without exception
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Also, by integrating under the polar coordinate, we have
Jz,K(Pm, Qn) = 0 without exception

Jz,K(Pm, Pn) = Jz,K(Qm, Qn) = 0 if m 6= n

Jz,K(Pn) = Jz,K(Qn) = π
2n+2R

2n+2 if n > 0

Jz,K(P0) = πR2

Since u(z) = a0 +
∑∞

n=1 (anPn + bnQn) converges uniformly, the orthogonality

relation of DK provides that

DK(v) ≥ DK(u) =

∞∑
n=1

πnR2n(a2
n + b2n)

Similarly,

Jz,K(u) = πR2a2
0 +

∞∑
n=1

π

2n+ 2
R2n+2(a2

n + b2n)

Lemma 6 (p.103). For all v ∈M(K), ∃a ∈ R such that Jz,K(v−a) ≤ const.DK(v)

Proof. On one hand, take a = a0 with respect to u = v, then

Jz,K(u− a0) =

∞∑
n=1

π

2n+ 2
R2n+2(a2

n + b2n) ≤ R2

4

∞∑
n=1

πnR2n(a2
n + b2n)

=
R2

4
DK(u)

On the other hand, for w = v − u, which vanishes on ∂K,

w(ρeiθ) =

∫ ρ

R

∂w(z)

∂r
dr

By Schwartz’s inequality,

w(ρeiθ)2 =

{∫ ρ

R

[
∂w(z)

∂r

√
r

][
1√
r

]
dr

}2

≤
∫ ρ

R

[
∂w(z)

∂r

]2

r dr

∫ ρ

R

1

r
dr

=

∫ R

ρ

[
∂w

∂x
cos θ +

∂w

∂x
sin θ

]2

r dr(logR− log ρ)

=

∫ R

ρ

2

[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]
r dr(logR− log ρ)

Next, integrate the previous equation in order to yield that

Jz,K(w) ≤
∫ R

0

∫ 2π

0

∫ R

ρ

2

[(
∂w

∂x

)2

+

(
∂w

∂x

)2
]
r(logR− log ρ)ρ dr dθ dρ

=

∫ R

0

2

{∫
ρ≤|z|≤R

[dw, dw]

}
(logR− log ρ)ρ dρ

≤ 2DK(w)

∫ R

0

(logR− log ρ)ρ dρ =
R2

4
DK(w)
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Finally,

Jz,K(v − a0) = Jz,K((u− a0) + w) ≤ 2(Jz,K(u− a0) + Jz,K(w))

≤ R2

2
[DK(u) +DK(w)] =

R2

2
DK(v)

Proposition 7 (p.112). For all K = Bz(0;R), there is a constant C so that for

every w ∈M(S) that satisfies∫
∂K0

w ds = R0

∫ 2π

0

w
(
z−1

0

(
R0e

iθ
))

dθ = 0

we have Jz,K(w) ≤ CDS(w).

Proof. Recall that K0 is the hole. Let each 1 ≤ j ≤ n be corresponded with Kj ,

which is a zj-disk with radius Rj , such that Kn = K, zn = z, and that ∀1 ≤ j ≤ n,

Kj−1 ∩Kj 6= ∅. Set the constants cj so that
∫
∂Kj

(w − cj) = 0 ds, where c0 = 0.

We prove by induction. If n = 0, i.e., K = K0, we take C = R2
0

2 by Lemma 6.

It suffices to prove that if our claim holds on Kn−1, then it holds on Kn. Let

k ⊂⊂ Kn−1 ∩ Kn be a zn-disk with radius tRn, where 0 < t < 1. Let m be an

upper bound for

∣∣∣∣ dzn
dzn−1

∣∣∣∣ on k. By the inductive hypothesis, there is a constant

C ′ which only depends on Kn−1 such that

Jzn,k(w) ≤ m2Jzn−1,k(w) ≤ m2C ′DS(w)

In addition, by Lemma 6, we have

Jzn,k(w − cn) ≤ Jzn,Kn
(w − cn) ≤ 1

2
R2
nDk(w) ≤ 1

2
R2
nDS(w)

It follows that

πc2nt
2R2

n = Jzn,k(cn) ≤ 2(Jzn,k(w) + Jzn,k(w − cn))

≤ (2m2C ′ +R2
n)DS(w)

Finally, we have

Jz,K(w) ≤ 2(Jzn,Kn
(w − cn) + Jzn,Kn

(cn))

≤ 2
(

1

2
R2
nDK(w) + πc2nR

2
n

)
≤ 2

(
1

2
R2
nDS(w) +

2m2C ′ +R2
n

t2
DS(w)

)
=

(
R2
n +

4m2C ′ + 2R2
n

t2

)
DS(w)
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3 Die Mittelwertfunktion

Recall. Let z = x + iy be a local coordinate map and K = Bz(0;R) be a open

disk with “center” p = z−1(0). If v is harmonic, then

v(p) =
1

πR2

∫∫
K

v(x+ iy) dx dy

Notation (p.113). From now on, let a point p ∈ S, a coordinate map z at p be

fixed. In addition, let K = Bz(0;R) be contained in the punched surface or the

lid. Define a map Mz,K : M(K)→ R, which is abbreviated to M, as following:

Mz,K(w) =
1

πR2

∫∫
K

v(x+ iy) dx dy =
1

πR2

∫ R

0

∫ 2π

0

v(reiθ) r dθ dr

If K is contained in the punched surface, one yields from Schwarz’s inequality,

and the Propositions 5 and 7 that for all v1, v2 ∈ F ′,

(M(v1)−M(v2))2 =

(
1

πR2

∫∫
K

(v1 − v2) dx dy

)2

≤ 1

πR2

∫∫
K

(v1 − v2)2 dx dy =
1

πR2
Jz,K(v1 − v2)

≤ C

πR2

(√
D(v1)− d+

√
D(v2)− d

)2

That is,

|M(v1)−M(v2)| ≤ 1

R

√
C

π

(√
D(v1)− d+

√
D(v2)− d

)
(1)

Therefore lim
v

M(v) exists. We denote the limit by u(p). Then by the previous

estimation,

|M(v)− u(p)| ≤ 1

R

√
C

π

√
D(v)− d (2)

For all q ∈ K, let Mq denote Mz,kq , where the disk kq := Bz(z(q);R − |z(q)|)
is contained in K. Since we have an estimation which is similar to (1), the limit

u(q) := lim
v

Mq(v) exists. Moreover, in place of (2),

|Mq(v)− u(q)| ≤ 1

R− |z(q)|

√
C

π

√
D(v)− d

It follows that Mq(v) converges uniformly to u(q) on q ∈ k, where k ⊂⊂ K is a

disk (concentric with K).

Remark (p.114). If K is contained in the lid, we can compute u∗(p) := lim
v

M(v∗),

which existence and estimations are given in a similar way. In particular, if K is

contained in the lock-ring, u = u∗ + Φ because Φ is harmonic.
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Proposition 8 (p.114). u : K → R or u∗ : K → R is harmonic (whenever any

one of which is defined).

Proof. For simplicity, we suppose that K ⊆ S\K0 and consider v ∈ F ′. A similar

argument holds for K ⊂ K ′0 and v∗.

Recall that v ∈M(K) is harmonic. We define ṽ ∈ F by applying a smoothing

process so that ṽ coincides with v outside of K, but with v in k = Bz(0; r), where

0 < r < R. Let the smoothing be well chosen so that DK(ṽ)→ DK(v) as r → R−.

By Lemma 1, DK(v) ≤ DK(v), and it takes “=” if and only if v is harmonic,

namely v = v = ṽ. Therefore for sufficiently large r, we have DK(ṽ) ≤ DK(v).

Notice that v = ṽ, so that DK(v) ≤ DK(ṽ). Hence DK(v) ≤ DK(ṽ) ≤ DK(v).

By Fact 3.4, D(ṽ) ≤ D(v).

We replace v2 with ṽ2 in Levi’s inequality to yield that√
DK(v1 − ṽ2) ≤

√
DS(v1 − ṽ2)

≤
√
D(v1)− d+

√
D(ṽ2)− d

≤
√
D(v1)− d+

√
D(v2)− d

Take r → R−. Thus√
DK(v1 − v2) ≤

√
D(v1)− d+

√
D(v2)− d (3)

Similarly,√
DK(v1 − v2) ≤

√
D(v1)− d+

√
D(v2)− d

Repeat the argument for (1). So lim
v

Mq(v) = u(q). Note that Mq(v) = v(q)

because v is harmonic. Hence in place of (2),

|v(q)− u(q)| ≤ 1

R− |z(q)|

√
C

π

√
D(v)− d

As a result, lim
v
v(q) = u(q) uniformly on q ∈ k for any k ⊂⊂ K. Therefore u is

also harmonic.

Lemma 9 (p.115). For all v ∈ F ′, we have

� DK(v − v) ≤ 4(D(v)− d)

� Jz,K(v − v) ≤ R2(D(v)− d)

Proof. First, take v1 = v2 = v in (3) to get the first estimation. Next, since (v−v)

vanishes on ∂K, Jz,K(v− v) ≤ R2

4 DK(v− v) ≤ R2(D(v)−d) by the inequality for

w in Lemma 6.
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In order to make u an ansatz, we need one more step:

Claim (p.114). u(p) := lim
v

Mz,K(v) (or u∗, resp.) does not depend on z nor K.

Proof. Let z′ = x′ + iy′ be another coordinate, and K ′ = Bz′(0;R′) be a z′-disk

with center p′. Observe that it suffices to prove for K ′ ⊂⊂ K and p = p′.

Note that

∣∣∣∣ dz

dz′

∣∣∣∣ has an lower bound 1
m > 0 on K ′. Therefore

(Mz′,K′(v)−Mz′,K′(v))2 ≤ 1

πR′2

∫∫
K′

(v − v)2 dx′ dy′

≤ m2

πR′2

∫∫
K

(v − v)2 dx dy

=
m2

πR′2
Jz,K(v − v)

≤ m2R2

πR′2
(D(v)− d)

Because v is harmonic on K ′, we have Mz′,K′(v) = v(p). Hence

u′(p) := lim
v

Mz′,K′(v) = lim
v
v(p) = u(p)

Proof of Theorem 2. We claim that (u, u∗) minimizes D(·).
First, observe that for B, a smaller z-disk concentric with K (the radius of

B is smaller than the radius of K), lim
v
DB(v − v) = 0 follows from Lemma 9,

and lim
v
DB(v − u) = 0 follows from the fact that the derivatives of v converge

uniformly to those of u on B. Therefore lim
v
DB(v − u) = 0 follows from the

triangle inequality.

Next, associate each point p with a local coordinate z, a z-disk K = K(p), and

a smaller z-disk B = B(p) such that p ∈ B(p) ⊂⊂ K(p). Since {B(p)}p∈S covers

S, there is a countable subcover {B(pi)}∞i=1 (by Lindelöf’s covering theorem).

Next, we construct Diudonné factors µi by {K(pi)} and {B(pi)} such that∑
i µi ≡ 1 with each µi ∈ C1(S, [0, 1]), and vanishes outside K(pi). (See p.74)

The conclusions above lead to

lim
v

∫
S

µi[d(v − u), d(v − u)] ≤ lim
v

∫
K(pi)

[d(v − u), d(v − u)] = 0

⇒lim
v

∫
S

µi[d(v − u), d(v − u)] = 0 (4)

In the statements above, v − u ∈ C1(S). Naturally, for all v1, v2 ∈ F , we define

Di(v1, v2) =

∫
S\K0

µi[dv1, dv2] +

∫
K0

µi[dv
∗
1, dv

∗
2]

9



Observe that the triangle inequality of
√
Di(·) holds. Hence∣∣∣√Di(v)−

√
Di(u)

∣∣∣ ≤√Di(v − u)

Combine this with (4). It follows that lim
v

∑n
i=1Di(v) =

∑n
i=1Di(u). Observe

that for all v,
∑∞

i=1Di(v) increases to D(v). Therefore

D(u) = lim
n→∞

n∑
i=1

Di(u) = lim
n→∞

lim
v

n∑
i=1

Di(v) ≤ lim
n→∞

lim
v
D(v) = d

By the definition of d, D(u) ≥ d, so D(u) = d. As a result, for all w ∈M(S) and

ε ∈ R, (u+ εw) ∈ F implies D(u+ εw) ≥ D(u), so D(u,w) = 0.

Finally, we claim that the function U , given by u on the punched surface and

u∗+Φ on the lid, minimizes DS(·). It suffices to take any w ∈M(S) that vanishes

in some neighborhood of every singularity of Φ, and check that DS(U,w) = 0. We

derive from the equation D(u,w) = 0 that

0 = D(u,w) =

∫
S\K0

[du, dw] +

∫
K0

[du∗, dw]

=

∫
S\K0

[dU, dw] +

∫
K0

[d(U − Φ), dw]

=

∫
S

[dU, dw]−
∫
K0

[dΦ, dw]

= DS(U,w)−
∫
K0

[dΦ, dw]

= DS(U,w)−
∫
∂K0

w
∂Φ

∂n
ds

= DS(U,w)

because ∂Φ
∂n = 0 along ∂K0.
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