Complex Analysis II，Final Reports
王金龍
2015 Spring semester，NTU
Week I
［1］June 9 黃哲宏 Big Picard Theorem
［2］June 11 李昱陸 Modular Forms and Moduli Problem
［3］June 11 林肱慶（Confluent）Hypergeometric Functions

Week II
［4］June 16 黃庭瀚 Sum of Squares
［5］June 16 古晉丞 Fundamental Groups and Covering Spaces
［6］June 18 高尉庭 Topological Classification of Compact Surfaces
［7］June 18 李自然 Frobenius Method for ODE with Regular Singularities
［8］June 19 陳學儀 Hecke Operators on Modular Forms
［9］June 19 江泓 Asymptotic of Airy Function

Week III
［10］June 23 唐爾晨 Mandelbrot Sets and Julia Sets
［11］June 23 林東成 Asymptotic of Partition Function
［12］June 25 廖偉恩 Dirichlet Theorem with Density
［13］June 25 李龍欣 Dirichlet Principle

Julia and Mandelbrot set，
For $f: u \rightarrow u, f^{(n)}:=\overbrace{f \circ f \cdot}^{n}$－f denote its nth iteration Recall－A normal family F of meromorphic functions on region $\Omega \subseteq \mathbb{C}$ ： for any $\left\{f_{n}\right\} \leq F, \exists$ subsequence $\left\{f_{k_{k}}\right\}$ uniformly converges on $\varphi p+$ subsets．
－Mantel＇s the：
if F is a family of meromorphic func，omitting 3 values，then F is normal．
（pref）a fractional linear transform，we can assume F omit $0.1, \infty$ ， use the fact that $\lambda H \rightarrow \mathbb{C} \backslash\{0,1\}$ is a universal cover，

Now \forall seq．$\left\{f_{n}\right\}$ in $F,\left\{\tilde{f}_{n}\right\}$ is unific bd，\Rightarrow equicontivity by Cauchy the so \exists subseq．$\left\{\tilde{f}_{u}\right\} \rightarrow f$ uniformly on pt set．$f \cdot \Omega \rightarrow \underset{D}{D}$
kIf in fact $f: \Omega \rightarrow \mathbb{D}$ ，then $\left\{f_{0}\right\} \rightarrow \lambda \cdot \varphi-f$ unit．on cot set．
（2）if not by Hurwitz tho，$f \equiv$ constr，then $\left\{f_{n}\right\} \rightarrow 0$ or l 1 or ∞ unit．
Def＇n For a meromorphic function $f: \mathbb{C}^{*} \longrightarrow \mathbb{C}^{*}$（re．a rational function）
－Fatou set $\mathcal{F}(f):=\left\{z \in \mathbb{C}^{*} \mid\left\{f^{(n)}\right\}\right.$ form a normal family on a nod of $\left.z\right\}$
－Julia set $g(f):=C^{*} \backslash(f)$
Facts．1．Fatou set is open．Julia set is closed
2，both sets are totally f－invariant i．e $f(g)-J=f^{-1}(J) \ldots$
3．Julia set is nonempty
（proof）
if $\mathcal{J}(f)=\phi$ then $\left\{f^{(n)}\right\}$ is a normal family on \mathbb{C}^{*}（aptness argument）
$: \exists$ subseq $\left\{f^{\left(n_{j}\right)}\right\} \rightarrow g$ uniformly on \mathbb{C}^{*} ．So g is also rational function．
since（ \＃of zeros of $\left.f^{(n, j)}\right) \rightarrow \infty$ but（\＃of zeros of g ）$<\infty$ ．＊
4 either $Y=\mathbb{C}^{*}$ of I has no interior．（modify The 2）
Technique Change of coordinates：let $\varphi: U \leadsto \cup$ be a conformal map．
For $f: U \longrightarrow U$ ，we associate $g=\varphi f \varphi^{-1}: V \longrightarrow V$
We say $f . g$ are conjugation equivalent．（ $f \approx \underline{\varphi} g$ ）
Behavior of functions are similar under conjugation．

Facts: \quad For $f \approx g, \begin{aligned} & a \text { is critical pt of } f \Leftrightarrow \varphi(a) \text { is critical pt of } g \\ & a \text { is fixed pt }\end{aligned}$
And a $\varphi(a)$ has the same multiplier,
Defin \mid if $f(a)=a$ is a fixed pt, its multiplier : $=f^{\prime}(a)$

- attracting fixed pt: $0<\left|f^{\prime}(a)\right|<1$
- repelling II: $\left|f^{\prime}(a)\right|>1$
- super-attracting $"-\left|f^{\prime}(a)\right|=0$

Theorem 1 if a is an attracting/ repelling fixed pt of f with multiplier λ then \exists conformal map y fum nod of a to ned of 0 , set $f \approx \underset{\widetilde{y}}{\approx}$.
(proof) First. Consider the case when a : attracting fried $p t$. WiL.O.G let $a=0$, de fine $\varphi_{n}(z)=\lambda^{-n} f^{(n)}(z)=z+$
then $\varphi_{n} \circ f=\lambda^{-n} f^{(n+1)}=\lambda \varphi_{n+1}$, we daim $\varphi_{n} \rightarrow \varphi$ unit on a nod of 0 $|f(z)-\lambda z| \leq C|z|^{2}$ in $|z| \leq \delta$ for some C, δ
So $|f(z)| \leqslant(|\lambda|+C \sigma)|z|$ and replace δ smaller st $|\lambda|+C \delta<1$
so $|f(z)| \leq \delta$ if $\mid z) \leq \delta$, and $\left|f^{(n)}(z)\right| \leq(|\lambda|+c \sigma)^{n}|z|$ if $|z| \leq \delta$ pick δ smaller st. $(|\lambda|+C \sigma)^{2}<|\lambda|$.

$$
\left.\left.\Rightarrow\left|\varphi_{n+1}(z)-\varphi_{n(z)}\right|=\left|\frac{f\left(f^{(n)}(z)-\lambda f^{(n)}(z)\right.}{\lambda^{n+1}}\right| \leqslant \frac{C\left|f^{(n)}(z)\right|^{2}}{\left|\lambda^{n+1}\right|}=\frac{C}{|\lambda|} \cdot| | \lambda \right\rvert\,+C 0\right)^{n}| | z| |^{2}
$$

by wiers Merest $\varphi_{n} \rightarrow \varphi$ unit, on $\mid z \leqslant \delta$ and φ is conformal $\varphi f \varphi^{-1}(x)=\lambda x \quad \Delta x$.
If O is repelling. then $\frac{1}{f}$ has O as an attracting fixed pt. So $\frac{1}{f} \approx \frac{1}{\bar{\varphi}} z$ and so $f \approx \widetilde{\psi} \lambda z$

Proposition 1. if a is (super) attracting fixed pt.
Define $A(a):=\left\{z \in \mathbb{C} \mid f^{(n)}(z) \rightarrow a\right\}$, called the basin of attraction of a is nonempty open. $A(a) \leqslant \mathcal{F}(f)$ and $\partial A(a)=J(f)$
(proof) $|f(z)-a|<C z$-al for sone $c<$ for $\mid z-a k \delta$ hence $B(a, \delta) \leq A(a) \cap I(f)$ if $x \in A(a)$ then $f^{(n)}(x) \in B(a, \delta)$ if $n \gg 1$ so $A(a)=\bigcup_{1}^{\infty} f^{(n)-1}(B(a, \delta))$ open. For $\mathbb{C}^{*} \backslash \overline{A(a)},\left\{f^{(n)}\right\}$ omit $A(a)$ on each component. $s f(f)$

$$
\Rightarrow \mathbb{i}^{*} \backslash \widehat{A(a)} \leq F(f) \text { so } J(f) \leq \partial A(a) \text {. }
$$

$\forall x \in \partial A(a)$. and abd U of $x \quad f^{(n)}(z) \rightarrow a$ on Un $A(a)$ but $f^{\left(n_{j}\right)}(x)$ doesn't
$\Rightarrow\left\{f^{(n)}\right\}^{n o t}$ hamal on $U \quad \therefore x \in \mathcal{Y}(f)$
Proposition 2 If a : repelling fixed $p t$, then $a \in \zeta(f)$
(phot) if not $\left\{f^{(n, j)}\right\} \rightarrow g$ un if on acpt nod

$$
\begin{aligned}
& \text { If } \left.n-t, f^{\prime}\right\} \rightarrow y \text { on apt nod } \\
& \text { so } f^{\left(n_{j}\right)^{\prime}}(a) \rightarrow g^{\prime}(a) \quad f^{\left(n_{j}\right)}(a)-\left(f^{\prime}(a)\right)^{n_{j}} \rightarrow \infty \text {, * }
\end{aligned}
$$

Theorem 1'. If a : Super-attracting fixed pt of f.
(Botcher) then $\exists \varphi$ conformal defined near a st. $f \approx z^{p} \quad\left(p=\right.$ ord $\left._{a}(f-a)\right)$
(proof)
by $z^{\prime}=c_{1}^{\frac{1}{T}}(z-a)$ let $f=z^{P}+-$

$$
\begin{aligned}
& \text { by } z^{\prime}=c_{1}^{[-p}(z-a) \quad \text { let } f=z^{r}+\cdots \\
& \left.\exists C>, \delta>0 \text { st. }|f(z)| \leq C|z|^{p} \text { in }|z| \leq \delta \Rightarrow\left|f^{(n)}(z)\right| \leq \mid C(z)\right)^{p n}
\end{aligned}
$$

Set $f_{n}(z)=\left(f^{(n)}(z)\right)^{p-h}=\left(z^{p^{n}}.\right)=z(1+\cdots)$
$\varphi_{n} \circ f=\left(f^{(n-1} \circ f\right)^{p-n}=\varphi_{n+1}^{p}$, remains to claim $\varphi_{n} \longrightarrow \varphi$ uni on and.

$$
\begin{array}{r}
\frac{\varphi_{n+1}}{\varphi_{n}}=\left(\frac{\varphi_{0} \cdot f^{(n)}}{f^{(n)}}\right)^{p^{-n}}=\left(1+o\left(\left|f^{(n)}\right|\right)^{p^{-n}}=1+o\left(p^{-n}\right) O \mid(C|z|)^{p^{n}}\right)=1+0\left(p^{-n}\right) \\
i f n=\left|\varepsilon+|z| \leq C^{-1}\right.
\end{array}
$$

So $\prod_{n=1}^{\infty} \frac{y_{n+1}}{\varphi_{t}}$ cav, unit. so $\varphi_{n} \longrightarrow \varphi$ inf. \geqslant.
Extend ! Functional equation for $\varphi . \quad \varphi(f(z))=\varphi(z)^{p}$
$\left(\left.\begin{array}{ll}\binom{0}{\text { coordinate }}\end{array} \quad \Rightarrow \log |\varphi(f(z))|=p \log \right\rvert\, \varphi(z)\right)$,
\therefore We can extend \mid by $|\varphi(z)|$ t- $A(a)$ being harmonic.

Polynomial	From now on, consider only poly, f of deg $d \geq 2$. $冖$.
Case	an:

Case co: super-attracting, and $f(z)=\infty \Leftrightarrow z=\infty$, (and $p=d$)
$\Rightarrow \operatorname{In} A(\infty)$, $\log |\varphi|$ has only $\log p$ ole at ∞ and harmonic elseubere as $z \longrightarrow \partial A(\infty)=I, \quad \log |\varphi(z)| \longrightarrow 0$
$\therefore \log |p(z)|=G(z, \infty)$ is the green fine on $A(\infty)$!
Fact. $I(f)$ is bod now, so is pt.
2. $A(\infty)$ is connected (ie it has no hd component) (proof) $f(\mathcal{S})=\mathcal{T}$ dd. so \forall bod component V of $\mathbb{C}^{*}, \mathcal{T}$.
$V \operatorname{si}$ bd by \mathcal{S}, max orin, $\Rightarrow f(v)$ bd by $f(\mathcal{J})=\mathcal{I}$.
$\Rightarrow f^{(n)}(x), x \in V$ never conv, to ∞, so $V \cap A(\infty)=\phi$.

Theorem 2. Q if \cup open sot. $\cup \cap J=\phi$, then $\exists m$ st. $T \leqslant U \cup \quad u f^{(m)}(U)$ (fractal natudf (2) $\forall x \in J, \bigcup_{n} f^{(n-1}(x)$ is dense in J
of Julia set of Julia set
(poof) $\left\{f^{(n)}\right\}$ cannot be normal on $U \xrightarrow{\text { Monte }}$, then $\left\{f^{(n)} \mid\right.$ omit at most 1 value in \mathbb{C} Case 1: $\left\{f^{(n)}\right\}$ omit no value $\Rightarrow I \leqslant \mathbb{C}=\bigcup_{n} f^{(\omega)}(U)$ and by aptness of \mathcal{S}.
Case 2: $\left\{f^{(n)}\right\}$ only om, $y \in \mathbb{C}$. then $f(z)=y \Rightarrow z=y$
So $f(z)=y+k^{p}(z-y)^{p}$, then $f^{(n)}(z)=y+k^{p^{n}}(z-y)^{p^{n}}, \quad(p=\operatorname{deg} f \geq 2)$
so \exists nod of y st. $f^{(n)}(z) \rightarrow y$ unit $\Rightarrow y \in \mathcal{F}$, so $I \leq U f^{(n)}(u)$.
For any open set $V \&+V \cap J \neq \phi$, by above, $x \in f^{(m)}(V)$ for some m, hence $f^{(n)-1}(x) \cap V \neq \phi$, this proves $\cup f^{(n)-1}(x) \leq \mathcal{J}$ dense in \mathcal{J}
\rightarrow Boundary scanning method \& inverse iteration method for drawing a Julia set by computer.
Theorem 3. All iterations of critical points remain bounded $\Leftrightarrow \mathcal{G}$ connected. (proof) o if critical points $\& A(\infty)$, recall Böttcher cord φ. Green func. G, φ originally defined for $|z|>R \gg 0$, we want to extend to all $A(\infty)$ On $A(\infty)$, a root function h of f is locally defined, and can. be continued along all arcs.
We start from the curve $\{G(z)=R \cdot d\}$
and define $\varphi(z)=\varphi(f(z))^{1 / d}$ along this curve, for $\{G(z)=R\}$.
then $\forall R>0$ we can do this and at last φ is defied on $\{G(z)>0\}=A(\infty)$ $A S z \rightarrow \partial A(\infty),|\varphi(z)| \rightarrow 1$, and no value taken trice.
$\Rightarrow \varphi: A(\infty) \leadsto \mathbb{C}^{*} \backslash \mathbb{D}$ conformal. so $A(\infty)$ simply connected so $J=\partial A(\infty)$
Connected
(2) By the same method we can extend φ until the curve $\left\{G(z)=G\left(c_{0}\right)\right\}$

Co being a critical pt.
By Roche's thu, $f(z)=f(c$,$) has \geq 2$ roots at C_{0}. implies.
$f(z)=f\left(C_{-}\right)+\varepsilon$ has $\geqslant 2$ roots near C 。 if $0<\varepsilon \ll 1$,
$\Rightarrow\left\{G(z)=G\left(c_{0}\right)\right\} \cap\left(n b d\right.$ of $\left.c_{0}\right)$ has ≥ 4 curves linked to C_{0},
So $G^{-1}\left(r o, G\left(e_{0}\right)\right)$) is divided into ≥ 2 disjoint open sets
$\Rightarrow \mathcal{J} \leqslant G^{-1}(0)$ is d reconnected.

Theorem 4., All iterations of critical points $\rightarrow \infty \Rightarrow I$ is totally disconnected.
(proof) take large disk $D \supseteq J$ sit $f\left(\mathbb{C}^{*}, D\right) \subset \mathbb{C}^{*}, \bar{D}$,
Find N large s-1. $f^{(N)}$ maps all critical points to \mathbb{C}^{*}, \bar{D},
$\forall n \geq N$. $f^{(n)}$ has no critical values in \bar{D}, so an inverse g_{n} is defined : $\bar{D} \longrightarrow D$ once chosen a branch.
For any $x \in \mathcal{Y}$, pick g_{n} st $g_{n}\left(f^{(n)}(x)\right)=x$.
$\left\{g_{n}\right\}$ url od on $\bar{D}^{+} \xrightarrow[M-n+C^{\prime}+\text { tim }]{ }$ subseq $\left\{g_{n_{k}}\right\} \longrightarrow g$ on \bar{D}.
but $\forall z \in D \cap A(\infty) \quad g_{n}(z) \longrightarrow \vec{z} \in \partial A(\infty)=I$,
So $g(D \cap A(\infty)) \subset J$, but g is an open mapping, and int $(J)=\phi$.
$\Rightarrow g \equiv$ const. $=x$ on \bar{D} we conclude: $\left\{\begin{array}{l}g_{n}(D) \rightarrow x \\ g_{n}(\partial D) \cap J=\phi . \\ \text { Thus. } I \text { is totally disconnected. }\left(g_{n}(\bar{D})\right) \longrightarrow 0\end{array}\right.$
Note: Equivalence definitions for a pt set of \mathbb{R}^{n} to be totally disconnected. (1) K contains no continuum (z) $\forall x \in K, \forall \varepsilon>0, \exists E \leq K$ s.t. $d(E, K \backslash E)>0$ and $x \in E$ and $\operatorname{diam}(E) \longrightarrow 0$
Corollary. For the simple case of deg= $=2$ polynomial.
\exists only 1 critical point, s- either 9 connected or totally disconnected
Definition. $\mathcal{M}:=\left\{c \in \mathbb{C} \mid\left(z^{2}+c\right)^{(n)}(0)\right.$ is bounded war. $\left.n \in \mathbb{N}\right\}$ is called the $-\left\{c \in \mathbb{C} \mid J\left(z^{2}+c\right)\right.$ Connected $\} \quad$ Mandelbrot Set
6. Where we denote $z^{2}+c$ as $f_{c}, ~ J\left(z^{2}+c\right)$ as J_{c}

The study of Mandelbrot set is often a correspondence between parameter space c and dynamic space z.
Proposition $3 \quad c \in M \Leftrightarrow\left|f_{c}^{(n)}(0)\right| \leq 2, \forall n \in \mathbb{N}$
Also Mir pt and © MM is connected.
(proof) © if $\exists n^{\prime}$ sh $r=f_{c}^{(n)}(0)$ satisfy $|r|>2$ (assume n smallest)
On $|z|=|r|,\left|z^{2}+c\right| \geq\left|r^{2}-|r|=(|r|-1)\right| z \mid \quad$ Max, principle
then $\left|\frac{z}{z^{2}+c}\right| \leq \frac{1}{|r|-1}$ on $|z|=|r|$ and $\rightarrow 0$ as $z \rightarrow \infty \xlongequal{\text { Max, principle }}$ inequality holds $\forall|z| \geq|y|$ $\Rightarrow\left|f_{c}^{(n+k)}(0)\right| \geqslant(|r|-1)^{k}|r| \rightarrow \infty$ as $k \rightarrow \infty$ so $c \notin M$
The other side is from def'n. of M
（2）So $M \subseteq\{c \leq 2\}$ Also $M=\bigcap_{n=1}^{\infty}\left\{c \in \mathbb{C} \mid p_{c}^{(n)}(0) \leq 2\right\}$ is closed $\Rightarrow M c p t$ For all bod region $U s, t \quad \partial \cup<M$ ，
$\forall n \in \mathbb{N},\left|P_{c}^{(n)}(0)\right| \leq 2$ on $\partial U \Rightarrow$ by max．principle，on $c \in U$ ，
hence $\forall c \in U,\left|P_{c}^{(n)}(0)\right| \leq 2$ for all $n \Rightarrow U \leq M$
\therefore CIM has only unbounded components which is connected．
Proposition．$\quad\{c \mid f$ chas attracting fixed points $\}$ is a cardiod（心臟線）$C<M$ （prof）easy caculatron gives $C=\left\{\left.\frac{\lambda}{2}-\frac{\lambda^{2}}{4}| | \lambda \right\rvert\,<1\right\}$
for each $c \in C$ fo has attracting fired $p t \Rightarrow I_{c}$ not totally disconnected
More facts Each collection of c sit f_{c} has＂attracting n－cycle＂also corresponds to a finite disjoint union of disks in M

Theorem 5．M is connected．
（proof）For each $c \in \mathbb{C} \backslash M$ ，we have Böttcher coordinate $\varphi_{c}(z)$ since 0 is the only critical pt，of $f_{c}, \varphi(z)$ can be extended te $\left\{z \mid G_{c}(z)>G_{c}(0)\right\}$ ，analytically．
in particular，$G_{C}(c)=2 G_{c}(0)>G_{c}(0)$ ．So $\varphi_{e}(c)$ is defied where $\left.\varphi_{c}(c)=c \prod_{n=1}^{\infty}\left(\frac{f_{c}^{(n)}(c)}{f_{e}^{(n-1}(c)}\right)^{2}\right)^{2-n}=c \prod_{n=0}^{\infty}\left(1+\frac{c}{f_{e}^{(n i}(c)^{2}}\right)^{2^{-n-1}}$ is analytic denote $\phi(c)=\varphi(c)$ ，it has simple pole at ∞ ，
$\log |E(c)|=G_{d}(c)=2 G_{d}(0) \rightarrow 0$ as $c \rightarrow M . \quad\left(G_{c}(z)\right.$ jointly continc，z）
$\therefore|\Phi(c)| \longrightarrow 1$ and by argument paraciple．I takes all values in $\mathbb{C}|\bar{D}|$ once．
Hence $\Phi: \mathbb{C}^{*} M \xrightarrow{\sim} \mathbb{C}^{*} \mid \overline{\mathbb{D}}$ hence $\mathbb{C}^{*} I M$ simply connected $\Rightarrow M$ concerted

Complex Analysis Ch XII（Gamelin）
Complex Dynamics（Carteron 8 Gamelin）
§ Asymptotics（ x ）Partition function

Def（Stein，chapter 10 p．293）

If $n \in \mathbb{N}$ ，let $p(n)$ denote the numbers of ways n can be written as a sum of positive integers

n	0	1	2	3	4	5	6	9	\cdots
$P(n)$	1	1	2	3	5	7	11	15	\cdots

Theorem（Stein，chapter in p 293）
If $|x|<1$ ，then $\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{k=1}^{\infty} \frac{1}{1-x^{k}}$

Theorem（Hard y－Ramanujan formula，1918；

（1）$P(n) \sim \frac{1}{4 \sqrt{3} n} e^{k \sqrt{n}}$ as $n \rightarrow \infty$ ，where $k=\sqrt{\frac{2}{3}} \pi$
（2）More precisely，$P(n)=\frac{1}{2 \pi \sqrt{2}} \frac{d}{d n}\left(\frac{e^{k\left(n-\frac{1}{2}\right)^{1 / 2}}}{\left(n-\frac{1}{24}\right)^{1 / 2}}\right)+O\left(e^{\frac{k}{2} \sqrt{n}}\right)$
$\langle p f\rangle$
Recall $\sum_{n=0}^{\infty} p(n) \omega^{n}=\prod_{k=1}^{\infty} \frac{1}{1-w^{n}}$
Write $\omega=e^{2 \pi i z} \quad z \in \mathbb{H} \quad$ Then $\sum_{n=0}^{\infty} p(n) e^{2 \pi i n z}=f(z)=\prod_{n=1}^{\infty} \frac{1}{1-e^{2 \pi i n z}}$

Recall（Stein，chapter 10 p．－q2）
Dedekind eta function：$\quad \eta(z)=e^{\frac{\pi i}{12}} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)$ for $\operatorname{Im}(z)>0$
Prop
If $\operatorname{Im}(\tau)>0$ ，then $\eta(-1 / 2)=\sqrt{2 / i} \eta(z)$
Therefore，$f(z)=e^{\frac{\pi z}{12}} \eta(z)^{-1} \Rightarrow e^{\frac{\pi i(1 / z)}{12}} f\left((-1 / z)^{-1}=\sqrt{z / 1} e^{\frac{\pi i z}{12}} f(z)^{-1} \Rightarrow f(z)=\sqrt{\frac{3}{3} / 1} e^{\frac{\pi i\left(z+\frac{1}{z}\right)}{12}} f(-1 / z)\right.$＿（＊）
When $z \rightarrow 0 \quad$ since $\operatorname{Im}(-1 / z) \rightarrow \infty \quad, f(-1 / z) \rightarrow 1$
Take $f_{1}(\xi):=\sqrt{z / i} e^{\left.\frac{\pi \pi}{1 /(}+\frac{1}{\xi}\right)}$ to approximate $f(\xi) \quad$（they have same behavior near $\xi=0$ ）
Now write $p_{(n)}^{(n)}=p_{1}(n)+E(n)$

estimate the error $E(n)$ ：
－If $z \in r \quad\left|\sqrt{3 / i} e^{\frac{\pi i\left(b+\frac{1}{2}\right)}{12}} e^{-2 \pi i n z}\right| \leqslant C e^{2 \pi n \delta} e^{\frac{\pi}{12} \frac{\delta}{\delta+x^{2}}}$
－On the other hand，from $f(z)=1+O\left(e^{-2 \pi y}\right), y \geqslant 1$ ，we know that $|f(1 / z)-1| \leqslant C e^{-2 \pi \frac{\delta}{\frac{\delta}{\delta+x^{2}}}} \operatorname{Re(\frac {1}{3})}$ if $\frac{\delta}{\delta+x^{2}} \geqslant 1$ As for $y \leq 1$ ，we already know that $|f(z)| \leqslant f(i y) \leq c e^{\frac{\pi}{12 y}}$ from $(*)$ Therefore，$f(-1 / z)-1 \left\lvert\, \leqslant O\left(e^{\frac{\pi}{2} \frac{\delta^{2}+x^{2}}{\delta}}\right)=O\left(e^{\frac{\pi}{4 \delta \delta}}\right)\right.$ for $y=\frac{\delta}{\delta^{2}+x^{2}} \leqslant 1 \quad\left(i|x|<\frac{1}{2}\right)$

From above, when $\frac{\delta^{2}}{\delta^{2}+x^{2}} \geqslant 1$ leads to contribution of $0\left(e^{2 \pi n \delta}\right)$ When $\frac{\delta^{2}}{\delta^{2}+x^{2}} \leqslant 1$, leads to contribution of $O\left(e^{2 \pi n \delta} e^{\frac{\pi}{48 \delta}}\right)$
$\Rightarrow E(n)=O\left(e^{2 \pi n} e^{\frac{\pi}{48 \delta}}\right) \quad$ By $A \cdot M \geqslant G \cdot M \quad "="$ holds for $2 \pi n \delta=\frac{\pi}{48 \delta} \Rightarrow \delta=\frac{1}{4 \sqrt{6}} \frac{1}{\sqrt{n}}$ \therefore When $\delta=\frac{1}{4 \sqrt{6}} \frac{1}{\sqrt{n}}, E(n)=O\left(e^{\frac{k}{2} \sqrt{n}}\right)$
After the estimation of $E(n)$, we now want to change the contour r into r^{\prime} since for $z \in \pm \frac{1}{2}+i t \delta, 0 \leq t \leq 1, \sqrt{\frac{3}{3}} e^{\frac{\pi i}{12 \xi}}$ is $O(1)$ (smaller than allowed error)

\therefore Now we change $P_{1}(n)$ as $\int_{r^{\prime}} \sqrt{5 / 1} e^{\frac{\pi i\left(z+\frac{1}{z}\right)}{12}} e^{-2 \pi i n z} d z \quad(\Leftrightarrow)$
We make a change of variables $\zeta \mapsto \mu z$
$P_{1}(n)=\int_{\Gamma} \sqrt{\sqrt{A 3} / \uparrow} e^{\frac{\pi}{2}\left(\mu z+\frac{1}{\mu 3}\right)} e^{-2 \pi i n \mu z} d z \mu=\int_{\Gamma} \sqrt{\mu z / i} \mu e^{\left(\frac{i \pi}{12} \mu-2 \pi i \rho \mu\right) z+\frac{\pi \pi}{12 \mu} \frac{1}{z}} d z$
Here we want to make $P_{1}(n)$ of the form $e^{\frac{1 i j\left(\frac{1}{z}-z\right)}{2}}$ Where $P=\mu^{-1} r^{\prime}, a_{n}=\frac{1}{2} \mu^{-1}=\sqrt{6}\left(n-\frac{1}{24}\right)^{1 / 2} \quad \delta^{\prime}=\delta \mu^{-1}=\frac{1}{2 \sqrt{n}}\left(n-\frac{1}{24}\right)^{1 / 2} \quad\left\{\begin{array}{l}A=\frac{\pi}{12 \mu} \\ A=2 \pi n \mu-\frac{\pi \mu}{12}\end{array},\left\{\begin{array}{l}A=\frac{\pi}{\sqrt{6}}\left(n-\frac{1}{24}\right)^{1 / 2} \\ \mu=\frac{1}{2 \sqrt{6}}\left(n-\frac{1}{24}\right)^{-1 / 2}\end{array}\right.\right.$

Method (Steepest descent)

Recall (Stein ,chapter 8 ex 2)

If $F(z)$ is holomorphic near so $F\left(z_{0}\right)=F^{\prime}\left(z_{0}\right)=0 \neq F^{\prime \prime}\left(z_{0}\right)$

Then $\exists \Gamma_{1} \quad \Gamma_{2}$ pass z_{0} and orthogonal to each other near so and $\left.F\right|_{\Gamma_{1}}$: real with minimum at so, $\left.F\right|_{P_{2}}$ real with maximum at z_{0}
let $F(z)=T\left(z-\frac{1}{z}\right) \quad$ Write $z=x+i y$, then $F(z)=\left(-y+\frac{y}{x^{2}+y^{2}}\right)+i\left(x+\frac{x}{x^{2}+y^{2}}\right)$

- $F(\xi)$ has critical point at $\xi=i$ when $z \in \mathbb{H}$
- $\operatorname{Im}(F(y))=0$ if $x=0$ or $x^{2}+y^{2}=1$
$\left.\left.F\right|_{x=0}=\frac{1}{y}-y(\max a t i) \quad F_{x^{2}+y^{2}=1}=2 x i \min a t i\right)$
Therefore, $P_{1}(n)=\mu^{\frac{3}{2}} \int_{\Gamma^{*}} e^{-A F(z)} \sqrt{3 / T} d z$
On real axis, $\int e^{-A F(3) \sqrt{3 / 7}} d z$ is bounded by sup $\left.z\right|^{\frac{1}{2}}$, $s 0$ the integral is of $O(1)$, which can be ignored) As for the point on unit circle
let $z=e^{i \theta}$, then $d z=T e^{i \theta} d \theta, \quad i\left(z-\frac{1}{z}\right)=-2 \sin \theta$
$P_{1}(n)=-\int_{0}^{\pi} \mu^{3 / 2} e^{2 A \sin \theta} e^{\frac{3 \theta}{2}} \sqrt{T} d \theta=\mu^{\frac{3}{2}} \int_{-\pi / 2}^{\pi / 2} e^{2 \theta \cos \theta}\left(\cos \frac{3 \theta}{2}+T \sin \frac{3 \theta}{2}\right) d \theta$ \qquad
By Prop $21 \quad\left(\int_{a}^{b} e^{-s \Phi(x)} \psi(x) d x=e^{-s \Phi\left(x_{0}\right)}\left(\frac{A}{\sqrt{s}}+0\left(\frac{1}{s}\right)\right) \quad A=\sqrt{2 \pi}\left(\Phi^{\prime \prime}\left(x_{0}\right)\right)^{1 / 2} \quad\right.$ where $\left.x_{0} \in(a, b) \delta, t \quad \begin{array}{l}\Phi^{\prime}\left(x_{0}\right)=0 \\ \Phi^{\prime \prime}\left(x_{0}\right)>0\end{array}\right)$
Here, $\Phi(\theta):=-\cos \theta \quad \theta_{0}=0 \quad \Rightarrow \Phi\left(\theta_{0}\right)=-1 \quad \Phi\left(\theta_{0}\right)=1 \quad$ Choose $\psi(x)=\cos \left(\frac{3 \theta}{2}\right)+i \sin \left(\frac{30}{2}\right)$ then $\psi\left(\theta_{0}\right)=1$
Therefore $P_{1}(n)$ contributes $\mu^{3 / 2} \frac{\sqrt{2 \pi}}{(25)^{1 / 2}}\left(1+0\left(\frac{1}{\sqrt{5}}\right)\right) \quad$ where $\quad \delta=\frac{\pi}{\sqrt{6}}\left(n-\frac{1}{24}\right)^{1 / 2} \quad k=\pi \sqrt{\frac{2}{3}} \quad \mu=\frac{\sqrt{6}}{12}\left(n-\frac{1}{24}\right)^{-1 / 2}$
$\therefore p(n)=\frac{1}{4 n \sqrt{3}} e^{k \sqrt{n}}\left(1+0\left(\frac{1}{4 \sqrt{n}}\right)\right) \#$

 After the same works (ie. $P \mapsto P^{*}, z \mapsto \mu_{z}$), we have $\left.q(m)=\frac{\mu^{\frac{1}{2}}}{2 \pi} \int_{\rho^{*}} e^{-A F(z)}(\xi)_{i}\right)^{-1 / 2} d z$ Where $F(z)=T\left(z-\frac{1}{z}\right) \quad A=\frac{\pi}{\sqrt{6}}\left(n-\frac{1}{20}\right)^{1 / 2} \quad \mu=\frac{1}{2 \sqrt{6}}\left(n-\frac{1}{2 \pi}\right)^{1 / 2}$
let $z=e^{i \theta}$ then $P_{1}(n)=\frac{-\mu^{1 / 2}}{2 \pi} \int_{0}^{\pi} e^{2 A \sin \theta} e^{i \frac{\theta}{2}} i^{\frac{3}{2}} d \theta=\frac{\mu^{1 / 2}}{2 \pi} \int_{-\pi / 2}^{\pi / 2} e^{2 \theta \cos \theta}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right) d \theta$

$$
\begin{aligned}
\text { (note that } \cos \theta=1-2 \sin \frac{\theta}{2} & =\frac{\mu^{1 / 2}}{2 \pi} e^{2 s} \int_{-\pi / 2}^{\sqrt{2 / 2}} e^{-4 A x^{2}} d x \\
\text { write } \left.x=\sin \frac{\theta}{2}\right) & =\frac{\mu^{1 / 2}}{2 \pi} e^{2 s}\left\{\int_{-\infty}^{\infty} e^{-4 A x^{2}} d x+0\left(\int_{\sqrt{2} / 2}^{\infty / 2} e^{-4 A x^{2}} d x\right)\right\} \\
& =\frac{\mu^{1 / 2}}{2 \pi} e^{2 s}\left\{\frac{\sqrt{\pi}}{2 \sqrt{A}}+0\left(e^{-2 \beta}\right)\right\}
\end{aligned}
$$

Therefore, $\frac{d}{d A}\left(\int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} e^{-4 A x^{2}} d x\right)=\frac{d}{d A}\left(\frac{\sqrt{\pi}}{2 \sqrt{A}}\right)+O\left(e^{-2 s}\right)$ and $e(n)$ is $O(1)$
$\left.\therefore P(n)=\frac{d}{d n}\left(\mu^{1 / 2} \frac{e^{25}}{\pi} \frac{\sqrt{\pi}}{2 \sqrt{n}}\right)+0 e^{-2 \xi}\right)=\frac{1}{2 \pi \sqrt{2}} \frac{d}{d n}\left(\frac{e^{k\left(n-\frac{1}{2 \psi}\right)^{1 / 2}}}{\left(n-\frac{1}{2 \psi}\right)^{1 / 2}}\right)+0\left(e^{\frac{k}{2 \sqrt{n}}}\right)_{\#}$

Remark

- Asymptotic
guiding principle: (1) Deformation of contour (2) Laplace's method (3) Generating function
- Approximate an integral

Laplace's method $\int_{a}^{b} e^{M f(x)} d x \quad M \gg 0 \longleftrightarrow$ Steepest descent $\int_{\gamma} f(z) e^{\lambda g(z)} \lambda \gg 0$

- If we compute $p(n)$ by $\int_{\Gamma} \frac{f(z)}{z^{n+1}}$ instead of $\int_{\gamma} f(z) e^{-2 \pi i n z} d z$, We can still get the same result (reference http II plus oxfordjournals org content $s z-17 / 175$. full. pdf)

Reference

Stein, complex analysis

Appendix (Asymptotic formulas in combinatory analysis by H Hardy and S Ramanujan)

- Euler identity

$$
\frac{1}{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots}=1+\frac{x}{(1-x)^{2}}+\frac{x^{4}}{\left.(1-x)^{2}(1-x)^{2}\right)^{2}}+\cdots
$$

$\Rightarrow e^{A \sqrt{n}}<p(n)<e^{B \sqrt{n}}$ for some $A, B>0$ for large n Hence, $A \sqrt{n}<\log p(n)<B \sqrt{n}$ Question $\dot{\exists} C$ st $\log p(n) \sim C \sqrt{n} \quad($ YES)

Theorem ("Tauberian")

If $g(x)=\Sigma a_{n} x^{n}$ with positive coefficient and $\log g(x) \sim \frac{A}{1-x}$ when $x \rightarrow 1$
Then $\log \delta_{n}=\log \left(a_{0}+a_{1}+\cdots+a_{n}\right) \sim 2 \sqrt{A_{n}}$ as $n \rightarrow \infty$

Since $c=\operatorname{lin} \frac{\log p(n)}{\sqrt{n}}$ and if we write $g(x)=(1-x) f(x)=\sum\{p(n)-p(n-1)\} x^{n}=\frac{1}{\left(1-x^{2}\right)\left(1-x^{3}\right) \cdot \cdots}$
Then $g(x)$ is of positive coefficient and $\log g(x)=\sum_{k=2}^{\infty} \frac{1}{1-x^{k}} \sim \frac{1}{1-x} \sum_{v=1}^{\infty} \frac{1}{v^{2}}=\frac{\pi^{2} / b}{1-x}$ as $x \rightarrow$ (by using $v x^{v-1}(1-x)<1-x^{v}<v(1-x) \Rightarrow \frac{1}{1-x} \sum \frac{x^{2}}{v}<\log g(x)<\frac{1}{1-x} \sum \frac{x^{v+1}}{v^{2}}$)
Therefore, $\log p(n)=a_{0}+a_{1}+\cdots+a_{n} \sim c \sqrt{n}$ where $c=\frac{2 \pi}{\sqrt{b}} \quad g(x) \sim \sqrt{\frac{1-x}{2 \pi}} e^{\frac{\pi^{2}}{b 1-\cdots}}$
auxiliary function $F_{a}(x):=\frac{1}{\pi \sqrt{2}} \sum_{n=1}^{\infty} \psi_{a}(n) x^{n}$ where $\psi_{a}(n):=\frac{d}{d n}\left(\frac{\cosh \left(k\left(n-\frac{1}{2}\right)^{1 / 2}\right)-1}{\left(n-\frac{1}{24}\right)^{1 / 2}}\right) \quad a>0$
(the "principle branch" of F is regular for all plane except for $x=1$)
a $\frac{\frac{1}{4}}{x^{2}} \pi^{2}$ by transformed into an and $F(x)-X(x)$ is regular for $x=1$ where $X(x)=\frac{x}{\sqrt{2 \pi}} \sqrt{\log \left(\frac{x}{x}\right)}\left(e^{b \log (x)}-1\right)$ integral by means of a Compare $x(x)$ and $f(x)$ and apply Cauchy's theorem on $f-F$ general function given by Lindel 'f we get $p(n)=\frac{1}{2 \pi \sqrt{2}} \frac{d}{d n}\left(\frac{e^{k\left(n-\frac{1}{2}\right)^{1 / 2}}}{\left(n-\frac{1}{24}\right)^{1 / 2}}\right)+o\left(e^{\frac{k}{2} \sqrt{n}}\right)$ come from $\xi=1$

$$
\text { kin } 1 \frac{12}{2} k^{\text {come from }} \boldsymbol{s} \text { from } z=-1
$$

Similarly, $\quad p(n)=\frac{1}{2 \pi \sqrt{2}} \frac{d}{d n}\left(\frac{e^{k\left(n-\frac{1}{x}\right)^{1 / 2}}}{\left(n-\frac{1}{2}\right)^{1 / 2}}\right)^{2}+\frac{(-1)^{n}}{2 \pi} \frac{d}{d n}\left(\frac{e^{\frac{1}{2}\left(n-\frac{1}{x}\right)^{1 / 2}}}{\left(n-\frac{1}{2 \varphi}\right)^{1 / 2}}\right)+\frac{\sqrt{3}}{\pi \sqrt{2}} \cos \left(\frac{2}{3} \pi n-\frac{1}{18} \pi\right) \frac{d}{d n}\left(\frac{e^{\frac{1}{3}\left(n-\frac{1}{x} x^{1 / 2}\right.}}{\left(n-\frac{1}{x}\right)^{1 / 2}}\right)$

$$
\begin{aligned}
& +\frac{\sqrt{2}}{\pi} \cos \left(\frac{1}{2} \pi n-\frac{1}{8} \pi\right) \frac{d}{d n}\left(\frac{e^{\frac{1}{k}\left(n-\frac{1}{x} \pi^{1 / 2}\right.}}{\left(n-\frac{1}{n}\right)^{1 / 2}}\right)+\cdots \\
& \tau_{\text {from } \quad} \quad=e^{\frac{1}{3} \pi i}
\end{aligned}
$$

Dirichlet Theorem worth Density 廖偉恩
－Introduction：Given $m, a \in N$ ，with $(m, a)=1$ ， define $\Pi_{a}(x):=x\left\{\begin{array}{l|l}p \in \mathbb{N} & \begin{array}{l}p B \text { a prime } \leq x \\ p \equiv a \bmod m\end{array}\end{array}\right\}$ our goal is to prove the following theorem．

$$
\pi_{a}(x) \sim \frac{x}{\phi(m) \log x}
$$

－Thought：

- Characters of finite abelian groups: (Serve)
- Def: GB an abelian group, a character of

* in our case, we may take $G=\mathbb{Z}^{*}$ multiplicative group
$4 \mathrm{ma}_{2}^{*}$ of C.
- It B easy to see that all shavacters form an abelian group $\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$, denoted by \hat{G}.
Ques: How may characters 7
- Lemmal : Let H be a supgroup of G, then every character of H extends to a character of G proof: Induction on $[G: H]$
Q. $[G: H]=1 \Rightarrow H=G$, nothing to prove.
(8) $\left[G^{\prime} H\right]>1$, choose $x \in G-H$, with n the Smallest anterger >1 sit. $x^{n} \in H$ Now for any character x of H, we may find $\omega \in \mathbb{e}_{\text {sit }}$ $\omega^{n}=x\left(x^{n}\right)$ and define character $x^{\prime} \circ f H^{\prime}(H, x)$
$x^{\prime}\left(h^{\prime}\right)=x(h) \omega^{a}$ where $h^{\prime}=h_{a} x^{a}$ $x^{\prime}\left(h^{\prime}\right)$ is well-defined and $-B a^{\prime}$.
character of H^{\prime}. Sane $\left[G: H^{\prime}\right]<[G: H]$ welve done ${ }^{2}$
- If we define the restriction $\rho: \hat{G} \rightarrow \hat{H}$, then we gust learned that ρ a surjective. Moreover, since ker ρ are the characters act trivial on H. hence $\operatorname{ker} \rho \simeq \widehat{G}$, then we have exact sequence

$$
\{1\} \rightarrow \hat{G} / H \rightarrow \hat{G} \rightarrow \hat{H} \rightarrow\{1\}
$$

- Theorem 1: \hat{G} have the same order as G proof: Induction on n, the order of G We know by above that $|\hat{G}|=|\hat{G} / H| \cdot|\hat{H}|$, hence by adduction we've done. A
\therefore Lemma 2: For any $x \leqslant 6, x \neq 1$, there exits a character x of G sit $X(x) \neq 1$ with order n proof: Consider $H=(x)$, since $H 3$ cy ck, we can see $X\left(x^{t}\right):=e^{\frac{2 i}{n} t}$ is a character of H by Lemma l, X can be extend to a character X^{\prime} of G, with $X^{\prime}(x)=X(x)=e^{\frac{2 \pi i}{4}} \neq 1$
For $G=\mathbb{Z} / \mathrm{mZ}$, we extend ar character x of $\mathbb{Z ~} \mathbb{m Z}^{*}$
to define on \mathbb{Z} to define on Z / mL

$$
\bar{x}_{(n)}=\left\{\begin{array}{cc}
x(n), & \text { if }(n, m)=1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Theorem 2. Let $n=$ ord $G, X_{\text {a character, then }}$
(1) $\sum_{x \in G} x(x)= \begin{cases}n, & \text { if } x=x_{0} \text { ordentity. } \\ 0, & \text { if } x=x_{0}\end{cases}$

$$
0 \text {. if } x \neq x_{0}
$$

(1) $\quad \sum_{x \in G} x(x)= \begin{cases}n, & -f x=1 \in G \\ 0, & f f x \neq 1\end{cases}$
proof
(1) If $x=x_{0}, \sum_{x \in G} X(x)=1+1+\cdots+1=n$

If $X+x_{0}$, then $\exists y \in G s, t, X(y) \neq 1$, then

$$
\begin{aligned}
& x(y) \cdot \sum_{x \in G} x(x)=\sum_{x \in G} x(x y)=\sum_{x^{\prime} \in G} x(x) \\
& \Rightarrow \sum_{x \in G} x(x)=0
\end{aligned}
$$

(2) By the same arguement of (1), if $x \neq 1$, then

$$
\begin{aligned}
& \exists \notin \in \hat{G} \text { sit } \psi^{\prime}(x) \neq 1 \text { (by Lemma 2) } \\
& \Rightarrow \psi(x) \sum_{X \in \hat{G}} X(x)=\sum_{X \in \hat{G}} \psi X(x)=\sum_{X \in \hat{G}} X(x) \\
& \Rightarrow \sum_{X \in \hat{G}} X(x)=0
\end{aligned}
$$

- Prime Number Theorem (Stein)
$\cdot \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \Lambda(x)= \begin{cases}\log p, & i f n=p^{m}, \text { pa prime. } \\ 0 & \text { otherwise }\end{cases}$

$$
\psi(x)=\sum_{1 \leq n \leq x} \Lambda(x), \quad \psi_{1}(x)=\int_{1}^{x} \psi(u) d u
$$

- Analytic continuation of ζ to $\operatorname{Re}(s)=\sigma$

$$
\begin{aligned}
\zeta(s)=\frac{1}{s-1}+H(s), \quad H(s)= & \sum_{n=1}^{\infty} \delta_{n}(s) \\
& \int_{n}^{n+1}\left(\frac{1}{n^{s}}-\frac{1}{x^{s}}\right)
\end{aligned}
$$

- $\sigma>1$ and t is real, we have

$$
\begin{aligned}
& \log \left|\zeta^{3}(\sigma) \zeta^{4}(\sigma+i t) \zeta(\sigma+2 i t)\right| \geq 0 \\
& \Rightarrow\left\{\begin{array}{l}
\zeta(1+i t) \neq 0 \quad \forall t \in \mathbb{R} \text { (Sol has no zeros for } \\
\text { Estimate of }\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right|
\end{array}\right. \\
& \text { - } \psi_{1}(x)=\frac{1}{2 \pi i} \int_{C-i \infty}^{C+i \infty} \frac{x^{s+1}}{s(s+1)}\left(-\frac{\zeta^{\prime}(s)}{\zeta(s)}\right) d s
\end{aligned}
$$

- Contour Integral on 3

The L-function $L(s) x)=\sum_{n=1}^{\infty} \frac{x(n)}{n^{5}}$ on $\operatorname{Re}(s)>0$ Observe that for $\operatorname{Re}(s)>1, \sum_{n=1}^{e} \frac{x(n)}{n^{s}}$ converges absolutely since $\left|\frac{X(n)}{n^{s}}\right| \leq \frac{1}{n^{e}}$ where $s=r+i t$ and so the Euler Product Famula implies

$$
L(s, x)=\prod_{p \text { prime }} \frac{1}{1-\frac{x(p)}{p^{s}}}
$$

Than $3 \sum_{n=1}^{\infty} \frac{x(n)}{n^{s}}$ Converges on $\operatorname{Re}(s)>0$, more over. $L(s, x)$ i holomorphic on $\operatorname{Re}(s)>0$. $\left(f f \not \chi_{\neq x_{0}}\right)$ proof:
(1) Let $A_{N, M} \equiv \sum_{n=N}^{M} X(n)$, then $\left|A_{N, M}\right| \leq \phi(m)$

$$
\Rightarrow \sum_{n=N}^{M} \frac{x(n)}{n^{s}}=\sum_{n=N}^{M-1} A_{N, n}\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right)+A_{N, M} \cdot \frac{1}{M^{s}}
$$

as we can sec $\left|\frac{1}{n^{s}}-\frac{1}{n+1 j^{5}}\right| \leq \frac{|s|}{n^{5+1}}$

$$
\text { so }\left|\sum_{n=N}^{M} \frac{X(n)}{n^{s}}\right| \leq \phi(m) \sum_{n=N}^{M-1} \frac{|s|}{n}+\frac{\phi(m)}{M^{s}} \xrightarrow{\text { as } M \rightarrow \infty} \rightarrow 0
$$

$\Rightarrow \sum_{n=1}^{\infty} \frac{x_{(n)}}{n^{s}}$ converges on $\operatorname{Re}(s)>0$
(8) Also we can see from above that $\sum_{n=1}^{\infty} \frac{x_{n}(n)}{n^{5}}$ converge uniformly on every compact subset of $Q e(s)>0$ $\Rightarrow \sum_{n=1} \frac{x_{(n)}}{n^{5}}$ is to l (omorphic by Th 5,2, Chap 2 in Stein. 6.

- Thm 4: $L\left(s, x_{0}\right)$ extends to a meromorphic function for $\operatorname{Re}(s)>0$, it has a unique simple pole at $S=1$ with residue $\frac{\phi(m)}{m}$,
proof: Obviously $L\left(s, x_{0}\right)=\zeta(s) \prod_{\text {plo }}\left(1-\frac{1}{p s}\right)$ for $R e s>1$
since $\zeta(s)$ extends to a meromorphic function on
Re $s>0$, so does $L\left(s, x_{0}\right)$ (and so only a unique On the other hand, simple pole at 1)

$$
\operatorname{res}\left(L\left(s, x_{0}\right), 1\right)=\prod_{p \mid m}\left(1-\frac{1}{p}\right) \operatorname{res}(\zeta(s), 1)=\frac{\phi(m)}{m}
$$

Now we know $L(s, x)$ is defined as a hold $\left(x_{0}\right.$ mere $)$ function on $\operatorname{Re}(s)>0$ We still need to define $\log L(s, x):$
Since for $\operatorname{Re}(s)>1$, we have $\left.\frac{x(p)}{p^{5}} \right\rvert\, \leq 1$, so take principle branch to define

$$
\log \frac{1}{1-\frac{x(p)}{p^{s}}}=\sum \frac{\left(\frac{x(p)}{p}\right)^{n}}{n}\left(\log \frac{1}{1-\alpha}=\sum \frac{\alpha^{n}}{n}\right)
$$

and define

$$
\log L(s, x)=\sum_{p} \log \frac{1}{1-\frac{x(p)}{p^{5}}}
$$

notice that $L(s, x) \neq 0$ on $\operatorname{Re}(s)>1 \Rightarrow \log B$ well
from tolar Product
-defined.

$$
\begin{aligned}
\log L(s, x) & =\sum_{p} \log \frac{1}{1-\frac{x(p)}{p}} \\
& =\sum_{p} \sum_{n} \frac{x(p)^{p} p^{-n s}}{n}=\sum_{n, p} \frac{x(p)^{n}}{n p^{n s}}
\end{aligned}
$$

the series $\sum_{n, p} \frac{x(p)^{n}}{n \cdot p^{n s}}$ is obviously convergent,

$$
\left.\begin{array}{l}
\text { so } \frac{L^{\prime}(s, x)}{L(s, \chi)}=-\sum_{n=1}^{\infty} \frac{x(n) \wedge(n)}{n^{s}} \\
\left(\operatorname{Remark}^{\frac{\zeta}{s}(s)}\right. \\
\zeta(s)
\end{array}=-\sum \frac{\Lambda(n)}{n^{s}}\right)
$$

-Lemma $3 \log \left|L^{3}\left(\sigma, x_{0}\right) L^{4}(\sigma+t i, x) L\left(\sigma+2 t i, x^{2}\right)\right| \geq 0$ proof:

$$
\begin{align*}
& \log \mid L^{3}\left(\sigma, x_{0}\right) L^{4}(\sigma+t i, x) L\left(\sigma+2 t i, x^{2} \mid\right. \\
& =3 \log \left|L\left(\sigma, x_{0}\right)\right|+4 \log |L(\sigma+t i, x)|+\log \left|L\left(\sigma+2 t i, x^{2}\right)\right| \\
& =3 \log L\left(\sigma, x_{0}\right)+4 \operatorname{Re} \log L(\sigma-t i, x)+\operatorname{Re} \log L\left(\sigma+2 t i, x^{2}\right) \\
& =\sum_{n, p}\left(\frac{3 x_{0}\left(p^{n}\right)}{n p^{n \sigma}}+\operatorname{Re} \frac{4 x\left(p^{n}\right)}{\left.n p^{n(\sigma+t i)}\right)}+\operatorname{Re} \frac{x^{2}\left(p^{n}\right)}{n p^{n(\sigma+2 t i)}}\right) \\
& =\sum_{n, p} \frac{3+4 \cos \left(\theta_{n}\right)+\cos 2 \theta_{n}}{n p^{n \sigma}} \\
& =\sum_{n, p} \frac{2\left(1+\cos \theta_{n}\right)^{2}}{n p^{n \sigma}} \geqslant 0
\end{align*}
$$

where $\theta_{n}=\eta\left(p^{n}\right)-t \log \left(p^{n}\right)$

$$
x\left(p^{m}\right)=e^{i \eta\left(p^{m}\right)}
$$

- Thins $L(s, x)$ does not vanish on the line $\sigma=1$ proof Prove by contradiction: Suppose 3 to $\in \mathbb{R}$ st. $L\left(1+i t_{0}, x\right)=0$. Since $L(s, x)$ is holomorphic $\Rightarrow \quad\left|L\left(1+i t_{0}, x\right)\right|^{4} \leq C(\sigma-1)^{4}$ as $\sigma \rightarrow 1$ and since $S=1$ is a pole for $L\left(s, x_{0}\right)$ (by Thm4)

So that $\left|L\left(\sigma, x_{0}\right)\right|^{3} \leq c^{\prime}(\sigma-1)^{-3}$ as $\sigma \rightarrow 1$ Finally, $\left|L\left(\sigma+2 t_{0}\right)\right|$ remains bounded as $\sigma \rightarrow 1$

$$
\Rightarrow\left|L^{3}\left(\sigma, x_{0}\right) L^{4}\left(\sigma+i t_{0}, x\right) L\left(\sigma+2 i t_{0}, x^{2}\right)\right| \rightarrow 0 \text { as } \sigma \rightarrow 1
$$

contradicted to Lemma 3

- Estimate of $\frac{L^{\prime}(s, x)}{L(s, x)}$
- Than 6: Suppose $s=\sigma+i t$ with $\sigma, t \in \mathbb{R}$ Then for each $\sigma_{0}, 0 \leq \sigma_{0} \leq 1$, and every $\varepsilon>0$, there exists a constant C_{ε} so that
(i) $|L(s, x)| \leq C_{q}|t|^{1-\sigma_{0}+\varepsilon}$, if $\sigma_{0} \leq \sigma$ and $|t| \geq 1$
(ii) $\left|L^{\prime}(s, x)\right| \leq C_{\varepsilon}|t|^{\varepsilon}$. if $\mid \leq \sigma$, and $|t| \geq 1$
proof: The proof is basidy same with Prop .7.7 Chap 6. Stein
(1) For $x=x_{0}$, it is straight froward from The 4 and Prop 2.7 Chap 6 Stein
(8) If $\chi_{\neq \chi_{0} \text {, then we know that }}$

$$
\begin{gathered}
L(s, x)=\sum_{n=1}^{\infty} A(n)\left(\frac{1}{n^{s}}-\frac{1}{(n+1)^{s}}\right) \text { where } A(n)=\sum_{i \leq n} X_{n}(i) \\
\delta_{\delta n}(s)
\end{gathered}
$$

then $\left\{\begin{array}{l}\left|\delta_{n}(s)\right| \leq \frac{|s|}{n^{\sigma+1}} \\ \left|\delta_{n}(s)\right| \leq \frac{2}{}\end{array}\right.$ bymeanvalue the

$$
\Rightarrow\left|\delta_{n}(s)\right| \leq\left(\frac{\mid s}{n^{\sigma+1}}\right)^{\delta}\left(\frac{2}{n^{\sigma_{0}}}\right)^{1-\delta} \leq \frac{2|s|^{\delta}}{n^{\sigma_{0}+\delta}}
$$

choose $\delta=1-\sigma_{0}+\varepsilon$

$$
\Rightarrow|L(s, x)| \leq \phi(m) 2 \cdot 151^{1-\sigma_{0}+\varepsilon} \sum \frac{1}{n^{1+\varepsilon}}
$$

so (i) 3 proved
(since $\sigma>1+\gamma_{0}$ with $\gamma_{0}>0, L(5, x)$ is bad.)
when
(2) $L^{\prime}(s, x)=\frac{1}{2 \pi r} \int_{0}^{2 \pi} L\left(s+r e^{i \theta}, x\right) e^{i \theta} d \theta$

Choose $r=\varepsilon$ and apply (i) to get

$$
\left|L^{\prime}(s, x)\right| \leqslant \frac{1}{2 \pi \varepsilon} \cdot 2 \pi C_{\varepsilon}|t|^{\varepsilon}
$$

.Tom 7. For every $\varepsilon>0$, we have $\left(\left.\frac{1}{L(s, x)}\left|\leq c_{\varepsilon}\right| t\right|^{\varepsilon}\right.$ when $S=\sigma+i t, \sigma \geq 1$ and $|t| z \mid$
proof:
(1) From Lemma 3 we know $\forall \sigma 21,|t| \geq 1$
$\longrightarrow(\phi)$
(2) Consider two cases?
(i) If $\sigma-1 \geq A|t|^{-5 \varepsilon}$ (where A is a appropriate const we will choose later)

$$
\Rightarrow|L(s+i z, x)| \geqslant A^{\prime}\left(\left.t\right|^{-4 \varepsilon}\right.
$$

(ii) If $\sigma-1 \leq A|t|^{-5 \varepsilon}$, then choose $\sigma^{\prime}>\sigma$ with

$$
\begin{aligned}
& \sigma^{\prime}-1=A \cdot \mid H^{-5 \varepsilon} \\
& \Rightarrow|L(\sigma+i t, x)| \geq\left|L\left(\sigma^{\prime}+i t, x\right)\right| \\
&-\left|L\left(\sigma^{\prime}+i t, x\right)-L(\sigma+i t, x)\right|
\end{aligned}
$$

but from mean-value the, and $T h_{m} 7$

$$
\begin{aligned}
\left|L\left(\sigma^{\prime}+i t, x\right)-L(\sigma+i t, x)\right| & \leq C^{\prime \prime} \cdot\left|\sigma^{\prime}-\sigma\right||t|^{2} \\
& \leq C^{\prime \prime} \cdot\left|\sigma^{\prime}-1\right| \cdot|t|^{\varepsilon}
\end{aligned}
$$

also from ((t), take $\sigma=\sigma$ get

$$
|L(\sigma+i t, x)| \geq c^{\prime}\left(\sigma^{\prime}-1\right)^{\frac{3}{4}}\left(\left.t\right|^{-\frac{\varepsilon}{4}}-c^{\prime \prime}\left(\sigma^{\prime}-1\right)\left(\left.t\right|^{\varepsilon}\right.\right.
$$

Choose $A=\left(c^{\prime} / 2 c^{\prime \prime}\right)^{4}$, and recall $\sigma^{\prime}-1=A(t)^{-5 \varepsilon}$

$$
\Rightarrow c^{\prime}\left(\sigma^{\prime}-1\right)^{\frac{3}{4}}\left|t^{-\frac{\varepsilon}{4}}=2 c^{\prime \prime}\left(\sigma^{\prime}-1\right)\right| t^{\varepsilon}
$$

So $|\angle(\sigma+i t, x)| \geq A^{\prime \prime} \cdot|t|^{-4 \varepsilon}$

Proof of Dirichlet Theorem with Density

$$
\begin{aligned}
& \Lambda_{a}(n)= \begin{cases}\log p, \text { if } n=p \operatorname{and} p \equiv a(\bmod m) \\
0, \text { otherwise }\end{cases} \\
& \psi_{a}(x)==\sum_{n \leq x} \Lambda_{a}(n) \\
& \psi_{1 a}(x)==\int_{1}^{x} \psi_{a}(u) d u
\end{aligned}
$$

- The 8: $\psi_{a}(x) \underset{\phi(m)}{\underset{~ x}{x}} \Rightarrow \pi_{a}(x) \sim \frac{x}{\phi(m) \log x}$

Pf: It suffices to show
$1 \leq \operatorname{lom}$ af $\pi_{a}(x) \cdot \frac{\phi(m) l \log x}{x}$ and $\operatorname{lom} 5 u p \pi_{a}(x) \frac{\phi(m) \log x}{x} \sum_{\Sigma}$

$$
\text { (1) } \begin{aligned}
\Psi_{a}(x)=\sum_{\substack{p \leq x \\
p \geq a(\operatorname{modm})}}\left[\frac{\log x}{\log p}\right] \cdot \log p & \leq \sum_{\substack{p \leq x \\
p=a(\operatorname{codm}(x)}} \frac{\log x}{\log p} \log p \\
& =\Pi_{a}(x) \log x
\end{aligned}
$$

$$
\Rightarrow \frac{\phi(m) \psi_{a}(x)}{x} \leq \pi_{a}(x) \frac{\phi(m) \log x}{x}
$$

hence $\operatorname{lom} \operatorname{oof} \lambda_{a}(x) \frac{\phi(m) \log x}{x} \geq 1$
(1) Fix $0<\alpha<1$, note that

$$
\begin{aligned}
& \Rightarrow \psi_{a}(x)+\alpha \pi_{a}\left(x^{\alpha}\right) \log x \geq \alpha \pi_{a}(x) \log x \\
& \Rightarrow \alpha \pi_{a}(x) \frac{\phi(m) \log x}{x} \leq \frac{\psi_{a}(x) \phi(m)}{x}+\alpha \cdot \frac{x^{\alpha} \log x \cdot \phi(m)}{x} \\
& \Rightarrow \alpha \cdot \lim _{x \rightarrow \infty} \sup _{a} \pi_{a}(x) \frac{\phi(m) \log x}{x} \leq 1
\end{aligned}
$$

then let $\alpha \rightarrow 1$ we complete the proof θ.
-Thm 9. $\psi_{1 a}(x) \sim \frac{x^{2}}{2 \phi(m)} \Rightarrow \psi_{a}(x) \sim \frac{x}{\phi(m)}$㫙 $=$ Sance $\psi_{a}(x)$ in rereasing, hence if $1<\beta$

$$
\begin{gathered}
\psi_{a}(x) \leq \frac{1}{(\beta-1) x} \int_{x}^{\beta x} \psi_{a}(u) d u \\
\Rightarrow \frac{\phi(m) \psi_{a}(x)}{x} \leq \frac{\phi(m)}{(\beta-1) x^{2}}\left[\psi_{1 a}(\beta x)-\psi_{1 a}(x)\right] \\
\Rightarrow \lim _{x \rightarrow \infty} \sup \frac{\phi(m) \psi_{a}(x)}{x} \\
\leq \limsup _{x \rightarrow \infty} \frac{\phi(m)}{\beta-1}\left[\frac{\psi_{a}(\beta x)}{\beta x} \beta^{2}-\frac{\psi_{1 a}(x)}{x^{2}}\right] \\
=\frac{1}{\beta-1} \cdot\left(\frac{1}{2} \beta^{2}-\frac{1}{2}\right)=\frac{1}{2}(\beta+1)
\end{gathered}
$$

Let $\beta \rightarrow 1$ get $\limsup _{x \rightarrow \infty} \frac{\phi(m) \varphi_{a}(x)}{x} \leq 1$

- Somitarly $\operatorname{lominf}_{x \rightarrow \infty} \frac{\operatorname{din}^{x \rightarrow \infty} \psi_{a}(x)}{x} \geq 1$ asme fram

$$
\begin{equation*}
\frac{1}{(1-\alpha) x} \int_{a x}^{x} \psi_{a}^{x \rightarrow \infty}(u) d u \leq \psi_{a}(x) \tag{14}
\end{equation*}
$$

- Recall Lemma 2.4, chap. Stein:

If $c>0$, then

$$
\begin{aligned}
& \frac{1}{2 \pi r} \int_{C-100}^{c+100} \frac{a^{s}}{s(s+1)} d s=\left\{\begin{array}{cl}
0, & \text { if } 0<a \leq 1 \\
1-\frac{1}{a}, & \text { if } 1 \leq a
\end{array}\right. \\
& \text {-Thmlo: } \psi_{1 a}(x)=\frac{1}{2 \pi i} \int_{c-i \infty}^{a+i \infty} \frac{x^{s+1}}{S(s+1)}\left(\frac{e-x\left(a^{-1}\right) L^{\prime}(s, x)}{x} \frac{(s(m) L(s, x)}{\frac{1}{a}}\right) d s \\
& \text { if. } \\
& \text { on } c>1 \\
& \text { on } c>1
\end{aligned}
$$

(1) First note that

$$
\begin{aligned}
& \sum_{x} X\left(a^{-1}\right) \frac{L^{\prime}(s, x)}{L(s, x)}=\sum_{x} X\left(a^{-1}\right) \sum_{n=1}^{\infty} \frac{-X(n) \wedge(n)}{n^{s}} \\
&=\sum_{n=1}^{\infty} \frac{-X\left(a^{-1} n\right) \wedge(n)}{n^{s}} \\
& \text { Thm } 2
\end{aligned}
$$

$$
\equiv-\phi(m) \sum_{n=1}^{\infty} \frac{\Lambda_{a}(n)}{n^{s}}
$$

$\Leftrightarrow \psi_{\text {ia }}(x)=\int_{0}^{x} \psi_{a}(u) d u$

$$
\begin{aligned}
& =\sum_{n<x} \int_{0}^{x} \Lambda_{a}(n) f_{n}(u) d u \quad f_{n}(u)=\left\{\begin{array}{l}
1, \text { if } n \leq u \\
0, \text { otherwise }
\end{array}\right. \\
& =\sum_{n \leq x} \Lambda_{a}(n) \int_{n}^{x} d u \\
& =\sum_{n \leq x} \Lambda_{a}(n)(x-n)
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{c-i \infty}^{c+1 \infty} \frac{x^{s+1}}{s(s+1)}\left(\frac{-x\left(a^{-1}\right) L^{\prime}(s, x)}{x(m) L(s, x)}\right) d s \\
& =\frac{x}{2 \pi i} \int_{c+\infty}^{c+i \infty} \frac{x^{s}}{s(s+1)} \sum_{n=1}^{\infty} \frac{\Lambda_{a}(n)}{n^{s}} \\
& =x \sum_{n}^{\infty} \Lambda_{a}(n) \cdot \frac{1}{2 \pi i} \int_{c-\infty}^{c+i \infty} \frac{\left(\frac{x}{x a}\right) d s}{s(s+1)} \\
& =x \sum_{n \leq x} \Lambda_{a}(n)\left(1-\frac{n}{x}\right) \\
& =\sum_{n \leq x} \Lambda_{a}(n)(x-n)=\psi_{1 a}(x)
\end{aligned}
$$

Notice that $\sum_{n=1}^{\infty} \int_{c-i \infty}^{c+i \infty}\left|\frac{x^{s}}{\rho(s+1)} \cdot \frac{\Lambda_{a}(n)}{n^{s}}\right| d s$

$$
\begin{aligned}
& \leq \sum_{n=1}^{\infty} \frac{\Lambda_{a}(n)}{n^{c}} \int_{G-i \infty}^{c+i \infty} \frac{x^{c}}{s(s+1)} d s \\
& \leq A \sum_{n=1}^{\infty} \frac{\Lambda_{a}(n)}{n^{c}}<\infty
\end{aligned}
$$

- If we set $g_{a}(s)=\frac{x^{s+1}}{s(s+1)} \cdot\left(\sum_{x}^{\left.-\frac{x\left(a^{-1}\right)}{\phi(m)} \cdot \frac{L^{\prime}(s, x)}{L(s, x)}\right), ~(1)}\right.$
then $\frac{1}{2 \pi i} \int_{\text {cit }}^{c+i \infty} g_{a}^{\prime}(s) d s=\psi_{1 a}(x)$
since $L(5, x)$ is halo if $x \neq x_{0}$. arguement principle
$L\left(s, x_{0}\right.$ has a simple pole at $s=1$
we know $g_{a}(s)$ has a simple pole of orde $\frac{x^{2}}{2 \phi(m)}$
- The II $\psi_{1}(x) \sim \frac{x^{2}}{2 \phi(m)}$

$\gamma(T, \delta)$
pf
(1) By Cauchy Thm, and that $\left|\frac{L^{\prime}(s, x)}{L(s, x)}\right| \leq A|t|^{\eta}$ for any fixed $\eta>0\left(\right.$ by $\left.T h_{m} 6, T h_{m} 7\right)$
we can see $\frac{1}{k i} \int_{1+i \infty}^{c+i \infty} g_{a}(s) d s=0$
so $\psi_{1 a}(x)=\frac{1}{2 \pi i} \int_{C-1 \infty}^{c+i \infty} g_{a}(s) d s=\frac{1}{2 a i} \int_{\gamma T} g_{a}(s) d s$
(2) By residue the,

$$
\frac{1}{2 a i} \int_{\gamma(T)} q_{a}(s) d S=\frac{x^{2}}{2 \phi(m)}+\frac{1}{2 \pi i} \int_{\gamma(T, S)} g_{a}(s) d s
$$

$T, \&$ would be determined later to have $\int_{r(\pi, s)} g_{a}(s) d s=0$
(3) For γ_{1}, γ_{5}. we may take $\left.\left|\frac{L^{\prime}(s, x)}{L(s, x)}\right| \leq A \cdot \right\rvert\, t^{\frac{1}{2}}$ then we have $\left|\frac{1}{2 \pi i} \int_{r_{2}} g_{a}(s) d s\right| \leq C x^{2} \int_{T}^{\infty} \frac{|t|^{\frac{1}{2}}}{t^{2}} d t$

So we can choose T so large sit.

$$
\begin{gathered}
\text { R.H.S. } \leq \frac{\varepsilon}{2} x^{2} \text { for a fixed } \varepsilon>0 . \\
\forall x
\end{gathered}
$$

$r_{5} 3$ similar.
(4) For γ_{7}. Choose δ so small so that $L(s, x) \neq 0 \forall s \in \gamma_{3}$ (because we have proved that $L(s, x) \neq 0$ on $1+i t$)
note that $\left|x^{1+5}\right|=x^{2-\delta}$
hence $\left|\frac{1}{2 \lambda i} \int_{\gamma_{3}} g_{a}(s) d s\right| \leq G_{T} x^{2-\delta}$
I depend on T.
(8) For γ_{2}, γ_{4}.

$$
\left|\frac{1}{2 i} \int_{r_{2}} g_{a}(s)\right| \leq C_{T}^{\prime} \int_{1-\delta}^{1} x^{1+\sigma} d \sigma \leq C_{T}^{\prime} \frac{x^{2}}{\log x}
$$

(4) From (3), (4), (5), we get

$$
\left|\frac{\Psi_{n}(x)}{x^{2}}-\frac{1}{\sum \phi(m)}\right| \leq 2 \varepsilon+C_{T} x^{-\delta}+C_{T}^{\prime} \frac{1}{\log x}
$$

So $\quad \psi_{1 a}(x) \sim \frac{x^{2}}{2 \phi(m)}$

Reference
Serve A Course in Arithmetic
Stein Complex Analysis
Leveque, Topics In Number Theory
Apostol Introduction to Analytic Number Theory

Hyung Kyu Jun The Density of Primes of The Form $a+k m$

Dirichlet＇s Principle

李龍欣

2015．06．25

Notation．Let A, B be subsets of a topological space．We say $A \subset \subset B$ if \bar{A} ，the closure of A ，is contained in B ，the interior of B ．

Let (Ω, z) be a coordinate patch of a Riemann surface S ．Then for some $a \in \mathbb{C}$ and $r>0$ ，if $B(a ; r) \subset \subset(\Omega)$ ，then we call $B_{z}(a ; r):=z^{-1}(B(a ; r))$ a z－disk．

1 Das Dirichletsche Integral

Notation（p．107）．Let S denote a connected（oriented）Riemann surface．Any－ thing related to＂K＂denotes a z－disk for some z ．In particular，we arbitrarily fix a point $p_{0} \in S$ ，a coordinate map z_{0} with $z_{0}\left(p_{0}\right)=0$ ，and some appropriate $0<R_{0}<R_{0}^{\prime}$ ．Then we call $K_{0}:=B_{z_{0}}\left(p_{0} ; R_{0}\right)$ the hole，call $K_{0}^{\prime}:=B_{z_{0}}\left(p_{0} ; R_{0}^{\prime}\right)$ the lid，call $K_{0}^{\prime} \backslash \overline{K_{0}}$ the lock－ring，and call $S \backslash \overline{K_{0}}$ the punched surface．

Recall（p93，p72）．For $\eta=\left(\eta_{1} \mathrm{~d} x+\eta_{2} \mathrm{~d} y\right)$ and $\xi=\left(\xi_{1} \mathrm{~d} x+\xi_{2} \mathrm{~d} y\right)$ being two 1－ forms，we define $[\eta, \xi]:=\eta \wedge\left({ }^{*} \xi\right)=\left(\eta_{1} \xi_{1}+\eta_{2} \xi_{2}\right)(\mathrm{d} x \wedge \mathrm{~d} y)$ ，which is symmetric and bilinear on the two inputs．

Definition（p．97）．Let $A \subseteq S$ be a region，and $v, w \in \mathcal{C}^{1}(A)$ ．The Dirichlet integral is defined to be $D_{A}(v, w):=\int_{A}[\mathrm{~d} v, \mathrm{~d} w]$ ．If $v=w$ ，we denote the integral by $D_{A}(v):=D_{A}(v, v) \geq 0$ ．The set of admissible functions is defined to be $\mathfrak{M}(A):=\left\{v \in \mathcal{C}^{1}(\AA) \cap \mathcal{C}^{0}(\bar{A}): D_{A}(v)<\infty\right\}$

Notation（p．114）．For $v \in \mathfrak{M}(K)$ ，define \bar{v} to be the harmonic function on K that agrees with v on ∂K（which may be derived from Poisson＇s integration formula）．

Lemma 1 （p．97）．$\forall v \in \mathfrak{M}(K), D_{K}(v)-D_{K}(\bar{v})=D_{K}(v-\bar{v}) \geq 0$.
$\left(\right.$ hint：$\left.D_{K}(\bar{v}, v-\bar{v})=0\right)$
Theorem 2 （p．106）．Let Φ be a harmonic function on the lid which is regular in the lock－ring，and satisfies $\frac{\partial \Phi}{\partial n}=0$ along ∂K_{0} ．There exists a harmonic function U such that U is regular in $S \backslash \overline{K_{0}}$ and that $U-\Phi$ is regular in K_{0} ．

Definition (p.108). The set of competing functions is defined to be

$$
\mathscr{F}:=\left\{\left(v, v^{*}\right): v \in \mathfrak{M}\left(S \backslash \overline{K_{0}}\right), v^{*} \in \mathfrak{M}\left(K_{0}^{\prime}\right), v \equiv v^{*}+\Phi \text { in } K_{0}^{\prime} \backslash \overline{K_{0}}\right\}
$$

Whenever there is no ambiguity, we tend to use v in place of $\left(v, v^{*}\right)$. We define the potential to be $D(v):=D_{S \backslash \overline{K_{0}}}(v)+D_{K_{0}}\left(v^{*}\right)$.

Remark (p.108). The potential can be also derived by the following process: Let a smoothing function λ be fixed, which is identically 1 in the hole, and vanishes outside the lid. We define the 2 -forms $\Psi=(1-\lambda)[\mathrm{d} v, \mathrm{~d} v]+\lambda\left[\mathrm{d} v^{*}, \mathrm{~d} v^{*}\right]$ over S, and that $\Psi^{\prime}=\lambda\left([\mathrm{d} v, \mathrm{~d} v]-\left[\mathrm{d} v^{*}, \mathrm{~d} v^{*}\right]\right)$ over $K_{0}^{\prime} \backslash \overline{K_{0}}$. Then $D(v)$ can be given by the sum of $D_{\lambda}(v):=\int_{S} \Psi$ and $D_{\lambda}^{\prime}(v):=\int_{K_{0}^{\prime} \backslash \overline{K_{0}}} \Psi^{\prime}$.
Fact 3 (pp.108-109).

1. $\forall v \in \mathscr{F}, 0 \leq D(v)<\infty$.
2. If U exists, then $\left(u, u^{*}\right):=\left(\left.U\right|_{S \backslash \overline{K_{0}}},\left.U\right|_{K_{0}^{\prime}}-\Phi\right) \in \mathscr{F}$.
3. If Φ can be extended on an open disk K that contains the closure of the lid, then there exists a cut-off function λ such that $\left.\lambda\right|_{K_{0}^{\prime}} \equiv 1$ and $\left.\lambda\right|_{S \backslash K} \equiv 0$. Therefore the pair (v_{0}, v_{0}^{*}) which is defined by $v_{0}^{*} \equiv 0, v_{0} \equiv \lambda \Phi$ on $K \backslash K_{0}$, and $v_{0} \equiv 0$ on $S \backslash K$ is a competing function.

In summary, we are free to assume $\mathscr{F} \neq \varnothing$
4. Let K be contained in the lid or the punched surface. Suppose that $v_{1}, v_{2} \in$ \mathscr{F} coincide outside of K. That is, $v_{1} \equiv v_{2}$ and $v_{1}^{*} \equiv v_{2}^{*}$ respectively on each of their domains except on K. Then

$$
D\left(v_{1}\right)-D\left(v_{2}\right)= \begin{cases}D_{K}\left(v_{1}\right)-D_{K}\left(v_{2}\right) & \text { whenever } K \subseteq S \backslash \overline{K_{0}} \\ D_{K}\left(v_{1}^{*}\right)-D_{K}\left(v_{2}^{*}\right) & \text { whenever } K \subseteq K_{0}^{\prime}\end{cases}
$$

(hint: for the second case, apply Green's theorem)
Observation 4 (p.110). $\mathscr{F}=v_{0}+\mathfrak{M}(S)$ in the following senses:
First, for all $v_{1}, v_{2} \in \mathscr{F}, v_{1}-v_{2}$ and $v_{1}^{*}-v_{2}^{*}$ agree on the lock-ring, so they define an admissible function on S. Conversely, for all $v \in \mathscr{F}$ and $w \in \mathfrak{M}(S)$, $\left(v+w, v^{*}+w\right)$ lies in \mathscr{F}. Therefore for a fixed member $v_{0} \in \mathscr{F}$, there is a one-to-one correspondence $\mathscr{F} \leftrightarrow \mathfrak{M}(S), v \mapsto v-v_{0}$

Second, define $T:=K_{0}+\left(S \backslash \overline{K_{0}}\right)$ to be the direct sum of spaces, which may be identified with $S \backslash \partial K_{0}$ sometimes. We identify $v \in \mathscr{F}$ with the corresponding function in $\mathcal{C}^{1}(T)$, which is defined by

$$
p \mapsto \begin{cases}v(p) & \text { if } p \in S \backslash \overline{K_{0}} \\ v^{*}(p) & \text { if } p \in K_{0}\end{cases}
$$

and satisfies $D_{T}(v)=D(v)<\infty$. Thus $v \in \mathfrak{M}(T)$.
Finally, notice that $\left(\mathfrak{M}(T) / \sim, D_{T}(\cdot, \cdot)\right)$ is a inner-product space over \mathbb{R}, where the equivalence relation \sim presents " $v_{1} \sim v_{2} \Leftrightarrow v_{1}-v_{2}=$ const." In addition, $\mathfrak{M}(S)$, which is included in $\mathfrak{M}(T)$ by restriction, is a subspace. Therefore we can handle the problem as a problem of orthogonal projection: find $v_{/ /}=w \in \mathfrak{M}(S)$ so that the norm of $v_{\perp}=u=v-w$ is minimized.

Proposition 5 (p.110, due to Beppo Levi). Define $d:=\inf \{D(v): v \in \mathscr{F}\}$. Then for all $v_{1}, v_{2} \in \mathscr{F}$,

$$
\sqrt{D_{S}\left(v_{1}-v_{2}\right)} \leq \sqrt{D\left(v_{1}\right)-d}+\sqrt{D\left(v_{2}\right)-d}
$$

Proof. As mentioned, we identify \mathscr{F} as a subset of $\mathfrak{M}(T)$.
Let $\lambda \in \mathbb{R}$. If $\lambda \neq-1$, then $\frac{\lambda v_{1}+v_{2}}{\lambda+1} \in \mathscr{F}$. Hence $D_{T}\left(\frac{\lambda v_{1}+v_{2}}{\lambda+1}\right)=D\left(\frac{\lambda v_{1}+v_{2}}{\lambda+1}\right) \geq d$, so $D_{T}\left(\lambda v_{1}+v_{2}\right) \geq(\lambda+1)^{2} d$. The last inequality remains valid when $\lambda=-1$.

In summary, the quadratic function on λ

$$
\lambda^{2}\left(D_{T}\left(v_{1}\right)-d\right)+2 \lambda\left(D_{T}\left(v_{1}, v_{2}\right)-d\right)+\left(D_{T}\left(v_{2}\right)-d\right)
$$

is always ≥ 0. Hence we have the discriminant

$$
\left(D_{T}\left(v_{1}, v_{2}\right)-d\right)^{2}-\left(D_{T}\left(v_{1}\right)-d\right)\left(D_{T}\left(v_{2}\right)-d\right) \leq 0
$$

It follows that

$$
\begin{aligned}
0 & \leq D_{T}\left(v_{1}-v_{2}\right) \\
& =D_{T}\left(v_{1}\right)-2 D_{T}\left(v_{1}, v_{2}\right)+D_{T}\left(v_{2}\right) \\
& =\left(D_{T}\left(v_{1}\right)-d\right)+\left(D_{T}\left(v_{2}\right)-d\right)-2\left(D_{T}\left(v_{1}, v_{2}\right)-d\right) \\
& \leq\left(D_{T}\left(v_{1}\right)-d\right)+\left(D_{T}\left(v_{2}\right)-d\right)+2 \sqrt{\left(D_{T}\left(v_{1}\right)-d\right)\left(D_{T}\left(v_{2}\right)-d\right)} \\
& =\left(\sqrt{D_{T}\left(v_{1}\right)-d}+\sqrt{D_{T}\left(v_{2}\right)-d}\right)^{2} \\
\Rightarrow & \sqrt{D_{T}\left(v_{1}-v_{2}\right)} \leq \sqrt{D_{T}\left(v_{1}\right)-d}+\sqrt{D_{T}\left(v_{2}\right)-d} \\
\Rightarrow & \sqrt{D_{S}\left(v_{1}-v_{2}\right)} \leq \sqrt{D\left(v_{1}\right)-d}+\sqrt{D\left(v_{2}\right)-d}
\end{aligned}
$$

Corollary (p.111). If a minimizing function exists, it is unique up to an additive constant.

Notation (p.111). $\lim _{v}$ means the limitation taken as $D(v) \rightarrow d$ among those $v \in \mathscr{F}^{\prime}$, where $\mathscr{F}^{\prime}:=\left\{v \in \mathscr{F}: \int_{\partial K_{0}} v^{*} \mathrm{~d} s=0\right\}$.

2 Fourierreihe

Let $K=B_{z}(0 ; R)$ be a fixed z-disk, and $z=x+i y=r e^{i \theta}$. For all $v, w \in \mathfrak{M}(K)$, define $J_{z, K}(v, w):=\iint_{z(K)} v(z) w(z) \mathrm{d} x \mathrm{~d} y$, and that $J_{z, K}(v):=J_{z, K}(v, v)$.

Let $u=\bar{v}$ be the harmonic function on K that agree with $v \in \mathfrak{M}(K)$ on ∂K. Then u is the real part of an analytic function $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$. Hence

$$
\begin{aligned}
u(z)=\operatorname{Re}(f(z)) & =\sum_{n=0}^{\infty}\left(\operatorname{Re}\left(c_{n}\right) \operatorname{Re}\left(z^{n}\right)-\operatorname{Im}\left(c_{n}\right) \operatorname{Im}\left(z^{n}\right)\right) \\
& =a_{0}+\sum_{n=1}^{\infty}\left(a_{n} r^{n} \cos (n \theta)+b_{n} r^{n} \sin (n \theta)\right)
\end{aligned}
$$

where $a_{n}=\operatorname{Re}\left(c_{n}\right)$ and $b_{n}=-\operatorname{Im}\left(c_{n}\right)$. Notice that $\int_{0}^{2 \pi} f\left(r e^{i \theta}\right) e^{-n i \theta} \mathrm{~d} \theta=2 \pi r^{n} c_{n}$ for $n \geq 0$, and $=0$ for $n<0$. Hence for all $n>0$,

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi r^{n}} \operatorname{Re}\left(\int_{0}^{2 \pi} f\left(r e^{i \theta}\right) e^{-n i \theta} \mathrm{~d} \theta\right) \\
& =\frac{1}{2 \pi r^{n}} \operatorname{Re}\left(\int_{0}^{2 \pi} f\left(r e^{i \theta}\right)\left(e^{-n i \theta}+e^{n i \theta}\right) \mathrm{d} \theta\right) \\
& =\frac{1}{2 \pi r^{n}} \int_{0}^{2 \pi} \operatorname{Re}\left(f\left(r e^{i \theta}\right)(2 \cos (n \theta))\right) \mathrm{d} \theta \\
& =\frac{1}{\pi r^{n}} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) \cos (n \theta) \mathrm{d} \theta \quad, \text { and similarly, } \\
b_{n} & =\frac{1}{\pi r^{n}} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) \sin (n \theta) \mathrm{d} \theta
\end{aligned}
$$

Note that $a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r e^{i \theta}\right) \mathrm{d} \theta$
Define $P_{n}=\operatorname{Re}\left(z^{n}\right)=r^{n} \cos (n \theta), Q_{n}=\operatorname{Im}\left(z^{n}\right)=r^{n} \sin (n \theta) \in \mathfrak{M}(K)$. Observe that $\mathrm{d} P_{n}={ }^{*} \mathrm{~d} Q_{n}$, so that by Green's formula,

$$
\begin{aligned}
D_{K}\left(v, P_{n}\right) & =\int_{K} \mathrm{~d} v \wedge \mathrm{~d} Q_{n}=\int_{\partial K} v \mathrm{~d} Q_{n} \\
& =n R^{n} \int_{0}^{2 \pi} v\left(R e^{i \theta}\right) \cos (n \theta) \mathrm{d} \theta \\
& =n R^{n} \int_{0}^{2 \pi} u\left(R e^{i \theta}\right) \cos (n \theta) \mathrm{d} \theta \\
& =\pi n R^{2 n} a_{n} \\
D_{K}\left(v, Q_{n}\right) & =\pi n R^{2 n} b_{n}
\end{aligned}
$$

$$
=\pi n R^{2 n} a_{n} \quad, \text { and similarly }
$$

By setting $u=v=P_{n}$ or Q_{n}, we have the orthogonality relations

$$
\begin{cases}D_{K}\left(P_{m}, Q_{n}\right)=0 & \text { without exception } \\ D_{K}\left(P_{m}, P_{n}\right)=D_{K}\left(Q_{m}, Q_{n}\right)=0 & \text { if } m \neq n \\ D_{K}\left(P_{n}\right)=D_{K}\left(Q_{n}\right)=\pi n R^{2 n} & \text { without exception }\end{cases}
$$

Also, by integrating under the polar coordinate, we have

$$
\begin{cases}J_{z, K}\left(P_{m}, Q_{n}\right)=0 & \text { without exception } \\ J_{z, K}\left(P_{m}, P_{n}\right)=J_{z, K}\left(Q_{m}, Q_{n}\right)=0 & \text { if } m \neq n \\ J_{z, K}\left(P_{n}\right)=J_{z, K}\left(Q_{n}\right)=\frac{\pi}{2 n+2} R^{2 n+2} & \text { if } n>0 \\ J_{z, K}\left(P_{0}\right)=\pi R^{2} & \end{cases}
$$

Since $u(z)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} P_{n}+b_{n} Q_{n}\right)$ converges uniformly, the orthogonality relation of D_{K} provides that

$$
D_{K}(v) \geq D_{K}(u)=\sum_{n=1}^{\infty} \pi n R^{2 n}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

Similarly,

$$
J_{z, K}(u)=\pi R^{2} a_{0}^{2}+\sum_{n=1}^{\infty} \frac{\pi}{2 n+2} R^{2 n+2}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

Lemma 6 (p.103). For all $v \in \mathfrak{M}(K), \exists a \in \mathbb{R}$ such that $J_{z, K}(v-a) \leq$ const. $D_{K}(v)$
Proof. On one hand, take $a=a_{0}$ with respect to $u=\bar{v}$, then

$$
\begin{aligned}
J_{z, K}\left(u-a_{0}\right) & =\sum_{n=1}^{\infty} \frac{\pi}{2 n+2} R^{2 n+2}\left(a_{n}^{2}+b_{n}^{2}\right) \leq \frac{R^{2}}{4} \sum_{n=1}^{\infty} \pi n R^{2 n}\left(a_{n}^{2}+b_{n}^{2}\right) \\
& =\frac{R^{2}}{4} D_{K}(u)
\end{aligned}
$$

On the other hand, for $w=v-u$, which vanishes on ∂K,

$$
w\left(\rho e^{i \theta}\right)=\int_{R}^{\rho} \frac{\partial w(z)}{\partial r} \mathrm{~d} r
$$

By Schwartz's inequality,

$$
\begin{aligned}
w\left(\rho e^{i \theta}\right)^{2} & =\left\{\int_{R}^{\rho}\left[\frac{\partial w(z)}{\partial r} \sqrt{r}\right]\left[\frac{1}{\sqrt{r}}\right] \mathrm{d} r\right\}^{2} \leq \int_{R}^{\rho}\left[\frac{\partial w(z)}{\partial r}\right]^{2} r \mathrm{~d} r \int_{R}^{\rho} \frac{1}{r} \mathrm{~d} r \\
& =\int_{\rho}^{R}\left[\frac{\partial w}{\partial x} \cos \theta+\frac{\partial w}{\partial x} \sin \theta\right]^{2} r \mathrm{~d} r(\log R-\log \rho) \\
& =\int_{\rho}^{R} 2\left[\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right] r \mathrm{~d} r(\log R-\log \rho)
\end{aligned}
$$

Next, integrate the previous equation in order to yield that

$$
\begin{aligned}
J_{z, K}(w) & \leq \int_{0}^{R} \int_{0}^{2 \pi} \int_{\rho}^{R} 2\left[\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial x}\right)^{2}\right] r(\log R-\log \rho) \rho \mathrm{d} r \mathrm{~d} \theta \mathrm{~d} \rho \\
& =\int_{0}^{R} 2\left\{\int_{\rho \leq|z| \leq R}[\mathrm{~d} w, \mathrm{~d} w]\right\}(\log R-\log \rho) \rho \mathrm{d} \rho \\
& \leq 2 D_{K}(w) \int_{0}^{R}(\log R-\log \rho) \rho \mathrm{d} \rho=\frac{R^{2}}{4} D_{K}(w)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
J_{z, K}\left(v-a_{0}\right) & =J_{z, K}\left(\left(u-a_{0}\right)+w\right) \leq 2\left(J_{z, K}\left(u-a_{0}\right)+J_{z, K}(w)\right) \\
& \leq \frac{R^{2}}{2}\left[D_{K}(u)+D_{K}(w)\right]=\frac{R^{2}}{2} D_{K}(v)
\end{aligned}
$$

Proposition 7 (p.112). For all $K=B_{z}(0 ; R)$, there is a constant C so that for every $w \in \mathfrak{M}(S)$ that satisfies

$$
\int_{\partial K_{0}} w \mathrm{~d} s=R_{0} \int_{0}^{2 \pi} w\left(z_{0}^{-1}\left(R_{0} e^{i \theta}\right)\right) \mathrm{d} \theta=0
$$

we have $J_{z, K}(w) \leq C D_{S}(w)$.
Proof. Recall that K_{0} is the hole. Let each $1 \leq j \leq n$ be corresponded with K_{j}, which is a z_{j}-disk with radius R_{j}, such that $K_{n}=K, z_{n}=z$, and that $\forall 1 \leq j \leq n$, $K_{j-1} \cap K_{j} \neq \varnothing$. Set the constants c_{j} so that $\int_{\partial K_{j}}\left(w-c_{j}\right)=0 \mathrm{~d} s$, where $c_{0}=0$.

We prove by induction. If $n=0$, i.e., $K=K_{0}$, we take $C=\frac{R_{0}^{2}}{2}$ by Lemma 6 .
It suffices to prove that if our claim holds on K_{n-1}, then it holds on K_{n}. Let $k \subset \subset K_{n-1} \cap K_{n}$ be a z_{n}-disk with radius $t R_{n}$, where $0<t<1$. Let m be an upper bound for $\left|\frac{\mathrm{d} z_{n}}{\mathrm{~d} z_{n-1}}\right|$ on k. By the inductive hypothesis, there is a constant C^{\prime} which only depends on K_{n-1} such that

$$
J_{z_{n}, k}(w) \leq m^{2} J_{z_{n-1}, k}(w) \leq m^{2} C^{\prime} D_{S}(w)
$$

In addition, by Lemma 6, we have

$$
J_{z_{n}, k}\left(w-c_{n}\right) \leq J_{z_{n}, K_{n}}\left(w-c_{n}\right) \leq \frac{1}{2} R_{n}^{2} D_{k}(w) \leq \frac{1}{2} R_{n}^{2} D_{S}(w)
$$

It follows that

$$
\begin{aligned}
\pi c_{n}^{2} t^{2} R_{n}^{2}=J_{z_{n}, k}\left(c_{n}\right) & \leq 2\left(J_{z_{n}, k}(w)+J_{z_{n}, k}\left(w-c_{n}\right)\right) \\
& \leq\left(2 m^{2} C^{\prime}+R_{n}^{2}\right) D_{S}(w)
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
J_{z, K}(w) & \leq 2\left(J_{z_{n}, K_{n}}\left(w-c_{n}\right)+J_{z_{n}, K_{n}}\left(c_{n}\right)\right) \\
& \leq 2\left(\frac{1}{2} R_{n}^{2} D_{K}(w)+\pi c_{n}^{2} R_{n}^{2}\right) \\
& \leq 2\left(\frac{1}{2} R_{n}^{2} D_{S}(w)+\frac{2 m^{2} C^{\prime}+R_{n}^{2}}{t^{2}} D_{S}(w)\right) \\
& =\left(R_{n}^{2}+\frac{4 m^{2} C^{\prime}+2 R_{n}^{2}}{t^{2}}\right) D_{S}(w)
\end{aligned}
$$

3 Die Mittelwertfunktion

Recall. Let $z=x+i y$ be a local coordinate map and $K=B_{z}(0 ; R)$ be a open disk with "center" $p=z^{-1}(0)$. If v is harmonic, then

$$
v(p)=\frac{1}{\pi R^{2}} \iint_{K} v(x+i y) \mathrm{d} x \mathrm{~d} y
$$

Notation (p.113). From now on, let a point $p \in S$, a coordinate map z at p be fixed. In addition, let $K=B_{z}(0 ; R)$ be contained in the punched surface or the lid. Define a map $\mathbf{M}_{z, K}: \mathfrak{M}(K) \rightarrow \mathbb{R}$, which is abbreviated to \mathbf{M}, as following:

$$
\mathbf{M}_{z, K}(w)=\frac{1}{\pi R^{2}} \iint_{K} v(x+i y) \mathrm{d} x \mathrm{~d} y=\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} v\left(r e^{i \theta}\right) r \mathrm{~d} \theta \mathrm{~d} r
$$

If K is contained in the punched surface, one yields from Schwarz's inequality, and the Propositions 5 and 7 that for all $v_{1}, v_{2} \in \mathscr{F}^{\prime}$,

$$
\begin{aligned}
\left(\mathbf{M}\left(v_{1}\right)-\mathbf{M}\left(v_{2}\right)\right)^{2} & =\left(\frac{1}{\pi R^{2}} \iint_{K}\left(v_{1}-v_{2}\right) \mathrm{d} x \mathrm{~d} y\right)^{2} \\
& \leq \frac{1}{\pi R^{2}} \iint_{K}\left(v_{1}-v_{2}\right)^{2} \mathrm{~d} x \mathrm{~d} y=\frac{1}{\pi R^{2}} J_{z, K}\left(v_{1}-v_{2}\right) \\
& \leq \frac{C}{\pi R^{2}}\left(\sqrt{D\left(v_{1}\right)-d}+\sqrt{D\left(v_{2}\right)-d}\right)^{2}
\end{aligned}
$$

That is,

$$
\begin{equation*}
\left|\mathbf{M}\left(v_{1}\right)-\mathbf{M}\left(v_{2}\right)\right| \leq \frac{1}{R} \sqrt{\frac{C}{\pi}}\left(\sqrt{D\left(v_{1}\right)-d}+\sqrt{D\left(v_{2}\right)-d}\right) \tag{1}
\end{equation*}
$$

Therefore $\lim _{v} \mathbf{M}(v)$ exists. We denote the limit by $u(p)$. Then by the previous estimation,

$$
\begin{equation*}
|\mathbf{M}(v)-u(p)| \leq \frac{1}{R} \sqrt{\frac{C}{\pi}} \sqrt{D(v)-d} \tag{2}
\end{equation*}
$$

For all $q \in K$, let \mathbf{M}_{q} denote $\mathbf{M}_{z, k_{q}}$, where the disk $k_{q}:=B_{z}(z(q) ; R-|z(q)|)$ is contained in K. Since we have an estimation which is similar to (1), the limit $u(q):=\lim _{v} \mathbf{M}_{q}(v)$ exists. Moreover, in place of (2),

$$
\left|\mathbf{M}_{q}(v)-u(q)\right| \leq \frac{1}{R-|z(q)|} \sqrt{\frac{C}{\pi}} \sqrt{D(v)-d}
$$

It follows that $\mathbf{M}_{q}(v)$ converges uniformly to $u(q)$ on $q \in k$, where $k \subset \subset K$ is a disk (concentric with K).

Remark (p.114). If K is contained in the lid, we can compute $u^{*}(p):=\lim _{v} \mathbf{M}\left(v^{*}\right)$, which existence and estimations are given in a similar way. In particular, if K is contained in the lock-ring, $u=u^{*}+\Phi$ because Φ is harmonic.

Proposition 8 (p.114). $u: K \rightarrow \mathbb{R}$ or $u^{*}: K \rightarrow \mathbb{R}$ is harmonic (whenever any one of which is defined).

Proof. For simplicity, we suppose that $K \subseteq S \backslash \overline{K_{0}}$ and consider $v \in \mathscr{F}^{\prime}$. A similar argument holds for $K \subset K_{0}^{\prime}$ and v^{*}.

Recall that $\bar{v} \in \mathfrak{M}(K)$ is harmonic. We define $\widetilde{v} \in \mathscr{F}$ by applying a smoothing process so that \widetilde{v} coincides with v outside of K, but with \bar{v} in $k=B_{z}(0 ; r)$, where $0<r<R$. Let the smoothing be well chosen so that $D_{K}(\widetilde{v}) \rightarrow D_{K}(\bar{v})$ as $r \rightarrow R^{-}$.

By Lemma 1, $D_{K}(\bar{v}) \leq D_{K}(v)$, and it takes " $=$ " if and only if v is harmonic, namely $v=\bar{v}=\widetilde{v}$. Therefore for sufficiently large r, we have $D_{K}(\widetilde{v}) \leq D_{K}(v)$. Notice that $\bar{v}=\overline{\widetilde{v}}$, so that $D_{K}(\bar{v}) \leq D_{K}(\widetilde{v})$. Hence $D_{K}(\bar{v}) \leq D_{K}(\widetilde{v}) \leq D_{K}(v)$. By Fact 3.4, $D(\widetilde{v}) \leq D(v)$.

We replace v_{2} with $\widetilde{v_{2}}$ in Levi's inequality to yield that

$$
\begin{aligned}
\sqrt{D_{K}\left(v_{1}-\widetilde{v_{2}}\right)} & \leq \sqrt{D_{S}\left(v_{1}-\widetilde{v_{2}}\right)} \\
& \leq \sqrt{D\left(v_{1}\right)-d}+\sqrt{D\left(\widetilde{v_{2}}\right)-d} \\
& \leq \sqrt{D\left(v_{1}\right)-d}+\sqrt{D\left(v_{2}\right)-d}
\end{aligned}
$$

Take $r \rightarrow R^{-}$. Thus

$$
\begin{equation*}
\sqrt{D_{K}\left(v_{1}-\overline{v_{2}}\right)} \leq \sqrt{D\left(v_{1}\right)-d}+\sqrt{D\left(v_{2}\right)-d} \tag{3}
\end{equation*}
$$

Similarly,

$$
\sqrt{D_{K}\left(\overline{v_{1}}-\overline{v_{2}}\right)} \leq \sqrt{D\left(v_{1}\right)-d}+\sqrt{D\left(v_{2}\right)-d}
$$

Repeat the argument for (1). So $\lim _{v} \mathbf{M}_{q}(\bar{v})=u(q)$. Note that $\mathbf{M}_{q}(\bar{v})=\bar{v}(q)$ because \bar{v} is harmonic. Hence in place of (2),

$$
|\bar{v}(q)-u(q)| \leq \frac{1}{R-|z(q)|} \sqrt{\frac{C}{\pi}} \sqrt{D(v)-d}
$$

As a result, $\lim _{v} \bar{v}(q)=u(q)$ uniformly on $q \in k$ for any $k \subset \subset K$. Therefore u is also harmonic.

Lemma 9 (p.115). For all $v \in \mathscr{F}^{\prime}$, we have

- $D_{K}(v-\bar{v}) \leq 4(D(v)-d)$
- $J_{z, K}(v-\bar{v}) \leq R^{2}(D(v)-d)$

Proof. First, take $v_{1}=v_{2}=v$ in (3) to get the first estimation. Next, since $(v-\bar{v})$ vanishes on $\partial K, J_{z, K}(v-\bar{v}) \leq \frac{R^{2}}{4} D_{K}(v-\bar{v}) \leq R^{2}(D(v)-d)$ by the inequality for w in Lemma 6.

In order to make u an ansatz, we need one more step:
Claim (p.114). $u(p):=\lim _{v} \mathbf{M}_{z, K}(v)$ (or u^{*}, resp.) does not depend on z nor K. Proof. Let $z^{\prime}=x^{\prime}+i y^{\prime}$ be another coordinate, and $K^{\prime}=B_{z^{\prime}}\left(0 ; R^{\prime}\right)$ be a z^{\prime}-disk with center p^{\prime}. Observe that it suffices to prove for $K^{\prime} \subset \subset K$ and $p=p^{\prime}$.

Note that $\left|\frac{\mathrm{d} z}{\mathrm{~d} z^{\prime}}\right|$ has an lower bound $\frac{1}{m}>0$ on K^{\prime}. Therefore

$$
\begin{aligned}
\left(\mathbf{M}_{z^{\prime}, K^{\prime}}(v)-\mathbf{M}_{z^{\prime}, K^{\prime}}(\bar{v})\right)^{2} & \leq \frac{1}{\pi R^{\prime 2}} \iint_{K^{\prime}}(v-\bar{v})^{2} \mathrm{~d} x^{\prime} \mathrm{d} y^{\prime} \\
& \leq \frac{m^{2}}{\pi{R^{\prime}}^{2}} \iint_{K}(v-\bar{v})^{2} \mathrm{~d} x \mathrm{~d} y \\
& =\frac{m^{2}}{\pi R^{\prime 2}} J_{z, K}(v-\bar{v}) \\
& \leq \frac{m^{2} R^{2}}{\pi R^{2}}(D(v)-d)
\end{aligned}
$$

Because \bar{v} is harmonic on K^{\prime}, we have $\mathbf{M}_{z^{\prime}, K^{\prime}}(\bar{v})=\bar{v}(p)$. Hence

$$
u^{\prime}(p):=\lim _{v} \mathbf{M}_{z^{\prime}, K^{\prime}}(v)=\lim _{v} \bar{v}(p)=u(p)
$$

Proof of Theorem 2. We claim that $\left(u, u^{*}\right)$ minimizes $D(\cdot)$.
First, observe that for B, a smaller z-disk concentric with K (the radius of B is smaller than the radius of $K), \lim _{v} D_{B}(v-\bar{v})=0$ follows from Lemma 9, and $\lim _{v} D_{B}(\bar{v}-u)=0$ follows from the fact that the derivatives of \bar{v} converge uniformly to those of u on B. Therefore $\lim _{v} D_{B}(v-u)=0$ follows from the triangle inequality.

Next, associate each point p with a local coordinate z, a z-disk $K=K(p)$, and a smaller z-disk $B=B(p)$ such that $p \in B(p) \subset \subset K(p)$. Since $\{B(p)\}_{p \in S}$ covers S, there is a countable subcover $\left\{B\left(p_{i}\right)\right\}_{i=1}^{\infty}$ (by Lindelöf's covering theorem).

Next, we construct Diudonné factors μ_{i} by $\left\{K\left(p_{i}\right)\right\}$ and $\left\{B\left(p_{i}\right)\right\}$ such that $\sum_{i} \mu_{i} \equiv 1$ with each $\mu_{i} \in \mathcal{C}^{1}(S,[0,1])$, and vanishes outside $K\left(p_{i}\right)$. (See p.74)

The conclusions above lead to

$$
\begin{align*}
\lim _{v} \int_{S} \mu_{i}[\mathrm{~d}(v-u), \mathrm{d}(v-u)] & \leq \lim _{v} \int_{K\left(p_{i}\right)}[\mathrm{d}(v-u), \mathrm{d}(v-u)]=0 \\
\Rightarrow & \lim _{v} \int_{S} \mu_{i}[\mathrm{~d}(v-u), \mathrm{d}(v-u)] \tag{4}
\end{align*}=0
$$

In the statements above, $v-u \in \mathcal{C}^{1}(S)$. Naturally, for all $v_{1}, v_{2} \in \mathscr{F}$, we define

$$
D_{i}\left(v_{1}, v_{2}\right)=\int_{S \backslash \overline{K_{0}}} \mu_{i}\left[\mathrm{~d} v_{1}, \mathrm{~d} v_{2}\right]+\int_{K_{0}} \mu_{i}\left[\mathrm{~d} v_{1}^{*}, \mathrm{~d} v_{2}^{*}\right]
$$

Observe that the triangle inequality of $\sqrt{D_{i}(\cdot)}$ holds. Hence

$$
\left|\sqrt{D_{i}(v)}-\sqrt{D_{i}(u)}\right| \leq \sqrt{D_{i}(v-u)}
$$

Combine this with (4). It follows that $\lim _{v} \sum_{i=1}^{n} D_{i}(v)=\sum_{i=1}^{n} D_{i}(u)$. Observe that for all $v, \sum_{i=1}^{\infty} D_{i}(v)$ increases to $D(v)$. Therefore

$$
D(u)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} D_{i}(u)=\lim _{n \rightarrow \infty} \lim _{v} \sum_{i=1}^{n} D_{i}(v) \leq \lim _{n \rightarrow \infty} \lim _{v} D(v)=d
$$

By the definition of $d, D(u) \geq d$, so $D(u)=d$. As a result, for all $w \in \mathfrak{M}(S)$ and $\varepsilon \in \mathbb{R},(u+\varepsilon w) \in \mathscr{F}$ implies $D(u+\varepsilon w) \geq D(u)$, so $D(u, w)=0$.

Finally, we claim that the function U, given by u on the punched surface and $u^{*}+\Phi$ on the lid, minimizes $D_{S}(\cdot)$. It suffices to take any $w \in \mathfrak{M}(S)$ that vanishes in some neighborhood of every singularity of Φ, and check that $D_{S}(U, w)=0$. We derive from the equation $D(u, w)=0$ that

$$
\begin{aligned}
0=D(u, w) & =\int_{S \backslash \overline{K_{0}}}[\mathrm{~d} u, \mathrm{~d} w]+\int_{K_{0}}\left[\mathrm{~d} u^{*}, \mathrm{~d} w\right] \\
& =\int_{S \backslash \overline{K_{0}}}[\mathrm{~d} U, \mathrm{~d} w]+\int_{K_{0}}[\mathrm{~d}(U-\Phi), \mathrm{d} w] \\
& =\int_{S}[\mathrm{~d} U, \mathrm{~d} w]-\int_{K_{0}}[\mathrm{~d} \Phi, \mathrm{~d} w] \\
& =D_{S}(U, w)-\int_{K_{0}}[\mathrm{~d} \Phi, \mathrm{~d} w] \\
& =D_{S}(U, w)-\int_{\partial K_{0}} w \frac{\partial \Phi}{\partial n} \mathrm{~d} s \\
& =D_{S}(U, w)
\end{aligned}
$$

because $\frac{\partial \Phi}{\partial n}=0$ along ∂K_{0}.

References

[1] Hermann Weyl, The Concept of a Riemann Surface, 3rd ed., Dover edition, translated by Gerald R. MacLane, Dover, Mineola, N.Y., 2009. pp.73-74, 93-118.

