
Chapter 4

HODGE THEOREM

We have seen in variations of geodesics and submanifolds that a geo-
metric object with the minimizing property leads to strong constraint on
the global geometry. However, it is in general difficult to find a minimiz-
ing object due to the hard non-linear analysis involved. For geodesics we
bypass the difficulty using the completeness assumption. For minimal sur-
faces this is already subtle and will only be discussed in later chapters.

There is nevertheless a situation where the analysis involved is entirely
within linear elliptic PDE and a satisfactory solution is achieved. This is
Hodge’s theory of harmonic forms on a compact oriented Riemannian manifold
(Mm, g): every cohomology class [w] 2 Hp

dR(M, R) admits a unique har-
monic representative which is also the absolute minimizer of the energy func-
tional E(w) =

R
M w ^ ⇤w within the class. Indeed what Hodge proved is

the famous decomposition theorem named after him

Ap(M) = Ker4
?

� Im4 = H
p ?
� dAp�1 ?

� d⇤Ap+1

for the Laplace operator 4 = dd⇤ + d⇤d, where d⇤ = (�1)mp+1
⇤ d⇤ is the

formal adjoint of d. The essential part is to show that the harmonic space
H

p = Ker4 is finite dimensional and consists of C• p-forms.
Hodge developed his theory around 1930s. One has to go to Hilbert

space completions (generalized functions) to start the discussion. Nowa-
days a nice approach is to use Fourier transforms on L2 spaces and Sobolev
spaces Hs to encode the degree of differentiability. The key result is the
regularity theorem called Garding’s inequality. Historically it was Hodge’s
theorem which laid the foundation of general linear elliptic PDEs.

We present the details in this chapter. We also give applications of har-
monic forms under the Bochner principle which describes the difference
between 4 and the connection Laplacian trr2 in terms of the curvature
tensor. This leads to strong topological constraint when Ric � 0.
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128 4. HODGE THEOREM

1. Hodge ⇤ operator

We need some preparation on inner product spaces in linear al-
gebra. On an inner product space (V, h , i) with dimR V = m, we
define the Hodge ⇤ operator on Lp(V) (the space of p-vectors)

⇤ : Lp(V) �! Ln�p(V)

as follows: for an O.N.B. e1, . . . , em 2 V, we consider the “orthogonal
complement”

e1 ^ . . . ^ ep
⇤
7�! ep+1 ^ . . . ^ em.

By taking into account the sign, for a = ei1 ^ . . . ^ eip 2 Lp(V), ⇤a 2
Ln�p(V) is the wedge of complemented ej’s with

a ^ ⇤a = e1 ^ . . . ^ em.

For general a 2 Lp(V), ⇤ is then defined by linear extensions.
For general p-vectors a, b 2 Lp(V), a = Â|I|=p aIei1 ^ . . . ^ eip ,

b = Â|J|=p bJej1 ^ . . . ^ ejp ,

a ^ (⇤b) = Â
|I|,|J|=p

aIbJ(ei1 ^ . . . ^ eip) ^ ⇤(ej1 ^ . . . ^ ejp)

= ha, bi e1 ^ . . . ^ en

where ha, bi is the induced inner product on Lp(V): in the notations
in Exercise 3.1, for Pv = P(v1 . . . vp), Pw = P(w1 . . . wp),

hv1 ^ . . . ^ vm, w1 ^ . . . ^ wmi := hPv, Pwi = det(vtw).

Exercise 4.1. Show that ⇤ is independent of the choices of orthonor-
mal basis with the same orientation and ⇤2 = (�1)p(n�p).

For a general oriented Riemannian manifold (Mm, g), we define
Hodge ⇤ operator ⇤ : Ap(M) ! Am�p(M) by applying the above
definition on each T⇤p M.

Exercise 4.2. Let w = f dx1
^ . . . ^ dxp in a chart (U, x). Give the

explicit formula of ⇤w using the metric tensor gij.
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In order to make use of the exterior algebra and ⇤ operator in
its full strength, we recall that vector fields are associated with their
corresponding 1-forms by the “Riesz representations”:

TpM ⇠
// T⇤p M

v �
// ṽ : w 7! hv, wi,

f̃ f 2 T⇤p M.�
oo

It is also customary to write ṽ as v[ since it is a one form vi = gij vj

and f̃ as f# since it is a vector field fi = gij fj.
The advantage to consider forms rather than vector fields is that

we may add or wedge forms in a transparent manner.
For example, in the Euclidean space M = R

3, gij = dij, a vector
field F = P ∂

∂x + Q ∂
∂y + R ∂

∂z has F̃ = P dx + Q dy + R dz and

r f ⌘ grad f = fd f ,

div F = ⇤ d ⇤ F̃,

curl F = g
⇤d F̃.

Thus we can put everything we need in vector calculus in the frame-
work of differential forms. Moreover, the above intrinsic (coordinate-
free) expressions extend the definitions of r f , div F and curl F to
arbitrary Riemannian manifolds (M, g).

Exercise 4.3. Let (M, g) be a Riemannian manifold, w be its volume
form.

(1) For f 2 C•(M), find the expression for r f in local coordi-
nates (U, x).

(2) For X 2 C•(TM), show that (divX)w = LX(w). Deduce
the expression for divX in local coordinate (U, x) from it.

Exercise 4.4. Let (M, g) be a Riemannian manifold, f 2 C•(M), we
define the Laplace–Beltrami operator DLB acting on C•(M) by

4LB f = divr f
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Show that in local coordinate (U, x),

4LB f =
1
pg

∂

∂xj

✓
p

ggij ∂ f
∂xi

◆
,

where g = det(gij). Deduce that the highest order term of 4LB is
just the usual Laplacian and the lower order term vanishes at x = 0
if we take normal coordinate.

Particularly, this shows that 4LB is the usual Laplacian when
(M, g) is the standard Euclidean space. In the next section, we will
generalize Laplacian to differential forms by Hodge Laplacian.

Example 4.1. The Maxwell equations describing the electric field E =

(E1, E2, E3) and the magnetic field B = (B1, B2, B3) read as

curl E = �
1
c

∂B
∂t

,(4.1)

div B = 0,(4.2)

div E = 4pr,(4.3)

curl B = �
1
c

∂E
∂t

+
4p

c
~j,(4.4)

where r is the charge density and~j is the current density.
Consider the Minkowski space(-time) R

3,1 with x0 = ct and de-
fine the energy–momentum tensor by the two form

F = Â Fij dxi
^ dxj

:=
3

Â
i=1

Ei dxi
^ dx0 + B1 dx2

^ dx3 + B2 dx3
^ dx1 + B3 dx1

^ dx2.

Or in matrix form:

(Fij) =

0

BBB@

0 �E1 �E2 �E3

E1 0 B3 �B2

E2 �B3 0 B1

E3 B2 �B1 0

1

CCCA
.

Then we check easily that (4.1) and (4.2) are equivalent to

dF = 0,
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while (4.3) and (4.4) are equivalent to

⇤ d ⇤ F = �
4p

c
j̃.

Here j = (cr,~j) is the density vector. The two equations can be fur-
ther simplified to one equation using concepts in the next section.

Exercise 4.5. Carry out the details in Example 4.1.

2. Harmonic forms

Given a closed (i.e. compact without boundary) oriented mani-
fold Mm with a Riemannian metric g, we define an inner product on
the space Ap(M) of smooth p-form on M by

(a, b) :=
Z

M
ha, bi dV =

Z

M
a ^ ⇤b,

where ⇤ : Lp
! Lm�p is the Hodge ⇤ operator with ⇤2 = (�1)(m�p)p.

Given a cohomology class [a] 2 Hp
dR(M), a closed p-form a0 rep-

resents [a] if and only if a0 = a + db for some b 2 Ap�1(M). An
important observation made by Hodge is that we can obtain a canon-
ical representation of the class [a] by requiring the norm ka + dbk to
be minimal.

Let d⇤ be the formal adjoint1 of d : Ap(M)! Ap+1(M). Namely

(a, d⇤b) := (da, b) =
Z

M
da ^ ⇤b

=
Z

M
d(a ^ ⇤b)� (�1)pa ^ d(⇤b)

= (�1)mp+1
Z

M
a ^ ⇤(⇤d ⇤ b).

Since this holds for all a, we get

d⇤ = (�1)mp+1
⇤ d⇤ : Ap+1(M)! Ap(M).

1So far (Ap(M), (, )) is only a pre-Hilbert space. We call d⇤ the formal adjoint
of d to distinguish with the adjoint of a linear operator on Hilbert spaces
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Definition 4.2. Let (Mm, g) be a Riemannian manifold, compact or
not, the formal adjoint of d is defined by d⇤ := (�1)mp+m+1

⇤ d⇤ on
Ap(M).

Exercise 4.6. Give the formula of d⇤ in local coordinates.

We will consider only compact manifolds in this chapter unless
specified otherwise. Let a be a closed p-form which has ”minimal
norm” in [a] 2 Hp

dR(M). Then for any t 2 R, b 2 Ap�1(M),

(a + tdb, a + tdb)

= (a, a) + 2(a, db)t + (db, db)t2

 (a, a)

This happens if and only if that

0 = (a, db) = (d⇤a, b), 8 b 2 Ap�1(M)

which is equivalent to d⇤a = 0. The discussion implies that

Lemma 4.3. A closed C• p-form a has minimal norm kak in its de Rham
cohomology class if and only if that d⇤a = 0. It is unique if it exists.

Definition 4.4. The Laplace operator on Ap(M) (or called the Hodge
Laplacian) is defined by

4 = (d + d⇤)2 = dd⇤ + d⇤d : Ap(M)! Ap(M).

We call a 2 Ap(M) is a harmonic form if4a = 0.

Lemma 4.5. For a compact Riemannian manifold (M, g), 4a = 0 if and
only if da = 0 and d⇤a = 0.

This follows easily from

(4a, a) = (dd⇤a + d⇤da, a) = (d⇤a, d⇤a) + (da, da).
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Thus, instead of looking for closed forms with minimal norm2,
Hodge’s observation is to look for the harmonic representative of the
cohomology class [a] 2 Hp

dR(M).
First of all, the operator 4 is self-adjoint, i.e. (4a, b) = (a,4b)

or 4 = 4⇤. Furthermore, the truly crucial property is that 4 is
elliptic—a notion to be explained soon. It turns out that we may and
should pose more general questions:

(1) When is the equation4a = b solvable?
(2) How to solve it if it is solvable?

The answer is provided by Hodge decomposition theorem whose pre-
cise form is given in the next section. Let H = {a | 4a = 0} be
the space of harmonic forms. Then Hodge decomposition theorem
asserts that Da = b is solvable if and only if b 2 H

?, the orthogonal
complement of harmonic forms.

The “only if part” is easy. For any g 2 H,

(b, g) = (4a, g) = (a,4g) = 0 =) b 2 H
?.

For example, since M is compact, the only harmonic functions are
constants. Let b 2 A0(M) (a function). If Da = b is solvable, then
b 2 H

? = R
?, i.e.

R
M b dV = 0.

The “if part” is non-trivial even for p = 0. The proof requires a,
by now standard, formalism in functional analysis. Here we give a
sketch of it and leave the details to the next section.

Let L : H ! H be a continuous (i.e. with bounded norm kLk)
linear operator on a pre-Hilbert space H with adjoint operator L⇤.
Consider the equation Lw = b. For any f 2 H,

(w, L⇤f) = (Lw, f) = (b, f).

Thus any solution w defines a linear functional ` such that

(4.5) `(L⇤f) = (b, f) 8 f 2 H.

2This amounts to prove that a minimizing sequence ai has a smooth limit after
passing to a subsequence, known as the direct method of calculus of variations.
However in practice it relies on technical estimates on various norms which are
eventually equivalent to proving the regularity theorem in the related PDE.
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If we know that ` is bounded, which is the hard part and requires
that b 2 H

? in the case we want to apply to, then the domain of
definition of ` can be extended from Im L⇤ to H, while keeping the
same norm k`k, by the Hahn–Banach theorem.

Definition 4.6. A bounded linear functional ` on H satisfying (4.5) is
called a weak solution to Lw = b.

If H is furthermore a Hilbert space (i.e. complete), then by Riesz
representation theorem, such an ` comes from some a 2 H with

`(L⇤f) = (a, L⇤f) = (La, f).

Hence (La� b, f) = 0 for all f 2 H and then La = b. However, the
space of C• forms Ap(M) is never complete and one must pass to
certain completion to apply the above formalism. As a result, the so-
lution a is a priorily only a certain L2 form and we need a “regularity
theorem” to conclude that a is indeed a C• form.

3. Elliptic operators and Hodge decomposition

Consider the following typical situation:

E

✏✏

a C• vector bundle of rank r,

Mm

f : a section

[[

a C• manifold,

and H = C•(M, E) be the vector space of all C• sections. E.g. E =

Lp(T⇤M), r = Cm
p , and H = Ap(M).

Definition 4.7. A R-linear map L : C•(M, E) ! C•(M, E) is a linear
differential operator of order d 2 N if under any local trivialization
U ⇢ R

m, E|U ⇠= U ⇥R
r, C•(U, E

��
U) ⇠= C•(U)r, L is represented by

a differnetial operator of order d:

L : C•(U)r
�!C•(U)r.

That is, under the multi-index notations,

L f = Â
|a|d

Aa(x) Da f , x 2 U,
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where f = ( f 1, . . . , f r)t and Aa 2 Mr⇥r(C•(U)).

Write
L = Â

|a|=d
Aa(x)Da + Â

|a|<d
Aa(x)Da

with non-trivial top order term Ld := Â|a|=d Aa Da
6⌘ 0.

For x = (x1, . . . , xm)t
2 R

m, we define the polynomial in xi’s by

pL(x, x) := Â
a

Aa(x) xa

called the symbol of L over E|U. In general it depends on the trivial-
ization and is not globally defined. Nevertheless we have

Exercise 4.7. Show that the top order term

sL(x, x) := pLd(x, x)

forms a tensor sL 2 C•(Symd(T⇤M)⌦ End E), called the principal
symbol of L.

Definition 4.8. Let L be a differential operator of order d on E! M.

(1) L is elliptic over an open subset U ⇢ M if

sL(x, x) 2 End E

is invertible for all x 2 U and x 2 Tx M \ {0}.
(2) Suppose that E ! M is equipped with a C• bundle metric.

Then L is uniform elliptic over a subset S ⇢ M if

|sL(x, x) v| � C|x|
d
|v|, 8 x 2 S, x 6= 0,

for some C independent of x 2 S.

In particular, ellipticity on U implies uniform ellipticity over any
compact subsets S ⇢ U.

Remark 4.9. In a similar manner we define differential operators L :
C•(E) ! C•(F) of order d between vector bundles over M. The
principal symbol is a section sL 2 C•(Symd(T⇤M) ⌦ Hom(E, F))

and L is elliptic if sL(x, x) is invertible for all x 2 M, x 2 T⇤M \ {0}.
In particular rk E = rk F. But E and F need not be isomorphic. For
our current purpose it is enough to consider the case E = F.
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Exercise 4.8. Show that s4(x, x) = |x|
2 Id for the Hodge Laplacian

4 on Ap(M), hence it is uniformly elliptic on M.

Now we state two fundamental results in elliptic PDE.
Let Lw = b be a linear elliptic PDE on E ! M over a compact

manifold M. In order to apply the Hilbert space formalism we as-
sume that (M, g) is Riemannian and E has a bundle metric h. If E is
a complex vector bundle we require that the metric h is hermitian.
Denote by L : H ! H with H = C•(E). H is a pre-Hilbert space
under ( f , g) :=

R
M h( f , g) dV. Denote k f k = ( f , f )1/2. Then

Theorem 4.10 (Regularity theorem). Any weak solution of Lw = b is
automatically smooth.

Theorem 4.11 (Compactness theorem). For a sequence an 2 H, if
kank  C and kLank  C are both bounded, then {an} has a Cauchy
subsequence.

Remark 4.12. We will show later that both theorems are consequences
of the Gårding inequality: for f 2 H,

k f ks+d  C(kL f ks + k f ks),

where d is the order of L, and the norms are Sobolev norms to be
defined and studied in section 5.

Now we return to the case L = D, H = Ap = Ap(M). By assum-
ing the above two PDE theorems, we prove

Theorem 4.13 (Hodge decomposition theorem). Let H = H
p :=

{a 2 Ap(M) | 4 a = 0} be the space of harmonic p-forms.
(1) dim H < •, and
(2) Ap = H�

?
4 Ap. That is, Im4 = H

?.

PROOF. (1) If dim H = •, we select

u1, u2, . . . 2 H, kuik = 1, ui ? uj 8 i 6= j

satisfying Dui = 0. It is clear that {ui} has no Cauchy subsequence
hence contradicts to the compactness theorem (Theorem 4.11). Thus
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l := dim H < • and H ⇢ H is a closed subspace. In particular H
?

is also a closed subspace and Ap = H�H
?. Indeed, pick an O.N.B.

{w1, w2, . . . , wl} of H. For any a 2 Ap,

a = b +
l

Â
i=1

(a, wi) wi =: b + H(a)

where b 2 H
? and H(a) is the harmonic projection of a.

(2) We need to show H
? = 4Ap. The direction “�” is clear:

(4a, g) = (a,4g) = 0 8 g 2 H.

For the other direction we need the following

Claim 4.14. There exists c > 0 such that kbk  ck4bk for all b 2 H
?.

Let a 2 H
? and we define a linear functional ` on Im4 by

`(4f) := (a, f).

It is well defined: if 4f1 = 4f then f1 � f 2 H and then (a, f1) =

(a, f). Also ` is a bounded linear functional on Im4: let b = f �

H(f) 2 H
?, then

k`(4f)k = k`(4b)k = k(a, b)k  kak · kbk

 ckak · k4bk = (ckak) · k4fk.

By Hahn–Banach theorem, ` can be extended to a bounded linear
function on H = Ap. That is, ` is a weak solution to4w = a.

By the regularity theorem (Theorem 4.10), there exists a smooth
w 2 Ap such that4w = a. So H

?
⇢ 4Ap follows. ⇤

PROOF OF CLAIM 4.14. Suppose the contrary, then there exists a
sequence b j 2 H

? with kb jk = 1 and k4b jk ! 0.
By the compactness theorem (Theorem 4.11), we may assume

that {b j} is itself a Cauchy sequence. For y 2 Ap, define

`(y) := lim
j!•

(b j, y).

The linear functional ` is clearly bounded: k`k  1, and

`(4y) = lim
j!•

(b j,4y) = lim
j!•

(4b j, y) = 0
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by Cauchy’s inequality, i.e. ` is a weak solution of4b = 0.
By the regularity theorem (Theorem 4.10), there exists a b 2 Ap

such that `(y) = (b, y) and4b = 0, i.e. b 2 H.
Then (b j, y) ! (b, y) and in particular 0 = (b j, b) ! kbk2 and

thus b = 0. On the other hand, the Cauchy sequence {b j} has limit
b implies that kbk = limj!• kb jk = 1, which is a contradiction. ⇤

The proof actually applies to more general cases:

Exercise 4.9. Extend the Hodge decomposition for any elliptic op-
erator L : C•(E) ! C•(F) between two vector bundles E, F over a
compact M. (Assuming regalarity and compactness theorems.)

For the Hodge Laplacian4, a lot more can be said.

Definition 4.15. Since Ap = H� (4Ap), we define the Green operator

G :=

8
<

:
0 on H,

D�1 on H
?.

i.e. I = H + DG,

where H : Ap
! H is the harmonic projection. Hence Ga is the unique

solution in H
? for Dw = a� H(a).

Recall that a bounded linear operator is compact if the image of
any bounded subset has compact closure.

Exercise 4.10. Show that

(1) G commutes with any operator T with T4 = 4T.
(2) G is a bounded, self-adjoint, compact operator.

Notice that from 4 = dd⇤ + d⇤d we see immediately that d4 =

dd⇤d = 4d and d⇤4 = d⇤dd⇤ = 4d⇤. Hence

[d, G] = [d⇤, G] = [D, G] = 0.

The Hodge decomposition can be refined to

Ap = H� Im4 = H� Im d� Im d⇤,

which is still an orthogonal decomposition. A precise formula could
be given in terms of the Green operator G. Indeed we can rewrite
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the identity I = H + DG as

a = H(a) + (dd⇤ + d⇤d)Ga

= H(a) + d(d⇤Ga) + d⇤(dGa).

In particular we have:

Proposition 4.16. If da = 0 then a = H(a) + d(d⇤Ga).

Therefore, the harmonic representation of a cohomology class is
unique: if a1 � a2 = db then H(a1)� H(a2) = H(db) = 0.

Here is another simple yet important application of the Hodge
decomposition theorem:

Theorem 4.17 (Poincaré duality). Let M be a C• compact oriented man-
ifold of dimension m. Then the natural pairing

Hp
dR(M)⌦ Hm�p

dR (M) �! Hm
dR(M) ⇠= R : (w, h) 7!

Z

M
w ^ h,

is a perfect pairing. In particular,

Hp
dR(M) ⇠= Hm�p

dR (M)⇤.

PROOF. Let g be a metric on M. It suffices to prove the theorem
using harmonic representatives of de Rham cohomology.

Since ⇤4 = 4⇤, we see that ⇤ : H
p
! H

m�p which maps har-
monic forms to harmonic forms. From ⇤2 = (�1)p(n�p) we conclude
that ⇤ : H

p ⇠= H
n�p. This isomorphism depends on g and is not the

natural one stated in the theorem.
Nevertheless it shows that H

n is spanned by ⇤1 = dVg and hence
Hm

dR(M) ⇠= R under [W] 7!
R

M W (the trace map). Moreover, it also
implies that the natural pairing is perfect by noticing that

(w, ⇤w) 7!
Z

M
w ^ ⇤w = kwk2

6= 0

if [w] 6= 0. This completes the proof. ⇤

Exercise 4.11. (1) Let M = R
m/L where L ⇢ R

m is a lattice gen-
erated by m linearly independent vectors. Let g be the flat metric
induced from R

m. Determine H
p(M) and show that the wedge of

harmonic forms is still harmonic.
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(2) Give an example (M, g) and two harmonic forms w, h so that
w ^ h is not harmonic.

4. Bochner Principle

Given any C• manifold M, let r be an affine connection on TM.
We denote the induced connection on T⇤M and

Vp T⇤M again byr.
For w 2 Ap(M), rw(X0, X1, . . . , Xp) 2 Ap(M)⌦ A1(M) is given by

(rw)(X0, . . . , Xp) = (rX0w)(X1, . . . , Xp).

We define the anti-symmetrization (rw)alt
2 Ap+1(M) by

(rw)alt(X0, . . . , Xp) =
p

Â
j=0

(�1)j(rXj w)(X0, . . . ,cXj, . . . , Xp).

Exercise 4.12. Show that r is torsion-free if and only if (rw)alt =

dw.

Now, we assume r is the Levi-Civita connection on (M, g).

Definition 4.18. For X, Y 2 C•(TM), we define r2
X,Y acting on any

tensor fields T by

r
2
X,YT = rXrYT �rrXYT.

The connection Laplace acting on any tensor fields T is defined by the
trace tr(r2T) with respect to g.

Exercise 4.13. For f 2 C•(M), show that 4LB f = tr(r2 f ), where
4LB is the Laplace–Beltrami operator. Also, we have4 = �4LB.

In general,4 and trr2 are related by

Proposition 4.19 (Bochner formula). Let M be compact.

4 = �trr2
�Â

i,j
hi
^ iej R(ei, ej),

where {ej} is an orthonormal local frame of TM, {hi
} is its dual frame.
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In the literature this is also known as the Bochner–Lichnerwicz–
Witezenböck formula.3.

Exercise 4.14. With the notations in proposition 4.19, for w 2 Ap(M),
prove that

(4.6) dw =
n

Â
i=1

hi
^rei w; d⇤w = �

n

Â
i=1

ieirei w.

Exercise 4.15. (1) Prove the Bochner formula 4.19 using (4.6).
(2) Denote by r⇤ the formal adjoint of r, show that

r
⇤
r = �trr2.

Hence, another common form of Bochner formula is given by

4 = r⇤r�Â
i,j

hi
^ iej R(ei, ej).

Now, following Bochner, we use Proposition 4.19 to derive the
topological constraints given by the Ricci curvature conditions.

Corollary 4.20 (Bochner). Let (M, g) be a closed Riemannian manifold.

(1) If Ric > 0 then b1 = h1(M) = 0. More precisely,
(2) If Ric � 0 then h1(M)  m = dim(M). If furthermore Ric > 0

at some point, then h1(M) = 0. The equality holds if and only if
M is a flat torus, i.e. M ⇠= R

n/G where G ⇠= Z
n is a lattice.

PROOF. Before proving the statements, we first prove an identity
also due to Bochner.

3In general, an identity expressing difference between two second–order el-
liptic operator with the same principle symbols in terms of curvatures is known
as Weitzenböck formula or Bochner formula. Such formula was first indicated by
Witzenböck in 1925, yet it was Bochner who first used the formula to relate topol-
ogy and curvature estimates on compact manifolds (cf. Corollary 4.20) in 1948.
There are many variants for formula of such type in different contexts. For in-
stance, in 1963, Lichnerwicz developed an analogous formula for Dirac operators
on spin bundles, which we will discuss in later chapter.
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Claim 4.21. For any q 2 A1(M),

h4q, qi =
1
2
4|q|

2 + |rq|
2 + Ric(q̃, q̃),

where q̃ 2 C•(TM) is the metric dual of q (cf. section 1).

Given p 2 M, assume that {hi
}

m
i=1 is the dual frame of a local

orthonormal frame {ei}
m
i=1 of TM around p. We write q = Âm

i=1 aih
i.

Since {ei} is an orthonormal frame, g(ei, ej) = dij and hencerei ei =

0. The connection Laplace of q is then given by

trr2q =
m

Â
i=1
r

2
ei,ei

q =
m

Â
i=1
reirei q.

Therefore, from Proposition 4.19 we deduce

h4q, qi =�Â
i
hreirei q, qi

| {z }
(I)

� hÂ
i,j

hi
^ iej R(ei, ej)q, qi

| {z }
(I I)

.

By direct calculation,

(I) = Â
i

eihrei q, qi � |rei q|
2 = �

1
2
4|q|

2
� |rq|

2,

and
(I I) = Â

i,j
(R(ei, ej)q)(ej)hh

i, qi

Notice that for X, Y, Z 2 C•(M), w 2 A1(M), a direct computa-
tion shows (R(X, Y)w)(Z) = �w(R(X, Y)Z). Therefore,

(I I) = �Â
i,j

q(R(ei, ej)ej)hh
i, qi

= � Â
i,j,k,l

akaihRl
jijel, eki = �Â

i,j,k
akaiRkjij

= �Ric(Â
k

akek, Â
i

aiei) = �Ric(q̃, q̃).

As a result, we have proved:

h4q, qi =
1
2
4|q|

2 + |rq|
2 + Ric(q̃, q̃).

We now prove (1) and (2) by contradiction. If h1(M) 6= 0, we take a
non-zero cohomology class [q] 2 H1

dR(M). By Hodge decomposition



5. FOURIER TRANSFORM AND SOBOLEV SPACES 143

(cf. 4.13), we choose q 6= 0 to be the harmonic 1-form representing
[q] 6= 0.

For (1), if Ric > 0, choose p 2 M such that |q(p)| > 0 achieves
maximal. Then (4|q|

2)(p) � 0 by second derivative test. However,
this contradicts to Ric(q̃, q̃) > 0.

For (2), if Ric � 0 , by taking integration on both sides of 4.21,

0 =
1
2

Z

M
4|q|

2 +
Z

M
|rq|

2 +
Z

M
Ric(q̃, q̃).

By Stokes’ theorem, since ∂M = ∆, we have

0 =
Z

M
|rq|

2 +
Z

M
Ric(q̃, q̃).

Since Ric � 0, we must conclude that rq ⌘ 0, i.e. q is parallel and
is determined by qq 2 T⇤q M, 8q 2 M. Hence h1

 dim T⇤q (M) = m.
Also,rq ⌘ 0 and Ric � 0 in turn implies Ric(q̃, q̃) ⌘ 0. Now, if Ric >

0 at one point p and q 6= 0, we have Ric(q̃, q̃) > 0, a contradiction.
On the other hand, if the equality holds, h1 = dim M = m, then

the universal cover M̃ �! M has m parallel 1-forms. Therefore it
has m parallel vector fields. We conclude that M̃ ⇠= R

m. ⇤

5. Fourier Transform and Sobolev Spaces

Let us first introduce some standard notations.

(1) x = (x1, . . . , xm) 2 R
m.

(2) x · y = x1y1 + x2y2 + · · · + xmym, |x| = (x · x)1/2.
(3) a = (a1, . . . , am) multi-index, ai 2 N [ {0}, |a| = Âm

i=1 ai.
(4) xa = xa1

1 xa2
2 · · · xam

m .
(5) ∂a = ∂|a|

∂xa1
1 ···∂xam

m
, Da = (�i)|a|∂a.

To prove the regularity theorem and compactness theorem (cf.
theorem 4.10, 4.11), we need to define the concept of Sobolev space. To
achieve this, we first need the some rudiments in Fourier analysis.

Definition 4.22 (Fourier transdorm). For x 2 R
m, x 2 R

m, let f 2
C•

0 (R
m, C) be a smooth function with compact support. The Fourier
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transform of f is defined as

f̂ (x) = (2p)�m/2
Z

Rm
e�ix·x f (x) dx.

Also, recall the convolution of two functions

f ⇤ g :=
Z

Rm
f (x� y)g(y) dy =

Z

Rm
f (z)g(x� z) dz.

It is a standard trick to use convolution to construct smooth ap-
proximation of functions with inferior smothness. Let f 2 C•

0 (R
m)

with
R

Rm f = 1, f � 0, f (0) 6= 0. Such a function is sometimes called
a molifier. The existence of molifiers is evident from our construc-
tion on bump functions in chapter 1. For u 2 R+, define fu(x) :=

1
um f

⇣
x
u

⌘
.We can see that

R
Rm fu = 1. Such a sequence fu is called a

“d-function”, and we can write it as d0 = lim
u!0

fu.

Proposition 4.23. For g 2 C0, fu ⇤ g(x)! g(x) as u! 0+ is a smooth
approximation of identity4.

Exercise 4.16.

(1) Prove the above proposition.
(2) Show that C•

0 (R
m) is dense in L2(R

m) (with respect to L2-
norm).

Thus, we may extend the definition Fourier transform f̂ to f 2
L2(R

m) by continuity. That is, we define f̂ = limk! bfk, where fk 2

C•
0 (R

m) and fk ! f in L2(R
m). Recall that we also have inverse

Fourier transform.

Definition 4.24 (Inverse Fourier Transform). For g(x) 2 C•
0 (R

m), the
inverse Fourier transform ǧ(x) is defined as5

ǧ(x) := (2p)�m/2
Z

Rm
eix·xg(x) dx.

4That is, d0 = limu!0 fu is the identity element for ⇤
5There are several conventions for Fourier transform and its inversion. An-

other common convention is that f̂ (x) =
R

Rm f (x)e�ix·x dx while the inversion is
given by ǧ(x) := (2p)�m R

Rm g(x)eix·x dx.
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Similarly, we can define ǧ for g 2 L2(R
m) by continuity argu-

ments. We list the basic properties and correspondence with con-
volutions in the following theorem and refer the proof to [Gil95],
Chapter 1.1.

Theorem 4.25 (Basic Properties of Fourier Transform). For f 2 C•
0 (R

m),
we have

(1) ˇ̂f = f .
(2) Da

x f̂ (x) = \xa f (x), \Da
x f (x) = xa f̂ (x).

(3) [f ⇤ g = f̂ ĝ, f̂ ⇤ ĝ = df · g.

Moreover, Fourier Transform on L2(R
m) is an isometry onto itself 6, i.e.

L2(R
m)

·̂
// L2(R

m)
·̌

oo .

From the formula dDa
x f = xa f̂ , we notice that derivatives of f will

corresponds multiplications of f̂ in the frequency (phase) space. This
formula enlightens the idea of weak derivatives. First, for k 2 N,
f 2 C•

0 (R
m, C), any multi-index a with |a| = k, we consider the

norm to evaluate the L2-norms of its derivatives:
Z

Rm Â
|a|k

|Da f (x)|2dx.

Thus, from dDa
x f = xa f̂ , we have

| f |2k := Â
|a|k

Z

Rm
|Da f (x)|2dx

= Â
|a|k

Z

Rm
|dDa f (x)|2dx = Â

|a|k

Z

Rm
|xa

|
2
| bf (x)|2dx.

Observe that there exists constant C1, C2 > 0 such that

C1(1 + |x|
2)k
 Â

|a|=k
|xa

|
2
 C2(1 + |x|

2)k.

6This is called Plancherel theorem
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Hence, the norm is equivalent to the norm7

Z

Rm
(1 + |x|

2)k
| bf (x)|2dx,

which is free of any differentiation. More generally, we have the
following definition.
Definition 4.26.

(1) For s 2 R, which is regarded as order of L2-derivatives , we
define

Sobolev s-norm of a L2-function f by

| f |2s :=
Z

Rm
(1 + |x|

2)s
| f̂ (x)|2 dx,

and the inner product (·, ·)s by

( f , g)s :=
Z

Rm
(1 + |x|

2)s f̂ (x)ĝ(x) dx.

2) The Sobolev s-space Hs(R
m) is defined to 8 be the completion

of C•
0 (R

m) in L2(R
m) (w.r.t the s-norm).

7Another common choice of weight is (1 + |x|)2k.
8Here is an alternative way to define Sobolev space. The notion of weak

derivative can be defined more directly by ”integration by part”. That is, we
say v 2 L2(R

m, C) is a a-th L2-weak derivative for a locally integrable function
f 2 L1

loc(R
m) if it satisfies
Z

Rm
vjdx = (�1)|a|

Z

Rm
f (∂a j)dx, 8j 2 C•

0 (R
m, C).

For k 2 N, if we assume that f 2 L2(R
m) having L2-derivative da f for any |a|  k,

we then define Sobolev k-norm by

(4.7) | f |2k :=
Z

Rm Â
|a|k

|da f (x)|2dx,

and define the Sobolev space Hk(R
m) by

(4.8) Hk(R
m) := {u 2 L1

loc(R
m) : 9∂a f 2 L2(R

m), 8|a|  k}.

The definition is in fact equivalent to our definition. More generally, for 1  p <

•, we can consider Wk,p consisting of locally integrable function f having Lp-
weak derivative up to order k. We can also define the Sobolev norm on Wk,p by

| f |k,p =
⇣

Â|a|k |da f |p
Lp

⌘1/p
.
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Then again by the formula dDa
x f = xa f̂ ,

Da : Hs \ C•
0 �! Hs�|a|,

|Da
x f |2s�|a|

=
Z

Rm
(1 + |x|

2)s�|a|
|xa f̂ (x)|2 dx.

The key question here is that: although we define the weak de-
rivative by multiplication in frequency space, when is f is actually
Ck-differentiable if f̂ lies in some Sobolev space Hs, i.e. xa f̂ (x) lies in
L2-space? This is answered by the following

Theorem 4.27 (key lemmas in Euclidean spaces).

(1) (Sobolev lemma) If s > k + m/2 and f 2 Hs, then f 2 Ck and
there exists a universal constant C > 0 depending only on s such
that

| f |Ck  C| f |s.

where | f |Ck = Â|a|k supx2Rm |∂a f (x)| is the supremum norm
of Ck-functions.

(2) (Rellich lemma) If s > t, Hs ,! Ht is a compact imbedding.
(3 (interpolation inequality) Let s > t > u. 8 e > 0, 9 C(e) such

that
| f |t  e| f |s + C(e)| f |u

for all f 2 C•
0 .

PROOF.

(1) Let k = 0. First, we consider f 2 C0
0(R

m):

| f (x)| =

����
Z

Rm
eixx f̂ (x) dx

����

=

����
Z

Rm

h
eixx f̂ (x)(1 + |x|

2)s/2
i
(1 + |x|

2)�s/2 dx

����

 | f |s
✓Z

Rm

1
(1 + |x|2)s dx

◆1/2
(Cauchy–Schwarz inequality)

 C| f |s ,

for some C depending on s > m/2. In other words, | f |C0 

C| f |s, for some constant C > 0 depending only on s.
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Now, for any f 2 Hs(R
m), we can choose a sequence

f j
Hs
�! f with f j 2 C0

0(R
m). By the above result,

| fi � f j|C0  C| fi � f j|s

infers that fi forms a Cauchy sequence in C0. Thus, fi ! f
uniformly implies that f 2 C0. So

| f |C0  | f � fi|C0 + | fi|C0  C(| f � fi|s + | fi|s)

and then | f |C0  C| f |s by taking i! •.
For k > 0 and s > k + m/2, apply the same argument to

Da f , for any multi-index a with |a| = k:

|Da f |C0  C|Da f |s�k  C| f |s.

Hence, for any a with |a| = k, Da f 2 C0(R
m), and thus

Hs
⇢ Ck. Also, we obtain | f |Ck  C| f |s.

(2) Consider K ⇢cpt R
m, fn 2 C•

\ Hs with supp( fn) ⇢ K and
| fn|s  C.

Let g 2 C•
0 (R

m) with g ⌘ 1 on K. Then g · fn = fn and
thus f̂n = ĝ ⇤ f̂n. We then have

∂j f̂n = ∂j(ĝ ⇤ f̂n) = (∂j ĝ) ⇤ f̂n.

|∂j f̂n(x)| 
Z

Rm

�����
∂ĝ
∂x j

(x � h) f̂n(h)

����� dh

 | fn|s

 Z

Rm

|(∂x j ĝ)(x � h)|2

(1 + |h|2)s dh

! 1
2

(Cauchy–Schwarz).

We denote hj(x) :=
⇣R

Rm(1 + |h|
2)�s

|(∂x j ĝ)(x � h)|2dh
⌘ 1

2 .
From theorem 4.25, for any multi-indices a, b,

xbDa
x ĝ =

\Db
x (xbg),

and Dxb(xbg) 2 C•
0 (R

m) since g 2 C•
0 (R

m). We conclude
from Plancherel’s theorem that |xbDa

x ĝ|0 = |Dxb(xbg)|0 <
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• and hence 9 hj(x) < •, for any x 2 R
m. Moreover, from

continuity of Lebesgue integral with respect to translation,
hj(x) is a continuous function in x. In conlusion, |∂j f̂n(x)| 

Cjhj(x).
Next, apply the same process to f̂n(x), and we also have

| f̂n(x)|  Ch0(x). Hence f̂n is a uniformly bounded and
equicontinuous sequence on any compact subset in x. By
Arzela-Ascoli theorem and a diagonal argument, there ex-
ists convergent subsequences of f̂n (still denoted as f̂n) uni-
formly on each compact subset of x 2 R

m.
Now, we show that fn converges in Ht for s > t.

| f j � fk|
2
t =

Z

Rm
| f̂ j � f̂k|

2(1 + |x|
2)t dx

We decompose the domain into two parts and have the fol-
lowing estimates.

For |x| � r, (1 + |x|
2)t
 (1 + r2)t�s(1 + |x|

2)s and
Z

|x|�r
| f̂ j � f̂k|

2(1 + |x|
2)t dx

 (1 + r2)t�s
Z

Rm
| f̂ j � f̂k|(1 + |x|

2)s dx

 2C(1 + r2)t�s.

For any e > 0, we can choose r large such that 2C(1 + r2)t�s <

e/2.
On the other hand, {|x|  r} is a compact set. We can

pick j, k large such that
Z

|x|r
| f̂ j � f̂k|

2(1 + |x|
2)t dx < e/2.

Hence, | f j � fk|
2
t < e for j, k large enough and this implies

{ f j}
•
j=1 is a Cauchy sequence in Ht(R

m).

9Alternatively, one can proves this by using the notion of Schwartz space.
The Schwartz space on R

m, denoted by S(R
m), is defined by: f 2 S(R

m) if
f 2 C•(R

m) and for any multi-indices a, b, supx2Rm |xb∂a
x f (x)| < •. One can

show that C•
0 (R

m) ⇢ S(R
m) ⇢ L2(R

m) and Fourier transform is a bijection on
S(R

m).
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(3) For s > t > u, there exists Ce such that

(1 + |x|
2)t
 e(1 + |x|

2)s + Ce(1 + |x|
2)u.

Then we get the interpolation inequality immediately.
⇤

6. Gårding’s Inequality

Now we want to reduce to the Euclidean case and make use of
results on Euclidean space in previous sections

Pick a local trivialization (Ui, fi, yi) where Ui are charts on M, fi
is a P.O.U. and yi is a trivialization of E

��
Ui

.

⇠
Ui ⇥R

k

yi

f

M
Ui

For any f 2 C•(M, E), f = Âi f isi, i.e. fi( f ) = ( f 1, · · · , f k). And
for s 2 R,

| f |s = Â
i

|yi(fi · f )|s.

Then we can define Hs(M, E) to be the completion of C•(M, E) with
respect to the norm | · |s.

Denote H0(M, E) = L2(M, E).

Remark 4.28.
[

s2R

Hs =: H�• � · · · � Hs �
s<t
· · ·� Hs � · · · � H• :=

\

s2R

Hs = C•.

Note that [sHs = C• follows from the Sobolev lemma.

Exercise 4.17.
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(1) For any choice of (Ui, fi, yi) such that fi, yi (and their in-
verse) have bounded derivation, show that the Sobolev norms
| · |s are all equivalent.

(2) All the key lemmas still hold.

To ensure the regularity, we need to show that the weak solu-
tion belongs to some Hs for higher order s actually and use the key
lemmas. This estimate comes from the following theorem.

Theorem 4.29 (Gårding inequality). P is an elliptic operator of order d
on (M, E). There exists C > 0 such that

| f |s+d  C (|P f |s + | f |s) ,

for all f 2 Hs+d.

PROOF. Under some local chart (Ui, fi, yi), we rewrite P = P0 +

P1 + P2 where

P0 = Â
|a|=d

Aa(0)Da, P1 = Â
|a|<d

Aa(x)Da, P2 = Â
|a|=d

(Aa(x)�Aa(0))Da

for some p 2 Ui, p$ x = 0.
Locally, by uniform ellipticity at p,

|P0 f |2s =
Z

(1 + |x|
2)s

|dP0 f (x)|2 dx

=
Z

(1 + |x|
2)s

�����Â
a=d

Aa(0)xa f̂ (x)

�����

2

dx

� C0
Z

(1 + |x|
2)s

|x|
2d

| f̂ (x)|2 dx.

(|P0 f |s + | f |s)2
�

Z
(1 + C00|x|

d)2(1 + |x|
2)s

| f̂ (x)|2 dx

�

Z
C(1 + |x|

2)d(1 + |x|
2)s

| f̂ (x)|2 dx � C2
1 | f |2s+d.

Under each local chart, we may assume f is compactly supported
and we can get easily the following estimates

|P1 f |s  C2| f |s+d�1

|P2 f |s 
C1
2

| f |s+d + C2| f |s+d�1
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by choosing U small enough a priori.

Exercise 4.18. Show that in the proof of this inequality 4.29, there ex-
ists open neighborhood U of p independent of f such that the above
estimate for P2 f holds. Notice that P2 f (0) = 0.

Hence

|P f |s + | f |s � |P0 f |s � |P1 f |s � |P2 f |s + | f |s

�
C1
2

| f |s+d � 2C2| f |s+d�1.

) | f |s+d  C(|P f |s + | f |s + | f |s+d�1).

By interpolation inequality, (e = 1/2C)

| f |s+d�1 
1

2C
| f |s+d + C(e)| f |s.

Finally we have
1
2
| f |s+d  C|P f |s + C̃| f |s.

⇤

7. Proof of Compactness and Regularity Theorem

Through out this section, we follow the notations as in the previ-
ous section. Particularly, P is an elliptic operator of degree d 2 N.

Theorem 4.30 (Compactness theorem). For a sequence un 2 H, if
kunk  C, kPunk  C are bounded, then {un} has a Cauchy subsequence
(w.r.t. L2 norm).

PROOF. Since un 2 C• on compact M, un, Pun is uniformly bounded
in L2-norm. By Garding inequality,

|un|d  C(|Pun|0 + |un|0)  C̃.

By Rellich lemma, un 2 Hd and un has a Cauchy subsequence in
H0. ⇤

Theorem 4.31 (Regularity theorem). If Pu = v, v 2 Ht, u 2 H�• :=
[s2R Hs, then u 2 Ht+d.
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PROOF. Suppose u 2 Hs for some s 2 R. Also, it suffices to
establish the theorem in local situation. Hence, we may assume u 2
Hs(R

m) and P is an elliptic operator acting on scalar functions. By
induction, it suffices to show that

Pu 2 Hs�d+1 ) u 2 Hs+1.

The key here is to consider that the difference quotient

uh(x) :=
u(x + h)� u(x)

|h|
,

for any sufficiently small h 6= 0. Also, for h 2 R
m, we denote trans-

lation u(x + h) by Thu = u(x + h). In other words, the difference
quotient uh(x) can be written as 1

|h|
(Thu(x)� u(x)).

First, observe that:

dThu(x) =
Z

e�ixxu(x + h) dx

= eihx
Z

e�i(x+h)xu(x + h) d(x + h)

= eihx û(x).

)
buh(x) =

eihx
� 1

|h|
û(x) =

✓
i
h · x

|h|
+ o(|h|)

◆
û.

Therefore,

|uh(x)|s =
Z

Rm
(1 + |x|

2)s
|
buh(x)|2dx =

Z

Rm
(1 + |x|

2)s
|û(x)|2(|x|

2 + R(x, h))dx,

where R(x, h) = o(|h|). If for any h 6= 0 with |h| small, |uh(x)|s  C,
for some constant C independent of h, then

Z
(1 + |x|

2)s
|x|

2
|û(x)|2 dx < •,

since u 2 Hs. Conversely, if u 2 Hs+1, then clearly |uh
|s  |u|s+1, for

any small h 6= 0. In conclusion, we have proved:

u 2 Hs, |uh
|s  C 8 small h 6= 0() u 2 Hs+1.

Now, we then turn to show |uh
|s has a uniform bound C with respect

to h. To see this, we need an elementary lemma.
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Lemma 4.32.
P(uh) = (Pu)h

� Ph(Thu)

where Ph = Âa Ah
a(x)Da.

PROOF OF LEMMA.

Aa(x)Da(u(x + h)� u(x))

= Aa(x + h)Dau(x + h)� Aa(x)Dau(x)

� (Aa(x + h)� Aa(x))Dau(x + h).

⇤

Back to the proof. From Garding inequality and the above lemma,

|uh
|s  C(|P(uh)|s�d + |uh

|s�d)

 C(|(Pu)h
|s�d + |Ph(Thu)|s�d + |uh

|s�d)

Notice that Pu 2 Hs�d+1 infers that |(Pu)h
|s�d  C1, for some con-

stant C1 uniformly in any small h 6= 0. Similarly, u 2 Hs implies that
|uh

|s�d  C2, for some uniform constant C2 in small h 6= 0.

Exercise 4.19. Show that the term |Ph(Thu)|s�d has a uniform bound
in h, for any small h 6= 0.

As a result, |uh
|s  C for any small h 6= 0, and hence u 2 Hs+1.

⇤

Remark 4.33. In the proof of regularity theorem, we a priori assume
that u 2 Hs(R

m) for some s 2 R. In fact, in the original statement
of regularity theorem (cf. theorem 4.10), we assume that u is a weak
solution implies that u 2 L2 = H0.

8. Problems

4.1. ([War83] Ch.6 #6) Derive explicit formulas for d, ⇤, d and 4 in Eu-
clidean space. In particular, show that if

a = Â
i1<···<ip

aIdxi1 ^ · · · ^ dxip ,
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then

4a = (�1) Â
i1<···<ip

 
n

Â
i=1

∂2aI

∂x2
i

!
dxi1 ^ · · · ^ dxip .

4.2. ([War83] Ch.6 #7) Let j belong to the C• periodic functions P on the
plane. Prove that ����

∂2j

∂x∂y

���� 
1
2
k4jk

4.3. ([War83] Ch.6 #8) The Rellich lemma 4.27 says that the natural injec-
tion i : Ht ! Hs for s < t is a compact operator; that is, it takes bounded
sequences into sequences with convergent subsequences. An analogous
example of this phenomenon is the following. Let C denote the Banach
space of periodic continuous functions on the real line, say with period 2p,
and with norm the sup-norm k · k•. Let C1 be the subset of C consisting of
functions with continuous first derivative. As a norm for C1 we take

k f k = k f k• +

����
d f
dx

����
•

.

Use Arzela-Ascoli theorem to prove that the natural injection i : C1
! C is

a compact operator.

4.4. ([War83] Ch.6 #9) We shall consider a number of elliptic equations of
the form Lu = f on the real line. In each case, f will be smooth and periodic
of period 1, and we look for solution u also periodic of period 1. This re-
striction to periodic functions makes this in essence a problem on a compact
space, the unit circle. We let u0 = du/dx, etc.

(1) u0 = f . This is the simplest example of an elliptic operator which
exhibits all of the essential ingredients of the theory. What is the
formal adjoint of this differential operator? Show that there is a
solution u (periodic) if and only if f is orthogonal to the kernel of
this adjoint.

(2) u0 � u = f . What is the kernel (in the periodic functions) in the
case? What are the necessary and sufficient conditions on f for
there to exist a periodic solution?

(3) u00 = f . Show that this operator is formally self-adjoint. Show
that there is a periodic solution if and only if f is orthogonal to the
kernel; and using the fact that

Z x

0

✓Z t

0
f (s) ds

◆
dt =

Z x

0
f (s)

✓Z x

0
dt
◆

ds,
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show that the unique solution orthogonal to the kernel is

u(x) =
Z x

0
t(x� 1) f (t) dt +

Z 1

x
x(t� 1) f (t) dt

�
1
2

Z 1

0
t(t� 1) f (t) dt.

This explicitly exhibits the Green’s operator for this case.
(4) u00 + 4p2u = f . Show that this operator is formally self-adjoint.

What is the kernel? Derive an explicit formula for the solution u,
and show that u is periodic if and only if f is orthogonal to the
kernel.

4.5. ([War83] Ch.6 #12) Let a and b be n-forms on a compact oriented man-
ifold Mn such that

R
M a =

R
M b. Prove that a and b differ by an exact form.

4.6. ([War83] Ch.6 #13) Show that the compactness theorem cannot be strength-
ened to the assertion of the existence of a subsequence which is convergent
in Ap(M).

4.7 (The Eigenvalues of the Laplacian). This is an extended exercise in
which the fundamental properties of the eigenfunctions and eigenvalues
of the Laplacian are developed.

Consider the Hodge Laplacian 4 acting on the p-forms Ap(M) for
some fixed p. A real number l corresponding to which there exists a not
identically zero p-form u such that 4u = lu is called an eigenvalue of 4.
If l is an eigenvalue, then any p-form u such that 4u = lu is called an
eigenform of 4 corresponding to the eigenvalue l. The eigenforms corre-
sponding to a fixed l form a subspace El(M) of Ap(M) called the eigenspace
of the eigenvalue l.

(1) Prove the following properties of eigenvalues of4 regardless the
existence.

(a) Prove that the eigenvalues of4 are non-negative.
(b) Prove that the eigenspaces of4 are finite dimensional.
(c) Prove that the eigenvalues have no finite accumulation point.
(d) Prove that eigenfunctions corresponding to distinct eigenval-

ues are orthogonal.
(Hint: use compactness theorem for (b) and (c))
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(2) (Existence) Now, we shall now establish that 4 has a positive
eigenvalue. Consider 4 : (H

p)? ! (H
p)?, and also we have

the Green’s operator G : (H
p)? ! (H

p)? with 4Ga = a and
G4a = a for all a 2 (H

p)?.
(a) Show that the eigenvalues of G

��
(Hp)?

are the reciprocals of
the eigenvalues of4

��
(Hp)?

.
Let

h = sup
kjk=1,j2(Hp)?

kGjk.

Then h > 0 and kGjk  hkjk for every j 2 (H
p)?. We shall

prove that 1/h is an eigenvalue of 4. Let {ji} 2 (H
p)? be a

maximizing sequence for h; that is, kjjk = 1 and kGjjk ! h.
First, we observe that kG2jj � h2jjk ! 0, for

kG2jj � h2jjk
2 =kG2jjk

2
� 2h2

hG2jj, jji+ h4

h2
kGjjk

2
� 2h2

kGjjk
2 + h4

! 0.

Second, let yj = Gjj � hjj.
(b) Show that (yj, Gyj) � 0.

From this, we have

0 hyj, G2jj � h2jji

=hyj, Gyj + hyji

=hyj, Gyji+ hkyjk
2
� hkyjk

2,

Thus, we conclude that kyjk ! 0. Now there is a subsequence
of the jj, call it {jj}, such that {Gjj} is Cauchy. Define a linear
functional ` on Ap(M) by setting

`(b) = lim
j!•

hhGjj, bi, b 2 Ap(M).

(c) Show that ` is a non-trivial weak solution of

(4� 1/h)u = 0.

(d) Show that4� 1/h is elliptic,
From (c) and (d), we conclude that l = 1/h is an eigenvalue of4.

(3) (Existence of Other Eigenvalues) Suppose that we have eigenval-
ues l1  l2  · · ·  ln and corresponding orthonormalized
eigenforms u1, u2, . . . , un for 4

��
(Hp)?

. Let Rn be the subspace of
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(H
p)? spanned by {u1, . . . , un}. Observe that G and4map (H

p
�

Rn)? into itself, then define

hn+1 = sup
kjk=1, j2(Hp�Rn)?

kGjk

and proceed as in part (2) to establish that ln+1 = 1/hn+1 is an
eigenvalue of4. Clearly ln+1 � ln.

(4) (L2 Completeness) Let l1  l2  · · · be the eigenvalues of 4 on
Ap(M), where each eigenvalue is included as many times as the
dimension of its eigenspace, with a corresponding orthonormal-
ized sequence of eigenfunctions {ui}. Let a 2 Ap(M). Then

lim
n!•

�����a�
n

Â
i=1

(a, ui)ui

����� = 0.

To prove this, let k be the dimension of H
p.

(a) Show that there exists b 2 (H
p)? such that Gb = a�Âk

i=1(a, ui)ui.
It follows that�����a�

n

Â
i=1

(a, ui)ui

����� =

�����G

 
b�

n

Â
i=k+1

(b, ui)bi

!�����

for n > k. But, by the definition of ln+1,
�����G

 
b�

n

Â
i=k+1

(b, ui)ui

!����� 
1

ln+1

�����b�
n

Â
i=k+1

(b, ui)ui

�����


1

ln+1
kbk ! 0, as n! •.

(5) (Uniform Completeness) The uniform norm kak• is defined on
Ap(M) by

kak• = sup
m2M

(⇤(a ^ ⇤a)(m))1/2 .

(a) Show that there exists a large enough integer k and a constant
c > 0 such that

kak•  ck(1 +4)kak

for every a 2 Ap(M). (Hint: Use Sobolev lemma)
Let a 2 Ap(M), and let Pn(a) = Ân

i=1ha, uiiui, where we are con-
tinuing with the notation of (4). Now4Pn = Pn4, so that

ka� Pn(a)k• ck(1 +4)k[a� Pn(a)]k

=kj� Pn jk ! 0,
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where j = (1 +4)ka.

4.8. ([War83] Ch.6 #17) We define the operator 42 : Ap(M) ! Ap(M) by
4

2a = 4(4a). Discuss the solvability of42a = b.

4.9. ([War83] Ch.6 #18) Consider the operator

L =
n

Â
i,j=1

aij
∂2

∂xi∂xj
+

n

Â
i=1

bi
∂

∂xi
+ c

acting on C2(R
n). Show that there is no loss of generality in assuming that

aij = aji, and prove that L is elliptic at a point x if and only if the matrix
(aij(x)) is positive (or negative) definite.

In particular, show that the wave equation

⇤u =
∂2u
∂x2 �

∂2u
∂y2 = f

is not elliptic, and give an example where

⇤u = f 2 C•, but u /2 C•.

4.10. ([War83] Ch.6 #19) Consider4 : Ap(M) ! Ap(M). Prove that if l is
the minimum eigenvalue of 4, and if c > �l, then (4+ c)a = b can be
solved for every b 2 Ap(M).

4.11. ([War83] Ch.6 #22) Let jn, for n = 1, 2, . . . be a periodic C• function
on the plane which agrees with log log( 1

r+1/n ) for 0  r  1
2 , where r =p

x2 + y2. Show that there is no constant c > 0 such that

kjnk•  ckjnk1, for all n.

This shows, in the case n = 2, that the restriction t � [n/2] + 1 (s > k + m/2
in this lecture note) in the Sobolev lemma 4.27 is essential.

4.12 ([Car92] Ch.6 #11). Let f : Mn+1
! R be a differentiable function.

Define the Hessian, Hess f of f at p 2 M as the linear operator

Hess f : Tp M! Tp M, (Hess f )Y = rY grad f , Y 2 Tp M,

where r is the Riemannian connection of M. Let a be a regular value of
f and let Mn

⇢ Mn+1 be the hypersuperface in M defined by M = {p 2
M | f (p) = a}. Prove that:
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(1) The Laplace–Beltrami operator4LB f is given by

4LB f = tr(Hess f ).

(2) If X, Y 2 X (M), then

h(Hess f )Y, Xi = hY, (Hess f )Xi.

Conclude that Hess f is self-adjoint, hence determines a symmetric
bilinear form on Tp M, p 2 M, given by (Hess f )(X, Y) = h(Hess f )X, Yi,
X, Y 2 Tp M.

(3) The mean curvature H of M ⇢ M is given by

nH = �div
✓

grad f
|grad f |

◆
.

(4) Observe that every embedded hypersurface Mn
⇢ Mn+1 is locally

the inverse image of a regular value. Conclude from (c) that the
mean curvature H of such a hypersuperface is given by

H = �
1
n

divH,

where N is an appropriate local extension of the unit normal vec-
tor field on Mn

⇢ Mn+1.

4.13 (Witten Deformation). In [Wit82], Edward Witten used the idea of su-
persymmetry, a conjectured (till today) symmetry of spacetime developed
in qunatum field theory during 70s, to give a fresh new point of view on
Morse theory.

In this series of problems, we will exploit the most elementary aspect of
his idea from mathematical standpoint. Let Mm be a closed C• manifold.
Given any f 2 C•(M), the starting point of Witten’s idea is to consider the
deformation of Cartan’s exterior derivative d:

dt := e�t f det f , t � 0.

(1) Check that d2
t = 0.

From (1), we obtain the deformed de Rham complex (A•(M), dt). We denote
Hq

t,dR(M, R) by the corresponding q-th cohomology of the complex.

(2) Show that the chain map (A•(M), d) ! A•(M), dt) given by a 7!

e�t f a gives rise to an isomorphism Hq
dR(M, R) ⇠= Hq

t,dR(M, R).
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Choosing any Riemannian metric g on M, we denote d⇤t by the formal ad-
joint of dt with respect to the L2-inner product (a, b) =

R
Mha, bidVg on

Ap(M), where dVg is the Riemannian volume form of (M, g).

(3) Show that d⇤t = et f d⇤e�t f and d⇤t = dt + tigrad f , where grad f := fd f
is the vector field dual fo d f via g.

We define Witten’s Laplacian 4(q)
t := d⇤t dt + dtd⇤t on Aq(M). Notice that

when t = 0,4(q)
t is just Hodge Laplacian4 acting on q-forms.

(4) Show that 4(q)
t is self-adjoint and has the same principal symbol

as Hodge Laplacian 4. Conclude that 4(q)
t is also an elliptic op-

erator.

The key observation of Witten is the following Bochner type formula.

(5) At any point p 2 M, let x = (x1, . . . , xm) be normal coordinate
around p, show that

4
(q)
t = 4+ t2

|d f |2 + t
m

Â
k,l=1

Hess( f )(
∂

∂xk ,
∂

∂xl )[dxk
^ ·, i∂/∂xl ],

where |d f |2 = hd f , d f i, Hess( f ) = r(d f ), and [·, ·] is a commuta-
tor regarded as in End(Aq(M)).

(6) Show that if p is a critical point of f , then for any X, Y 2 Tp M,
Hess( f )(X, Y) = d2 f (X, Y), where d2 f (X, Y) is the other Hessian
defined in problem 1.12.

For surfficiently large t � 0, we see from Bochner type formula that the
term t2

|d f |2 becomes the dominant part for Witten Laplacian if p /2 Crit( f ).
On the other hand, since 4(q)

t is elliptic for any t > 0, we know that the
eigenforms of4(q)

t must be smooth q-form. Combining these two observa-
tions together, we then see that as t ! •, the eigenforms of 4(q)

t concen-
trates near the neighborhoods of Crit( f ).

Remark 4.34. As a first application, when f is a Morse function (cf. defini-
tion 1.46), Witten gave a new proof of Morse inequalities by investigating
the spectrum of Witten Laplacian as t sufficiently large. The details can
be found for instance in [Zha01]. Moreover, incorporating with ideas from
Thom and Smale, instead of just estimating Betti number, we can in fact
define a complex, known as Witten-Morse complex nowadays, whose coho-
mology is isomorphic to the cellular cohomology. Later, Floer generalized
Witten’s idea and applied to problems in symplectic topology.




