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ABSTRACT. This is the preliminary version of my course notes in
the fall term of 2006 at NCU and 2012 at NTU. The aim is to pro-
vide basic concepts in differential geometry for first year graduate
students as well as advanced undergraduate students.
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Chapter 1

DIFFERENTIABLE MANIFOLDS

We start by defining (finite dimensional) differentiable manifolds M
and their tangent bundles TM, and proving various basic results to es-
tablish the categorical concept of manifolds. Notably for a differentiable
map f : M→ N we characterizes immersions and submersions through its
tangent map d fp : Tp M→ Tf (p)N.

Manifolds are locally Euclidean spaces such that the local coordinates
transforms smoothly. Thus most of the technical results are based on their
counterparts in coordinate charts (Calculus) and a good way to glue them
together (partitions of unity). We give proofs of Whitney’ imbedding theo-
rem and Sard’s theorem on critical values to illustrate such a principle.

A more rigid type of argument to establish global results on manifolds

are through “analytic continuations” based on differential equations. In

this beginning chapter we will only discuss ordinary differential equations

with emphasized on the uniqueness and smooth dependence of the solu-

tions on the initial conditions. This leads to the notion of integral curves

and flows which allows us to define Lie derivatives of vector fields, which

is fundamental throughout this course.

1. The category of Ck manifolds

Definition 1.1. A topological manifold M is a topological space which is
(1) locally Euclidean (2) Hausdorff and (3) second countable.

Here are some explanations of these concepts:
(1) M is locally Euclidean if for each point p ∈ M there is a open

neighborhood U 3 p which is homeomorphic to an open set in Rd

for some d ∈N. Let

ϕ : U → ϕ(U) ⊂ Rd
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be such a homeomorphism. The components xi : U → R of ϕ are
called the coordinate functions and the pair (U, ϕ) is called a (coor-
dinate) chart of M at p. It is customary to identify φ with the (column
vector) coordinate function

x = (x1, . . . , xd)t.

(2) M is Hausdorff if for any p 6= q in M there are neighborhood
U 3 p, V 3 q such that U ∩V = ∅.

(3) M is second countable if there is countable basis for its topology.
Recall that a basis is a collection of open subset such that any open
set can be written as a (possibly infinite) union of certain constituents
from that collection.

Exercise 1.1. Show that Rd (with the standard Euclidean topology)
is a manifold by finding an explicit countable basis.

It is not a priori clear why condition (3) should be there. A pos-
sible reason goes as follows: if a topological space M is Hausdorff
and second countable, then any subset S ⊂ M with the induced
topology is also Hausdorff and second countable. In particular, any
locally Euclidean subset in Rd is a manifold. Conversely, we will
prove later that any manifold as defined above is indeed a subspace
in Rd (the Whitney Imbedding Theorem, theorem 1.22). Hence, we
see that above abstract definition of manifolds does not really lead
to anything outside Euclidean spaces.

Given a manifold M and two charts (Ua, φa) in Rda and (Ub, φb)

in Rdb with Ua ∩Ub 6= ∅, we form the coordinate transition function

φab := φa ◦ φ−1
b : φb(Ua ∩Ub)→ φa(Ua ∩Ub)

which is a homeomorphism. It is intuitively clear that we should
have da = db, which will be the dimension of M. However, the only
known proofs are by no means elementary, except in one case:

Exercise 1.2. Let Rd1 ∼= Rd2 (homeomorphic). If d1 = 1 show that
d2 = 1. Investigate the case d1 = 2 and reduce the problem to the
Jordan Curve Theorem.
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The general case will be outlined later (c.f. Exercise 1.19) by means
of certain approximation theorems and ideas in homotopy theory.

In this course we are mainly interested in differentiable manifolds
instead of general topological manifolds.

Definition 1.2. We call a collection of charts {(Ua, φa)}a∈A a Ck atlas
of M if (1) the transition functions φab’s are all Ck mappings for some
fixed k ∈N∪ {∞} and (2)

⋃
a∈A Ua = M.

Exercise 1.3. For a manifold with a Ck atlas, k ≥ 1, show that the
dimension d = dim M is well defined on each connected component
of M.

When a manifold M is equi-dimensional of dimension d, we usu-
ally denote it by Md, if no confusion with the cartesian product M×
· · · ×M is likely to occur.

Given a Ck atlas {(Ua, φa)}a∈A on M, a chart (U, φ) is Ck related
to it if both the transition functions φ ◦ φ−1

a and φ−1
a ◦ φ are Ck for all

a ∈ A. It is convenient to add all Ck related charts into a given atlas.

Exercise 1.4. Show that the enlarged collection of charts {Uα, φα)}α∈A
also forms a Ck atlas. Moreover, it is a maximal atlas in the sense that
any chart which is Ck related to it is already contained in it.

Definition 1.3. A Ck (differentiable) structure on M is a maximal atlas of
Ck charts. A Ck differentiable manifold is a manifold together with a
Ck structure. When a Ck manifold is given, the term charts of it will
always mean Ck charts.

Formally, the case k = 0 is simply a topological manifold. From
the definition, there is an immediately natural question whether it
is possible to select from all charts a sub-collection which defines a
C1 structure or even a Ck structure for higher k. These are important
and highly non-trivial problems in manifold theory. In fact, there are
C0 manifolds which admit no C1 structures. In later chapters we will
address on some of these questions. For the moment, we will only
remark that:
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(1) A famous theorem of Whitney says that any C1 manifold
indeed admits (contains) C∞ structures;

(2) the C2 condition is the minimum requirement to define the
notion of curvature, a concept introduced by Gauss and Rie-
mann which lead to the birth of modern differential geome-
try, and will be vastly studied in this course.

Thus in this course, differentiable manifolds will always mean C∞

manifolds.
A function f : Md → R is Ck (differentiable) at p ∈ M if f ◦ x−1 is

Ck at x(p) ∈ Rd for one chart (U, x) which contains p. Since

f ◦ x−1
β = f ◦ x−1

α ◦ (xα ◦ x−1
β ),

by the definition of Ck structure the notion of Ck is independent of
the choices of charts. We denote Ck(U) by the space of functions that
are Ck at all points in U.

Likewise a function f : Mm → Nn between two Ck manifolds is
called a Ck (differentiable) map if

y ◦ f ◦ x−1 : x( f−1(V) ∩U) ⊂ Rm → y(V) ⊂ Rn

is Ck for any choice of charts (U, x) on M and (V, y) on N. It is
enough to check it for any two special atlas. Denote by Ck(M, N) the
space of all such Ck functions. A mapping f : M → N between two
Ck manifolds is a diffeomorphism if f−1 is well defined and both f and
f−1 are Ck. This is the notion of isomorphisms in the category of Ck

manifolds.

Exercise 1.5. For any Ck manifold Md and p ∈ M, show that there
are charts with x(U) = B0(r), the open ball of radius r in Rd, as well
as charts with x(U) = Rd.

Exercise 1.6. Consider M = R with one chart given by (R, φ) where
φ(t) = t3. Show that this defines a C∞ structure on M. Is M diffeo-
morphic to R with the standard C∞ structure (R, id)?

There could be many Ck structures on a manifold, but it is hard
to find non-diffeomorphic ones. The set of equivalence classes of
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differentiable structures up to diffeomorphism is a delicate object for
study, which again will be briefly discussed in later chapters.

2. Cut offs and the partition of unity

Are there any C∞ functions on a C∞ manifold M besides the con-
stants? For each charts (U, x) the coordinate functions xi’s are by
definition C∞ on U, but it may not be possible to extend xi to a C∞

function on M.
One of the basic principles in differential geometry is try to (1)

compute things locally via differential calculus and (2) find a way to
patch local information together to get global results. This section
establishes the existence of partitions of unity which is the simplest
tool in this regard.

Recall that a topological space M is paracompact if every open
cover {Uα}α∈A of it has a locally finite open refinement {Vβ}β∈B, in
the sense that

(1) Local finiteness: for each p ∈ M, there is a neighborhood U 3 p
such that Vβ ∩U = ∅ except possibly for a finite number of Vβ’s.

(2) Refinement: there is a map ρ : B → A such that Vβ ⊂ Uρ(β) for
all β ∈ B. The map ρ may not be injective nor surjective.

A manifold is more than paracompact. In fact we have an easy
but important

Lemma 1.4. Let M be a locally compact topological space which is Haus-
dorff and second countable (e.g. a manifold), then M is σ compact. Namely,
there is a countable sequence of increasing open sets {Gi}i∈N with Ḡi com-
pact, Ḡi ⊂ Gi+1 and M =

⋃∞
i=1 Gi.

PROOF. Let {Wi}i∈N be any given countable basis.

Exercise 1.7. Show that by removing those Wi with noncompact clo-
sure W̄i we still get a basis. (Notice that the Hausdorff condition is
needed.)

Thus we may assume that W̄i is compact for all i.
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Let G1 = W1. The set Gi is constructed inductively: suppose that
Gi is constructed. Since Ḡi is compact and covered by Wj’s, there is a
smallest j(i) ∈N so that

Ḡi ⊂W1 ∪ · · · ∪Wj(i).

We then define Gi+1 = W1 ∪ · · · ∪Wj(i). It remains to show that Ḡi+1

is compact. This follows from

Ḡi+1 ⊂ W̄1 ∪ · · · ∪ W̄j(i)

since a closed set in a (finite union of) compact set is compact. �

Lemma 1.5. Let M =
⋃∞

i=1 Gi be σ compact. Then every open cover
{Uα}α∈A has a countable locally finite refinement {Vj}j∈N with V̄j being
compact.

PROOF. For each i ∈N, consider the open annulus

Si := Gi+1 \ Ḡi−2.

(We put Gi = ∅ for i ≤ 0.) Then Ḡi \ Gi−1 is compact and contained
in Si. It is covered by {Uα ∩ Si}α∈A hence is covered by a finite num-
ber of them. By putting together all these finite open sets we get a
countable sequence {Vj}j∈N. Each Vj is of the form Uα ∩ Si, so

V̄j = Uα ∩ Si ⊂ S̄i ⊂ Ḡi+1

is closed in a compact set. Hence V̄j is itself compact.
Finally, {Vj} is locally finite since if p ∈ Si then only those Vj’s

constructed from Si−1, Si and Si+1 may possibly intersect Si nontriv-
ially. �

Now we discuss cut off (or bump) functions . Let

f (t) =





e−1/t for t > 0,

0 for t ≤ 0.

Exercise 1.8. Show that f ∈ C∞(R) and f (n)(0) = 0 for all n ∈N.
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The function

g(t) =
f (t)

f (t) + f (1− t)
=

1

1 + e
1
t− 1

1−t

is then C∞ and non-decreasing with g(t) = 0 for t ≤ 0 and g(t) = 1
for t ≥ 1.

The function h(t) = g(2 + t)g(2 − t) is a cut off function with
h = 1 on [−1, 1] and h = 0 outside (−2, 2). For a higher dimensional
version we consider

ψ(x1, . . . , xd) =
d

∏
i=1

h(xi) ∈ C∞(Rd).

Then ψ = 1 on [−1, 1]d and ψ = 0 outside (−2, 2)d. Alternatively we
may consider the radially symmetric function

ψ(x) = h(|x|) ∈ C∞(R)

which has ψ|B0(1) = 1 and ψ|Rd\B0(2) = 0.
In general, for a continuous function f on a topological space M,

its support is defined to be

supp f := {p ∈ M | f (p) 6= 0}.
For a closed set B ⊂ M, a cut off function for B is a non-negative

continuous function f such that supp f = B. The functions ψ above
are special C∞ cut off functions of standard cube and closed balls.

Definition 1.6. Given an open cover {Uα}α∈A of a Ck manifold M, a
partition of unity subordinate to {Uα} is a countable collection of Ck

functions {ψj}j∈N on M such that
(1) 0 ≤ ψj ≤ 1 for all j.
(2) {supp ψj} is a locally finite (closed) refinement of {Uα}.
(3) ∑j∈N ψj(p) = 1 for all p ∈ M.

There will be no convergence issue in (3) since by (2) the sum will
be a finite sum over a neighborhood of any point p.

Theorem 1.7 (Existence of Partition of Unity). Let M be a Ck manifold
with {Uα}α∈A an open cover. Then there is a Ck partition of unity {ψi}j∈N

subordinate to {Uα} with supp ψj being compact.
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Without the compact support requirement we may label the partition of
unity by the same set A with ψα 6≡ 0 for at most a countable subset of A.

PROOF. Let M =
⋃∞

i=1 Gi as given by Lemma 1.4. We will modify
the proof of Lemma 1.5 to construct {ψj}.

For each i ∈ N, the region Ḡi \ Gi−1 is compact and contained in
Si = Gi+1 \ Ḡi−2. For each p ∈ Ḡi \ Gi−1, let (Wp, x) be a chart at
p such that Wp ⊂ Uα ∩ Si for some α ∈ A and x(Wp) = B0(3). Let
Vp = x−1(B̄0(2)). Define a Ck cut off function for V̄p ⊂Wp ⊂ Uα by

ψ̄p =





ψ ◦ x on Wp,

0 on M \Wp.

There is a finite subcover of the open cover {Vp} of Ḡi \ Gi−1. By
putting together all such finite open sets for all i ∈ N, we get the
desired locally finite refinement {Vj}j∈N as in Lemma 1.5.

Let ψ̄j be the corresponding cut off function for Vj. For each p ∈
M, there is a (finite number of) ψ̄j with ψ̄j(p) 6= 0, hence we may
define

ψj =
ψ̄j

∑i ψ̄i
∈ C∞(M),

which clearly satisfies ∑j ψj = 1 with supp ψj = supp ψ̄j = V̄j being
compact.

For the last statement, for each α ∈ A, we may simply let

ψα = ∑
V̄j⊂Uα

ψj.

Here ψα ≡ 0 if no such j exists. The proof is complete. �

Exercise 1.9. Investigate the theorem for the case when M = R with
the open cover being given by a single set U = M = R.

Exercise 1.10. Let A (resp. U) be a closed (resp. open) set in a Ck

manifold M with Ā ⊂ U. Show that there exists f ∈ Ck(M) such
that f |A ≡ 1 and f |M\U ≡ 0. Is that possible to make supp f = A?
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3. Tangent spaces

It is a priori not obvious how to generalized the concept of tan-
gent vectors to manifolds. In fact, this is a challenge problem for C0

manifolds. We will give two definitions of it for Ck manifolds with
k ∈N∪ {∞}.

Let us begin with the case of Euclidean spaces. Let p ∈ Rd and
X ∈ Rd be a vector. For a C1 function f defined near p, we can define
the directional derivative

X f := DX f (p) =
d
dt

f (p + tX)
∣∣
t=0 = lim

t→0

f (p + tX)− f (p)
t

.

It is a derivation (first order differential operator) in the sense that
for all C1 functions f , g defined near p, we have

(1) Linearity: X(a f + bg) = aX f + bXg for a, b ∈ R, and
(2) Leibniz rule: X( f g) = (X f )g(p) + f (p)Xg.

Conversely, it is interesting to see whether a derivation deter-
mines a vector. We will see shortly that this is indeed the case for
derivations on C∞ functions.

For a Ck manifold, denote by Ck
p the space of germs of Ck func-

tions at p. It consists of functions which are defined on some (open)
neighborhood U of p, and two function germs f , g are identified if
f |U = g|U for some U 3 p.

Definition 1.8. Let M be a Ck manifold and p ∈ M. The Zariski tangent
space DpM at p is the vector space consisting of all derivations X :
Ck

p → R.

For any chart (U, x) at p, partial derivatives ∂/∂xi|p are examples
of tangent vectors: for f ∈ Ck

p,

∂

∂xi

∣∣∣
p

f :=
∂( f ◦ x−1)

∂xi (x(p)).

The following lemma is a useful substitute of the Taylor expan-
sion especially for functions that has only limited differentiability.
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Lemma 1.9. Let f ∈ Ck(B0(r)) in Rd. Then

f (x1, . . . , xd) = f (0) +
d

∑
i=1

xig(x1, . . . , xd)

with gi ∈ Ck−1(B0(r)) and gi(0) = ∂ f /∂xi(0).

PROOF. By the Fundamental Theorem of Calculus,

f (x)− f (0) =
∫ 1

0

d
dt

f (tx) dt =
d

∑
i=1

∫ 1

0

∂ f
∂xi (tx)xi dt

=
d

∑
i=1

xi
∫ 1

0

∂ f
∂xi (tx) dt =

d

∑
i=1

xig(x),

where gi(x) =
∫ 1

0

∂ f
∂xi (tx) dt ∈ Ck−1(B0(r)) and g(0) =

∂ f
∂xi (0) as ex-

pected. �

Theorem 1.10. For a C∞ manifold with (U, x) a chart at p, the partial
derivatives form a basis of DpM. Indeed for any X ∈ DpM,

X =
d

∑
i=1

X(xi)
∂

∂xi

∣∣∣
p
.

PROOF. Since X(1) = X(1 · 1) = X(1) · 1 + 1 · X(1) = 2X(1),
we have X(1) = 0, hence X(a) = aX(1) = 0 for any constant a.
For simplicity of notations we assume that x(p) = 0. Then for any
f ∈ C∞

p ,

X f = X( f − f (p)) = X(∑i xigi)

= ∑i X(xi)gi(p) + xi(p)X(gi)

= ∑i X(xi)
∂( f ◦ x−1)

∂xi (0)

= ∑i X(xi)
∂

∂xi

∣∣∣
p

f .

This proves the theorem. �
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The proof (and the theorem) fails for Ck manifolds if k < ∞ be-
cause then gi ∈ Ck−1 only and the second line about the Leibniz rule
does not make sense. This can be analyzed in purely algebraic terms:

Proposition 1.11. For any Ck manifold M, k ∈ {0, 1, 2, · · · , ∞},

DpM ∼= (mp/m2
p)
∗.

Here mp = { f ∈ Ck
p | f (p) = 0} is the maximal ideal at p and m2

p
consists of all finite sum of products ∑ figi with fi, gi ∈ mp.

PROOF. Let X ∈ DpM. Then X defines a linear map X : mp → R.
To show that X induces a map mp/m2

p → R we need X|m2
p
= 0,

which follows from the Leibniz rule readily: for fi, gi ∈ mp,

X(∑i figi) = ∑i X( fi)gi(p) + fi(p)Xgi(p) = 0.

Conversely, given ψ : mp/m2
p → R we claim that Xψ f := ψ( f −

f (p)) defines a derivation Xψ on Ck
p. Indeed,

Xψ( f g) = ψ( f g− f (p)g(p))

= ψ(( f − f (p))(g− g(p)) + ( f − f (p))g(p) + f (p)(g− g(p))

= (Xψ f )g(p) + f (p)Xψg

where we use the fact that ( f − f (p))(g− g(p)) ∈ m2
p. �

Exercise 1.11. Let M be a Ck manifold. Show that

dim DpM = dim mp/m2
p =





dim M if k = ∞,

∞ if k < ∞.

(Hint: for k = 1, study functions f (x) = (x1)a for 1 < a < 2.)

Let (U, x) and (V, y) be two charts at p, then for any f ∈ C∞
p ,

∂

∂xi

∣∣∣
p

f =
∂( f ◦ x−1)

∂xi (x(p)) =
∂( f ◦ y−1 ◦ y ◦ x−1)

∂xi (x(p))

= ∑
j

∂( f ◦ y−1)

∂yj (y(p))
∂yj

∂xi (x(p)) = ∑
j

∂yj

∂xi (x(p))
∂

∂yj

∣∣∣
p

f .
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Thus two vector representations ∑i ai ∂

∂xi

∣∣∣
p

and ∑j bi ∂

∂yj

∣∣∣
p

on two

charts correspond to the same vector precisely when their coefficients
satisfy the transformation rule

bj = ∑
i

ai ∂yj

∂xi (x(p)).

This condition only requires C1 structure, so we make the

Definition 1.12. The tangent space TpM for a Ck manifold M with k ≥ 1
consists of compatible systems of vectors in each chart at p which
satisfy the transformation rule.

4. Tangent maps

From now on, we work in the C∞ category unless specified oth-
erwise. In particular TpM = DpM and tangent vectors are precisely
derivations. Given a C∞ map f : M → N and p ∈ M, we define the
tangent map d fp : TpM→ Tf (p)N via

(d fpX)h = X(h ◦ f ),

where X ∈ TpM and h ∈ C∞
f (p).

The tangent map is indeed the generalization of derivative of a
map in Calculus and is also denoted by D fp, D f (p), d f (p), f∗p, and
perhaps the most commonly used f ′(p). It is the linearization (first–
order approximation) of the original map.

As in Calculus, d fp is linear and satisfies the chain rule. Namely
for g : N → S be another C∞ map we have

d(g ◦ f )p = dg f (p) ◦ d fp.

The proof in Calculus is a bit tricky, but the proof now is completely
formal: for X ∈ TpM and h ∈ C∞

g f (p),

(d(g ◦ f )pX)h = X(h ◦ g ◦ f ) = (d fpX)(h ◦ g) = dg f (p)(d fpX)h.
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Exercise 1.12. Show that in charts (U, x) at p ∈ M and (V, y) at

f (p) ∈ N, d fp is represented by d f̃x(p) with Jacobian matrix
[

∂ f̃ j

∂xi

]

where f̃ = y ◦ f ◦ x−1 : x(U ∩ f−1(V))→ Rdim N. Namely

d fp

( ∂

∂xi

∣∣∣
p

)
= ∑

j

∂ f̃ j

∂xi (x(p))
∂

∂yj

∣∣∣
p
.

Two special cases with one of the manifolds being R are particu-
larly interesting.

Example 1.13. The first is the total differential d f of a function f : M→
R. Let y be the coordinate of R, then d fpX = a∂/∂y|p for some a. By
substituting h = y in the definition of d fp we get a = X f .

Since there is only one basis ∂/∂y|p for TpR, following the usual
convention we denote a vector in R simply by its coefficient. Also
we drop the point p if no confusion is likely to occur. Hence

d f (X) = X f .

Each coordinate xi is a C∞ function at p and we compute

dxi
( ∂

∂xj

)
=

∂xi

∂xj = δi
j.

That is, the differentials dxi’s form a dual basis of the cotangent space,
the dual space of tangent space:

T∗p M := (TpM)∗ = Hom(TpM, R)

with respect to the basis ∂/∂xi’s. Moreover,

d f = ∑
i

∂( f ◦ x−1)

∂xi dxi.

This follows by looking at the values of both sides on the basis vec-
tors ∂/∂xi’s.

Example 1.14. The second example is the tangent vector

γ′(t) = dγt

( ∂

∂t

)
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of a parameterized C1 curve γ : (a, b) ⊂ R→ M with parameter t ∈
(a, b). Here, following the usual convention, we identify γ′(t) ≡ dγt

as its image vector since there is one basis vector ∂/∂t on Tt(a, b).
In local chart (U, x), the curve is represented by

t 7→ γ̃(t) := x ◦ γ(t) = (x1(t), . . . , xm(t))t

and

γ′(t) = ∑
i
(xi)′(t)

∂

∂xi

∣∣∣
γ(t)

.

The way d fp approximates f is best explained through the in-
verse/implicit function theorem. We start with the simplest notions,
namely the injectivity and surjectivity of f .

Definition 1.15. A map f ∈ C∞(M, N) is an immersion at p ∈ M if the
linear map d fp is injective, it is a submersion at p if d fp is surjective.

Lemma 1.16. Let f : Mm → Nn be a C∞ map.

(1) If f is an immersion at p (so m ≤ n), then there are charts (U, x)
at p and (V, y) at f (p) such that f |U is represented by yi =

f̃ i(x) = xi for i = 1, . . . , m and yi = 0 for i ≥ m + 1. That is, U
is a coordinate slice of V.

(2) If f is a submersion at p (so m ≥ n), then there are charts (U, x)
at p and (V, y) at f (p) such that f |U is represented by yi =

f̃ i(x) = xi for i = 1, . . . , n. That is, f̃ is a coordinate projection
from U to V.

PROOF. For (1), we start with any charts such that f (U) ⊂ V.
Since d f̃x(p) is injective, it has rank m. By reordering of coordinates

yi’s’, we may assume that the first m×m square matrix
[

∂ f̃ i

∂xj (x(p))
]m

i,j=1
is invertible. Denote by

y =

[
y1

y2

]
= f̃ (x) =

[
f 1(x)
f 2(x)

]

under Rn = Rm ×Rn−m, then by the inverse function theorem y1 =

f 1(x) is invertible over some x(p) ∈W ⊂ x(U). Using (x−1(W), y1 =
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f 1 ◦ x) as a new chart at p and letting g = f 2 ◦ ( f 1)−1, the map f be-
comes a graph of g:

y =

[
y1

g(y1)

]
.

By a simple change of coordinates

z =

[
z1

z2

]
=

[
y1

y2 − g(y1)

]

near f (p) ∈ N, we get the desired coordinate charts.
For (2), again we start with any charts with f (U) ⊂ V. Since

d f̃x(p) is surjective, it has rank n. By reordering of coordinates xi’s

we may assume that the first n × n square matrix
[

∂ f̃ i

∂xj (x(p))
]n

i,j=1

is invertible. Denote by x = (x1, x2)t under Rm = Rn ×Rm−n and
consider the map F : x(U)→ y(V)×Rm−n defined by

[ y
x2

]
:= F(x1, x2) =

[
f̃ (x1, x2)

x2

]
.

Since

dFx(p) =

[
D1 f̃ D2 f̃

0 idm−n

]

is invertible, the inverse G = F−1 exists over a smaller neighborhood
W 3 x(p). The result follows by using (y, x2)t as the new coordinate
system at p. �

Exercise 1.13. Show that f ∈ C∞(M, N) can be locally represented
by

f̃ (x) = (x1, . . . , xk, 0, . . . , 0)t

for some k ≤ m if and only if that d fp has constant rank k for all
p ∈ M.

5. Submanifolds and the Whitney imbedding theorem

There is a well defined notion of sub-objects in a reasonably given
category.



20 1. DIFFERENTIABLE MANIFOLDS

Definition 1.17. For a manifold N, a topological subspace M ⊂ N
is a submanifold if there is an atlas {(Uα, xα)}α∈A on N such that the
restriction

{(Uα ∩M, xα|Uα∩M)}α∈A

also form an atlas on M. This definition applies to any Ck manifolds.

Let f : M → N be an immersion. By lemma 1.16 (1), for any
p ∈ M, there is a chart U 3 p so that f |U is injective and f (U) is
a submanifold of N. However, f may not be injective globally, e.g.
parameterized plane curves with self-intersections.

Even if f is an injective immersion, the image with the subspace
topology might fail to be a manifold at all!

Example 1.18. Consider the plane curve in polar coordinates r =

sin 2θ with θ ∈ (0, π). The parametrization γ : (0, π)→ R2 given by

(x(θ), y(θ)) = (r cos θ, r sin θ) = (sin 2θ cos θ, sin 2θ sin θ)

is an injective immersion of (0, π) into R2. But the point (0, 0) ∈
γ((0, π)) does not have any locally Euclidean neighborhood, when
the image γ((0, π)) is equipped with the subspace topology in R2.

Even if the image is a manifold, it may not be equipped with the
induced subspace topology:

Exercise 1.14. Let a ∈ R \Q and consider the map

f : R→ S1 × S1 : t 7→ (eit, eiat)

where we identify S1 as a subset in C. Show that f is an injective
immersion and f (R) is dense in S1 × S1.

Definition 1.19. A C∞ map f : M → N is an imbedding if it is an in-
jective immersion which induces a homeomorphism f : M ∼→ f (M)

with f (M) ⊂ N being equipped with the subpace topology.

Lemma 1.20. If f : M → N is a C∞ imbedding then f (M) ⊂ N is a C∞

submanifold and f : M→ f (M) is a diffeomorphism.
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PROOF. The condition that f being a homeomorphism means that
for U a open neighborhood at p, there are open set V ⊂ N at f (p)
such that f−1(V) = U and U is homeomorphic to f (U) = V ∩ f (M)

under f . By lemma 1.16 (1) we may select U to be a coordinate slice
of V and hence f (M) is a C∞ submanifold of N. f : M → f (M) is a
diffeomorphism since they have identically the same atlas. �

A continuous map f : M → N between topological spaces is
called closed if the image of a closed set is closed. It is clear that an
injective continuous closed map induces a homeomorphism onto its
image, so an injective closed immersion is an imbedding.

Similarly f is open if it send open sets to open sets. An injec-
tive open immersion is also an imbedding. However, an imbedding
needs not be closed nor open. E.g. an interval (a, b) along the x-axis
in R2.

A continuous map is proper if the inverse image of a compact set
is compact.

Exercise 1.15. Let f ∈ C0(M, N) with N being Hausdorff. Show
that: (1) If M is compact then f is proper as well as closed. (2) If M,
N are manifolds and f is proper then it is also closed.

Thus for compact domain manifolds there is no serious topo-
logical issues to concern; the notion of immersions and imbeddings
(= injective immersions here) are precise and convenient. For non-
compact domain manifolds, extra information on f are usually cru-
cial.

The Whitney imbedding theorem says that any manifold is noth-
ing more than an imbedded submanifold in the Euclidean space. Be-
fore proving this fundamental result, we need a definition.

Definition 1.21. A set A ⊂ Rd has measure zero if for any ε > 0 there
is a countable cover by balls Bi with ∑i vol(Bi) < ε. A set A ⊂ Md in
a Ck manifold (k ≥ 1) has measure zero if for any chart (U, x) the set
x(A ∩U) has measure zero in Rd.
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By the standard diagonal argument we see that a countable union
of measure zero sets also has measure zero. Also it is clear that mea-
sure zero sets can not contain open sets. To see that the later defini-
tion makes sense we need “measure zero” to be independent of the
choices of coordinates. Indeed, more is true:

Exercise 1.16. (1) If f : U → Rd is C1 and A ⊂ U ⊂ Rd has measure
zero then f (A) also has measure zero. (2) If f : Mm → Nn is C1 and
m < n, then f (M) has measure zero, in particular it is not surjective.

Theorem 1.22 (Whitney Imbedding Theorem (weak form), 1936).
Every C∞ manifold Md admits a C∞ closed imbedding into R2d+1 and
a C∞ closed immersion in R2d.

PROOF. We will only give the proof for the simpler case when M
is assumed to be compact.

Step 1: Construct an imbedding f : M → RN for some large
N ∈N. (This step requires only the C1 structure.)

For any p ∈ M, consider a chart (Up, xp) with xp(Up) = B0(2).
The open cover {U′p := x−1

p (B0(1))}p∈M admits a finite subcover
indexed by 1, . . . , k. Consider cut off functions {ψi}k

i=1 with ψi ≡ 1
on U′i and supp ψi ⊂ Ui. Define a C∞ map

f :=
k

∏
i=1

(ψixpi , ψi)

≡ (ψ1xp1 , ψ1, · · · , ψkxpk , ψk) : M→ (Rd+1)k = Rk(d+1).

To see that f is an immersion, we notice that

d fp = (d(ψ1xp1), dψ1, · · · , d(ψkxpk), dψk) : TpM→ Tf (p)R
k(d+1).

Let p ∈ U′i . Since ψi|U′i ≡ 1, we get d(ψixpi)p = d(xpi)p. This is the
identification map TpM ∼= Txpi (p)R

d hence in particular that d fp is
injective.

To see that f is injective, given p 6= p′ ∈ M, if there is an i such
that p, p′ ∈ U′i , then the component ψixpi = xpi gives different coor-
dinates for p and p′. Otherwise p ∈ U′i and p′ 6∈ U′i for some i and
then ψi(p) = 1 > ψi(p′).
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Step 2: Reduction of imbedding dimension N to 2d + 1.
This step works for any given closed imbedding f : M → RN

(we need only the C2 condition on M and f , and M may be non-
compact). The idea is find a direction v ∈ SN−1 and compose f
with the projection map πv : RN → v⊥ ∼= RN−1. The new map
fv := πv ◦ f is closed since projection maps are clearly closed maps
and composition of closed maps are again closed.

To have fv being injective it is equivalent to require that for any
p 6= q ∈ M, the vector

−−−−−→
f (p) f (q) is not parallel to v. More precisely,

let ∆ : M→ M×M be the diagonal map ∆(p) = (p, p) and consider
the secant map

σ : M×M\∆(M)→ SN−1/{±1} =: RPN−1

defined by

σ((p, q)) = ± f (p)− f (q)
|| f (p)− f (q)|| .

Since σ is a C∞ map from a 2d manifold to an N − 1 manifold, if
2d < N − 1 (that is, N > 2d + 1) then σ can not be surjective; in fact
Im σ has measure zero. Thus fv is injective if we select v 6∈ im σ.

To have fv being an immersion it is equivalent to require that
d(πv)x = πv is injective on Tx f (M) for all x ∈ f (M). Without loss of
generality we identify M as its image f (M) in RN. Then the tangent
bundle TM :=

⋃
x∈M Tx M ⊂ M ×RN as a C∞ manifold of dimen-

sion 2d (cf. the exercise below) and the unit sphere bundle

S(TM) ⊂ M× SN−1

as a C∞ manifold of dimension d + (d− 1) = 2d− 1 is defined. The
map

T : S(TM)→ SN−1/{±1} : (p, v) 7→ ±v

is a C∞ map from a 2d− 1 manifold to an N− 1 manifold. If 2d− 1 <

N − 1 (that is, N > 2d) then again im T has measure zero and T is
not surjective. Thus fv is an immersion if we select v 6∈ im T.

When N > 2d + 1, im σ ∪ im T ⊂ SN−1 also has measure zero
hence the desired projection direction v can be selected. This com-
pletes the proof on the embedding statement. When N = 2d + 1, we
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may still select the further projection fv to get an immersion. This
completes the proof. �

Exercise 1.17. For a Ck manifold M with k ≥ 1, show that TM is
a Ck−1 manifold by constructing an atlas on it and computing the
transition functions.

Show also that S(TM) is a Ck−1 submanifold of TM.

A similar idea leads to applications to homotopy theory:

Theorem 1.23. If f : Sk → Sn is continuous with k < n, then f is
homotopic to a constant map. That is, πk(Sn) = 0 for k < n.

PROOF. It is trivial if f is not onto since Sn \ {p} ∼= Rn is con-
tractible. This is indeed the case if f is C1 by Exercise 1.16.

Now the idea is simply to approximate f by a C1 (in fact C∞)
function f̃ : Sk → Sn within a δ-error with δ < π.

Exercise 1.18. Prove the C∞ approximation for f ∈ C(Sk, Sn) within
any δ > 0. In fact show that the C1 approximation is always possible
for any f ∈ C(M, N) where M, N are both compact C1 manifolds.

With this done, then for each x ∈ Sk, the two vectors f (x), f̃ (x)
span a two dimensional plane Vx ⊂ Rn+1 and there is a unique
homotopy F(x, t) from f (x) to f̃ (x) through the shorter great cir-
cle Vx ∩ Sn. F(x, t) is clearly continuous, hence f is homotopic to f̃ ,
which is C1 and hence homotopic to a constant map. �

Exercise 1.19 (Invariance of dimensionality). As a corollary, show
that Rn ∼= Rm (homeomorphic)⇐⇒ n = m.

Remark 1.24. Step 1 in our proof of Theorem 1.22 does not apply to
the non-compact case. More transversality and approximation ar-
guments are needed. Then, as in Step 2, Whitney produced an im-
mersion f : Md → R2d with at most transverse self-intersections
(points). Finally, a surgery argument now called the Whitney trick
removes the intersections and achieves the embedding Md ⊂ R2d.
This is known as the (strong form of) Whitney Imbedding Theorem
and the bound is optimal. For details see e.g. [Hir94].
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6. Submersions and Sard’s theorem

After discussing submanifolds induced from immersions, we now
consider those induced from submersions, i.e. d f is surjective.
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N

M
f�1(q2)

f�1(q1)

q2

q1

Definition 1.25. Let f : M ! N be a smooth map. A point q 2 N
is called a regular value of f if d fp is surjective for all p 2 f�1(q).
Otherwise q is called a critical value or singular value.

When q is a regular value, the preimage f�1(q) is a, possibly non-
connected, submanifold of M and f can be parametrized as a coor-
dinate projection locally at p by Lemma 1.16. Any point p 2 f�1(q)
is referred as a regular point.

A point p 2 M is called a critical point of f if p is not regular,
i.e. d fp is not surjective. If N = R, this means d fp = 0. We denote by
C( f ) the set of all critical points.

Intuitively, the map f establishes a kind of nice local fiber space
structure on M outside the singular values f (C( f )). Thus it is impor-
tant to know more about the properties of f (C( f )).

Theorem 1.26 (Sard’s Theorem, 1942). f (C( f )) has measure 0 in N.

PROOF. Since a countable union of measure zero sets is measure
zero, it suffices to prove the case of charts (U, x) with bounded U.

Consider f : U ⇢ Rm ! Rn. Let

Ci = {x 2 U | Da f (x) = 0, 8 a, |a|  i}

Definition 1.25. Let f : M → N be a smooth map. A point q ∈ N
is called a regular value of f if d fp is surjective for all p ∈ f−1(q).
Otherwise q is called a critical value or singular value.

When q is a regular value, the preimage f−1(q) is a, possibly non-
connected, submanifold of M and f can be parametrized as a coor-
dinate projection locally at p by Lemma 1.16. Any point p ∈ f−1(q)
is referred as a regular point.

A point p ∈ M is called a critical point of f if p is not regular,
i.e. d fp is not surjective. If N = R, this means d fp = 0. We denote by
C( f ) the set of all critical points.

Intuitively, the map f establishes a kind of nice local fiber space
structure on M outside the singular values f (C( f )). Thus it is impor-
tant to know more about the properties of f (C( f )).

Theorem 1.26 (Sard’s Theorem, 1942). f (C( f )) has measure 0 in N.

PROOF. Since a countable union of measure zero sets is measure
zero, it suffices to prove the case of charts (U, x) with bounded U.

Consider f : U ⊂ Rm → Rn. Let

Ci = {x ∈ U | Dα f (x) = 0, ∀ α, |α| ≤ i}
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and C = C( f ). So C ⊃ C1 ⊃ C2 ⊃ · · · .
This proof consists of three steps:

(1) f (C \ C1) has measure 0.
(2) f (Ci \ Ci+1) has measure 0.
(3) f (Ck) has measure 0 for some k large enough.

We will prove them using induction on the total dimension m + n.
If m + n = 1, C = C1 and f (C) consist of only one point. The

theorem is trivial in this case. So we assume that m + n ≥ 2.
Let p ∈ C \C1, say ∂ f 1(p)/∂x1 6= 0. Through a coordinate change

h : U → Rm,
x 7→ ( f 1(x), x2, . . . , xm)t,

we have

dhp =




∂1 f 1(p) ∗

0 Im−1




which has a non-zero Jacobian. By the Inverse Function Theorem,
there is a neighborhood V ⊂ U such that h−1 exists on Ṽ := h(V).
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h : U ! Rm,
x 7! ( f 1(x), x2, . . . , xm)t,

we have

dhp =

2
64

∂1 f 1(p) ⇤

0 Im�1

3
75

which has a non-zero Jacobian. By the Inverse Function Theorem,
there is a neighborhood V ⇢ U such that h�1 exists on Ṽ := h(V).

U

V
p

h(p)

Ṽ

f

hh�1

Rm

f̃ = f � h�1

Let f̃ = f � h�1 : Ṽ ! Rm. We have f̃ 1(t, . . .) = t and

q 2 C( f̃ ) \ Ṽ () h�1(q) 2 C( f ) \V.

Let f̃ = f ◦ h−1 : Ṽ → Rm. We have f̃ 1(t, . . .) = t and

q ∈ C( f̃ ) ∩ Ṽ ⇐⇒ h−1(q) ∈ C( f ) ∩V.



6. SUBMERSIONS AND SARD’S THEOREM 27

Then f̃ : Ṽ → Rn splits into

f̃t : ({t} ×Rm−1) ∩ Ṽ → {t} ×Rn−1,

and

d f̃ =




1 0

∗ d ft


 , q = (t, r) ∈ C( f̃ ) ⇐⇒ r ∈ C( f̃t).

By the induction hypothesis, f̃t(C( f̃t)) has measure zero in the
hyperplane {t} ×Rn−1. Since C( f̃ ) \ C1 ⊂

⋃
t C( f̃t), by Fubini’s the-

orem in the theory of Lebesgue integrals,

| f (C( f̃ ) \ C1)| ≤
∫

t

∣∣ f̃t(C( f̃t))
∣∣ dt = 0.

Remark 1.27. This argument does not really need the full power of
Lebesgue theory. We only need the theory of measure 0 for the proof.

Consider the same argument on all p ∈ C \ C1. Since C \ C1 can
be covered by countable union of such (C( f̃ ) \ C1)’s, we conclude
that f (C \ C1) has measure 0.

Secondly, for any p ∈ Ci \ Ci+1, we may assume Dα f (p) = 0 for
all |α| ≤ i but Dβ f 1(p) 6= 0 for some β = α + (1, 0, . . . , 0).

Write f (α)(x) = Dα f 1(x). Again by changing coordinates,

h : U → Rm,
x 7→ ( f α(x), x2, . . . , xm)t,

dhp =




∂1 f (α)(p) ∗

0 Im−1




is invertible and there is a neighborhood V ⊂ U such that h−1 exists.
Also, h(Ci ∩V) ⊂ {0} ×Rm−1. Let f̃ = f ◦ h−1. We have

h−1(q) ∈ Ci( f )⇐⇒ q ∈ Ci( f̃ ) = Ci( f̃0)

where f̃0 : ({0} ×Rm−1)
⋂

h(V)→ Rn.
By induction, f (C( f̃0)) has measure 0, and so does f (Ci \ Ci+1)

by the countable covering argument as before.
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Thirdly, we claim that f (Ck) has measure 0 for large k through a
volume estimate. By the Taylor expansion, there exists a constant A
which depends only on k, m and n such that for p ∈ Ck,

f (p + h) = f (p) + R(p, h), |R(p, h)| ≤ A|h|k+1

for all |h| < δ. Let vn = vol(B0(1)). In each such ball Bp(δ) we have

| f (Ck ∩ Bp(δ))| ≤ vn Anδ(k+1)n

Now we cover Ck by a finite number of such balls. We need at most
(2d/δ)m balls with d = diam U. Pick k satisfying k + 1 > m/n, then

| f (Ck)| ≤ vn An(2d)mδ(k+1)n−m.

Since A and d are independent of δ, by taking δ → 0 we get that
f (Ck) has measure 0. The proof is complete. �

Remark 1.28. Sard’s Theorem holds for Ck maps with k > max{m−
n, 0}. The case n = 1 was first proved by Morse in 1939.

7. Vector fields, flows, Lie derivatives and the Frobenius integrabil-
ity theorem

Definition 1.29. Let U ⊂ M be open. A map X : U → TM is called
a vector field if for each p ∈ U, X(p) ∈ TpU = TpM. That is, X is a
section of the tangent bundle over U.

We say that X is a Ck and write X ∈ Ck(U, TM) if X f ∈ Ck(U)

for all f ∈ Ck(U). The space of C∞ (smooth) vector fields on U are
denoted by T(U) := C∞(U, TM).

28 1. DIFFERENTIABLE MANIFOLDS

X
TM

M
•
p

•Xp

?
p

Thirdly, we claim that f (Ck) has measure 0 for large k through a
volume estimate. By the Taylor expansion, there exists a constant A
which depends only on k, m and n such that for p 2 Ck,

f (p + h) = f (p) + R(p, h), |R(p, h)|  A|h|k+1

for all |h| < d. Let vn = vol(B0(1)). In each such ball Bp(d) we have

| f (Ck \ Bp(d))|  vn And(k+1)n

Now we cover Ck by a finite number of such balls. We need at most
(2d/d)m balls with d = diam U. Pick k satisfying k + 1 > m/n, then

| f (Ck)|  vn An(2d)md(k+1)n�m.

Since A and d are independent of d, by taking d ! 0 we get that
f (Ck) has measure 0. The proof is complete. ⇤

Remark 1.28. Sard’s Theorem holds for Ck maps with k > max{m�
n, 0}. The case n = 1 was first proved by Morse in 1939.

7. Vector fields, flows, Lie derivatives and the Frobenius integrabil-
ity theorem

Definition 1.29. Let U ⇢ M be open. A map X : U ! TM is called
a vector field if for each p 2 U, X(p) 2 TpU = TpM. That is, X is a
section of the tangent bundle over U.

We say that X is a Ck and write X 2 Ck(U, TM) if X f 2 Ck(U)

for all f 2 Ck(U). The space of C• (smooth) vector fields on U are
denoted by T(U) := C•(U, TM).
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We have seen that TM is a smooth manifold where charts and
coordinate functions on TM are of the form

(π−1(U), x1, · · · , xm, dx1, · · · , dxm).

So we also have equivalent definitions for C∞ vector fields:

Proposition 1.30. The followings are equivalent:

(1) X( f ) ∈ C∞(U) for any f ∈ C∞(U);

(2) X = ∑ ai(∂/∂xi), ai ∈ C∞(U);

(3) X : U → TM is C∞.

In Euclidean spaces, for a Lipschitz vector field F : U ⊂ Rm →
Rm we can find an unique solution to the initial value problem





∂x
∂t

= F(x(t)), x = (x1(t), . . . , xm(t))

x(0, x0) = x0

which depends continuously on x0. This is known as the existence
and uniqueness theorems of ODE [Picard 1890, Lindelöf 1894] in ba-
sic ODE courses. An improved version to take care of the smooth
dependence on the initial conditions is as follows:

Theorem 1.31. For a Ck vector field F with k ≥ 1, there exists a unique
solution x(t, x0) which is Ck+1 in t and Ck in (t, x0).

We will apply it in the case k = ∞ in this section. A proof of the
improved statement will be given in the next section.

There are corresponding versions on manifolds. Firstly we have:

Theorem 1.32. Let X be a C∞ vector field on M. For any p ∈ M, there
exists (ap, bp) ⊂ R

⋃{±∞} and γp : (ap, bp)→ M such that

γp(0) = p, γ′p(t) = X(γp(t))

and γp is maximal among curves with this property.

The solution γp is called an integral curve of X. Furthermore, for
any fixed t ∈ R, it is useful to consider the flow generated by X

φt(p) := γp(t)
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on the domain

Dt := {p ∈ M | t ∈ (ap, bp)}.
Clearly, φt is a diffeomorphism from Dt to D−t.1 And {φt}t∈R defines
a one-parameter group of (local) diffeomorphisms:

• φt ◦ φs = φt+s

• φ−1
t = φ−t

It is fundamental and natural to ask: how to take derivatives of a
vector field? Notice that it does not make sense to compare the two
vectors Xp and Xq when p 6= q. In Rd, we take derivatives by moving
f (γ(t)) back to γ(0) and calculate

vp( f ) = lim
t→0

f (γ(t))− f (γ(0))
t

along any C1 curve γ with γ(0) = p and γ′(0) = v.
On a manifold, one solution is the Lie derivative.

Definition 1.33. Given two vector fields V, X. Let φt be the flow gen-
erated by V. The Lie derivative of X along V is defined by

LV X(p) := lim
t→0

1
t

(
(φ−t)∗Xφt(p) − Xp

)

=
d
dt

∣∣∣
t=0

(φ−t)∗Xφt(p).
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on the domain

Dt := {p 2 M | t 2 (ap, bp)}.

Clearly, ft is a diffeomorphism from Dt to D�t. (We remark that if
M is compact, the interval (ap, bp) can be extended to (�•, •) and
ft will be a diffeomorphism from M to itself.) And {ft}t2R defines
a one-parameter group of (local) diffeomorphisms:

• ft � fs = ft+s

• f�1
t = f�t

It is fundamental and natural to ask: how to take derivatives of a
vector field? Notice that it does not make sense to compare the two
vectors Xp and Xq when p 6= q. In Rd, we take derivatives by moving
f (g(t)) back to g(0) and calculate

vp( f ) = lim
t!0

f (g(t))� f (g(0))

t

along any C1 curve g with g(0) = p and g0(0) = v.
On a manifold, one solution is the Lie derivative.

Definition 1.33. Given two vector fields V, X. Let ft be the flow gen-
erated by V. The Lie derivative of X along V is defined by

LV X(p) := lim
t!0

1
t

⇣
(f�t)⇤Xft(p) � Xp

⌘

=
d
dt

���
t=0

(f�t)⇤Xft(p).

Mg

•
p • g(t)

⇤
⇤
⇤
⇤⌫
Xp

�
��✓⇥

⇥
⇥
⇥�

�
�
���

�
��✓

Xg(t)

I
(f�t)⇤

We shall see shortly that the Lie derivative corresponds to an-
other simple binary operation on vector fields, the Lie bracket.

We shall see shortly that the Lie derivative corresponds to an-
other simple binary operation on vector fields, the Lie bracket.

1We remark that if M is compact, the interval (ap, bp) can be extended to
(−∞, ∞) and φt will be a diffeomorphism from M to itself. In general, a vector
field is called complete if it has this property.
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Definition 1.34. Let X, Y be C∞ vector fields on U. The Lie bracket is
defined by [X, Y] := XY−YX. That is,

[X, Y]p f = Xp(Y( f ))−Yp(X( f )).

It seems that [X, Y] is a second order operator on C∞(U). In fact,
it is still of the first order:

Proposition 1.35. [X, Y] is a C∞ vector field on U.

PROOF. Let X = ∑i ai ∂
∂xi , Y = ∑j bj ∂

∂xj and f ∈ C∞. By Leibniz
rule,

[X, Y]p f = ∑
ij

ai ∂

∂xi

(
bj ∂

∂xj f
)
− bj ∂

∂xj

(
ai ∂

∂xi f
)

= ∑
ij

ai ∂bj

∂xi
∂ f
∂xj + aibj ∂

∂xi
∂ f
∂xj − bj ∂ai

∂xi
∂ f
∂xj − bjai ∂

∂xj
∂ f
∂xi

= ∑
ij

(
ai ∂bj

∂xi
∂

∂xj − bj ∂ai

∂xi
∂

∂xj

)
f .

�

The Lie bracket has the following basic (Lie algebra) properties:

Proposition 1.36. Let X, Y be C∞ vector fields. Then

(1) (Anti-symmetry) [X, Y] = −[Y, X]

(2) (Jacobi identity) [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0

Now we can prove the important formula:

Theorem 1.37 (Lie, 1870). (LVW)p = [V, W]p

PROOF. Let V generate φt and W generate ψs. Choose a test func-
tion h ∈ C∞

p . By definition,
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(LVW)p h

=
d
dt

∣∣∣
t=0

(φ−t)∗Wφt(p)h =
d
dt

∣∣∣
t=0

Wφt(p)h ◦ φ−t

=
d
dt

d
ds

h ◦ φ−t ◦ ψs(φt(p))
∣∣∣
t=0,s=0

=
d
ds

d
dt

h ◦ φ−t ◦ ψs ◦ φt(p)
∣∣∣
t=0,s=0

=
d
ds

(
dh
(
−Vφ−t◦ψs◦φt(p)

)
+ dh ◦ φ−t∗ ◦ ψs∗

(
Vφt(p)

)) ∣∣∣
t=0,s=0

=
d
ds

(
−dh(Vψs(p)) + d(h ◦ ψs)(Vp)

) ∣∣∣
s=0

= − d
ds

∣∣∣
s=0

Vh(ψs(p)) + Vp

(
d
ds

∣∣∣
s=0

h ◦ ψs(p)
)

= −Wp(Vh) + Vp(Wh) = [V, W]p h.

�
We may extend these concepts to some higher dimensional cases.

Definition 1.38. A k dimensional distribution D on a manifold M is a
choice of a k dimensional subspace D(p) of TpM for each p ∈ M.

We say D is C∞ if for every p ∈ M, there is a neighborhood U
such that D is spanned by k C∞ vector fields X1, X2, . . . , Xk on U.

The question in higher dimensions becomes: for a given distribu-
tion D near p, does there exists a k dimensional submanifold S with
p ∈ S such that TqS = D(q) for all q ∈ S?

If so, S is called an integral manifold of D passing through p.
Clearly a necessary condition for this integrability is the following:

Definition 1.39. D is called involutive if [X, Y] ∈ D for all X, Y ∈ D .
Here a vector field X ∈ D means Xp ∈ D(p) for all p.

This turns out to be sufficient at least locally:

Theorem 1.40 (Frobenius Integrability, 1877). If D is involutive, then
for all p ∈ M there exists a maximal integral manifold Sp ⊂ M passing
through p such that TqSp = D(q) for all q ∈ Sp.



7. VECTOR FIELDS AND FROBENIUS THEOREM 33

As in the case of integral curves, Sp ⊂ M needs not be closed.
That is Sp may not be with the induced topology.

The proof is based on two lemmas. To state the first one, we need

Definition 1.41. For a smooth map f : S → M and a smooth vector
field X ∈ C∞(TS), the tangent map d f = f∗ sends X to

f∗X ∈ C∞(S, f ∗TM),

namely a section of the pull back tangent bundle. Here ( f ∗TM)p :=
Tf (p)M. If f is not injective, say f (p) = f (q), it might happens that
f∗,pXp 6= f∗,qXq, hence f∗X might not be the restriction of a vector
field X′ on M.

If indeed f∗X = X′| f (S) for some X′ ∈ C∞(TM), we say that X is
a f -related vector field (with X′), or X and X′ are f -related.

Exercise 1.20. Let f ∈ C∞(S, M). Show that [ f∗X, f∗Y] is defined for
f -related fields X, Y ∈ C∞(TS) and f∗([X, Y]) = [ f∗X, f∗Y].

The next lemma characterizes coordinate vector fields:

Lemma 1.42. If X1, . . . , Xk are k vector fields near a point p ∈ M that
spans D and [Xi, Xj] = 0 for each i, j, then locally near p there exists a
coordinate submanifold S 3 p such that Xi = ∂/∂xi, i = 1, 2, · · · , k.

That is, there exists a coordinate system (U, x) at p such that S can be
locally represented as {xj = 0 | j = k + 1, · · · , m}

PROOF. Assume [V, W] = 0. Let V generate φ and W generate ψ.
We claim that φt ◦ ψs(p) = ψs ◦ φt(p).
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As in the case of integral curves, Sp ⇢ M needs not be closed.
That is Sp may not be with the induced topology.

The proof is based on two lemmas. To state the first one, we need

Definition 1.41. For a smooth map f : S ! M and a smooth vector
field X 2 C•(TS), the tangent map d f = f⇤ sends X to

f⇤X 2 C•(S, f ⇤TM),

namely a section of the pull back tangent bundle. Here ( f ⇤TM)p :=
Tf (p)M. If f is not injective, say f (p) = f (q), it might happens that
f⇤,pXp 6= f⇤,qXq, hence f⇤X might not be the restriction of a vector
field X0 on M. If indeed f⇤X = X0| f (S) for some X0 2 C•(TM), we
say that X and X0 are f -related.

Exercise 1.20. Let f : S ! M be C• and X, Y 2 C•(TS). Show that
[, ] is well-defined on f ⇤TM and we have f⇤([X, Y]) = [ f⇤X, f⇤Y].

The next lemma characterizes coordinate vector fields:

Lemma 1.42. If X1, . . . , Xk are k vector fields near a point p 2 M that
spans D and [Xi, Xj] = 0 for each i, j, then locally near p there exists a
coordinate submanifold S 3 p such that Xi = ∂/∂xi, i = 1, 2, · · · , k.

That is, there exists a coordinate system (U, x) at p such that S can be
locally represented as {xj = 0 | j = k + 1, · · · , m}

PROOF. Assume [V, W] = 0. Let V generate f and W generate y.
We claim that ft � ys(p) = ys � ft(p).

t

s�t
�s

p
M

ft(p)
t

s

ys � ft

ys � ft(p)
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Let c(t, s) = ψ−s ◦ φ−t ◦ ψs ◦ φt(p). Since LVW = 0 implies
φ−t∗W = W, directly differentiation shows that

∂

∂s
c(t, s) = −Wψ−s◦φ−t◦ψs◦φt(p) + ψ−s∗ ◦ φ−t∗(Wψs◦φt(p))

= −Wc(t,s) + Wc(t,s) = 0

Similarly, ∂c(t, s)/∂t = 0. So c(t, s) = p for all well-defined t, s.
Now, suppose Xi generates φi for i = 1, 2, . . . , k near p. We define

c(t1, t2, . . . , tk) := φ1
t1 ◦ φ2

t2 ◦ · · · ◦ φk
tk .

We check that its coordinate tangent vectors are precisely X1, . . . , Xk:

c∗(∂/∂t1) =
∂

∂t1 φ1
t1 ◦ · · · ◦ φk

tk = X1

∣∣∣
c(t1,...,tk)

.

And since every φi
ti

commutes with each other,

c∗(∂/∂ti) =
∂

∂ti φi
ti ◦ φ1

t1 ◦ · · · φ̂i
ti · · · ◦ φk

tk = Xi

∣∣∣
c(t1,...,tk)

.

Let S := {c(t1, . . . , tk) | tj ∈ Ij, ∀ j } where Ij is chosen to be small

enough such that every φ
j
tj is well-defined for tj ∈ Ij. We see that

c∗ is injective and then c is an immersion into M. By Lemma 1.16,
there exists a chart (U, x) near p such that xi(c(t1, . . . , tk)) = ti for
i = 1, . . . , k and xi(c(t1, . . . , tk)) = 0 for i = k + 1, . . . , m. Hence
S ∩U is a coordinate slice {xj = 0 | j = k + 1, . . . , m} on M. �

PROOF OF FROBENIUS THEOREM. We fix an arbitrary point p ∈
M. Since D(p) ⊂ TpM is a k dimensional subspace, we can select
a chart (U, x) at p with D(p) = R

〈
∂1|p, . . . , ∂k|p

〉
and construct the

projection π : U ⊂ M → Rk onto the first k coordinates. Then there
exists a smaller neighborhood U′ 3 p such that

D ∼= π∗D = R

〈
∂

∂x1 , . . . ,
∂

∂xk

〉
, ∀ q ∈ U′.

For each i = 1, . . . , k, let Xi ∈ D be the vector field lifted from
∂/∂xi, i.e. π∗(Xi) = ∂/∂xi. Then they are π-related and

0 =

[
∂

∂xi ,
∂

∂xj

]
= [π∗(Xi), π∗(Xj)] = π∗[Xi, Xj]⇐⇒ [Xi, Xj] = 0.
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TpM

p

R
D

∂
∂x1 , . . . , ∂

∂xk

E
S

D

??
p⇤

The above lemma then implies that there exists an integral manifold
S passing through p such that Tq S = D(q) for all q 2 S.

Since p 2 M is arbitrary, the union of all integral manifolds is the
whole manifold M. Also for any two integral manifolds S and S0, if
S\ S0 6= ∆ then S[ S0 is also an integral manifold. We conclude that
there is a maximal integral manifold Sp passing through p. ⇤

8. Existence, uniqueness and smooth dependence of ODE

Now we go back to the ODE system:
8
<
:

X0(t) = F(X(t)), F 2 C1(O, Rn) a vector field on O ⇢ Rn,

X(0) = x0,

and assume the Picard–Lindelöf theorem that there exists a unique
continuous function f(t, x0) satisfying the equation for t 2 J, a max-
imal interval for the existence of solutions, and with f(0, x0) = x0.1

It is obviously that ∂
∂t f(t, x0) exists. So, our goal is to discuss: the

smooth dependence of the solution f(t, x0) on its initial value x0.
It turns out that f(t, x0) is C1 in x0. Moreover, an iterative argu-

ment then implies the Ck case as stated in Theorem 1.32.

1In this section we work on Rn entirely and the symbols X, Y, Z etc. will be
used to denote points in Rn. This should not be confused with the same symbols
in the last section which denote vector fields on a manifold.

The above lemma then implies that there exists an integral manifold
S passing through p such that Tq S = D(q) for all q ∈ S.

Since p ∈ M is arbitrary, the union of all integral manifolds is the
whole manifold M. Also for any two integral manifolds S and S′, if
S∩ S′ 6= ∅ then S∪ S′ is also an integral manifold. We conclude that
there is a maximal integral manifold Sp passing through p. �

8. Existence, uniqueness and smooth dependence of ODE

Now we go back to the ODE system:




X′(t) = F(X(t)), F ∈ C1(O, Rn) a vector field on O ⊂ Rn,

X(0) = x0,

and assume the Picard–Lindelöf theorem that there exists a unique
continuous function φ(t, x0) satisfying the equation for t ∈ J, a max-
imal interval for the existence of solutions, and with φ(0, x0) = x0.2

It is obviously that ∂
∂t φ(t, x0) exists. So, our goal is to discuss: the

smooth dependence of the solution φ(t, x0) on its initial value x0.
It turns out that φ(t, x0) is C1 in x0. Moreover, an iterative argu-

ment then implies the Ck case as stated in Theorem 1.32.

2In this section we work on Rn entirely and the symbols X, Y, Z etc. will be
used to denote points in Rn. This should not be confused with the same symbols
in the last section which denote vector fields on a manifold.
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Historically there exists two different proofs of this theorem, one
goes through a classical method by estimates (c.f. [HSD13]) and the
other makes use of the inverse function theorem on Banach spaces.
Below we follow the first method closely.

Suppose there are two solutions X(t) and X̃(t) with the given
initial data x0 and x0 + z0. The key point is to estimate ‖X(t)− X̃(t)‖
in terms of x0 and z0. We consider the variational equation:

(*)





U′(t) = A(t)U(t),

U(0) = z0

where A(t) = F′(X(t)), which is C0 dependent on t. The idea is that,
when z0 is small, X(t) + U(t) should approximate X̃(t) with initial
data x0 + z0. In fact, this comes from the intuition that if F is C2, then
the solution to the variational problem is just the first order term of
the Taylor expansion for X̃(t)’s in z0.

Proposition 1.43. Let U(t, ξ) be the flow of (*), i.e. U(0, ξ) = ξ, x0 + ξ ∈
O, and Y(t, ξ) be the flow of X′(t) = F(X(t)) with Y(0, ξ) = ξ. Then

lim
‖ξ‖→0

‖Y(t, ξ)− X(t)−U(t, ξ)‖
‖ξ‖ = 0

uniformly on an interval of existence J.

Assuming the proposition, the theorem follows immediately.

Theorem 1.44. If F ∈ Ck, then the flow φ(t, x0) of the ODE system
X′(t) = F(X(t)), X(0) = x0 is Ck as well.

PROOF. By the proposition,

φ(t, x0 + ξ)− φ(t, x0) = Y(t, ξ)− X(t) = U(t, ξ) + o(|ξ|).
Note that from solving the linear system U′(t, ξ) = A(t)U(t, ξ) with
U(0, ξ) = ξ, we see that

U(t, ξ) = eA(t)ξ

is linear in ξ. Hence D2φ(t, x0)ξ = U(t, ξ) and φ(t, x) is C1 in x. This
proves the theorem for the case k = 1.
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Back to the variational equation (*), we get

d
dt
(D2φ(t, x0)) = F′(φ(t, x0))D2φ(t, x0)

with D2φ(0, x0) = idRn . Then by induction, F ∈ Ck implies that
φ(t, x) is Ck in x. �

PROOF OF PROPOSITION. We rewrite the differential equations into
integral equations as:

X(t) = x0 +
∫ t

0
F(X(s))ds,

Y(t, ξ) = x0 + ξ +
∫ t

0
F(Y(s, ξ))ds,

U(t, ξ) = ξ +
∫ t

0
F′(X(s))U(s, ξ)ds.

By the Taylor expansion, we have an estimate:

‖Y(t, ξ)− X(t)−U(t, ξ)‖

≤
∫ t

0
‖F(Y(s, ξ))− F(X(s))− F′(X(s))U(s, ξ)‖ds

≤
∫ t

0

(
|F′(X(s))‖‖Y(s, ξ)− X(s)−U(s, ξ)‖

+ ‖R(X(s), Y(s, ξ)− X(s))‖
)

ds

where R is the first order remainder term.
We use the Gronwall’s inequality to deal with the iteration of dif-

ference appearing in the integral.

Exercise 1.21 (Gronwall’s inequality, an easy version). If u ∈ C1[0, d],
u > 0 and u satisfies u(t) ≤ c +

∫ t
0 Ku(s)ds for some positive con-

stants c, K. Then u ≤ ceKt on [0, d].

Therefore, the constant c = |ξ| can be taken to be small and

‖Y(t, ξ)− X(t)‖ ≤ ‖ξ‖+
∫ t

0
‖F(Y(s, ξ))− F(X(s))‖ds

≤ ‖ξ‖+
∫ t

0
‖F′‖‖Y(s, ξ)− X(s)‖ds
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Choose K large such that ‖F′‖ < K on a small neighborhood. By
Gronwall’s inequality, ‖Y(t, ξ)− X(t)‖ ≤ ‖ξ‖eKt. So, for any ε > 0,
we can choose ξ small such that the remainder term

‖R(X(s), Y(s, ξ)− X(s))‖ ≤ ε‖Y(s, ξ)− X(s)‖.
Denote g(t) = ‖Y(t, ξ)− X(t)−U(t, ξ)‖ and rewrite

g(t) ≤
∫ t

0
Kg(s) + ε‖ξ‖eKsds ≤ ε‖ξ‖C +

∫ t

0
Kg(s)ds

for some bounded constant C depending on F and the existece inter-
val J. By Gronwall’s inequality again, g(t) ≤ ε‖ξ‖CeKt and hence

‖Y(t, ξ)− X(t)−U(t, ξ)‖
‖ξ‖ ≤ εC̃

which is uniformly in t. �

9. Problems

1. ([War83] Ch.1 #10) Let M be a compact manifold of dimension n, and let
f : M→ Rn be C∞. Prove that f cannot everywhere be non-singular.

2. ([War83] Ch.1 #3) Let {Uα} be an open cover of a manifold M. Prove
that there exists a refinement {Vα} such that Vα ⊂ Uα for each α.

3. ([War83] Ch.1 #9) Let f : R2 → R be defined by

f (x, y) = x3 + xy + y3 + 1.

For which points p = (0, 0), p = ( 1
3 , 1

3 ), p = (− 1
3 ,− 1

3 ) is f−1( f (p)
)

an
imbedded submanifold in R?

4. ([War83] Ch.1 #16) Let N ⊂ M be a submanifold. Let γ : (a, b)→ M be a
C∞ curve such that γ(a, b) ⊂ N. Show that it is not necessarily true that
γ̇(t) ∈ Nγ(t) for each t ∈ (a, b).

5. ([War83] Ch.1 #17) Prove that any C∞ vector field on a compact manifold
is complete.

6. ([War83] Ch.1 #18) Prove that a C∞ map f : R2 → R1 cannot be one-to-
one.

7. ([War83] Ch.1 #23) A Riemannian structure on a differentiable manifold
M is a smooth choice of a positive definite inner product 〈 , 〉m on each
tangent space Mm, smooth in the sense that whenever X and Y are C∞

vector fields on M, then 〈X, Y〉 is a C∞ function on M. Prove that there
exists a Riemannian structure on every differentiable manifold. You will
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need to use a partition of unity argument. A Riemannian manifold is a
differentiable manifold together with a Riemannian structure.

8. ([War83] Ch.1 #6) Prove that if ψ : M → N is C∞, one-to-one, onto, and
everywhere non-singular, then ψ is a diffeomorphism.

9. ([War83] Ch.1 #19) Supply the details of the equivalence of the Frobenius
theorem 1.40 and the classical version:

Remark 1.45 (classical Frobenius theorem). Let U and V be open sets
in Rm and Rn respectively. We use coordinates r1, . . . , rm on Rm and
s1, . . . , sn on Rn. Let

b : U ×V → M(n, m)

be a C∞ map of U × V into the set of all n × m real matrices, and let
(r0, s0) ∈ U ×V. If

∂biβ

∂rγ
− ∂biγ

∂rβ
+

n

∑
j=1

(
∂biβ

∂sj
bjγ −

∂biγ

∂sj
bjβ

)
= 0

(i = 1, . . . , n; γ, β = 1, . . . , m)

on U ×V, then there exist neighborhoods U0 of r0 in U and V0 of s0 in V
and a unique C∞ map

α : U0 ×V0 → V

such that if
αs(r) = α(r, s) (s ∈ V0, r ∈ U0)

then
αs(r0) = s, dαs

∣∣
r = b(r, α(r, s))

for all (r, s) ∈ U0 ×V0.

10. ([War83] Ch.1 #20) Let ϕ : N → M be C∞, and let X be a C∞ vector field
on N. Suppose that dϕ(X(p)) = dϕ(X(q)) whenever ϕ(p) = ϕ(q). Is
there a smooth vector field Y on M which is ϕ-related to X?




