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1. INTRODUCTION

The theory of D-Modules is also known as Algebraic Analysis. It studies
the algebraic structures of systems of linear partial differential equations (PDE).
Though this lecture note is mainly on the algebraic side, the analytic side is
also reviewed briefly whenever needed. In fact the analytic theory is indis-
pensable when we discuss the Riemann–Hilbert correspondences. In this
introduction we present the theory in the complex analytic setting with the
hope that some concepts are intuitively clearer even though their precise
definitions are not given.

Let X ⊂ Cn be an open subset, O = O(X) be the space of the holomorphic
functions on X, and D be the C-vector space of all linear partial differential
operators on X with coefficients in O. Then D is a non-commutative C-
algebra generated by O and ∂1, . . . , ∂n, with the Lebnitz relation

[∂i, f ] = ∂i ◦ f − f ◦ ∂i = ∂i f .

The ring O is naturally a left D-module. For P ∈ D, the study of the PDE:

Pu = 0

concerns about the solvability/construction of the solution u, in a suitable
function space F ⊃ O which admits a natural left D-action extending the
one on O, and analyzing the local as well as local structure of it. To put it
into an algebraic framework, we consider the left D-module

M = D/DP.

Then
HomD(M,F) = HomD(D/DP,F)

∼= { φ ∈ HomD(D,F) | φ(P) = 0 }
∼= { u ∈ F | Pu = 0 },

where we use the identification

HomD(D,F) ∼= F, φ 7→ u := φ(1),

and then Pu = Pφ(1) = φ(P ◦ 1) = φ(P) = 0.
The above consideration extends straightforwardly to a system of linear

PDEs ∑m
j=1 Pijuj = 0 for i = 1, . . . , n, where P = (Pij) ∈ Mn×m(D). In this
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case we consider the left D-module M defined by the exact sequence

(1.1) Dn ×P−→Dm −→ M −→ 0,

and view the original PDE system as one finite presentation of the module M.
The C-vector space of solutions in F is again given by the functor

Mod(D) −→ Mod(C)op,

M 7→ HomD(M,F),
(1.2)

from the category of left D-modules with finite presentation to the category
of complex vector spaces. The functor is clearly contra-variant.

Simple examples in ordinary differential equations (ODE) show that there
might be no global single-valued solutions u to Pu = 0. In practice one
starts with local solutions and continues them analytically to the global
ones by taking into account the monodromy effects.

Thus in order to make the idea of D-modules effective in the study of
linear PDEs, it is indispensable to consider Sheaf Theory and Cohomologies,
and then it is natural to employ Homological Algebra in its full strength.

Let OX be the sheaf of holomorphic functions and DX be the sheaf of
linear differential operators generated by OX and the tangent sheaf ΘX. A
module which admits a finite presentation locally at each point as in (1.1)
is known as a coherent module. Thus a (left) coherent DX-module M is
precisely the global and intrinsic notion of linear PDEs. The analogous
“solution functor” counting holomorphic solutions as in (1.2) is

Modc(DX) −→ Mod(CX)
op,

M 7→ HomDX (M,OX),

which is from the category of (left) coherent DX-modules to category of
sheaves of C-vector spaces. With this setup, then we may allow the space
X to be a general complex manifold.

While both categories in (1.2) are abelian categories, the functor is in gen-
eral only left exact and not exact. This means that the naive solution functor
does not capture all informations contained in the DX-module. The natural
framework to resolve this issue is the natural extension of the problem in
(bounded) derived categories and derived functors. Namely,

Db
c(DX) −→ Db(CX)

op,

M• 7→ Sol(M•) := RHomDX (M
•,OX).

(1.3)

The (derived) category of sheaves of complex vector spaces is a rather
large and loose category, and the formalism is not practically useful if the
solution functor Sol does not admit more rigid structures. The typical exam-
ples of DX-modules come from integrable (i.e. flat) connections

∇ : M→ Ω1
X ⊗OX M,
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where M is a locally free sheaf (over OX) of finite rank r. The DX-module
structure is given by the left action: for θ ∈ ΘX, s ∈M,

θ s := ∇θ s.

In this case the classical Frobenius theorem implies that Sol(M) is a local
system, i.e. a locally constant sheaf of rank r generated by parallel sections.
This leads to an equivalence of categories

Conn(X) ∼= Loc(X) ∼= Rep(π1(X)).

Simple examples show that such a finiteness property fails for general
coherent DX-modules. Say, for M = DX we get Sol(DX) = OX. Intu-
itively we need to insert more equations to cut out the dimension of local
solutions. To make the intuition meaningful, we are lead to consider the
characteristic variety, or singular support,

Ch(M) ≡ SS(M) ⊂ T∗X

associated to a coherent DX-module M. It is a conic subvariety of the cotan-
gent bundle, locally on T∗X|U = T∗U defined by the top symbols

σtop(Pi)(x, ξ) = 0, i = 1, . . . , n,

where M|U ∼= DU/ ∑n
i=1 DU Pi and (x, ξ) ∈ T∗U. In the general situation,

namely m > 1 in the local presentation (1.1), we need to invoke more alge-
bra on graded modules to define this notion.

The celebrated Bernstein’s inequality says that for M ∈ Modc(DX),

(1.4) dim Ch(M) ≥ dim X.

In fact, Ch(M) is involutive with respect to the canonical symplectic struc-
ture on T∗X, hence (1.4) holds on each irreducible component of Ch(M). A
coherent DX-module M is called holonomic if the equality holds in (1.4).

Holonomic modules form an abelian and artinian sub-category

Modh(DX) ⊂ Modc(DX).

It appears to be the fundamental notion in D-Modules theory due to the
finiteness property proved in Kashiwara’s PhD thesis:

M ∈ Modh(DX) =⇒ Exti
DX

(M,OX) is constructible for all i ∈ Z.

This is equivalent to saying that all the stalks of Exti
DX

(M,O) are finite di-
mensional C-vector spaces. Hence the solution functor is an exact functor

(1.5) Db
h(DX)

RHomDX (•,OX)−−−−−−−−→ Db
c(CX)

op

between the derived category of holonomic modules and the derived cate-
gory of C-constructible sheaves.

Instead of working on the opposite category, we may use duality on DX-
modules to get an equivalent form of (1.5):

(1.6) Db
h(DX)

DRX(•)−−−−→ Db
c(CX),
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by using the de Rham functor

(1.7) M• 7→ DRX(M
•) := Ωdim X

X ⊗L
DX

M•.

In the special case M• = M ∈ Modc(DX), the complex in (1.7) is simply the
usual de Rham complex located at indices −dim X, . . . ,−1, 0:

DRX(M) = [Ω0
X

d−→ . . . d−→ Ωdim X−1
X

d−→ Ωdim X
X ]⊗OX M.

In the D-Modules context, the Riemann–Hilbert problem becomes a prob-
lem in analyzing the properties of the solution functor in (1.5), or equiva-
lently of the de Rhame functor in (1.6). For example, one may ask if they
induce equivalence of categories? If not, how should one modify the cate-
gories (and/or the functors) to make them equivalent?

The problem was solved in its full generality when one impose regular-
ity on the DX-modules. Indeed, let E be a divisor in X not necessarily of
normal crossing, and Connreg(X; E) be the category of regular meromor-
phic connections on X with poles along E. Here a connection is regular
if its restriction to every curve is a regular ODE. Then Deligne proved the
following version of Riemann–Hilbert correspondence in 1970:

(1.8) Connreg(X; E) ∼= Conn(X \ E).

That is, any integrable connection on X \ E extends uniquely to a regular
meromorphic connection along the divisor E.

The notion on regularity can be defined on holonomic DX-modules to get
a sub-category Modrh(DX), and hence also on its derived category Db

rh(DX)
by requiring each cohomology module being regular holonomic. Based
on Deligne’s equivalence (1.8) and the theory of D-Modules, Kashiwara in
1984, and Mebkhout in 1984 independently, proved the “by now classical”
Riemann–Hilbert correspondence

(1.9) Db
rh(DX)

∼−→ Db
c(CX)

under the de Rham functor DRX(•).
The theory of D-Modules can also be developed on smooth complex al-

gebraic varieties and most of the discussions above carry over to the al-
gebraic setup. In particular the correspondence (1.9) for smooth complex
algebraic varieties were proved by Beilinson and Bernstein.

Remark 1.1. In some steps the algebraic theory even takes simpler structure
than the analytic theory. For example, it is well known that Grothendieck’s
six operations

⊗L, RHom, f ∗, f∗, f !, f!

are all defined and well-behaved on Db
c(CX). This makes the theory of con-

structible sheaves very useful and the full power of homological methods
can be applied. Thus in order for the category of DX-modules to be use-
ful it is also of fundamental importance to investigate the corresponding
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six operations. For coherent DX-modules there are restrictions on the mor-
phisms f : X → Y in order for the coherence to be preserved under f+ or
f+ (the analogue functors of f ∗ and f∗ respectively). For derived category
of holonomic modules Db

h(DX), it turns out that in the algebraic category
all six operations are well behaved without any additional restriction on
the morphism f involved.

It can proved that a holonomic DX-module M is generically an integrable
connection. Thus one may regard the theory of algebraic D-Modules as the
“homological closure” of integrable connections. To understand Conn(X)
it is necessary to consider Db

h(DX) to achieve a complete theory.
However, in the analytic category we need to impose the properness of

f to show that the holonomicity is preserved under f+.

Nevertheless in the discussion of Riemann–Hilbert correspondence one
must employ analytic theory in order to define the solution functor and
the de Rham functors. As a result one must take care of both the algebraic
and analytic versions of Deligne’s equivalence in (1.8) and study the GAGA
comparison in details.

Finally, the equivalence (1.9) restricts to

(1.10) DRX : Modrh(DX)
∼−→ Perv(CX),

where Perv(CX) is the category of perverse sheaves introduced by Beilin-
son, Bernstein and Deligne in 1980 where they systematically developed
the theory in order to apply the arithmetic results on Deligne’s solution to
the Weil conjectures to much more general contexts.

For example, the BBD theory of perverse sheaves leads to a new proof
to the Hard Lefschetz theorem, a proof to the invariant cycle theorem, as
well as the so-called decomposition theorem of cohomology under a proper
morphism f : Y → X between singular algebraic varieties.

Remark 1.2. A remarkable observation from (1.10) is that the t-structures on
both sides of (1.9) looks rather differently at a first sight. On Db

rh(DX) one
uses the standard truncation structure D≥0 and D≤0 on complexes while
on Db

c(CX) one puts middle-perverse t-structure. This is perhaps the first
example in the literature so that a non-standard looking structure on one
side becomes completely standard on the other (categorically) equivalent
side.

To end this introduction we mentioned some recent advances on the D-
Modules theory.

I. One of the most significant early applications of D-Modules is in repre-
sentation theory. It leads to the resolution to the Kazhdan–Lusztig conjecture
whose statement will not be recalled here. It is remarkable since at the be-
ginning there does not seem to be any relation between representation the-
ory and D-Modules. By now this procedure is more or less standardized
under the name Geometric Representation Theory.
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II. The theory of mixed Hodge modules (MHM) by Saito in 1980’s can
be regarded as a study of mixed Hodge theory under the framework anal-
ogous to that of D-Modules. As a result, the BBD decomposition theorem
for perverse sheaves can also be proved in the category of MHM. Recently
de Cataldo and Migliorini had found a much more elementary proof to
the decomposition theorem and with more detailed description on various
special cases of f : X → Y like the case of semi-small morphisms.

III. Quantum D-Modules? In contrast to II, which might be regarded as a
theory on the B side form the mirror symmetry point of view, the theory on
the A side is less developed. The notion of quantum D-module is basically
just an equivalent way to talk about the Dubrovin connection on quantum
cohomology. The theory is basically a theory of integrable connections over
formal series. Not much is known about the analytic properties, not to
say the functorial properties under morphisms. Indeed the main purpose
for giving this lecture series is to investigate the possibility to develop a
parallel D-Modules theory in the A side.

IV. Holonomic DX-modules with irregular singularities? In the study of
ODE with irregular singularities we need to introduce Stokes structures to
capture the “monodromy data” attached to each irregular singular points.
Such an idea can be extended to certain higher dimensional cases through
works of Sabbah and Mochizuki since early 2000’s.

In particular for E ⊂ X being a smooth divisor, the notions of Stokes-
filtered constructible sheaves and Stokes-Peverse sheaves are well behaved
and a kind of Riemann–Hilbert correspondence in the algebraic category
can be formulated and proved on Modh(DX) without any assumption on
the regularity.

Very recently, D’Agnolo and Kashiwara (arXiv:1311.2374) announced an
analytic version of the Riemann–Hilbert correspondence in its complete
and full generality. They defined the so-called category of enhanced Ind-
sheaves whose definition roughly takes the form

Eb(ICX) := Db(IX×R∞)/IC{t∗≤0}.

They also defined the enhanced de Rham functor DRE
X and established the

following equivalence of categories

DRE
X : Db

h(DX)
∼−→ Eb(ICX).

It is important to remark that no Stokes structures are mentioned in the for-
mulation. Instead, the Stokes structure appears only as a topological conse-
quence when one tries to write down the equivalence in local coordinates
and frames.


