
A NOTE FOR THE CHANGE OF VARIABLE FORMULA IN
ARC SPACES

CHIN-LUNG WANG

Let φ : Y → X be a proper birational morphism between two n-dimensional
complex smooth varieties. Let Sk ⊂ L(Y ) be the subset of formal arcs such that
ordtJ(φ) = k. What is the structure of φ∗ : Sk → L(X)? We will see later that in
the set level φ∗ is almost an one to one map. However, the important observation
which leads to the change of variable formula in motivic integration is that this
map is indeed a piece-wise trivial Ck fibration onto its image when one considers it
in formal arcs of certain finite level.

More precisely, instead of working on the infinite dimensional spaces L(Y ) and
L(X), one may consider the following diagram about truncations to discuss only
algebraic varieties Lm(Y ) and Lm(X):

L(Y )

φ

��

πm // Lm(Y )

φm

��
L(X)

πm

// Lm(X)

The map φ0 = φ is the original map. The map φ1 is the tangent map TY → TX

since the first order arc is nothing but the tangent space.
Denef and Loeser showed that

Theorem 0.1. For each k ∈ N, there exists mk ∈ N such that for m ≥ mk, πmSk

is a union of fibers of φm. Moreover, φm|πmSk
is a piece-wise trivial Ck fibration

onto its image.

This was also proved by them for singular variety X, with suitable modifications
on the set Sk. Here we concern only the smooth case. In the smooth case πm are
all surjective (every finite arc can be lifted), so we may also define Sk directly on
certain large enough level m.

The purpose of this note is to demonstrate a key step in the proof of Denef and
Loeser’s result. We will first do it for a simple blowing-up at one smooth point in §1,
then in §2 we give the proof for the general case using the inverse function theorem
(or Hensel’s lemma). §2 is independent of §1, however §1 gives a down-to-the-earth
treatment which I feel also helpful in understanding the real content of change of
variable formula.

1. A Simple Blowing-Up Example

Consider a blowing-up φ : Y := C̃n → X := Cn at one smooth point 0 ∈ Cn.
For the affine open set U1 of Y with coordinates (y1, · · · , yn), the map φ takes the
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form
x1 = y1, x2 = y1y2, · · · xn = y1yn,

where (x1, · · · , xn) are coordinates of X. The Jacobian J := J(φ) = (yn−1
1 ) which

corresponds to the divisor (n − 1)E which appears in the holomorphic change of
variable formula KY = φ∗KX + (n − 1)E, where E = φ−1(0) is the exceptional
divisor. In this affine chart it is defined by y1 = 0.

A formal arc γ ∈ L(Y ) is represented by γ(t) = (y1(t), · · · yn(t)). Then ordtJ(γ) =
ordt(y1(t)n−1) = s(n − 1) if y1(t) = a1st

s + · · · with as 6= 0. That is, Sk 6= ∅ only
for k being of the form k = s(n − 1). The first (and trivial) case is k = 0 hence
s = 0 too (i.e. a10 6= 0). In this case, (yi) is unique solvable by (xi). By putting to-
gether all n affine open sets U0, . . . , Un of the standard covering of Y we simply get
S0 = Y \E ∼= X\0, a trivial C0 fibration. In this case m0 can be any non-negative
integer.

The next case is k = n− 1 and s = 1. That is, y1(t) = a11t
1 + · · · with a11 6= 0.

From
x1(t) = y1(t), x2(t) = y1(t)y2(t), · · · xn(t) = y1(t)yn(t),

we see that t|xi(t) for all i. Moreover, this is the only condition needs to be satisfied
for xi(t), 2 ≤ i ≤ n. The image of φ∗ consists of all x(t) = tv(t) = t(v1(t), · · · , vn(t))
with t 6 |v1(t). By gluing together over the standard affine covering, we see the image
consists of all x(t) = tv(t) with t 6 |vi(t) for some i (i.e. v(0) 6= 0). Also from the
formula we see that y(t) ∈ L(Y ) is uniquely solvable for any such x(t). This shows
that φ∗ : Sn−1 → L(X) is one to one. The similar argument also shows that
φ∗ : Sk → L(X) is one to one for any k = s(n− 1).

In order to look at finite truncations, we first claim

Lemma 1.1. Let φ∗y(t) = x(t) and y(t) ∈ Sk. Then for x̃(t) = x(t) + t`v with
` ≥ k and t 6 |v, there exists an unique ỹ(t) = y(t) + t`−ku such that φ∗ỹ(t) = x̃(t).

Proof. Since v(0) 6= 0, by reordering the variables we may assume that v1(t) 6= 0.
Then we will perform the computations in the chart U1 on Y .

For x̃1(t) = ỹ1(t), we need to solve x1(t)+ t`v1 = y1(t)+ t`−ku1. We may simply
set u1 = tkv1.

For 2 ≤ i ≤ n, to solve x̃i(t) = ỹ1(t)ỹi(t) we need to solve

xi(t) + t`vi = (y1(t) + t`v1)(yi(t) + t`−kui)

= y1(t)yi(t) + t`v1yi(t) + t`−k(y1(t) + t`v1)ui.

This is equivalent to solve ui from the equation

t`−k(y1(t) + t`v1)ui = t`(vi − v1yi(t)).

The condition y(t) ∈ Sk means that ordt y1(t)n−1 = k. That is, ordt y1(t) =
k/(n− 1). In particular, the order in t in the LHS is `− k + k/(n− 1) ≤ `. Since
the order in the RHS is at least `, we see that ui can be uniquely solved. �

Proof of the theorem in our special case. Suppose that we are given the equation
φ∗(y(t)) = x(t) with y(t) ∈ Sk, k = s(n− 1). Notice that in order for the solution
ỹ(t) in the above lemma to be in Sk, we need to require that ` ≥ k/(n − 1) + 1.
It would be sufficient to require that ` ≥ k + 1. (Indeed, for general birational
morphisms φ, the number n − 1 appears as the codimension (of the blowing-up
center) minus one, so in general it can take the value 1.) We will show that mk :=
k + 1 will be enough for the theorem to be true.
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Let m ≥ mk. By applying the lemma to the case ` = m + 1, we see that in
order to solve φm(ỹ(t) mod tm+1) = x(t) mod tm+1, we may assume that ỹ(t) =
y(t) + tm−1+ku. The solutions will be the residue classes ū = u mod tk. This
space is Ckn, but we will show that only a k-dimensional subspace will give rise to
solutions.

From x1(t) = y1(t) + tm+1−ku1 mod tm+1 we see that tk|u1 hence that ū1 = 0.
For other i with 2 ≤ i ≤ n, the equation

xi(t) = y1(t)(yi(t) + tm+1−kui) mod tm+1

implies that y1(t)tm+1−kui = 0 mod tm+1. That is, tk|y1(t)ui. Since ordty1(t) = s,
we get ordtui ≥ k−s. Equivalently the solutions of ui has dimension k−(k−s) = s
by counting the number of coefficients of ui(t) mod tk. Since there are n− 1 such
i’s, we see the total solutions have dimension s(n− 1) = k. �

Remark 1.2. By adding a few extra coordinates, the same argument also proves
the theorem in the case that φ : Y → X is the blowing-up of a smooth variety X
along a smooth center.

2. The General Case for Smooth Varieties

Now for a birational morphism φ : Y → X with Y and X smooth, φ naturally
induces a map φ∗ : L(Y ) → L(X). If KY = φ∗KX + E with E a normal crossing
divisor, the change of variable formula of Denef and Loeser states that∫

S

L−fdµX =
∫

φ−1(S)

L−f◦φ∗−ordtJφdµY .

Here Jφ := OY (−E) is the ideal sheaf generated by the holomorphic Jacobian
factor, ordt I : L(X) → N ∪ {0} for any ideal sheaf I is the function of minimal
degree in t. Namely for γ ∈ L(X), ordt I(γ) := ming∈I degt g ◦ γ(t).

We do not define the motivic integration here. We only remark that this formula
follows from Theorem 0.1 once we know the definition of integration. Also we
will only prove that the fiber of φm|Sk

is Ck and ignore the piece-wise-trivial-
fibration statement since it involves other tools in doing so (Boolean algebra and
semi-algebraic geometry).

The proof is indeed an application of the inverse function theorem over power
series rings which traces carefully the orders in t. Let φ : Y → X be the bira-
tional morphism with Ered ⊂ Y and Z ⊂ X be the exceptional loci in Y and X
respectively.

For each k ∈ N ∪ {0} let Sk ⊂ L(Y ) be the subset γ ∈ L(Y ) such that
ordt Jφ(γ) = k. By the inverse function theorem, the map φ∗ : L(Y ) → L(X)
is a bijection between L(Y )× := L(Y )\L(Ered) and L(X)× := L(X)\L(Z), thus
there is no interesting geometry on the map φ∗|Sk

: Sk → L(X)×. However, the im-
portant observation by Denef and Loeser is that when one takes finite truncations
in

L(Y )

φ

��

πm // Lm(Y )

φm

��
L(X)

πm

// Lm(X)
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for all large enough m the induced map φm|πm(Sk) : πm(Sk) → Lm(X) is indeed a
piece-wise trivial Ck fibration over its image. Together with the fact that L(Z) is
of measure zero in L(X), this will imply the change of variable formula.

To investigate the fibration structure near one arc γ ∈ L(Y ), it is enough to
restrict the map to formal neighborhoods φ : Ĉn

(0) → Ĉn
(0). Or equivalently to

represent φ by an algebraic map (still called φ) on power series φ : C[[t]]n → C[[t]]n

with φ(0) = 0. Let φ(y(t)) = x(t) with y(t) ∈ Sk and let ` ≥ 2k +1. We first notice
that for each v ∈ C[[t]]n, there is a unique solution u ∈ C[[t]]n of the equation

φ(y(t) + t`−ku) = x(t) + t`v.

Indeed by Taylor’s expansion

φ(y(t) + t`−ku) = φ(y(t)) + Dφ(y(t))t`−ku + t2(`−k)R(t, u).

Let A = Dφ(y(t)). The equation becomes Au + R(t, u)t`−k = tkv. That is,

u = (det A)−1tkA∗(v −R(t, u)t`−2k).

Here A∗ is the adjoint matrix of A. Since ordt detA = ordtJφ(y(t)) = k, the term
(detA)−1tk has order zero. Also since ` − 2k ≥ 1, by repeated substitutions this
relation solves u as a vector in formal power series.

Now let m ≥ 2k and let ` = m + 1. The above discussion shows that in order
to find all solutions of φ(ỹ(t) mod tm+1) = x(t) mod tm+1, we may assume that
ỹ(t) = y(t) + tm+1−ku. Notice that the residue classes ū = u mod tk form a linear
space isomorphic to Cnk. By Hensel’s lemma, in order to count the solutions we
may simply consider the equation Atm+1−kū = 0 mod tm+1. That is, Aū = 0
mod tk. Since ordt det(A∗) = (n − 1)k, the solution space of ū has dimension
nk − (n− 1)k = k as expected.

This verifies that φ−1
m x̄(t) ∼= Ck. The piece-wise triviality needs other tools to

prove it, which will not be reported here. For the complete details the readers are
referred to the original paper.

Remark 2.1. For S = L(X) and E =
∑n

i=1 eiEi a normal crossing, the change of
variable formula gives

[X] =
∫
L(X)

L0dµX =
∑

I⊂{1,...,n}
[E◦

I ]
∏

i∈I

L− 1
Lei+1 − 1

.

Since Le+1−1 = (L−1)[Pe], this lives in the localization of K0(VarC) in projective
spaces.


