
Chapter 1

VARIETIES

In this starting chapter we adopt the viewpoint explained in the intro-
duction and work with equations defined over R = k being a field, often
under the assumption that k = k̄. The case that R is a commutative ring
will be studied in the next chapter. Nevertheless, results in algebra will be
presented for more general cases if no extra difficulties will arise (so that
they are also be applicable in later chapters).

1. Affine and projective varieties

1.1. Affine algebraic sets. Let A = k[x1, . . . , xn] be the polynomial ring
in n variables over the field k. For any subset T ⊂ A the common zero loci
Z(T) = Z(〈T〉) ⊂ kn = An

k is called an (affine) algebraic set, where 〈T〉 is
the ideal generated by T. Since⋂

Z(Ti) = Z(
⋃

Ti), Z(T1) ∪ Z(T2) = Z(T1T2),

and Z(A) = Z({1}) = ∅, Z(∅) = kn, algebraic sets in kn satisfy the axiom
of closed sets for a topology. This is called the Zariski topology of kn.

Conversely, for any subset S ⊂ kn, the polynomials which vanish on it
I(S) := { f ∈ A | f (a) = 0, ∀a ∈ S} is an ideal in A. Moreover, it is readily
seen to be a radical ideal

√
I = I. By definition we have

I(Z(I)) ⊃
√

I, Z(I(S)) ⊃ S,

where S is the closure of S in the Zariski topology. However in general
this does not gives a one to one correspondence between radical ideals and
closed sets. For example if k = Q then (x2 + y2 + 1) is a prime hence a
radical ideal in Q[x, y] but Z(x2 + y2 + 1) = ∅ and I(∅) = A.

There are (at least) two different ways to resolve the problem to achieve
a one to one correspondence. The first method is due to Hilbert by working
on algebraic closed fields (k = k̄).
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8 1. VARIETIES

Theorem 1.1 (Hilbert Nullstellensatz). If k = k̄, then I(Z(I)) =
√

I.

From this we see easily that Z(I(S)) = S as well. Hence Z(I) ⊂ Z(J)⇔√
I ⊃
√

J. The theorem follows from (in fact is equivalent to)

Proposition 1.2 (Weak Nullstellensatz). If k = k̄, then any maximal ideal of
k[x1, . . . , xn] is of the form m = (x1 − a1, . . . , xn − an) for some a = (ai) ∈ kn.

Such an m is clearly maximal (for any field k) since A/m ∼= k.

PROPOSITION 1.2 =⇒ THEOREM 1.1. Let g ∈ A such that g|Z(I) = 0.
We introduce one more variable xn+1 and consider the ideal

J := (I, 1− gxn+1) ⊂ k[x1, . . . , xn+1].

Since Z(J) = ∅ in kn+1, we claim that in fact J = (1). If not then J is
contained in some maximal ideal which by the weak Nullstellensatz must
provide a common zero (a1, . . . , an+1) ∈ Z(J), a contradiction.

Now we have a finite expression

1 = ∑ hi fi + hn+1(1− gxn+1)

for some fi ∈ I. Substitute xn+1 = 1/g into it and multiply by a high power
gn to clear the denominator then leads to gn ∈ I, that is g ∈

√
I. �

There are many different proofs of Hilbert’s theorems, either the weak
or strong form. We will soon prove Proposition 1.2 using “Noether’s Nor-
malization” since the NN procedure is a very basic operation in polynomial
rings which will also be useful later.

Definition 1.3. An affine variety X ⊂ An
k is an algebraic set which is irre-

ducible. Namely X 6= X1 ∪ X2 for two proper closed subset Xi ( X.
Open subset of affine varieties U = V(I) \ V(J) are called quasi-affine

varieties. They are quipped with the Zariski topology induced from kn.

Corollary 1.4. Affine varieties are precisely those algebraic sets defined by prime
ideals. Furthermore, any algebraic set has a unique irreducible decomposition.

Indeed, if Z(I) is irreducible and f g ∈ I then Z( f ) ∪ Z(g) ⊃ Z(I) and
we must have say Z( f ) ⊃ Z(I). That is, f n ∈

√
I = I and then f ∈ I.

Conversely if I is prime then Z(I) ⊂ Z(J)∪ Z(J′) = Z(J J′) implies that
I ⊃ J J′. Hence we must have say I ⊃ J and then Z(I) ⊂ Z(J).

The decomposition into irreducible components is a formal consequence
of Noetherian rings:

√
I =

⋂r
i=1 pi where pi are the minimal primes in I.
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Definition 1.5. For an affine algebraic set X, the reduced ring A(X) :=
A/I(X) is called its coordinate ring. A(X) is a domain ⇐⇒ X is a vari-
ety. Also, a finitely generated k-algebra is usually called an affine k-algebra
since it can be presented as A/I for some ideal I ⊂ A = k[x1, . . . , xn].

1.2. Prime spectrum. The second method leading to the one to one cor-
respondence is technically easier but conceptually more abstract. It works
for any commutative ring A.

Let Spec A be the set of all prime ideals p ⊂ A. In the previous case A =

k[x1, . . . , xn] with k = k̄, points correspond precisely to the maximal ideals
by the weak Nullstellensatz (Proposition 1.2) and irreducible subvarieties
correspond precisely to the prime ideals (Corollary 1.4), hence Spec A can
be regarded as a “space” with “fat points” corresponding to subvarieties.

To equip Spec A a topology, we define closed subset to be

V(T) = V(〈T〉) = {p ∈ Spec A | p ⊃ T}

for any subset T ⊂ A, where 〈T〉 is the ideal generated by T. Since⋂
V(Ti) = V(

⋃
Ti), V(T1) ∪V(T2) = V(T1T2),

and V(A) = Z((1)) = ∅, V((0)) = Spec A, V(T)’s satisfy the axiom of
closed sets for a topology. This is called the Zariski topology of Spec A.

By Krull’s formula for the radical of an ideal I:
√

I =
⋂

p⊃I
p,

we see easily that V(I) ⊂ V(J)⇐⇒
√

I ⊃
√

J.

Remark 1.6. This is the correspondence we seek for. The role of Nullstellen-
satz for varieties over k = k̄ is eplaced by Krull’s formula in this setting.

For f ∈ A, it is a bit trickier to evaluate f at a point p ∈ Spec A. We will
do this in the next chapter when we discuss scheme structure on Spec A.
At this moment we simply notice that f (p) = 0 should mean p ∈ V( f ),
equivalently f ∈ p. Hence f (p) 6= 0 is equivalent to f 6∈ p. This defines a
fundamental open set

D( f ) := V( f )c = Spec A \V( f )

and all of them form a basis of the topology since V(I)c =
⋃

f∈I D( f ).
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The functorial property is particularly simple in this setting. For a ring
homomorphism φ : A→ B we get φ̃ : Spec B→ Spec A via

p 7→ φ̃(p) ≡ pc := φ−1p.

This is a continuous map since p ⊃ I ⇐⇒ φ−1p ⊃ φ−1 I.

Example 1.7. To see the behavior of φ̃, it is enough to consider surjective and injec-
tive homomorphisms.

(1) If φ : A� B then B ∼= A/I with I = ker φ and Spec B ∼= V(I) ↪→ Spec A
as a closed subset.

(2) If φ : A ↪→ B, in general we can only conclude that φ̃ is dominant,
i.e. im φ̃ is dense. For otherwise im φ̃ ⊂ V(J) for some ideal J 6= (0) in A
and then φ factor through A→ A/J → B which can not be injective.

(3) Fundamental open subsets correspond to special localizations: A → A f

gives Spec A f
∼= D( f ) ⊂ Spec A. Lozalizations might not be injective if

A is not a domain. Even if A is a domain so that φ̃ : A ↪→ A f , we see that
φ̃ is not surjective (though dominant).

(4) What happens to φ : A → Ap? For A being a domain, the zero ideal
(0) has the strange property that (0) = Spec A (called a generic point),
hence the dominance of Spec Ap → Spec A simply follows from φ̃((0)) =
((0)) which is dense! By definition a point is closed if and only if it is a
maximal ideal. Hence there is only one closed point in the local ring Ap.
The detailed structure will be studied in the next chapter.

Now it is a good point to recall a nice property in integral extensions:

Proposition 1.8 (Going-up and Going-down of Cohen–Sidenberg).

(i) If S ↪→ R is integral, then Spec R � Spec S. The surjectivity extends
in the upward direction: if p = qc and p ⊂ p′ then there is a q ⊂ q′ such
that q′c = p′. Moreover, if q1 ( q2 in R then qc

1 ( qc
2 in S.

(ii) If moreover R is a domain and S is normal (i.e. integrally closed in Q(S)),
then the surjectivity extends in the downward direction as well.

Even in considering problems for varieties, it could happen that the
setting of prime spectrum can help in various ways. Below we give such
an example on the number of equations needed to describe an algebraic set.

Let k be a field and I ⊂ k[x1, . . . , xn] be an ideal. Hilbert basis theorem
asserts that I = ( f1, . . . , fr) for some finite elements fi ∈ I. However, it
gives no information on the smallest possible r. Famous examples due to
Macaulay in 1916 say that r could be unbounded among all I even for n =

3. Thus the following result is of some conceptual interest.
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Definition 1.9. The Krull dimension of a commutative ring R, denoted by
dim R, is the largest number d ∈ {0, 1, 2, . . . , ∞} among all prime ideal
chains p0 ( p1 ( . . . ( pd in R.

Theorem 1.10 (Eisenbud-Evans 1973). Let R be a Noetherian ring of dimension
d < ∞ and I ⊂ R[x] be an ideal. Then there are fi ∈ I, i ∈ [1, d + 1] such that√

I =
√
( f1, . . . , fd+1).

PROOF. We may assume that R is reduced, i.e.
√

0 = 0. Let S ⊂ R
be the multiplicative closed subset consisting of non-zero divisors. It is
known that S = R \ ⋃n

i=1 pi where pi are the minimal primes. Hence the
total quotient ring decomposes into a product of fields

Q := RS
∼= K1 × . . . Kn,

where Ki = Q(R/pi). In particular Q[x] ∼= ∏r
i=1 Ki[x] is a principal ideal

ring and we have
IS = ( f1) ⊂ Q[x], f1 ∈ I.

If I = (g1, . . . , gr) then gi = hi f1/si = Hi f1/s for some si ∈ S, hi ∈ R,
and s := ∏ si ∈ S, Hi ∈ R. Then

(1.1) sI ⊂ f1R[x] ⊂ I.

If s is a unit, which is always the case if d = 0, then we are done. If
not, then R̄ := R/(s) has dim R̄ ≤ d− 1. Hence by induction on d the ideal

Ī ⊂ R̄[x] satisfies
√

Ī =
√
( f̄2, . . . , f̄d+1), where fi ∈ I. This means that

(1.2)
√

R[x]s + I =
√
(s, f2, . . . , fd+1).

From (1.1) we find V(s) ∪V(I) ⊃ V( f1) ⊃ V(I), and from (1.2) we get
V(s) ∩V(I) = V(s, f2, . . . , fd+1). So

V( f1, . . . , fd+1) = V( f1) ∩V( f2, . . . , fd+1)

⊂ (V(s) ∪V(I)) ∩V( f2, . . . , fd+1)

⊂ V(s, f2, . . . , fd+1) ∪V(I) = V(I).

Since fi ∈ I for all i, we conclude that V(I) = V( f1, . . . , fd+1). �

Corollary 1.11. Let k be a field, then any algebraic set in kn can be defined by no
more than n equations.

Notice that the same proof works in the variety setup. But then we get
the corollary only for the case k = k̄.
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1.3. Noether normalization and Krull dimension.

Theorem 1.12. Let R be a finitely generated integral domain over a field k with
n = tr.degk R. Then there are x1, . . . , xn ∈ R which are algebraically independent
over k such that R is integral over k[x1, . . . , xn].

PROOF. (After Nagata) Write R = k[Y1, . . . , Ym]/p where p is prime. If
m = n then Yi 7→ yi ∈ R must be algebraically independent. Hence p = 0
and we are done. Otherwise m > n and the theorem will be proved by
induction on m.

It is enough to find a subring S ⊂ R generated by m − 1 elements
such that R is integral over S. Since then we have two integral extensions
k[x1, . . . , xn] ⊂ S ⊂ R and the composition gives the result.

Since m > n, there is a 0 6= f (Y1, . . . , Ym) ∈ p such that f (y1, . . . , yn) =

0. By substituting yj = zj + y
rj
1 , rj ∈N for all j ∈ [2, m], we rewrite it as

f (y1, z2 + yr2
1 , . . . , zm + yrm

1 ) = 0.

By picking rj large we get (y1, z2, . . . , zm) is a root of

f (Y1, Z2 + Yr2
1 , . . . , Zm + Yrm

1 ) = bYN
1 + lower degree terms in Y1,

where b 6= 0. That is, y1 is integral over k[z2, . . . , zm]. Then yj = zj + y
rj
1 is

also integral over k[z2, . . . , zm] for j ∈ [2, m] and we are done. �

Remark 1.13. The procedure is called a Noether normalization (NN for short).
If k is an infinite field then we may also use a linear change of variables
yj = zj + ajy1, aj ∈ k, j ∈ [2, m] in the above proof. In this case NN is a
projection to certain n-dimensional affine space kn ⊂ km.

Example 1.14. Let R = k[x, y, z]/(xy + yz + zx). It is not integral over k[y, z]. After
the substitution y = u + x, we get

R ∼= k[x, u, z]/(x2 + (u + 2z)x + uz)

which is then integral over k[u, z].
For R = F2[x, y]/(x2y + xy2 + 1), such a linear change of variable does not

work since y = u + x leads to (x + y)xy + 1 = ux(u + x) + 1. Nevertheless using
Nagata’s change of variable y = u + x2 we get

x2y + xy2 + 1 = x5 + x4 + ux2 + u2x + 1.

Hence R is integral over F2[x, u]

Here is our first application of Noether normalization:



1. AFFINE AND PROJECTIVE VARIETIES 13

PROOF TO THE WEAK NULLSTELLENSATZ (PROPOSITION 1.2). Let m be
a maximal ideal of k[x1, . . . , xn]. Then R = k[x1, . . . , xn]/m is a finitely gen-
erated field over k. NN implies that R is integral over S = k[y1, . . . , yr] ⊂ R
with yj’s being algebraically independent. Now Cohen–Sidenberg’s going-
up (Proposition 1.8) implies that S is also a field. Hence r = 0 and S = k =

k̄, and then R = k since it is integral over S. Let ai := x̄i ∈ R = k. Then
m ⊃ (x1 − a1, . . . , xn − an), which is maximal, hence they are equal. �

The NN procedure can be stated in a generalized form:

Theorem 1.15 (Noether Normalization). Let A be a finitely generated algebra
over k and I ( A be a proper ideal. Then there are two numbers δ ≤ d and a
polynomial subalgebra B = k[y1, . . . , yd] ⊂ A such that

(i) A is a finitely generated B-module,
(ii) I ∩ B = (yδ+1, . . . , yd).

If k is an infinite field and A = k[x1, . . . , xn] is the polynomial ring then we
may choose yi = ∑n

k=1 aikxk with aij ∈ k.

From the finite B-module structure i : B ↪→ A we get also that

j : B/I ∩ B ∼= k[x1, . . . , xδ] ↪→ A/I

is a finite k[x1, . . . , xδ]-module. Thus if A is a domain then i is an integral
extension and d = tr.deg A and if I is furthermore a prime then j is also an
integral extension and δ = tr.deg A/I. The theorem will be applied mainly
in these cases. But identically the same proofs works for the cases as stated.

Remark 1.16. The theorem has the following geometric interpretation. In
constructing the “finite projection” Spec A → Spec B = Ad we have the
freedom to project a chosen closed subset Spec A/I to Aδ ⊂ An.

In fact it is then clear at least intuitively that the theorem holds for a
chain of ideals I1 ⊂ · · · ⊂ Im with dim A/Ii = di > di+1, with the conclu-
sion being Ii ∩ B = (ydi+1, . . . , yd). Namely, Spec A/Ii is projected onto Adi

in a descending manner when i = 1, 2, . . . , m (c.f. Eisenbud 1995).

Exercise 1.1. Prove Theorem 1.15 in 3 steps: (i) A = k[x1, . . . , xn], I = ( f ) is
principal. (ii) A = k[x1, . . . , xn] and I is general. Notice that for cases (i) and
(ii) the theorem is almost identical with the previous form (Theorem 1.12)
except that we keep the ideal I unchanged. It is clear that d = n. (iii) The
general case that A = k[x1, . . . , xn]/J. (Hint: apply (ii) twice. First apply it
to I = J and then to I′ = I ∩ k[y1, . . . , yd].)



14 1. VARIETIES

Now we apply the NN procedure to study the Krull dimension.

Proposition 1.17. Let A be an affine k-algebra.

(i) If k[y1, . . . , yd] ↪→ A is a Noether normalization then dim A = d.
(ii) If A is a domain, any maximal prime chain has length d.

PROOF. For (i), Proposition 1.8 implies that dim A = dim k[y1, . . . , yd] ≥
d (e.g. the prime chain (0) ⊂ (y1) ⊂ (y1, y2) ⊂ . . . ⊂ (y1, . . . , yd)).

Now for any prime chain P0 ( . . . ( Pm in A, we prove by induction
on d ≥ 0 that m ≤ d. The case d = 0 is trivial. Let d > 0.

Consider the induced prime chain p0 ( p1 ( . . . ( pm in k[y1, . . . , yd].
Let k[z1, . . . , zd] ⊂ k[y1, . . . , yd] be a Noether normalization for p1 such that
p1 ∩ k[z1, . . . , zd] = (zδ+1, . . . , zd). Since p1 6= (0), we get δ ≤ d− 1. Modulo
p1 we get k[z1, . . . , zδ] ⊂ k[y1, . . . , yd]/p1 =: A′ which is also a Noether
normalization. By induction the prime chain in A′:

(1.3) (0) = p1/p1 ( p2/p1 ( . . . ( pm/p1

has length ≤ δ. Hence m− 1 ≤ δ ≤ d− 1. That is, m ≤ d.
For (ii), let A be a domain and P• be a maximal prime chain. Hence

P0 = (0) and Pm is a maximal ideal. We claim that p• := P• ∩ k[y1, . . . , yd] is
also a maximal prime chain. If not, then there exists pi ( q ( pi+1 for some
i and prime q. Apply Noether normalization to I = pi as above we get

(0) ( q ( pi+1 = pi+1/pi.

But k[z1, . . . , zδ] ⊂ A/pi is also a Noether normalization and k[z1, . . . , zδ] is
a normal domain. The violates the Going-down theorem, a contradiction.

Now we conclude that m = d by induction on d. The case d = 0 is
trivial. Let d > 0. By Noether normalization as in (i), p1 ∩ k[z1, . . . , zd] =

(zδ+1, . . . , zd) has hight = ht p1 = 1 as we had just shown. Hence δ = d− 1.
By induction this implies that the maximal chain (1.3) in k[z1, . . . , zd−1] has
m− 1 = d− 1. That is m = d. �

Remark 1.18. Of course (ii) fails for product rings A1 × A2 with dim A1 6=
dim A2. Strikingly it also fails for certain Noetherian domains as shown by
famous examples due to Zariski–Samuel (c.f. their book, II, 1958).

Corollary 1.19. Let A be an affine k-algebra and p ⊂ q are primes in A. Then
any maximal prime chain from p to q has length dim A/p− dim A/q.
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Indeed, Proposition 1.17-(ii) implies that one may start at any prime
and construct the maximal prime chain on both sides.

Corollary 1.20. Let {pi}i=1s be the minimal primes in an affine k-algebra A. Then

(i) dim A = maxi dim A/pi and

dim A/pi = tr.degk Q(A/pi).

(ii) If dim A/pi is independent of i then

dim A = ht p+ dim A/p

for any prime p in A.

We may assume A is a domain. Then (i) follows from Proposition 1.17-
(i). For (ii), simply consider (0) ⊂ p in the above corollary (ii).

Corollary 1.21. Let A be an affine k-algebra which is an UFD, (0) 6= I ( A be a
radical ideal. Then I is a principal ideal if and only if dim A/I = dim A− 1.

PROOF. If I = p is a prime ideal, then it is easy to see from the UFD
condition that ht p = 1 if and only p = (p) for a prime element p ∈ A.

For general radical I, simply consider all its minimal prime divisor pi

and use I =
√

I =
⋂s

i=1 pi. �

1.4. Projective varieties.

Definition 1.22. Let k be a field. The projective n-space over k is

Pn
k := (kn+1 \ {0})/ ∼

where (ai)
n
i=0 ∼ (bi)

n
i=0 if bi = λai for some λ ∈ k×. It is the set of all lines

through 0 ∈ kn+1. Usually we denote a point on it as [a] = (a0 : . . . : an).

Let S = k[x0, . . . , xn] =
⊕

d≥0 Sd be a graded ring with the natural grad-
ing. An ideal I ⊂ S is homogeneous if it is generated by homogeneous
elements. Equivalently I =

⊕
d≥0(I ∩ Sd). By decomposing elements into

homogeneous components and argue inductively, it is easy to see that I is
prime if and only if “for homogeneous elements f , g ∈ S”,

f g ∈ I =⇒ f ∈ I or g ∈ I.

For f ∈ Sd, the value of f at a point [a] ∈ Pn
k is not well-derfined since

since f (λa) = λd f (a). Nevertheless its vanishing set Z( f ) is well-defined.
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As in the affine case, for any subset T ⊂ S of homogeneous elements
we declare Z(T) = Z(〈T〉) to be a closed set in Pn

k . The collection of closed
sets are also called algebraic sets which define the Zariski topology on Pn

k .
Conversely for a closed set X ⊂ Pn

k we have the vanishing ideal I(X)

generated by all homogeneous f with f |X = 0. The homogeneous coordi-
nate ring

Remark 1.23. Notice that the unique maximal homogeneous ideal S+ :=⊕
d≥1 Sd = (x0, . . . , xn) gives Z(S+) = {0} ∈ kn+1, which is excluded in

our definition. Hence we define Z(S+) = ∅ in the projective setting.

With S+ being excluded, under the further assumption that k = k̄, then
I(Z(a)) =

√
a and Z(I(Y)) = Y for any homogeneous ideal a 6= S+ and

any subset Y ⊂ Pn
k . Hence the correspondences between algebraic sets and

homogeneous radical ideals holds as in the affine case.
In fact all the proofs are all reduced to the “homogeneous Nullstellen-

satz”, which follows from the affine case, hence are left as exercises.

Definition 1.24. A projective variety X is an irreducible algebraic set in Pn
k . A

quais-projective variety is an open subset of a projective variety. In general,
a k-variety is always referred as a quasi-projective variety in some Pn

k .

It is clear that projective varieties X correspond to homogeneous prime
ideals p = I(X) in S. The affine variety C(X) ⊂ kn+1 defined by the same
ideal p is called the cone over X. Many properties of projective varieties can
be studied by way of consideration on the affine cones. Another common
consideration related to affine varieties is to view the latter as local charts:

We may write Pn
k = U0 ∪ . . . ∪Un where Ui = Pn

k \ Hi, Hi := Z(xi) ∼=
Pn−1

k is called the i-th hyperplane of Pn
k . Then we have homeomorphisms

φi : Ui −→ An
k , , [a] 7→

( a0

ai
, . . . ,

âi

ai
, . . . ,

an

ai

)
.

Corollary 1.25. Projective varieties can be written as union of open affine varieties
via X =

⋃n
i=0(X ∩ Ui). Conversely, any affine variety Y ⊂ An

k has a unique
closure Y as a projective variety via An

k
∼= U0 ⊂ Pn

k

To perform computations it is convenient to introduce

Definition 1.26. Let A = k[y1, . . . , yn]. The de-homogenization map is

α : S→ A, f 7→ α( f ) := f (1, y1, . . . , yn),
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and the homogenization map is

β : A→ S, g 7→ β(g) := xd
0 g(x1/x0, . . . , xn/x0) if g ∈ Sd.

Proposition 1.27. Let I = I(Y) then Y = Z(β(I)).
If { fi} is a Grobner basis of I in a graded order then (β(I)) = (β( fi)).

The first statement is an exercise. For an arbitrary generating set I =

( f1, . . . , fr) it might happen that (β( fi)) ( (β(I)) and Z((β( fi))) is strictly
larger than Z(I) as shown in the following examples (2) and (3):

Example 1.28 (On projective closure).

(1) A hypersurface Z( f ) ⊂ An
k has projective closure Z(β( f )) ⊂ Pn

k . For
example, if f = y2− 4x3− ax− b then β( f ) = ZY2− 4X3− aZ2X− bZ3.
This is the standard Weierstrass equation for an elliptic curve.

(2) The twisted cubic curve C ⊂ A3
k is the image of A1

k under t 7→ (t, t2, t3).
It has I(C) = (y − x2, z − x3). (k[x, y, z]/((y − x2, z − x3)) ∼= k[x] is a
domain so the ideal is already a prime.) Let

J := (β(y− x2), β(z− x3)) = (WY− X2, W2Z− X3).

Then Z(J) contains two components. If W = 0 then X = 0 as well,
which gives a line L = Z((X, W)) contained in the infinity hyperplane
HW = Z(W). If W 6= 0 then we go back to the original affine chart
A3 = P3 \ HW and recover the curve C. Hence Z(J) = L ∪ C.

Notice that xy− z ∈ I(C) and β(xy− z) = XY − ZW. Adding this
element does not resolve the problem since L ⊂ Z(XY − ZW). On the
other hand xz− y2 ∈ I(C) too and β(xz− y2) = XZ− Y2 does not con-
tain L in its zero loci. Hence C = Z(β(y− x2), β(z− x3), β(xz− y2)).

We have xz − y2 = x(z − x3) − (y + x2)(y − x2). However such a
formula does not preserve under homogenization.

(3) Even if dim Z(I) = 0, I = ( f1, . . . , fr), Z(β( f1), . . . , β( fr)) may contain
positive dimensional components at infinity! For example, consider the
6 equations ∑3

i=1 xk
i − ∑3

i=1 yk
i = 1, xkyk = 1, k = 1, 2, 3 in C3. Then the

homogenized equations contains lines at infinity.

Now we prove of the Grobner basis part of Proposition 1.27. Given a
monomial order >, a Grobner bases of an ideal I ⊂ A = k[x1, . . . , xn] is a
generating set of I: I = ( f1, . . . , fr) such that

(LT I) = (LT f1, . . . , LT fr),

where LT is an abbreviation for “leading term”. Such a bases can be effec-
tively constructed by the Buchburger algorithm which is not needed here.
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A monomial order > is graded if we compare the total degree first.
With it, we claim that β( f1), . . . , β( fr) generate (β(I)), in fact as a Grobner
bases, in the extended monomial order >β in S = k[x0, x1, . . . , xn]:

xp
0 xα >β xq

0xβ ⇐⇒ xα > xβ or xα = xβ, p > q.

In this order, it is clear that LT>β
β( f ) = LT f for any f ∈ A.

To show (β( fi)) = (β(I)), let g ∈ (β(I)). By definition,

g = ∑
i

ai(x0, . . . , xn) β(hi), hi ∈ I.

Then f := α(g) = ∑i ai(1, x1, . . . , xn) hi ∈ I. Hence g = xd
0 β( f ) for some

d ≥ 0, and LT>β
g = xd

0 LT>β
β( f ) = xd

0 LT f . Now LT f is divisible by some
LT fi = LT>β

β( fi), hence the same is true for LT>β
g. The result follows.

We have seen three kind of spaces with Zariski topology, the affine va-
rieties, Spec A and projective varieties. In the same spirit we may define
homogeneous prime spectrum Proj S with Zariski topology for a commu-
tative graded ring S =

⊕
d≥0 Sd and declare the closed sets are of the form

V(I) = {p ∈ Proj S | p ⊃ I}

where I ⊂ S is a a homogeneous ideal not containing S+ =
⊕

d≥1 Sd. It has
an open cover by affine spectrum as well. We will discuss this in details in
chapter 2 when we introduce scheme theory.

We formalize the Zariski topology on them by the notion of Noetherian
topological spaces.

Definition 1.29. A topological space X is Noetherian if any descending chain
of irreducible closed subset stops. The Krull dimension dim X is then de-
fined to be the largest d in irreducible closed chain Z0 ) Z1 ) . . . ) Zd, and
dim X = ∞ if this is unbounded. This does happen for varieties.

An
k , Pn

k and their closed subset are clearly Noetherian topological spaces
by the correspondence with radical/prime ideals. For Spec A and Proj S,
they are Noetherian topological spaces if A or S are Noetherian rings. But
this requirement might not be necessary.
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2. Morphisms and rational maps

2.1. Regular functions and morphisms. Let Y ⊂ An
k be a quasi-affine

variety. A function f : Y → k = A1
k is regular at p ∈ Y if

f = g/h, g, h ∈ k[x1, . . . , xn]

on an open neighborhood p ∈ U ⊂ Y with h 6= 0 on U.
Since f (x) = c ⇐⇒ g(x)− ch(x) = 0, which is a closed set, f is nec-

essarily continuous. (But not conversely.) Similarly, {x ∈ Y | h(x) 6= 0} is
open in Y. So it enough to require h(p) 6= 0 in the above definition.

If Y ⊂ Pn
k is quasi-projective, then p ∈ Y∩Ui for some i, which is quasi-

affine. Then the definition is equivalent to that f = g/h where g, h ∈ S =

k[x0, . . . , xn] are homogeneous of the same degree. For an open set V ⊂ Y,
we denote by OY(V) the space of functions regular at every p ∈ U.

A continuous map φ : X → Y between varieties is a morphism, denoted
by φ ∈ Hom(X, Y), if φ pulls back regular functions. That is,

f ∈ OY(V) =⇒ f ◦ φ ∈ OX(φ
−1(V)).

This defines the category of k-varieties Vark. In particular X, Y are isomor-
phic if there is a morphism ψ : Y −→ X with ψ ◦ φ = idX and φ ◦ φ = idY.

Denote by O ≡ O(Y) = Γ(Y, OY) ≡ OY(Y) the global regular functions.
To the other extreme, for p ∈ Y we define

Op ≡ OY,p := lim
p∈V

OY(V)

to be the space of germs of functions regular at p.
Elements in Op are equivalence classes of pairs (V, f ) with f ∈ OY(V),

where (V, f ) ∼ (W, g) if f = g on some open subset p ∈ U ⊂ V ∩W. In
the current case we then have f = g on V ∩W since the set where f = g is
both open and closed in V ∩W.

The ring Op is a local ring, with maximal ideal mp := { f ∈ Op | f (p) =
0}. Indeed if f ∈ O(V) and f (p) 6= 0 then 1/ f ∈ O(V \ Z( f )).

For a variety Y, the function field K(Y) is the equivalence classes of local
regular functions (V, f )’s. K(Y) is a field since 1/ f is regular on V \ Z( f ).
It depends only on the isomorphism class of Y. Thus for any p ∈ Y we have

O(Y) ⊂ Op ⊂ K(Y).

Remark 1.30. In contrast to K(Y), the homogeneous coordinate ring S(Y)
for a projective variety does depend on chosen presentation Y ⊂ Pn

k .
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Here is the fundamental theorem for regular functions:

Theorem 1.31. Let Y be an affine k-variety with k = k̄. Then the natural map

α : A(Y) ∼−→O(Y)

is an isomorphism with A(Y)mp
∼= Op for p ∈ Y.

In particular, dim Op = dim Y and K(Y) = Q(Ap) = Q(A(Y)).

PROOF. By definition we have

A(Y) = k[x]/I
α

↪−→O(Y)

which leads to A(Y)mp ↪−→ Op. An element in Op has the form (V, f )
where V is quasi-affine, hence this map is also surjective by the definition
or regular function on quasi-affine varieties. Thus A(Y)mp

∼= Op.
Now

A(Y) ⊂ O(Y) ⊂
⋂
p∈Y

Op =
⋂
m

A(Y)m

since there is a one to one correspondence between points and maximal
ideals (this is the only place we use k = k̄). Then we use the simple fact that⋂

m Rm = R for any integral domain R. �

Remark 1.32. It is well known that for Y = An
k , k = Fq a finite field, the

natural map α has kernel (xq
1 − x1, . . . , xq

n − xn).

As the first corollary, in contrast to the affine case, the only global regu-
lar functions on projective varieties over k = k̄ are constant functions!

Theorem 1.33. Let Y be a projective k-variety with k = k̄, with homogeneous
coordinate ring S(Y). Then Op ∼= S(Y)(mp), K(Y) ∼= S(Y)(0) and

O(Y) ≡ Γ(Y, OY) ∼= k.

PROOF. Under the standard affine cover Pn
k = U0 ∪ . . . ∪Un, the maps

φi : Ui
∼= An

k are isomorphism of varieties. Let Y =
⋃

Yi, Yi := Y ∩Ui. Then

φ∗i : A(Yi) ∼= S(Y)(xi).

For p ∈ Y, say p ∈ Yi, by Theorem 1.31 and further localizations, we get

Op ∼= A(Yi)m′p
∼= S(Y)(mp)

where m′p denote the maximal ideal of p ∈ Yi. Now K(Y) ∼= K(Yi). Via φ∗i
this is just S(Y)(0) with all non-zero elements being inverted.
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For a global regular function f ∈ O(Y) =
⋂

i O(Yi) =
⋂

i S(Y)(xi), for
each i this means xdi

i f ∈ S(Y)di for some di ∈ N. Let d = ∑ di, every
monomial xα ∈ S(Y)d contains some factor xdi

i for some i. This implies that

f S(Y)d ⊂ S(Y)d.

Since S(Y)d is a finite dimensional k vector space, this implies that f is
integral over k by the standard criterion of integral elements. Indeed, if
{vj} is basis of S(Y)d and f vj = ∑l ajlvl for ajl ∈ k, then

det(( f δjl − ajl)) = 0

gives the monic polynomial equation over k.
Now we use the assumption k = k̄ to conclude that f ∈ k. �

The second corollary is a categorical correpondence:

Theorem 1.34. Let Y be an affine k-variety over k = k̄.
There is a contravariant isomorphism

λ : Hom(X, Y) ∼−→Hom(A(Y), O(X)),

where for φ : X → Y, λ(φ) is defined by composition: f ∈ A(Y) 7→ f ◦ φ.

PROOF. Clearly λ(φ) is a k-algebra homomorphism O(Y) → O(X).
Now use Theorem 1.31 to get O(Y) ∼= A(Y).

Given a ring homomorphism

ψ : A(Y) = k[x1, . . . , xn]/I(Y)→ O(X),

let yi := ψ(x̄i). We define a morphism φ : X → Y by

p ∈ X 7→ φ(p) := (yi(p)) ∈ An
k .

The image lies in Y since for any f ∈ I(Y) we have

f (y1(p), . . . , yn(p)) = ψ( f (x)) = 0.

To see that λ(φ) = ψ, notice that λ(φ)(x̄j) = x̄j ◦ φ, which maps p to
x̄j(φ(p)) = x̄j((yi(p))n

i=1) = x̄j((ψ(x̄i)(p))n
i=1) = ψ(x̄j)(p). This holds for

all p ∈ X, hence λ(φ) = ψ as expected. �

Corollary 1.35. For k = k̄, Y 7→ A(Y) induces an anti-equivalence of categories
between affine k-varieties and finitely generated domains over k.
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2.2. Rational maps and birational equivalence. Throughout this sub-
section we assume all varieties are over k = k̄.

We start with a simple fact: given two morphisms of varieties φ, ψ :
X → Y, if φ = ψ on some open (hence dense) subset U ⊂ X then φ = ψ on
X. We have seen the case Y = A1

k , and the general case reduces to this case
by taking affine charts on Y.

Definition 1.36. (i) A rational map φ : X 99K Y is an equivalence class
of (U, φU) where φU : U → Y is a morphism and U ⊂ X is open.
It is dominant if im φU is dense for some (hence all) U.

(ii) φ : X 99K Y is birational if there is a rational map ψ : Y 99K X such
that φψ = idY and ψφ = idX. (This makes sense by the above fact.)

For Y = A1
k in (i) we go back to the definition of K(X). If X and Y are

birational, then it follows that K(X) ∼= K(Y).
The converse is also true. In fact we have a more general result:

Theorem 1.37. There is an anti-equivalence of categories between varieties with
dominant rational maps and finitely generated extension fields over k.

The proof is based on two basic facts:

Lemma 1.38. Let X be affine with A = A(X), then X f := X \ Z( f ) is also affine
with coordinate ring A f = A[1/ f ] ∼= A[T]/( f T − 1).

PROOF. For X = An, consider

φ : Q = Z( f T − 1) ⊂ An+1 −→ An \ Z( f )

defined by the projection (a1, . . . , an+1) 7→ (a1, . . . , an). Then φ is an iso-
morphism with φ−1(a1, . . . , an) = (a1, . . . , an, 1/ f (a1, . . . , an)).

For a general affine variety X ⊂ An, X \ Z( f ) ⊂ An \ Z( f ) is also
closed. Since the latter (∼= Q) is affine, we conclude that X \ Z( f ) is also
affine with coordinate ring A[T]/( f T − 1). �

Lemma 1.39. Any variety has an open affine base for its Zariski topology.

PROOF. Let p ∈ U ⊂ X. Since U =
⋃

Ui with Ui being quasi-affine,
may we assume that U is quasi-affine. Then Z := U \U is closed. That is,
Z = Z(I) ⊂ An. Pick f ∈ I but f (p) 6= 0. Then U \ Z( f ) ⊂ U \ Z = U.
Now U \ Z( f ) is affine by Lemma 1.38. �
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PROOF OF THEOREM 1.37. Given a dominant φ : X 99K Y, we get a
field extension φ∗ : K(Y)→ K(X) by φ∗( f ) = f ◦ φ.

Conversely, any finitely generated field over k is the function field K(Y)
for some affine variety Y. And given a field extension θ : K(Y) → K(X),
since K(Y) ⊃ A(Y) = k[y1, . . . , yn]/I(Y), we get θ(ȳi) ∈ K(X) for i ∈ [1, n].

Let U ⊂ X such that all θ(ȳi) are regular on U. By Lemma 1.39 we
may assume that U is affine. Hence we get an inclusion A(Y) ⊂ A(U).
By Theorem 1.34 this corresponds to a morphism φ : U → Y. If φ is not
dominant, then φ(U) is contained in a closed subset Z ⊂ Y. Let Z = Z(J)
for some J ) I(Y). Pick f ∈ J \ I(Y) leads to φ∗ f = f ◦ φ = 0, which
contradicts to the injectivity of A(Y) ⊂ A(U). �

Corollary 1.40. Two varieties X and Y are birational if and only if there are open
subsets U ⊂ X and V ⊂ Y such that U ∼= V, which is also equivalent to that
K(X) ∼= K(Y).

Corollary 1.41. Any k-variety X of dimension r is birationally equivalent to a
hypersurface in Pr+1

k .

PROOF. We have k(x1, . . . , xr) ⊂ K(X) for a transcendental base xi’s.
This finite algebraic extension is automatically a separable extension if k is
a perfect field. (In fact the separability holds for any k with char k = 0. For
char k = p > 0 we have k = kp if k = k̄ hence k is perfect.)

By the theorem of primitive element, we have K(X) = k(x1, . . . , xr, y).
Since y is algebraic over k(x1, . . . , xr), we have an equation

d

∑
i=0

fi(x1, . . . , xr)

gi(x1, . . . , xr)
yi = 0.

This leads to an irreducible polynomial equation f (x1, . . . , xr, y) = 0 in
k[x1, . . . , xr, y]. Hence H = Z( f ) ⊂ Ar+1

k has K(H) = K(X). Corollary
1.40 then implies that X is birational to H ⊂ Pr

k. �

Below we will prove the existence of separating transcendental base
x1, . . . , xr used in the above proof, following Zariski–Samuel.

Theorem 1.42 (MacLane). If a finitely generated field K/k is separably gener-
ated, i.e. K contains a separating transcendental base over k, then any generating
set x1, . . . , xn contains such a base.
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PROOF. Only need to consider k with char k = p > 0. Let r = tr.degkK.
If r = 1, the assumption that K/k(z) is separable for some transcenden-

tal z ∈ K implies that z 6∈ k(zp). So Xp − zp is irreducible over k(zp), i.e. z
is inseparable over k(zp). This implies that in the given generating set xi’s
there exists one, say x1, which is inseparable over k(zp). We will show that
x1 is also a separable transcendental base for K/k.

Let f (X, Z) be an irreducible polynomial with f (x1, z) = 0. Then f
is also irreducible in k(Z)[X] ∼= k(z)[X]. That is, f (X, z) is the minimal
polynomial mx1(X) up to a factor in k[z]. So D1 f (x, z) 6= 0.

Notice that f (X, Z) is not independent of Z, for otherwise x1 is separa-
ble over k and hence separable over k(zp), which contradicts to the choice
of x1. So z is algebraic over k(x1). If z is not separable over k(x1) then
f (X, Z) = φ(X, Zp) for some polynomial φ. Then D1φ(x, zp) = D1 f (x, z) 6=
0, i.e. x1 is separable over k(zp), a contradiction. So z is separable over k(x1).
Since K/k(z) is separable, K/k(x1) is also separable as expected.

Now let r > 1 and assume the theorem holds up to dimension r − 1.
Let z1, . . . , zr be a sep. trans. base of K/k and k1 := k(z1). Then K =

k1(x1, . . . , xn) has a sep. trans. base z2, . . . , zn over k1. By induction we may
assume that x1, . . . , xr−1 is a sep. trans. base of K/k1. Let k′ = k(x1, . . . , xr−1).
Then K = k′(xr, . . . , xn) has tr.degk′ K = 1. By the r = 1 case we get xr (after
reordering) is sep. trans. over k′. This proves the theorem. �

Corollary 1.43. If K = k(x1, . . . , xn)/k is not separably generated, then after
reordering k(x1, . . . , xr+1)/k is also not separably generated, where r = tr.degk K.

PROOF. If n = r + 1 then we are done. Assume n > r + 1 and the state-
ment holds for n− 1. After reordering k1 := k(x2, . . . , xn) has tr.degk k1 = r.
If k1/k is not separably generated then we are done by the n− 1 case. Oth-
erwise MacLane’s theorem implies that we may assume x2, . . . , xr+1 is a
sep. trans. base of k1/k. Then k(x1, . . . , xr+1) is the field required. �

Theorem 1.44 (Schmidt). If k is perfect, i.e. k = kp, then any finitely generated
field K = k(x1, . . . , xn) is separably generated.

PROOF. If not, by the above corollary we may assume n = r + 1 where
r = tr.degk K. Let f (x1, . . . , xr+1) = 0 be an irreducible relation. Since
xr+1 is not separable over k(x1, . . . , xr), we have f ∈ k[X1, . . . , Xr, Xp

r+1].
Working over all xi and using k = kp we get f = gp, a contradiction! �
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2.3. Blowing up. The most important and basic kind of birational maps
are birational morphisms called blowing-ups. Usually they are designed
for resolving singularities, a notion to be studied in the next section. Here
we talk singularities naively to motivate the definition of blowing-ups.

Example 1.45. Consider a plane curve C ⊂ A2
k defined by

y2 = x2(x + 1).

C has a nodal singularity at (0, 0) with two branches of different slops y = x and
y = −x. The idea to take apart the two branches near (0, 0) is to consider their
slops (tangent directions) as well. Explicitly, consider the quadratic transformation

y = ux

(u = y/x is the slope), then x2u2 = x2(x + 1). Together with y = ux we get an
one-dimensional algebraic set φ−1(C) where φ : A3

k → A2
k , (x, y, u)) 7→ (x, y):

If x 6= 0 then u2 = x + 1. On the (x, u)-plane it is a non-singular parabola C̃.
If x = 0 then y = 0 but u ∈ k = A1

k is arbitrary—it is the u-axis which
intersects C̃ at two points u = ±1 corresponding to the slops of the two branches.

In fact all curve singularities can be resolved by repeating the process in finite
steps, though the proof is not immediate. We will discuss it in different ways later.

Definition 1.46. (i) The blowing-up of An at 0 is the subvariety X in An ×
Pn−1 defined by { xiyj = xjyi | 1 ≤ i, j ≤ n }, where (xi) ∈ An, [yj] ∈ Pn−1:

X

φ %%

� � ι // An ×Pn−1

p1

��
An

.

Clearly φ−1(0) = {0} × Pn−1 =: E, called the exceptional divisor. But
φ−1(p) is unique if p = (xi) 6= 0: since then [yj] = [xj] is the direction of
−→op. Thus φ is a birational morphism which induces X \ E ∼= An \ {0}.

(ii) For a general algebraic set 0 ∈ Y ⊂ An, we define

Bl0 Y = Ỹ := φ−1(Y \ {0}) ⊂ X,

which is also called the strict (or proper) transform of Y in X. The induced
morphism φ : Ỹ → Y is then a birational morphism.

The definition of Bl0 Y actually does not depend on the chosen coordi-
nates Y ⊂ An and the center “0” can be more general closed subsets. We
will develop this further later using scheme theory.
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3. Nonsingular varieties and curves

3.1. Non-singular points on a variety.

Definition 1.47. Let (A,m) be a Noetherian local ring, k = A/m its residue
field. Then A is regular if dimk m/m2 = dim A. This is equivalent to that
m can be generated by dim A elements.

The inequality dimk m/m2 ≥ dim A always holds, which is a conse-
quence of dimenison theory of Noetherian local rings. The proof needs the
technique of Hilbert polynomials, which will be given later.

Definition 1.48. Let Y ⊂ An be an affine variety with I(Y) = ( f1, . . . , ft).
Denote by DF = (∂ fi/∂xj) be the Jacobian matrix. Then Y is non-singular
at p ∈ Y if the rank DF(p) = n− r, where r = dim Y.

Theorem 1.49. For any p ∈ Y, we have

dimk mp/m2
p + rank DF(p) = n.

Thus, Y is non-singular at p ∈ Y ⇐⇒ Op is a regular local ring.

PROOF. Let p = (ai)
n
i=1, Ip = (x1 − a1, . . . , xn − an) be the correspond-

ing maximal ideal in A := k[x1, . . . , xn]. Then the map

θ : A −→ kn, f 7→ D f (p)

gives an isomorphism
θ′ : Ip/I2

p
∼−→ kn.

Also for I(Y) = ( f1, . . . , ft), via θ and θ′ we have

rank DF(p) = dim θ(I(Y)) = dim(I(Y) + I2
p)/I2

p.

Together with mp/m2
p
∼= Ip/(I(Y) + I2

p), we get

dimk mp/m2
p + rank DF(p) = n.

This clearly implies the last statement of the theorem. �

Corollary 1.50. The notion of a non-singular point p ∈ Y is independent of the
affine charts containing it. Hence the notion is defined for all varieties.

Theorem 1.51. The set of singular points Sing Y ⊂ Y is a proper closed subset.
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PROOF. We may assume that Y ⊂ An is affine. Then, by Theorem 1.49,
Sing Y is defined by I(Y) and all the (n− r)× (n− r) minors (determinant
of sub-matrix) of DF, where r = dim Y. Hence it is closed.

To show that Y \ Sing Y 6= ∅, take H ⊂ Ar+1 be a hypersurface which
is birational to Y (by Corollary 1.41). If the theorem is proved for H, then
there are non-singular points p ∈ U ⊂ H where U is isomorphic to an open
set in Y. Then Y will also contain non-singular points.

So we are reduced to the case that Y ⊂ Ar+1 which is defined by one
irreducible polynomial f (x1, . . . , xr+1) = 0.

If Y \ Sing Y = ∅, then ∂ f /∂xi ∈ I(Y) = ( f ) for all i. This leads to
a contradiction for the obvious degree reason unless char k = p > 0. In
the latter case we have then f ∈ k[xp

1 , . . . , xp
r+1]. But we assume k = k̄, in

particular k = kp, hence f = gp is not irreducible, a contradiction. �

In order to have further information on the structure of regular local
rings, we need to study the formal (analytic) structure at a point p ∈ Y.

For (A,m) being a local ring, the inverse limit

Â := lim
←−

A/mn

is complete in the m-adic topology. Here are some basic facts:

(i) Â has maximal ideal m̂ = mÂ.
(ii)

⋂
mn = 0 (this is known as Krull’s intersection theorem, cf. Corol-

lary 1.72), hence A ↪→ Â and the topology is Hausdorff.
(iii) If M is a finitely generated A-module then

M̂ := lim
←−

M/mn M ∼= M⊗A Â.

(iv) Gr A ∼= Gr Â, Hence dim A = dim Â and A is regular if and only
if Â is regular.

Here is the fundamental result we quote without giving a proof:

Theorem 1.52 (Cohen). If (A,m) is a complete regular local ring containing a
field, then A ∼= k[[x1, . . . , xn]] where n = dim A and k = A/m.

For p ∈ Y, we get its complete local ring Ôp.

Definition 1.53. We call p ∈ X and q ∈ Y in Vark are analytically (or for-
mally) isomorphic if Ôp ∼= Ôq as k-algebras.

Thus non-singular points with the same dimension are all analytically
isomorphic. They all have Ôp ∼= k[[x1, . . . , xn]]. For singular points, the
complete local ring is also a useful tool in analyzing their structure.
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Example 1.54. The main technical tools in complete local rings are formal inverse
or implicit function theorem, which is known as Hensel’s lemma.

As a simple example, let A = k[x, y]/(xy) and B = k[x, y]/(xy + x3 + y4).
Then Â = k[[x, y]]/(xy) and B̂ = k[[x, y]]/(xy + x3 + y4). We may solve two power
series u = x + f2(x, y) + f3(x, y) + . . . and v = y + g2(x, y) + g3(x, y) + . . . induc-
tively on degree such that uv = xy + x3 + y4. Hence Â ∼= B̂.

3.2. Normal points and integrally closed domains.

Definition 1.55. A domain A is normal if it is integrally closed in its quotient
field K = Q(A). Often this is termed “A is integrally closed”.

Let C ⊂ K be the integral closure of A in K and S ⊂ A be a multiplica-
tive closed subset. The it is easy to see that S−1A has integral closure S−1C
in K. Since normality of A is equivalent to the surjectivity of the inclusion
A → C. It follows from the local-global principle that A is normal⇐⇒ Ap

is normal for all prime p⇐⇒ Am is normal for all maximal ideal m.

Definition 1.56. A variety X is normal if all its local rings Op are normal
(integrally closed). This is equivalent to that X =

⋃
Xi, Xi is affine with

normal (integrally closed) coordinate ring A(Xi).

The fundamental theorem to be established is the finite A-module struc-
ture of C when A is an affine k-algebra. We first prove a general result:

Theorem 1.57. Let A be normal and F be a finite separable extension of K =

Q(A). Let A′ be the integral closure of A in F. Then there is a K-basis x1, . . . , xn

of F such that A′ ⊂ ∑n
i=1 Axi.

PROOF. We may write F =
⊕n

i=1 Kui for ui ∈ A′. F/K is separable
implies that the pairing F× F → K:

(x, y) 7−→ Tr xy

is non-degenerate, where Tr a := ∑σ σ(a) is a sum over all embeddings
σ : F → K. Let {vi}n

i=1 be the dual basis of {ui}n
i=1 with respect to the

pairing, i.e. Tr uivj = δij. Then F =
⊕n

j=1 Kvj.
If x = ∑ xjvj ∈ A′ with xj ∈ K then xui ∈ A′ and then xi = Tr xui which

lies in A. The last statement follows from the fact that A is integrally closed
implies that all coefficients of the minimal polynomials of elements in A′

must lie in A. In particular, this applies to trace. �
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Remark 1.58. The proof implies if A is also Noetherian then A′ is Noether-
ian, and if A is a pid then there is a base xi’s such that A′ =

⊕n
i=1 A xi.

Theorem 1.59 (Finiteness of integral closure). Let A be an affine k-algebra
which is also a domain, and F be a finite extension of K = Q(A).

Then A′, the integral closure of A in F, is also an affine k-algebra. Moreover
A′ is a finite A-module.

PROOF FOR THE CASE k = k̄. Write F =
⊕q

i=1 K yi with yi ∈ A′. Let
A◦ := k[y1, . . . , yq]. Then A◦ is integral over A and Q(A◦) = F. Replacing
A by A◦ then it suffices to prove the theorem when F = K = Q(A).

Under the assumption k = k̄, we have |k| = ∞ and F = k(x1, . . . , xn) is
separably generated over k (by Theorem 1.44).

Noether normalization implies that there are zi = ∑n
i=1 aij xj, i ∈ [1, d],

d = tr.degk F such that A is integral and separable over the polynomial
algebra B := k[z1, . . . , zd], which is integrally closed and Noetherian. Hence
A′ is also the integral closure of B in F.

By Theorem 1.57 and the remark following it, we see that A′ is a finite
B-module. In particular it is also a finite A-module. �

The general case can be reduced to the case k = k̄. See Zariski–Samuel
for the details.

Exercise 1.2. Let Y be an affine k-variety with k = k̄. Then the normal
points form an open subset. Moreover there is a normal affine k-variety Y′

and a birational morphism π : Y′ → Y with the universal property that any
dominant morphism φ : Z → Y with Z a normal k-variety factors through
Y′ uniquely. What happens if Y is a quasi-projective variety?

Corollary 1.60. Let A be a Dedekind domain. i.e. a Noetherian integrally closed
domain of dimension one. Let F be a finite extension of K = Q(A). Then the
integral closure of A in F is also Dedekind.

The is fundamental in algebraic number theory. In our treatment here,
to preserve the Noetherian condition requires that F/K being separable.
Again we refer to Zariski–Samuel for the reduction to the separable case.

3.3. Valuation rings. In general, normal points are far from being non-
singular, since integrally closed domains are far from being regular local
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rings. However in dimension one they coincide. This makes the study of
curves more manageable. A notion connecting them is “valuation rings”.

Let K be a field and (Γ,+,>) a totally ordered abelian group. A valua-
tion v : (K×, •)→ (Γ,+) is a group homomorphism such that

v(x + y) ≥ min(v(x), v(y)).

The ring R = {x ∈ K× | v(x) ≥ 0} ∪ {0} is called the valuation ring of v.
The set m = {x ∈ K× | v(x) > 0} ∪ {0} ⊂ R is easily seen to be the unique
maximal ideal of R and thus (R, m) is a local ring.

In general, an integral domain R is called a valuation ring if it comes
from a valuation v on it quotient field K = Q(R). Also if v restricts to zero
on some subfield k ⊂ K then we called v a valuation on K/k. For study on
k-varieties we mainly consider valuations of this type.

Notice that we have the basic property that for x ∈ K,

x 6∈ R =⇒ x−1 ∈ R.

We will see shortly that this characterizes valuation rings!
When Γ = Z, we call v a discrete valuation and R a discrete valuation

ring, denoted by DVR for short.

Theorem 1.61. Let (A,m) be a Noetherian local domain with dim A = 1, and
let k = A/m be its residue field. Then the following are equivalent.

(1) A is a DVR.
(2) A is normal (i.e. integrally closed in K = Q(A)).
(3) A is regular (i.e. dimk m/m2 = 1).
(4) m is principal.

PROOF. (3)⇐⇒ (4) by Nakayama’s lemma.
(1) =⇒ (2): let xn + an−1xn−1 + . . . + a0 = 0, x ∈ K, ai ∈ A. We claim

that x ∈ A. If not then x−1 ∈ A, hence

x = −(an−1 + an−1x−1 + . . . + a0x−(n−1)) ∈ A,

which is a contradiction.
(2) =⇒ (3) ≡ (4): let a ∈ m \ {0}. Since

⋂
n∈N mn = 0 for Noetherian

local rings (cf. Corollary 1.72), there is an n ∈ N such that (a) ⊃ mn but
(a) 6⊃ mn−1. Let b ∈ mn−1 \ (a), then x := a/b ∈ K but x−1 = b/a 6∈ A. So
x−1 is not integral over A (since A is integrally closed). This implies that

x−1m 6⊂ m
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since m is finitely generated. By construction x−1m ⊂ mn/a ⊂ A. Hence in
fact x−1m = A. That is, m = xA = (x).

(3) ≡ (4) =⇒ (1): m = (x) implies that mn = (xn). Also mn+1 =

m(mn) ( mn for otherwise mn = 0 (Nakayama lemma) and then dim A = 0,
a contradiction. In particular for any 0 6= a ∈ A we have (a) = mn(a) for a
unique n(a) ≥ 0. That is, an unique factorization

a = uxn(a) for some unit u ∈ A.

The valuation v : K× → Z is then defined by v(a/b) := n(a)− n(b). �

Notice that the proof of (1) ⇒ (2) is valid for general valuation rings.
Namely, valuation ring are all integrally closed.

General valuation rings are considerably more abstract and complicate.
But we do have a simple characterization:

Lemma 1.62. Let R be a domain with K = Q(R). Then R is a valuation ring of
K⇐⇒ for every x ∈ K× either x ∈ R or x−1 ∈ R (or both).

PROOF. We have seen the direction⇒ which is easy. For⇐, we need
to construct the valuation map v : K× → Γ.

Consider the multiplicative group Γ := K×/U(R). For x̄, ȳ ∈ Γ, we
define x̄ ≥ ȳ if x/y ∈ R. By assumption we have either x/y ∈ R or y/x ∈
R, hence (Γ, •,>) is a totally ordered abelian group and we get the natural
map v : K× → Γ by x 7→ v(x) := x̄.

This is a valuation of K with valuation ring R as expected. �

Remark 1.63. (1) In some literature (e.g. Atiyah–MacDonald) a valuation
ring is defined by the above equivalent property.

(2) Similar reasoning shows that for any two ideals I, J in R, either I ⊂ J
or J ⊂ I. Indeed if there are a ∈ I \ J and b ∈ J \ I, then we may assume
that a/b ∈ R and then a ∈ bR ⊂ J, a contradiction.

To construct valuation rings out from local rings, we need the notion of
domination of local rings.

Definition 1.64. Let (A, mA) and (B, mB) be two local rings in a field K. We
say that B dominants A (B > A) if A ⊂ B such that mc

B := mB ∩ A = mA.

Theorem 1.65. A local ring R is a valuation ring in K ⇐⇒ R is a maximal
element under domination. In particular, any local ring R ⊂ K with Q(R) = K
is dominated by a valuation ring.
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PROOF. ⇒: let S > R but S 6= R. For any a ∈ S \ R we have a−1 ∈ R.
Then in fact a−1 ∈ mR (otherwise it is a unit and then a = (a−1)−1 ∈ R).

Since mS ∩ R = mR, we have a−1 ∈ mS. Then 1 = aa−1 ∈ mS, which is
a contradiction. Hence such a local ring S does not exist.
⇐: suppose that (R,m) is maximal under domination.
Let x ∈ K×. We claim that

either m[x] 6= R[x] or m[x−1] 6= R[x−1].

For otherwise we have two shortest relations

∑m
i=0 uixi = 1, ∑n

j=0 vjx−j, ui, vj ∈ m.

Say m ≥ n. Multiplying the second equation by xm we get (1− v0)xm =

∑n
j=1 vjxm−j. Since 1− v0 ∈ U(R) and m > m− j ≥ 0 in the expression, this

allows us to substitute xm by lower degree terms into the first equation and
get a shorter relation, which leads to a contradiction.

Consider the case that m[x] ( R[x]. There is a maximal ideal M ⊂ R[x]
such that m[x] ⊂ M. Hence M ∩ R ⊃ m. But then M ∩ R = m since m is
a maximal ideal. That is, (R[x], M) dominates (R,m). The maximality of R
then implies that R[x] = R, i.e. x ∈ R.

The other case that m[x−1] ( R[x−1] is done similarly, with the conse-
quence being x−1 ∈ R. Hence R is a valuation ring by Lemma 1.62.

The last existence statement now follows easily by Zorn’s lemma. �

Similar idea can be used to prove the following extension result:

Exercise 1.3. Let ψ : R→ F be a ring homomorphism from a domain to an
algebraically closed field. Let 0 6= a ∈ K = Q(R). Then ψ can be extended
to a ring homomorphism from either R[a] or R[a−1] to F.

There could be many valuation rings containing a given domain. The
collection of them together determines the integral closure:

Theorem 1.66. Let A be a subring of a field K, then the integral closure A′ of A
in K is the intersection of all valuation rings in K which contain A.

PROOF. We have shown that valuation rings are integrally closed in the
proof of Theorem 1.61 (1)⇒ (2). Hence A′ is contained in the intersection
of all such valuation rings. To see they are equal, let x ∈ K which is not
integral over A. Then it is clear that x−1 is not a unit in A[x−1]. Let M ⊂
A[x−1] be a maximal ideal containing x−1 and consider the map

φ : A[x−1]→ A[x−1]/M =: F.
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Hence x−1 ∈ ker φ. Consider the ring homomorphism ψ : A[x−1] → F to
the algebraic closure of F. By Zorn’s lemma there is a maximal extension ψ̃

of ψ inside K: namely A[x−1] ⊂ B ⊂ K, ψ′ : B → F with ψ′|A[x−1] = ψ. By
the above exercise, B is a valuation ring. We claim that x 6∈ B, for otherwise
1 = ψ′(1) = ψ′(xx−1) = ψ′(x)ψ′(x−1) = 0. This completes the proof. �

Theorem 1.65 and 1.66 will play fundamental role in the study of prop-
erties of schemes. For applications to curves in the following subsection,
we need only DVR and Theorem 1.61.

3.4. Non-singular curves. A curve C over k is by definition a one di-
mensional k-variety. We assume that k = k̄.

Theorem 1.67. The normalization of a curve is a non-singular curve.

PROOF. By taking closure, it suffices to consider a projective curve C ⊂
Pn, and we may assume that C ∩ H0 consists of non-singular points of C
(here H0 = Z(x0) ∼= Pn−1). Thus the theorem is reduced to the affine case
C0 ⊂ An. Let A = A(C0) = k[x1, . . . , xn]/I. By Theorem 1.59, the integral
closure A′ of A in K(C0) can be presented as(

k[x1, . . . , xn]/I
)
[y1, . . . , ym]/J ∼= k[x, y]/(I + J).

That is, the normalization is C′0 ⊂ An+m defined by I + J. This is a non-
singular curve by Theorem 1.61. Consequently the normalization of C is
C′0 ⊂ Pn+m which is non-singular. �

Theorem 1.68. Every curve is birational equivalent to a unique non-singular
projective curve. Moreover, the following three categories are equivalent:

(1) Non-singular projective curves with dominant morphisms.
(2) Quasi-projective curves with dominant rational maps.
(3) Function fields K/k of dimension one with k-homomorphisms.

PROOF. The equivalence of (2) and (3) is a special case of Theorem 1.37.
Also a dominant f : C → C′ of non-singular projective curves in (1) clearly
induces K(C′) ↪→ K(C) in (3) via pull back. So we are left to show that
k-homomorphism of function fields K(C′) → K(C) leads to morphisms
C → C′. [This is the algebraic version of the “Riemann extension theorem”
in the context of Riemann surfaces.] With this proved, then it also follows
that K(C) ∼= K(C′) =⇒ C ∼= C′, which is the first statement of the Theorem.
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Now we have a rational map C 99K C′ ⊂ Pn, which gives a morphism

φ : C \ {p1, . . . , pm} −→ Pn.

It suffices to show there is an extension φ̃ : C → Pn since then the image
lies in φ(C) = C′ automatically, and the uniqueness is a basic property of
morphisms on varieties.

We will do this for each pi separately, so we are in the situation that
p ∈ X with X ⊂ C being open, and

φ : X \ p→ Pn, φ(X \ p) ∩U 6= ∅,

where U =
⋂n

i=0 D(xi). (Otherwise replace Pn by a hyperplane Pn−1.)
In this setup, by Theorem 1.61, (Op, mp) is a DVR. [More precisely, mp =

(x) for x being a “local parameter defining p” and the discrete valuation
v( f ) is the order of f at p: f = uxv( f ) in Op, where u is a unit.]

Let fij := (xi/xj) ◦ φ. It is regular on some open set in X, hence fij ∈
K = K(X) = K(C). Let ri = v( fi0), then v( fij) = ri − rj. Suppose that rk is
minimal among ri’s, then fik ∈ Op for all i. We use them to define a map

φ̃(q) = ( f0k(q), . . . , f̂kk(q), . . . , fnk(q)) ∈ Uk
∼= D(xk) ⊂ Pn.

This is a morphism in a neighborhood of V 3 p which coincides with φ

outside p by our construction. This completes the proof. �

Remark 1.69. There are at least two other methods to obtain the non-singular
projective curve to represent a function field K of a given curve:

(1) Instead of using finiteness of integral closure, one may also use
blow-ups inductively to resolve the singularities of a curve C. It requires
to define numerical invariants of a singular point and to show that they
decreases under blowing-up. A version of it will be developed later.

(2) There is also a more abstract approach. For a f.g. field K/k with
tr.degk K = 1, one may define an “abstract non-singular curve” CK to be
the set of all DVR of K/k. A point p ∈ CK corresponds to a DVR called
Rp. When k = k̄, |CK| = ∞ and a topology can be defined such that closed
subsets consist of finite subset of CK. For each open set U we define O(U) =⋂

p∈U Rp. Then it CK is in fact isomorphic to a non-singular projective curve
(cf. Hartshorne Ch.1 Theorem 6.9, compare the proof given there with the
approach used in this subsection).
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4. Hilbert polynomials

So far the only invariants we have defined for a variety X are dim X
and K(X). To find other interesting invariants the most powerful tool used
today is the homological method, which will be studied later. Nevertheless,
the Hilbert polynomial provides a equally powerful tool when the problem
considered is over a local ring or a graded ring.

4.1. Artin–Ress and Nakayama.

Definition 1.70. For I ⊂ R be an ideal, the Ress algebra is

T = TI :=
⊕∞

i=0
Ii xi ⊂ R[x].

For noetherian R, T is also noetherian. For M ∈ modR,

TM :=
⊕∞

i=0
Ii M xi ⊂ M[x] := M⊗R R[x].

If M is finitely generated then TM is a finitely generated T-module. If R is
also Noetherian, then TM is a Noetherian T-module.

Lemma 1.71 (Artin–Ress). If R is noetherian and M is a f.g. R-module, then for
any two submodule M1, M2 ⊂ M there exists k ∈N such that for all n ≥ k,

In M1 ∩M2 = In−k(Ik M1 ∩M2).

PROOF. “⊃” is clear. For “⊂”, consider the “generating function”

N :=
⊕∞

i=0
Ii(M1 ∩M2)xi ⊂ TM,

which is a T-submodule. Hence it is generated by some ui = ∑k
j=0 nij xj,

i ∈ [1, m] with nij ∈ I j M1 ∩M2. Let n ≥ k.

u ∈ In M1 ∩M2 =⇒ uxn = ∑ fiui = ∑ fil xl nij xj.

In the expression fil ∈ I l , comparing degree we see that fil ∈ In−j. That is,
u ∈ In−j(I j M1 ∩M2) = In−k Ik−j(J j M1 ∩M2) ⊂ In−k(Ik M1 ∩M2). �

Corollary 1.72 (Krull’s intersection theorem). Let R be noetherian and M be a
f.g. R-module. Denote I∞ M :=

⋂∞
i=1 Ii M, then I(I∞ M) = I∞ M.

In particular, if J = JR is the Jacobson radical then
⋂∞

n=1 Jn M = 0.

PROOF. Put M1 = M and M2 = I∞ M in Atrin-Ress lemma and get the
number k, then I∞ M = Ik+1M ∩ I∞ M = I(Ik M ∩ I∞ M) = I(I∞ M).

The second statement then follows from the Nakayama Lemma. �
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For convenience we recall that JR =
⋂

I:maximal I and

Lemma 1.73 (Nakayama). Let M be a f,g, R-module, JR M = M⇒ M = 0.

Indeed if M 6= 0, let x1, . . . , xm be a shortest generating set, then xm =

r1x1 + . . . + rmxm for rj ∈ JR. Then (1 − rm) = r1x1 + . . . rm−1xm−1 and
1− rm is invertible. So xm is redundant and we get a contradiction!

Corollary 1.74. Let M be a f,g, R-module. Then x1, . . . , xn generate M ⇐⇒
x̄1, . . . , x̄n generate M := M/JM.

For “⇐”, let N = ∑ Rxi. Then M = N + JM and so M/N = J(M/N).

Corollary 1.75. A finitely generated projective module over a local ring is free.

For a local ring (R,m) we have JR = m. If P⊕Q = Rn, we get P/mP⊕
Q/mQ = Rn/mRn as k = R/m vector spaces. Now a vector space basis
x̄1, . . . x̄p for P/mP ∼= kp and ȳ1, . . . , ȳq for Q/mQ ∼= kq, p + q = n, leads to
n elements {xi, yj} which generate Rn, hence they must be a free basis. In
particular both P and Q are free R-modules.

4.2. Hilbert polynomial for graded modules. Let R =
⊕

i≥0 Ri be a
graded ring, then R0 is a subring and R+ is an ideal.

Proposition 1.76. (1) R is noetherian ⇐⇒ R0 is noetherian and R is a finitely
generated R0-algebra. Under this condition, then

(2) If M =
⊕

i≥0 Mi is finitely generated graded R-module then Mi is a
finitely generated R0-module for all i.

PROOF. (1) “⇐” is by Hilbert basis theorem. “⇒”: R0 = R/R+ is Noe-
therian. Let R+ = (x1, . . . , xm) with xi homogeneous. By induction on d,
every a ∈ Rd is then polynomial in xi’s with coefficients in R0.

(2) Let M =
⊕r

i=1 Rui, with ui being homogeneous. Then similarly Mn

is generated over R0 by yiui with yi = xα such that deg yi + deg ui = n. �

From now on we assume that R is noetherian, M is finitely generated
over R, and R0 is artinian (e.g. a field k). Then Mn is both noetherian and ar-
tinian over R0 and the length `(Mn) is defined. The basic question is to get
the structure of `(Mn) when n varies. It turns out to be almost polynomial!

Definition 1.77 (Poincaré series). P(M, t) := ∑n≥0 `(Mn) tn.
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Theorem 1.78 (Hilbert–Serre). Let R+ = (x1, . . . , xm) with xi ∈ Rdi . Then
there is a polynomial f (t) ∈ Z[t] such that

P(M, t) =
f (t)

∏m
i=1(1− tei)

.

PROOF. Notice that for any exact sequence 0 → N0 → N1 → . . . →
Ns → 0 of R0-modules, we have ∑s

i=0(−1)i`(Ni) = 0.
We prove the theorem by induction on m. For m = 0, R = R0 and M is

a finitely generated R0-module. Then we have

f (t) := P(M, t) ∈ Z[x].

Assume the theorem holds for up to m− 1 generators. Consider

0→ Kn → Mn
xm•−→Mn+em → Cn+em → 0.

Then `(Mn) − `(Mn+em) = `(Kn) − `(Cn+em). Multiplying tn+em to it and
summing up for n = 0, . . . , ∞ we find

(tem − 1)P(M, t) = P(K, t) tem − P(C, t) + g(t)

for some g(t) ∈ Z[t]. Now the key observation is that

xmK• = 0 = xmC•.

Hence K, C can be regarded as R/Rxm-module. By induction we get

(tem − 1)P(M, t) =
f1(t)

∏m−1
i=1 (1− tei)

tem − f2(t)

∏m−1
i=1 (1− tei)

+ g(t).

This prove the theorem. �

Corollary 1.79 (Hilbert–Serre). If R is generated by R1 = (x1, . . . , xm) over R0,
then there is a unique polynomial pM(t) ∈ Q[t] with deg p ≤ m− 1 such that
`(Mn) = pM(n) for all large n. pM(t) is known as the Hilbert polynomial of M.

This follows from a simple manipulation on f (t)/(1− t)m. In fact we
have `(Mn) = pM(n) for all n ≥ deg g(t).

Example 1.80. (1) (Global example) Let I ⊂ S = k[x0, . . . , xn] be a homogeneous
ideal defining a projective variety X ⊂ Pn

k , M := R/I =
⊕

d≥0 Md. Then the
degree and the coefficients of pM(t) encodes important geometric invariants of X.
We will study some of them in the last subsection.

(2) (Local example) Let I ⊂ R be an ideal in a general commutative ring. Let

GI(R) :=
⊕

n≥0
In/In+1 ∼= T/IT
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be a graded ring generated by I/I2. Let M be an R-module, let

GI(M) :=
⊕

n≥0
In M/In+1M ∼= TM/ITM

be the associated GI(R)-graded module. When R is noetherian and M is finitely
generated, we see that GI(R) is also noetherian and GI(M) is finitely generated.

The theory of Hilbert polynomial can be applied when R/I is artinian. The
typical case is a noetherian local ring (R,m) with I = Q be a m-primary ideal. This
is equivalent to that me ⊂ Q ⊂ m for some e ∈N.

Let Q/Q2 = (y1, . . . , ym). Then there is a polynomial p(t) ∈ Q[t] with degree
≤ m− 1 such that p(n) = `(Qn/Qn+1) for large n.

Corollary 1.81. Let (R,m) be a noetherian local ring, Q an m-primary ideal,
Q/Q2 = (y1, . . . , ym). Then there is a polynomial χQ(t) ∈ Q(t) of degree ≤ m
such that χQ(n) = `(R/Qn).

Moreover, deg χQ is independent of the choices of the m-primary ideal Q.

PROOF. The first statement follows from `(R/Qn+1)− `(R/Qn) = p(n).
For the second statement, for any two m-primary ideals Q and Q̃ we have
Q̃s ⊂ Q for some s ∈N. Then

`(R/Qn) ≤ `(R/Q̃sn),

which implies that deg χQ ≤ deg χQ̃. Now switch the roles of Q and Q̃. �

4.3. Dimension theory for local rings.

Theorem 1.82. Let (R,m) be a noetherian local ring. The following three integers
are the same:

(i) d := deg χQ for a (hence any) m-primary ideal Q.
(ii) m = m(R), the minimal number of generators of some m-primary ideal.

(iii) D = D(R) := dim R, the Krull dimension.

This is striking since Nagata had found examples showing that dim R
could be infinite for general noetherian rings.

PROOF. The proof relies on the Artin–Ress Lemma and the Hilbert poly-
nomial theory in an essential way. We will show that d ≤ m ≤ D ≤ d.

Step 1: d ≤ m by Corollary 1.81 (Hilbert polynomial theory).
Step 2: m ≤ D: may assume that D < ∞ and do induction on D.

D = 0 ⇔ m is the only prime ideal ⇒ m =
√

0 is nilpotent (since R is
noetherian)⇒ (0) is m-primary⇒ m = 0.
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Let D > 0 and let pi, i ∈ [1, r] be the minimal primes. Then for any
prime p, we have m ⊃ p ⊃ pi for some i. The prime avoidance and D > 0
implies that m 6⊂ ⋃

pi. Let x ∈ m \ ⋃ pi and consider the local ring R′ =
R/(x). A prime chain in R” takes the form

p′0/(x) ) p′1/(x) ) . . . ) p′s/(x).

Since x ∈ p′s, we have p′s ) pi for some i. Hence we get a prime chain in R:

p′0 ) p′1 ) . . . p′s ) pi.

That is, D′ + 1 ≤ D. [This is a generalization of the simple fact that for a
domain R and 0 6= x ∈ R, dim R/(x) ≤ dim R− 1.]

Also, if ȳ1, . . . , ȳm′ generate Q′/(x) in R′, which is a m′ = m/(x)-primary
ideal, then y1, . . . , ym′ , x generate Q in R, and Q′ is m-primary. Then by in-
duction we get m(R) ≤ m(R′) + 1 ≤ D′ + 1 ≤ D.

Step 3: D ≤ d: We prove by induction on d.
If d = 0 then `(R/mn) is constant for n large. That is, mn = mn+1 =

m(mn). Hence mn = 0 by Nakayama lemma. Then m is the only prime
(p ⊃ (0) = mn ⇒ p ⊃ m) and so D = 0.

Let d > 0. For any maximal prime chain m = p0 ) . . . ) ps (s ≤ D, and
D is the sup among all s). R is a domain⇔ ps = (0). If ps 6= (0) then we
consider R̄ = R/ps instead. Since

`(R̄/m̄n) ≤ `(R/mn) =⇒ d(R̄) ≤ d(R),

it suffices to consider a domain R to show that s ≤ d (so ps = (0)).
Let x ∈ ps−1 \ {0} and consider the prime chain in R̄ := R/(x):

m/(x) ) p1/(x) ) . . . ) ps−1/(x).

We claim that d(R̄) ≤ d(R) − 1. With this proved then s − 1 ≤ D(R̄) ≤
d(R̄) ≤ d(R)− 1 and the then D(R) = max s ≤ d(R) as expected.

To prove the claim, notice that

`(R̄/m̄n) = `(R/(mm + (x))) = `(R/mn)− `((mn + (x))/mn),

and the last term equals `((x)/mn ∩ (x)). Artin–Ress Lemma (Lemma 1.71)
implies that there exists k ∈N such that for all n ≥ k:

mn ∩ (x) = mn−k(mk ∩ (x)) ⊂ mn−k(x),

which implies that `((x)/mn ∩ (x)) ≥ `((x)/mn−k(x)) = `(R/mn−k).
Putting everything together we get `(R̄/m̄n) ≤ `(R/mn)− `(R/mn−k),

which implies the claim. This completes the proof. �
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The first application is already used when we define regular local rings.

Corollary 1.83. For any noetherian local ring (R,m), dim R ≤ dimk m/m2.

Indeed, by Nakayama lemma dimk m/m2 is the minimal number of
generators of m.

The second application has also been discussed for affine k-algebras.

Corollary 1.84 (Krull’s (generalized) principal ideal theorem). Let R be a
noetherian ring, I ⊂ R be an ideal generated by m elements. Then any minimal
“prime ideal p containing I” has ht p ≤ m.

This is readily seen to reduce to the local ring case on (Rp, pp). Since
pp is the only prime containing Ip in Rp, we see that Ip is pp-primary. If
y1, . . . , ym generate I then they also generate Ip. Then ht p = dim Rp ≤ m
by the (local) dimension theorem.

Example 1.85. Let k = k̄. Then dim k[x1, . . . , xm] = m.
We have proved this in Proposition1.17 (for general k) using Noether nor-

malization. Here we know that all the the maximal ideals are of the form ma =

(x1 − a1, . . . , xm − am) and dim k[x1, . . . , xm] ≥ m by an obvious prime chain. By
Krrull’s theorem, we also have dim k[x1, . . . , xm] ≤ supa∈kn htma ≤ m.

4.4. Intersection theory in projective spaces. The classical Bezout the-
orem says that the total intersection number (counted with multiplicity) of
two algebraic curves in P2

k , k = k̄, of degree d1 and d2 is d1d2.
In this final subsection we use Hilbert polynomial theory to extend it

to certain higher dimensional intersections in Pn
k , over k = k̄. Firstly we

discuss the basic dimension estimates of intersections of varieties:

Theorem 1.86 (Affine dimension theorem). Let Y, Z ⊂ An
k , k = k̄, be affine

varieties of dimension r, s respectively. Then every irreducible component W ⊂
Y ∩ Z has dimension ≥ r + s− n.

Of course this may fail if k 6= k̄. Consider Y, Z ⊂ R3 defined by z =

x2 + y2 and z = 0 respectively. Then Y ∩ Z = {(0, 0, 0)} is a point.

PROOF. If Z = Z( f ) is a hypersurface and Y ⊂ Z then done. If Y 6⊂ Z,
W corresponds to a minimal prime divisor of ( f ) in A(Y). Then Krull’s
principal ideal theorem (Corollary 1.84) implies that ht p = 1. Hence by the
dimension formula (Corollary 1.20) we get dim A(Y)/p = r− 1.

For general Z, Y × Z ⊂ A2n ⊃ ∆ ∼= An, where ∆ = { (a, a) | a ∈ An }
is the diagonal. Under the later isomorphism, Y ∩ Z ∼= (Y × Z) ∩ ∆. Now
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∆ is the complete intersection of n hyperplanes defined by xi − yi = 0. The
theorem follows by applying the hypersurface case n-times inductively. �

Corollary 1.87 (Projective dimension theorem). Let Y, Z ⊂ Pn
k , k = k̄, be

projective varieties of dimension r, s respectively. Then

(i) Every irreducible component of Y ∩ Z has dimension ≥ r + s− n.
(ii) r + s− n ≥ 0 =⇒ Y ∩ Z 6= ∅.

PROOF. (i) follows from the affine case.
For (ii), the affine cones C(Y), C(Z) ⊂ An+1 have dimension r + 1 and

s + 1 respectively. Also 0 ∈ C(Y) ∩ C(Z) 6= ∅. The affine case implies that
dim C(Y) ∩ C(Z) ≥ (r + 1) + (s + 1)− (n + 1) = r + s− n + 1 ≥ 1. That
is, there exists Q 6= 0 and Q ∈ C(Y) ∩ C(Z). Thus Y ∩ Z 6= ∅. �

The above results will be necessary only when we insist to work on va-
rieties (solutions of equations). If we work on the prime spectrum instead
(equations) then similar results hold automatically.

Definition 1.88 (Twisting module). Let S =
⊕

d≥0 Sd be a graded ring, M =⊕
d∈Z Md a graded S-module. For any n ∈ Z, we define the graded S-

module M(n) by M(n)d := Mn+d.

Notice that ann M ⊂ S is a homogeneous ideal.

Proposition 1.89. If S is noetherian, M is finitely generated, then there is a (non-
unique) filtration of graded submodules

0 = M0 ( M1 ( . . . ( Mr = M

such that Mi/Mi+1 ∼= (S/pi)(ei) where pi is a homogeneous prime and ei ∈ Z.
Moreover, a homogeneous prime p ⊃ ann M if and only if p ⊃ pi for some i.

Hence each minimal prime p ⊃ ann M appears in pi’s. The number of appearances
is precisely µp(M) ≡ `Sp

(Mp), which is independent of the choices of filtrations.

PROOF. To prove the existence of such a filtration, let X = {M′ ⊂ M |
M′ is graded and such a filtration exists } 6= ∅ since 0 ∈ X.

S is noetherian implies that there is a maximal element M′ ∈ X. Let
M′′ = M/M′. If M′′ 6= 0, consider the set

I := { ann (m) | 0 6= m ∈ M′′ being homogeneous },

and let ann(m) ( S be a maximal element in I .
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We claim that the homogeneous ideal ann(m) is prime. Indeed, for
homogeneous a, b ∈ S with ab ∈ ann(m) and b 6∈ ann(m), 0 6= bm ∈ M′′,
ann(m) ⊂ ann(bm) hence they are equal. So a ∈ ann(bm) = ann(m).

Denote p = ann(m), n = deg m. Then M′′ ⊃ N := Sm ∼= (S/p)(−n).
Take inverse image in M we get M ⊃ N′ ⊃ M′ such that

N′/M′ ∼= (S/p)(−n).

This contradicts the maximality of M′. Hence in fact M′ = M.
Given such a filtration, it is clear that ann M =

⋂
pi. Hence p ⊃ ann M

implies that p ⊃ pi for some i, and if p is minimal over ann M then p = pi.
More precisely, by the minimality of p, for any pj, by localizing at p we get

either Mj
p
∼= Mj−1

p or pi = p. The proposition follows. �

Theorem 1.90. Let S = k[x0, . . . , xn] and M be a finitely generated S-module.
Let φM(`) := dimk M`. Then there is a unique polynomial pM(z) ∈ Q[z] such
that pM(`) = φM(`) for large ` ∈N. Also deg pm = dim V(ann M).

PROOF. Except the last statement, this is just a special case of the Hilbert–
Serre theorem (cf. Corollary 1.79) for polynomial rings. However in this
special case the proof can be done with precise information on deg pM.

Let 0→ M′ → M→ M′′ → 0 be exact, then φM = φM′ + φM′′ and

V(ann M) = V(ann M′) ∪V(ann M′′).

Hence the problem is reduced to M = (S/p)(e) by Proposition 1.89, hence
also to M = S/p by a shifting z 7→ z + `.

If p = (x0, . . . , xn) then φM(`) = 0 for all ` > 0. So pM(z) = 0. Other-
wise let xi 6∈ p and consider the short exact sequence

0→ M
xi ·−→M −→ M′′ := M/xi M→ 0.

Then φM′′(`) = φM(`) − φM(` − 1) = (∆φM)(` − 1) and V(ann M′′) =

V(p) ∩V(xi). Hence dim V(ann M′′) = dim V(ann M)− 1.
The theorem follows by induction on dim V(ann M). �

The theorem works without k = k̄ and even for k being an artinian ring.
We use V(ann M) (in prime spectrum) instead of Z(ann M) (k-variety) in
our statement and throughout the proof. It is of fundamental importance
when we study the notion of flatness of families of algebraic objects. Below
we give a simple application of it, namely the Bezout theorem.
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Definition 1.91. Let ι : Y ⊂ Pn be an algebraic set with given imbedding ι.
Denote by PY the Hilbert polynomial of S(Y) = k[x0, . . . , xn]/I(Y). Let r =
dim Y = deg PY. Thne the degree of Y ⊂ Pn is defined by the expression

PY(z) =
deg Y

r!
zr + . . . lower degree terms in z.

Of course the notion of degree depends on the embedding ι.

Proposition 1.92. (a) We have deg Y ∈N if Y 6= ∅. Also deg Pn = 1.
(b) Let H = Z( f ) ⊂ Pn then deg H = deg f .
(c) If dim Y1 = dim Y2 = r and dim Y1 ∩Y2 < r then

deg Y1 ∪Y2 = deg Y1 + deg Y2.

PROOF. (a) Since PY(`) ∈ N for all large `, it is in fact integer valued
for all ` ∈ Z and then PY(z) = arCz

r + ar−1Cz
r−1 + . . . + a0, ai ∈ Z, where

Cz
r :=

1
r!

z(z− 1) . . . (z− (r− 1)).

Then deg Y = ar ∈ N. For Y = Pn, φS(`) = Hn+1
` = Cn+`

n . Hence PY(z) =
Cz+n

n has degree 1 by the above expression.
(b) Let d = deg f and consider the short exact sequence

0→ S(−d)
· f−→ S −→ S/( f )→ 0.

Then φS/( f )(`) = φS(`)− φS(`− d) = C`+n
n −C`−d+n

n . Hence the top degree
term of PH(z) is computed from

1
n!
((z + n) . . . (z + 1)− (z− d + n) . . . (z− d + 1)) =

d
(n− 1)!

zn−1 + . . . .

(c) Using 0→ S/I1 ∩ I2 → S/I1 ⊕ S/I2 → S/(I1 + I2)→ 0. �

Theorem 1.93 (Generalized Bezout Theorem). Let Y ⊂ Pn be a projective
variety and H ⊂ Pn be a hypersurface with Y 6⊂ H. If Y ∩ H = Z1 ∪ . . . ∪ Zm

being the irreducible decomposition then dim Zj = dim Y− 1 for all j and

m

∑
j=1

i(Zj) deg Zj = deg Y · deg H,

where i(Zj) := µI(Zj)(S/(I(Y) + I(H))) (cf. Proposition 1.89).
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The number i(Zj) = i(Z; Y, H) is known as the intersection multiplicity
of Y ∩ H along Zj. When Y = Z(g), H = Z(h) ⊂ P2 are curves it coincides
with the standard definition `Op(Op/(gp, hp)).

However, when Y, H are both of codimension≥ 2, the definition should
be replaced using homological invariants via “Tor groups” (due to Serre).
The homological techniques will be introduced in later chapters.

PROOF. Let H = Z( f ) with deg f = d. Let r = dim Y, then we have
seen that the dimension of each irreducible component Zj is r− 1.

As before, consider the short exact sequence

0→ (S/I(Y))(−d)
· f−→ S/I(Y) −→ S/(I(Y) + I(H)) =: M→ 0.

Then pM(z) = PY(z)− PY(z− d) which is

deg Y
r!

(zr − (z− d)r) + . . . =
deg Y · d
(r− 1)!

zr−1 + . . . .

On the other hand, by Proposition 1.89 we have pm(z) = ∑i pi(z) where
pi is the Hilbert polynomial for (S/pi)(ei), namely

pi(z) =
deg Z(pi)

ri!
(z + ei)

ri + . . . .

The theorem follows by picking up those terms with ri = r− 1. �

It is clear that the theorem can be extended to the case that Y is an
algebraic set (reducible) and H be a reducible hypersurface. One may also
apply it repeatedly by cutting out Y by hypersurfaces Hi’s. Namely for H =

Z( f1, . . . , ft) being a complete intersection with codimension s = n− t.

Exercise 1.4. Let dim Y = r and H =
⋂t

i=1 Hi, Hi = Z( fi), being a complete
intersection of codimenison n− t. If Y∩H = Z1∪ . . .∪Zm is the irreducible
decomposition, then dim Zj = dim Y− t for all j and

m

∑
j=1

i(Zj) deg Zj = deg Y · deg H = deg Y ·
t

∏
i=1

deg fi,

where i(Zj) := ∏t
i=1 i(Z(i); Z(i−1), Hi) is defined via

Zj = Z(t) ( Z(t−1) ( . . . ( Z(0) = Y

where Z(i) is a irreducible component of Z(i−1) ∩ Hi.
In particular, for t = r and H is a codimenison r linear subspace we

recover the geometric interpretation of deg Y as the number of intersections
of Y ∩ H counted with multiplicities (and degree of k(p)/k if k 6= k̄).


