點點滴啇的數學回憶我在武武俊的亚究之洛 1983－1986
 जve ow

王金龍
12／11， 2019

數的起源－自然數

－ $\mathbb{N}=\{1,2,3,4,5, \ldots\}$ ，進而得到 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset$ ？
＊Q1：360的因數個數？因數總和？
＊Q2：$S_{n}:=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=$ ？

形的起源－畢氏定理

$$
\begin{aligned}
& x / a=a / c \Longrightarrow a^{2}=c x \\
& y / b=b / c \Longrightarrow b^{2}=c y \\
& a^{2}=b^{2}=c(x+y)=c^{2}
\end{aligned}
$$

動畫式的證明

Part I：＂高中人才選拔＂

Part II：數學競賽
Part III：科展

1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
2	4	6	8	A	C	E	10	12	14	16	18	1 A	1 C	1 E
3		9	C	F	12	15	18	1 B	1 E	21	24	27	2 A	2 D
4			10	14	18	1 C	20	24	28	2 C	30	34	38	4 C
5				19	1 E	23	28	2 D	32	37	3 C	41	46	4 B
6														
7							$?$							
8									$?$					
9														
A														
B														
C			$?$											
D														
E												$?$		
F														

Part I：與武陵的邂逅 \＆高中人才選拔

－從畫畫到電玩
＊為何考桃聯？
＊夢想實現的第一步：電腦社，程式大賽
＊ $1,8,60,620$ ，這是什麼數列？

本文將使你對＂資訊＂建立起具體的觀念，使你對＂電
 －文中爲力求客觀，惯際以及內容的充實，故引用了許多各
武陵青年
33 （1983），
p．128－132階層人士的話，声完本文，相信必能使你獲益匪浅。

二進位與數位邏輯電路

$* 1,2,3,4,5, \ldots=1,10,11,100,101, \ldots$
＊ $1011=1000+10+1$ ，乘 1000 只是左移 3 bits，因此關鍵在於二進位＂加法＂如何以電路實現：
＊ $\mathrm{s}=\mathrm{p}+\mathrm{q}=$ ？假設位數（bits）$=\mathrm{L}, \wedge=$ xor（wedge）
＊ $\mathrm{c}=0$ ，for $\mathrm{i}=1$ to L do $s[\mathrm{i}+1]=\mathrm{p}[\mathrm{i}]^{\wedge} \mathrm{q}[\mathrm{i}]^{\wedge} \mathrm{c}$ ；
＊ $\mathrm{c}=(\mathrm{p}[\mathrm{i}] \& \mathrm{q}[\mathrm{i}])$ or $(\mathrm{p}[\mathrm{i}] \& \mathrm{c})$ or $(\mathrm{q}[\mathrm{i}] \& \mathrm{c})$ ．

Knuth: The Art of Computer Programming, vol.1, p. 19

- 8. [25] (a) Prove the following theorem of Nicomachus (c. 100 A.d.) by induction: $1^{3}=1,2^{3}=3+5,3^{3}=7+9+11,4^{3}=13+15+17+19$, etc. (b) Use this result to prove the remarkable formula $1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$.
[Note: An attractive, geometric interpretation of this formula, suggested to the author by R. W. Floyd, is shown in Fig. 5. The idea is related to Nicomachus's theorem and Fig. 3. See M. Gardner, Scientific American 229 (Oct. 1973), 114-118, for other proofs.]

$$
\begin{aligned}
\text { Side } & =5+5+5+5+5+5=5 \cdot(5+1) \\
\text { Side } & =5+4+3+2+1+1+2+3+4+5 \\
& =2(1+2+\cdots+5) \\
\text { Area } & =4 \cdot 1^{2}+4 \cdot 2 \cdot 2^{2}+4 \cdot 3 \cdot 3^{2}+4 \cdot 4 \cdot 4^{2}+4 \cdot 5 \cdot 5^{2} \\
& =4\left(1^{3}+2^{3}+\cdots+5^{3}\right)
\end{aligned}
$$

Fig. 5. Geometric version of exercise 8 , with $n=5$.

- 高中人才培育計畫，實驗本
- 盧澄根老師與我
- 微積分，線性代數，解析概論（高木貞治），．．
- 脫胎換骨與挟擇之間 ．．．

Part II：數學競賽

＊＂中華文化復興運動推行委員會＂主辦
＊高一：臨時被通知，做一題半
＊高二：吊車尾進北區複賽，決賽
＊自主學習之路，決定志職之時，跳級遭拒
＊高三：發高燒 40 度赴決賽

面積與 Cramer＇s rule tunny．

基底的概念
－尤拉線

$$
\overrightarrow{O H}=3 \overrightarrow{O G}
$$

－$\triangle A B C$ 變動時此閻係恒保持

方程式的複數解

＊假定 $a_{1}, \ldots, a_{n} \in \mathbb{C}$ 為相異的複數。
＊考慮方程式 $f(z)=\sum_{i=1}^{n} \frac{1}{z-a_{i}}=0$ 。
＊證明所有解都在包含 a_{1}, \ldots, a_{n} 的凸多邊形內部．

極值問題

Q：固定一個單位圓，同心正方形的邊長為多少時，圖示的陰影面積有極值？極大還是極小？

圓錐曲線就是二次曲線．

找出焦點，準線，離心率。

七十四學年度數學競試得獎同學名錄

左：與侯建威校長，鄭銘洲．右：與于如岡．

複變數與多變數下牛頓法的討論

高中組數學科第二名
台灣省立武陵高級中學
作 者：王金龍
指導敉師：盧澄根

一，硏究動機與目的

一般初微的教科書中都有介紹方程式實數根的逼近法，然而複數根則未見提及，而且書上所提出的收斂條件也不完備，因此引發了研究的興趣，希望藉此研究擴充已知的方法，使其能夠解決一般根逼近的問題。

二，研究內容

H 牛頓法：衆多逼近法中，牛頓法是效率很高的一種，如圖 1。

$$
\begin{aligned}
& \frac{\mathrm{f}\left(\mathrm{X}_{\mathrm{n}}\right)-0}{\mathrm{X}_{\mathrm{n}}-\mathrm{X}_{\mathrm{n}+1}}=\mathrm{f}^{\prime}\left(\mathrm{X}_{\mathrm{n}}\right) \\
\Rightarrow & \mathrm{X}_{\mathrm{n}+1}=\mathrm{X}_{\mathrm{n}}-\frac{\mathrm{f}\left(\mathrm{X}_{\mathrm{n}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{X}_{\mathrm{n}}\right)} \\
& \quad \beta=\beta-\frac{\mathrm{f}(\beta)}{\mathrm{f}^{\prime}(\beta)} \\
& \mathrm{X}_{\mathrm{n}} \rightarrow \beta \text {, 則 } \\
\Rightarrow & \mathrm{f}(\beta)=0
\end{aligned}
$$

國 1

牛頓法

＊如何有效逼近任意方程式 $f(x)=0$ 的解？
$-\frac{f\left(x_{n}\right)-0}{x_{n}-x_{n+1}}=f^{\prime}\left(x_{n}\right) \Longrightarrow x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2 \ldots$
＊若 $x_{n} \rightarrow b$ 則 $f(b)=0$ ．
－Q：若 $f(a)=0$ ，能否在 a 附近找到一個區間 Ω ，使任何起始點 $x_{0} \in \Omega$ 之點列 x_{n} 均收斂於 a ？
＊定理：假定 $f(a)=0$ ．如果函數 $y=f(x)$ 在 $x=a$ 的附近可以用冪級數展開，則區間 Ω 存在！
＊證明：考慮牛頓映射 $\phi(z)=z-\frac{f(z)}{f^{\prime}(z)}$ ．由於 $\phi(a)=a$（不動點），因此根據＂均值定理＂，
$*|\phi(z)-a|=|\phi(a)-\phi(a)|=\left|\phi^{\prime}(c)\right| \cdot|z-a|$.
＊如果能夠控制 $\left|\phi^{\prime}\right| \leq r<1$ ，就可以找到 Ω ．
＊計算 $\phi^{\prime}(z)=1-\frac{f^{\prime}(z)^{2}-f(z) f^{\prime \prime}(z)}{f^{\prime}(z)^{2}}=\frac{f(z) f^{\prime \prime}(z)}{f^{\prime}(z)^{2}}$ ．
＊假定 a 是 n 重零點：
＊$f(z)=p_{n}(z-a)^{n}+p_{n+1}(z-a)^{n+1}+\ldots$
－$f^{\prime}(z)=n p_{n}(z-a)^{n-1}+\ldots$
－$f^{\prime \prime}(z)=n(n-1) p_{n}(z-a)^{n-2}+\ldots$
－因此 $\phi^{\prime}(z)=\frac{n(n-1) p_{n}^{2}+\ldots}{n^{2} p_{n}^{2}+\ldots}$ ，得到 $\phi^{\prime}(a)=\frac{n-1}{n}<1$ ．

若 $f(x, y)=0$ 鳰曲線 $\Gamma_{1}$$\Gamma_{1} \cap \Gamma_{2}$ 即駇立方程組之根。 $g(x, y)=0 \quad$ 䍔曲線 Γ_{z}

如果想要推廣牛頓法到多變數的情形，首先必須知道函數 $z=f(x, y)$ 在 $(a, b, f(a . b)) \in \mathbb{R}^{3}$ 的切平面方程。
\mathbb{R}^{3} 中的平面方程為 $p(x-a)+q(y-b)+r(z-c)=0$ ，其中 (p, q, r) 為法向量．它與 (x, y) 平面交於 $z=0$ 。

$$
\begin{aligned}
& \text { 設 } \varphi=\mathrm{f}(\mathrm{x}, \mathrm{y})-\mathrm{Z} \text {, 則 } \\
& \nabla \varphi=\left(\varphi_{x} \varphi_{v} \varphi_{x}\right)=\left(\mathrm{f}_{z}, \mathrm{f}_{v},\right. \\
& -1 \text {) } \\
& Z=f(x, y) \text { 兩 } \varphi \text { 之需等高面, } \\
& \text { 由於 } \nabla \varphi \perp \text { 等高面, } \\
& \text { 故 (} \left.\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right) \text { 上之切平面方程 } \\
& \text { 䎹: }\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \\
& -\left(\mathrm{f}_{2}, \mathrm{f}_{y},-1\right)=0
\end{aligned}
$$

令 $Z=0$ ，得到在 $x-y$ 平面上之線 ：$f_{z}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)$
$=-\mathrm{z}_{0}=-\mathrm{f}$
※上式中，f, f_{n}, f_{v} 均在 $\left(x_{0}, y_{0}, z_{0}\right)$ 取値。

同法用在 $\mathrm{g}(\mathrm{x}, \mathrm{y})$ 上，得線方程： $\mathrm{g}_{\mathrm{a}}\left(\mathrm{x}-\mathrm{x}_{0}\right)+\mathrm{g}_{y}\left(\mathrm{y}-\mathrm{y}_{0}\right)$
$=-\mathrm{g}$ 解柺立方程組，求 (x, y) ，用以逼近 Γ_{1}, Γ_{2} 之交點：
$\left(\begin{array}{l}f_{x} \\ f_{y} \\ g_{z} \\ g_{y}\end{array}\right)\binom{x-x_{0}}{y-y_{0}}=-\binom{f}{g^{\wedge}}$ ，記［J $\left.J_{0}\right]=\binom{f_{z} f_{y}}{g_{x} g_{y}}, J_{0}$ 鳰
Jacobian 行列式，若 $J_{0}\left(x_{0}, y_{0}\right) \neq 0$ ，則有：
$\binom{x-x_{0}}{y-y_{0}}=-\left[J_{0}\right]^{-1}\binom{f}{g} \Rightarrow\binom{x}{y}=\binom{x_{0}}{y_{0}}-\left[J_{0}\right]^{-1}\binom{f}{g}$
把 $\binom{\mathrm{x}_{0}}{\mathrm{y}_{0}} \rightarrow\binom{\mathrm{x}}{\mathrm{y}}$ 記斒 $\phi, \stackrel{⿱ ⿵ 人 丶 龴 阝}{ } \overrightarrow{\mathrm{X}_{\mathrm{n}+1}}=\phi\left(\overrightarrow{\mathrm{X}_{n}}\right), \overrightarrow{\mathrm{f}}=\binom{\mathrm{f}}{\mathrm{g}}$
則：$\frac{\overrightarrow{X_{n+1}}}{}=\stackrel{\rightharpoonup}{X_{n}}-\left[J_{0}\left(\overrightarrow{X_{n}}\right)\right]^{-1} \frac{\rightharpoonup}{f}\left(\stackrel{\rightharpoonup}{X_{n}}\right)$

遍種形式和 $X_{n+1}=X_{n}-\frac{f\left(X_{n}\right)}{f^{\prime}\left(X_{n}\right)}$ 幾乎是等債的，

以下證明行列式的微分公式：

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & \cdots \\
a_{1 n}
\end{array}\right| \text { 其中 } a i j \text { 各元素均眮 } \mathrm{x}, ~ \mathrm{y}, ~ \cdots \text { 之函数 } \\
& \text { 記 } A=\operatorname{det}\left[A_{1}, A_{2}, \cdots \cdots A_{n}\right] \\
& \mathrm{A} i \text { 表示列向量, 則: } \\
& \frac{\partial A}{\partial X}=\operatorname{det}\left[\frac{\partial A_{1}}{\partial X}, A_{2}, \ldots, A_{\pi}\right]+\operatorname{det}\left[A_{1}, \frac{\partial A_{2}}{\partial X}, \ldots \ldots,\right. \\
& \left.A_{n}\right]+\cdots \cdots+\operatorname{det}\left[A_{1}, A_{2}, \ldots \ldots, \frac{\partial A_{n}}{\partial X}\right]
\end{aligned}
$$

我們只需要 $A=a_{11} a_{22}-a_{12} a_{21}$ 的簡單情形。

Pf： $\mathrm{A}=\Sigma \operatorname{sign}(\pi) \cdot a_{1 \pi(1)} \cdot a_{2 \pi(1)} \cdots \cdots a_{\mathrm{s} \pi(\mathrm{n})}$

π 是任一排列
利用微分的乘法公式：
$\frac{\partial A}{\partial X}=\Sigma \operatorname{sign}(\pi)\left[\frac{\partial a_{1} \pi(1)}{\partial X} \cdot a_{2 \pi(2)} \cdots a_{n \pi(n)}+a_{1 \pi(1)} \cdot \frac{\partial a_{2 \pi(2)}}{\partial X} \cdots\right.$

$$
\begin{gathered}
\text { 第一項 } \\
a_{n \pi(n)}+\cdots+a_{1 \pi(1)} \cdot a_{8 \pi(2)} \cdots \cdots \frac{\partial a_{n} \pi(n)}{\partial X}
\end{gathered}
$$

第 n 項
將 n 項拆開後便得證。

回到牛頓法的向量形式，並設 $\binom{x}{y} \stackrel{\phi}{\rightarrow}\binom{u}{v}$ ，保平面 \rightarrow 平面，依克萊瑪法則解 $u, ~ v$ 得：

$$
\begin{aligned}
& \mathrm{U}=\mathrm{X}-\frac{\left|\begin{array}{ll}
\mathrm{f} & \mathrm{f}_{v} \\
\mathrm{~g} & \mathrm{~g}_{v}
\end{array}\right|}{\mathrm{J}_{0}}, \mathrm{~V}=\mathrm{Y}-\frac{\left|\begin{array}{ll}
\mathrm{f}_{x} & \mathrm{f} \\
\mathrm{~g}_{x} & \mathrm{~g}
\end{array}\right|}{\mathrm{J}_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& u_{v}=-\frac{\left(\left|\begin{array}{l}
f_{v} f_{v} \\
\mathrm{~g}_{v} g_{v}
\end{array}\right|+\left|\begin{array}{l}
\mathrm{ff}_{v y} \\
\mathrm{~g} \mathrm{f}_{v y}
\end{array}\right|\right) \mathrm{J}_{0}-\left|\begin{array}{l}
\mathrm{f} \mathrm{f}_{v} \\
\mathrm{~g} \mathrm{~g}_{v}
\end{array}\right| \mathrm{J}_{0 v}}{\mathrm{~J}_{0}^{2}}=\frac{-\left|\begin{array}{l}
\mathrm{f} \mathrm{f}_{v v} \\
\mathrm{~g} \mathrm{~g}_{v v}
\end{array}\right| \mathrm{J}_{0}+\left|\begin{array}{l}
\mathrm{f} \mathrm{f}_{v} \\
\mathrm{~g} \mathrm{~g}_{v}
\end{array}\right| \mathrm{J}_{0 v}}{\mathrm{~J}_{0}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{z}= & -\frac{-\left|\begin{array}{ll}
\mathrm{f}_{x x} & \mathrm{f} \\
\mathrm{~g}_{x y} & \mathrm{~g}
\end{array}\right| \mathrm{J}_{0}+\left|\begin{array}{ll}
\mathrm{f}_{x} & \mathrm{f} \\
\mathrm{~g}= & \mathrm{g}
\end{array}\right| \mathrm{J}_{0 z}}{\mathrm{~J}_{0}^{2}} \\
\mathrm{~V}_{y} & =\frac{-\left|\begin{array}{ll}
\mathrm{f}_{x y} & \mathrm{f} \\
\mathrm{~g}_{x y} & \mathrm{~g}
\end{array}\right| \mathrm{J}_{0}+\left|\begin{array}{ll}
\mathrm{f}_{z} & \mathrm{f} \\
\mathrm{~g} x & \mathrm{~g}
\end{array}\right| \mathrm{J}_{0 y}}{\mathrm{~J}_{0}^{2}}
\end{aligned}
$$

當 $\mathrm{f}=0$ 且 $\mathrm{g}=0$ 時，可知 $\mathrm{U}_{v}=\mathrm{U}_{v}=\mathrm{V}_{z}=\mathrm{V}_{v}=0$ ，
同時當然有 $[J]=\binom{U_{s} U_{y}}{V_{s} V_{y}}=0$ 且 $J=0$ 。

如果 $f(Q)=g(Q)=0$ ，我們必須假設 $J_{0}(Q) \neq 0$ ．

在此並假設了 J 在 $\mathrm{f} \dot{=} 0, \mathrm{~g}=0$ 點上的連續性，本來要證明點列 X_{n}之收敛性，應敛可以考慮। J｜＜1 下的絔小映射原理，即若 ϕ（Q） $=\mathrm{Q}, \mathrm{J}(\mathrm{Q})=0$ ，必存在 $\delta>0$ ，使若 $|\mathrm{P}-\mathrm{Q}|<\delta$ 則 $|\mathrm{J}(\mathrm{P})|$ <1 ，如此一來，任何在 $1 \mathrm{P}-\mathrm{Q} \mid<\delta$ 內之區域 Ω 塈 ϕ 映射後得 Ω^{\prime}必然有 $\frac{\left|\Omega^{\prime}\right|}{|\Omega|}<1$ ，面積雖縮小了，但 Ω^{\prime} 卻未必全落在｜$P-Q \mid<\delta$內，故縮小的特性不能連積使用，也就無法登明 Ω 在 ϕ 的重重映射之後會收縮到 Q 點。

圆 11既然面樻的方法行不通，那就改用弧長的方法：

Q：有向量形式的均值定理嗎？

設曲線 Γ 經 ϕ 映射後爲 Γ^{+}，則
$\left|\Gamma^{\prime}\right|=\int_{\Gamma^{\prime}} d s=\int_{\Gamma^{\prime}} \sqrt{d u^{2}+d v^{2}}$（在u－v 平面上），
但 $d u=u_{z} d \mathbf{x}+u_{y} d y$

$$
d v=v_{s} d x+v_{v} d y
$$

$d u^{2}+d v^{2}=\left(u_{x}^{2}+v_{x}^{2}\right) d x^{2}+2\left(u_{z} u_{y}+v_{s} v_{y}\right) d x d y+\left(u_{y}^{2}+\right.$ $\left.v_{v}{ }^{2}\right) d y^{2}$ 令此二次形鴬 $A d x^{2}+2 B d x d y+C d y^{2}$ ，故 $\left|\Gamma^{\prime}\right|=\int \sqrt{\Gamma} \sqrt{A d x^{2}+2 B d x d y+C d y^{2}}$

註記：$d s^{2}=\sum g_{i j} d x_{i} d x_{j}$ 即 Gauss 的 first fundamental form，或稱 Riemann 度量．是 Einstein 理論的根本元素。

由於二次形在根躆內，故必然是恒正的二次形，有：
$\mathrm{A}>0, \mathrm{C}>0,\left|\begin{array}{l}\mathrm{A} \\ \mathrm{B} \\ \mathrm{B}\end{array}\right|>0, \ldots \ldots$ 必然條件。
而 $|\Gamma|=\int_{\Gamma} \sqrt{d x^{2}+d y^{2}}$ ，若要 $\left|\Gamma^{\prime}\right|<|\Gamma|$ ，可考慮在 Γ 上虑虑皆有 $\left(A d x^{2}+2 B d x d y+C d y^{2}\right)<\left(d x^{2}+d y^{2}\right)$
即 $(A-1) d x^{2}+2 B d x d y+(C-1) d y^{2}$ 爲桓負，桓負的條件是： $\begin{cases}A^{*}-1<0 \\ \left|\begin{array}{lll}A & -1 & B \\ B & C-1\end{array}\right|=\left|\begin{array}{ll}A & B \\ B & C\end{array}\right|-(A+C)+1>0 \text { ，但由正定時的 } 1-20\end{cases}$
必然條件，故只要 $A+C<1$ ，以上兩佟件便均成立。

註記：當時我的線性代數還很嫩，繞了遠路卻讓我敲開了微分幾何學的大門！

設 Q 雼一零駖，$\phi(\mathrm{Q})=\mathrm{Q}, \mathrm{J}(\mathrm{Q})=0, \mathrm{u}_{z}=\mathrm{u}_{\mathrm{y}}=\mathrm{v}_{\mathrm{s}}=\mathrm{v}_{\mathrm{v}}=0$ ，
榻然 $A+C=u_{x}{ }^{2}+v_{x}{ }^{2}+u_{v}{ }^{2}+v_{v}{ }^{2}=0$ ，故在連結的假定之下，任何 $\varepsilon>0$ ，必存在 δ ，若 $|\mathrm{P}-\mathrm{Q}|<\delta$ ，則 $\mathrm{A}+\mathrm{C}<\varepsilon$ ，以下取 ε 是小於 1 之正數 Γ 在 $|\mathrm{P}-\mathrm{Q}|<\delta$ 内，並以 Q 為端駖之線段，則 Γ^{\prime} 雼一以 Q 碢端點之曲線，且 $\left|\Gamma^{\gamma}\right|<\sqrt{\boldsymbol{\varepsilon}}|\Gamma|$ ，理由同前，因此時佰負條件爲：
$\left\{\begin{array}{l}A-\varepsilon<0 \\ \left|\begin{array}{ll}A & B \\ B & C\end{array}\right|-\varepsilon(A+C)+\varepsilon^{2}>0, \text { 在 } A+C<\varepsilon \text { 下䓨然是成立的。 }\end{array}\right.$由於 $\left|\Gamma^{\prime}\right|<\sqrt{\boldsymbol{\varepsilon}}|\Gamma|<\delta$ ，故 Γ^{\prime} 線謪算拉成直線仍然落於 $1 \mathrm{P}-$ $\mathrm{Q} \mid<\delta$ 內，何況是曲線時眳！

結論：重數為 1 的解一定存在收斂區間 $Q \in \Omega \subset \mathbb{R}^{n}$ 。這個證明顯然可以推廣至 n 個變數，甚至是 $Q \in \mathbb{C}^{n}$ 。

> | 與科學館 |
| :---: |
| 朝夕相處 |
| +ek |
| 1986 |

ON THE BEHAVIOR OF NEWTON ITERATION
C. C. TSAI

Abstract

We study the multivariate Newton method for the case of non-simple root. We give a criterion for it to converge, in which case the convergence rate will be linear. We then give a modified method to achieve an exponential rate of convergence. In contrast to this, we present also a number of examples to demonstrate some critical phenomenons of the Newton iteration when the criterion does not hold, and discuss possible ways to resolve the problem.

1. Introduction

The Newton iteration provides an algorithm to approximate the roots of smooth maps $f: R^{n} \rightarrow R^{n}$ from Euclidean n-space to itself. Namely

$$
x \mapsto N(x):=x-\left(\left.D f\right|_{x}\right)^{-1} f(x)
$$

For the one-variable case it is well known that the Newton iteration always converges locally at any root, unless the derivative of all order vanish there. For multivariate case, the method is efficient if the root a is a simple root, i.e. the Jacobian of the map $\left.\operatorname{det} D f\right|_{a}$ at a is non-zero. If $\left.\operatorname{det} D f\right|_{a}=0$, the Newton iteration is undefined at a, and therefore difficult for us to analyze its local behavior.

蔡政江，我，陳伯恩， 2015

The Secretary Problem: Two-Player Extensions and Going Back*

Brian Chen (betaveros.celcion@gmail.com)

May 2009, revised June 2009

Abstract

The Secretary Problem is a thoroughly-studied optimal-stopping problem in which a person must try to select the best applicant from a given number of them. The problem is that he must interview them sequentially, must decide whether to accept the applicant just after the interview, and cannot return to previous applicants. The $1 / e$ optimal strategy for this is well known, and many extensions of it have been studied. Here we will study some more generalizations:

Firstly, a fairly simple generalization is presented that allows the person to return to previous applicants, with a fixed probability of success. Through this problem we will return to the classic problem and demonstrate the "sum the odds to one and stop" rule, and from that the $1 / e$ optimal strategy.

Next, the main course is two generalizations of the problem involving two players each. In the first one, one player is more powerful than the other, and when both players want a certain secretary the first player will receive her. We will find the optimal strategy and probability of success for this, then go on to a scenario where the weaker player can choose between helping the stronger player and receiving the privilege of a coin flip, or not helping and remaining weak. On the way, we will derive a formula for determining the probability of a set number of candidates (secretaries who are better than previous ones) occuring in a number of applicants.

後記

＊特別感謝 侯建威 校長，盧澄根老師
＊與＂一班＂的所有老師與同學們
＊同學們都已經是國內外各行業翹楚
＊我兒重陽，外甥許家瑋後來也都是武陵人 ．．．

武陵高中1986畢業三年一班

作者：Picasso Hu

物理老師總是搶先一步佔用國文課，國文老師就拉我去打羽球！

荒山茉莉 Post Rock．12／13（五），華山文創 大團誕生年終場

感謝你的參與
再會！

