
2022 FALL - LIE GROUPS AND LIE ALGEBRAS

FINAL EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

1. Let G be a connected Lie group. Show that
(a) G is generated by any neighborhood U of e.
(b) Any discrete normal subgroup H lies in the center Z(G).
(c) The fundamental group π1(G) is abelian.

2. Let G be a compact Lie group with invariant measure dg such that |G| = 1.
(a) State and prove Schur orthogonality relations.
(b) For two finite dimensional representations V, W of G, show that

〈χV , χW〉 :=
∫

G
χV(g)χW(g) dg = dim HomG(V, W).

(c) Show that V ∼= W if and only if χV = χW .

3. Consider the spin representation S =
∧

W of Spin(n) and half-spin representations
S± =

∧±W when n = 2m, where W ⊂ Cn is maximally isotropic. Show that
(a) S is not a representation of SO(n).
(b) T = {gθ = (cos θ1 + e1e2 sin θ1) · · · (cos θm + e2m−1e2m sin θm) | θi ∈ Rm} is a

maximal torus in Spin(2m) and in Spin(2m + 1).
(c) For n = 4, find the joint eigenspaces of T on S± and calculate χS±(gθ1,θ2).

4. LetHm(Rn) be the space of real harmonic polynomials of degree m. Show that
(a) Hm(R2) is O(2)-irreducible but not SO(2)-irreducible.
(b) Under the usual action (g f )(v) = f (g−1v),

L2(Sn−1) =
⊕̂

m∈Z≥0

Hm(R
n)|Sn−1 , n ≥ 2,

is the canonical decomposition of L2(Sn−1) under O(n).

5. Let G be a compact connected Lie group, S a connected abelian Lie subgroup of G.
(a) Show that ZG(S) is the union of all maximal tori containing S.
(b) For g ∈ G, show that ZG(g)◦ is the union of all maximal tori containing g.

6. (Bonus) Present ONE essential topic in Lie groups which you have well-prepared but
not listed above. (E.g. the proof of a major theorem.)
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