2022 FALL - LIE GROUPS AND LIE ALGEBRAS

MIDTERM EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

We work over the ground field $F=\bar{F}$ with char $F=0$.

1. Let L be a semisimpe Lie algebra over F.
(a) Show that ad $L=\operatorname{Der} L$. Use it and properties of $\operatorname{Der} L \subset$ End L to define the abstract Jordan decomposition $x=s+n$ for $x \in L$.
(b) For any f.d. representation $\phi: L \rightarrow \mathfrak{g l}(V)$, show that $\phi(x)=\phi(s)+\phi(n)$ is the standard (usual) Jordan decomposition.
2. Let $x=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ be the standard basis of $L=\mathfrak{s l}(2, F)$.
(a) Classify f.d. irreducible L-modules as $V(m)$'s (of highest weight $m \geq 0$).
(b) Let $\phi: L \rightarrow \mathfrak{g l}(V(m))$ with $m>0$. Show that $e^{\phi(x)} \in \operatorname{Aut}(V(m))$ and $\tau:=$ $e^{\phi(x)} e^{-\phi(y)} e^{\phi(x)}$ interchanges positive and negative weight spaces.
3. Let Φ be a root system with base $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ and Weyl group $\mathscr{W}=\left\langle\sigma_{\alpha} \mid \alpha \in \Phi\right\rangle$.
(a) Show that $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{\ell}^{\vee}\right\}$ is a base of $\Phi^{\vee}:=\left\{\left.\alpha^{\vee}=\frac{2 \alpha}{(\alpha, \alpha)} \right\rvert\, \alpha \in \Phi\right\}$.
(b) For $\lambda=\sum k_{i} \alpha_{i}$ with $k_{i} \geq 0$, show that either λ is a multiple of a root or there exists $\sigma \in \mathscr{W}$ such that $\sigma(\lambda)=\sum k_{i}^{\prime} \alpha_{i}$ with some $k_{i}^{\prime}>0$ and some $k_{i}^{\prime}<0$.
4. Let L be a semisimple Lie algebra with $x \in L$ semisimple. Recall that x is regular if $C_{L}(x)$ is a maximal toral subalgebra.
(a) Show that x is regular if and only if x lies in exactly one CSA.
(b) For any two Borel subalgebras B and B^{\prime}, show that $B \cap B^{\prime}$ contains a CSA of L.
5. Let L be a semisimple Lie algebra, $\left\{h_{i}\right\}$ and $\left\{k_{j}\right\}$ be bases of H with $\kappa_{H}\left(h_{i}, k_{j}\right)=\delta_{i j}$, $x_{\alpha} \in L_{\alpha}, z_{\alpha} \in L_{-\alpha}$ with $\kappa\left(x_{\alpha}, z_{\alpha}\right)=1$.
(a) Show that the universal Casimir element $c_{L}:=\sum_{i=1}^{\ell} h_{i} k_{i}+\sum_{\alpha \in \Phi} x_{\alpha} z_{\alpha} \in U(L)$ is independent of the various choices and it lies in the center of $U(L)$.
(b) For $\lambda \in \Lambda^{+}$, show that $c_{L}=(\lambda+\delta, \lambda+\delta)-(\delta, \delta)$ on $V(\lambda)$.
6. (Bonus) Present ONE essential topic in Lie algebras which you have well-prepared but not listed above. (E.g. the proof of a major theorem.)
[^0]
[^0]: Date: November 14, 2022. Time and place: 10:20-12:50 at AMB 202.
 Each problem in $\mathbf{1 - 5}$ is of 20 points. The bonus depends on the depth and completeness of the presentation on the chosen topic. Be sure to show your answers/computations/proofs in details.

