2022 FALL - LIE GROUPS AND LIE ALGEBRAS

MIDTERM EXAM

A COURSE BY CHIN-LUNG WANG AT NTU

We work over the ground field $F = \overline{F}$ with char F = 0.

- **1.** Let *L* be a semisimpe Lie algebra over *F*.
 - (a) Show that $\operatorname{ad} L = \operatorname{Der} L$. Use it and properties of $\operatorname{Der} L \subset \operatorname{End} L$ to define the abstract Jordan decomposition x = s + n for $x \in L$.
 - (b) For any f.d. representation $\phi: L \to \mathfrak{gl}(V)$, show that $\phi(x) = \phi(s) + \phi(n)$ is the standard (usual) Jordan decomposition.
- **2.** Let $x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ be the standard basis of $L = \mathfrak{sl}(2, F)$. (a) Classify f.d. irreducible *L*-modules as V(m)'s (of highest weight $m \ge 0$).

 - (b) Let $\phi : L \to \mathfrak{gl}(V(m))$ with m > 0. Show that $e^{\phi(x)} \in \operatorname{Aut}(V(m))$ and $\tau :=$ $e^{\phi(x)}e^{-\phi(y)}e^{\phi(x)}$ interchanges positive and negative weight spaces.
- **3.** Let Φ be a root system with base $\Delta = \{ \alpha_1, \dots, \alpha_\ell \}$ and Weyl group $\mathscr{W} = \langle \sigma_\alpha \mid \alpha \in \Phi \rangle$. (a) Show that $\Delta^{\vee} = \{ \alpha_1^{\vee}, \dots, \alpha_\ell^{\vee} \}$ is a base of $\Phi^{\vee} := \{ \alpha^{\vee} = \frac{2\alpha}{(\alpha, \alpha)} \mid \alpha \in \Phi \}$.
 - (b) For $\lambda = \sum k_i \alpha_i$ with $k_i \ge 0$, show that either λ is a multiple of a root or there exists $\sigma \in \mathcal{W}$ such that $\sigma(\lambda) = \sum k'_i \alpha_i$ with some $k'_i > 0$ and some $k'_i < 0$.
- **4.** Let *L* be a semisimple Lie algebra with $x \in L$ semisimple. Recall that *x* is regular if $C_L(x)$ is a maximal toral subalgebra.
 - (a) Show that *x* is regular if and only if *x* lies in exactly one CSA.
 - (b) For any two Borel subalgebras *B* and *B'*, show that $B \cap B'$ contains a CSA of *L*.
- **5.** Let *L* be a semisimple Lie algebra, $\{h_i\}$ and $\{k_i\}$ be bases of *H* with $\kappa_H(h_i, k_i) = \delta_{ij}$, $x_{\alpha} \in L_{\alpha}, z_{\alpha} \in L_{-\alpha}$ with $\kappa(x_{\alpha}, z_{\alpha}) = 1$.
 - (a) Show that the universal Casimir element $c_L := \sum_{i=1}^{\ell} h_i k_i + \sum_{\alpha \in \Phi} x_{\alpha} z_{\alpha} \in U(L)$ is independent of the various choices and it lies in the center of U(L).
 - (b) For $\lambda \in \Lambda^+$, show that $c_L = (\lambda + \delta, \lambda + \delta) (\delta, \delta)$ on $V(\lambda)$.
- 6. (Bonus) Present ONE essential topic in Lie algebras which you have well-prepared but not listed above. (E.g. the proof of a major theorem.)

Date: November 14, 2022. Time and place: 10:20 – 12:50 at AMB 202.

Each problem in 1-5 is of 20 points. The bonus depends on the depth and completeness of the presentation on the chosen topic. Be sure to show your answers/computations/proofs in details.