HONORED ADVANCED CALCULUS
 MID-TERM EXAM
 9:10-12:40, 4/17, 2012
 A COURSE BY CHIN-LUNG WANG

1. (10 pts) Let f be a bounded function on $Q=[a, b] \times[c, d] \subset \mathbb{R}^{2}$. Assume that $f(x, y)$ is increasing in x for any fixed y, and decreasing in y for any fixed x. Prove that $f \in R(Q)$.
2. (15 pts) Let $S \subset \mathbb{R}^{m+n}$ and $S_{x}=\left\{y \in \mathbb{R}^{n}:(x, y) \in S\right\}$.
(a) Prove that S has measure zero if and only if there exists a countable collection of intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$ with $\sum_{k=1}^{\infty} \mu\left(I_{k}\right)<\infty$ such that for any $x \in S, x \in I_{k}$ for infinitely many k^{\prime} s.
(b) Prove that if S has $\left((m+n)\right.$-dimensional) measure zero, then S_{x} has (n-dimensional) measure zero for almost all x.
3. (15 pts) Let $E \subset \mathbb{R}^{n}$ be open and $F \in C^{1}\left(E, \mathbb{R}^{n}\right)$ such that $F(0)=0$ and $F^{\prime}(0)$ is invertible.
(a) Prove that there exists open $U \ni 0$ such that $F^{\prime}(0)^{-1} F(x)=G_{n} \circ G_{n-1} \circ \cdots \circ G_{1}(x)$ on U, where each G_{i} is primitive C^{1} with $G_{i}(0)=0$ and $G_{i}^{\prime}(0)$ invertible.
(b) State and prove the change of variable formula for $f \in C\left(\mathbb{R}^{n}\right)$ with compact support.
4. (10 pts) Let $\omega \in \Omega^{1}(E)$, where E is an open set in \mathbb{R}^{n}. Suppose that $\int_{\gamma} \omega=0$ for all C^{1} closed curves γ in E, show that ω is exact on E.
5. (15 pts) Let $\bar{c}(S)$ and $\underline{c}(S)$ be the outer/inner Jordan content for $S \subset \mathbb{R}^{n}$.
(a) Show that S is Jordan measurable (i.e. $c(S):=\bar{c}(S)=\underline{c}(S)$) if and only if $c(\partial S)=0$.
(Hint: Show that $\bar{c}(S)-\underline{c}(S)=\bar{c}(\partial S)$.)
(b) Show that the Jordan content is finitely additive but not σ-additive.
6. (15 pts) Let μ be a non-negative, additive, finite and regular set function on the collection of elementary sets $\mathcal{E}=\left\{A \subset \mathbb{R}^{n}: A=\bigcup_{j=1}^{k} I_{j}\right.$, where I_{j} 's are bounded intervals. $\}$.
(a) Define the outer measure μ^{*} for all subsets of \mathbb{R}^{n} and construct the collection of finitely μ-measurable sets $\mathfrak{M}_{F}(\mu)$.
(b) Construct the collection of measurable sets $\mathfrak{M}(\mu)$ and show that it is a σ-algebra on which μ^{*} is σ-additive.
7. (10 pts) Show that $C[a, b]$ is dense in $L^{p}[a, b]$ for any $p>0$.
8. (a) (5 pts) Consider $F=\left\{f_{k}\right\}_{k=1}^{\infty} \subset L^{2}([-\pi, \pi])$ where $f_{k}(x)=\sin k x$. Show that F is a closed and bounded subset, but not compact.
(b) (5 pts) Let $n_{k} \in \mathbb{N}, k=1,2, \cdots$ be a strictly increasing sequence. Show that the set $E=\left\{x \in[-\pi, \pi] \mid \lim _{k \rightarrow \infty} \sin n_{k} x\right.$ converges $\}$ has $m(E)=0$.
9. (Bonus: 10 pts) Prove the change of variable formula for $f \in L(g(T))$ where $T \subset \mathbb{R}^{n}$ is open, $g: T \rightarrow \mathbb{R}^{n}$ is C^{1}, one to one, and $\operatorname{det} g^{\prime}(t) \neq 0$ for all $t \in T$. (Hint: Use 3. (b) or Fubini.)
