HONORED ADVANCED CALCULUS MID-TERM EXAM 9:10 – 12:40, 4/17, 2012 A COURSE BY CHIN-LUNG WANG

- **1.** (10 pts) Let f be a bounded function on $Q = [a, b] \times [c, d] \subset \mathbb{R}^2$. Assume that f(x, y) is increasing in x for any fixed y, and decreasing in y for any fixed x. Prove that $f \in R(Q)$.
- **2.** (15 pts) Let $S \subset \mathbb{R}^{m+n}$ and $S_x = \{y \in \mathbb{R}^n : (x, y) \in S\}$.
 - (a) Prove that *S* has measure zero if and only if there exists a countable collection of intervals $\{I_k\}_{k=1}^{\infty}$ with $\sum_{k=1}^{\infty} \mu(I_k) < \infty$ such that for any $x \in S$, $x \in I_k$ for infinitely many *k*'s.
 - (b) Prove that if *S* has ((m + n)-dimensional) measure zero, then S_x has (n-dimensional) measure zero for almost all *x*.
- **3.** (15 pts) Let $E \subset \mathbb{R}^n$ be open and $F \in C^1(E, \mathbb{R}^n)$ such that F(0) = 0 and F'(0) is invertible.
 - (a) Prove that there exists open $U \ni 0$ such that $F'(0)^{-1}F(x) = G_n \circ G_{n-1} \circ \cdots \circ G_1(x)$ on U, where each G_i is primitive C^1 with $G_i(0) = 0$ and $G'_i(0)$ invertible.
 - (b) State and prove the change of variable formula for $f \in C(\mathbb{R}^n)$ with compact support.
- **4.** (10 pts) Let $\omega \in \Omega^1(E)$, where *E* is an open set in \mathbb{R}^n . Suppose that $\int_{\gamma} \omega = 0$ for all C^1 closed curves γ in *E*, show that ω is exact on *E*.
- 5. (15 pts) Let c̄(S) and c̄(S) be the outer/inner Jordan content for S ⊂ ℝⁿ.
 (a) Show that S is Jordan measurable (i.e. c(S) := c̄(S) = c̄(S)) if and only if c(∂S) = 0. (Hint: Show that c̄(S) c(S) = c̄(∂S).)
 - (b) Show that the Jordan content is finitely additive but not σ -additive.
- 6. (15 pts) Let μ be a non-negative, additive, finite and regular set function on the collection of elementary sets $\mathcal{E} = \{A \subset \mathbb{R}^n : A = \bigcup_{i=1}^k I_i$, where I_i 's are bounded intervals. $\}$.
 - (a) Define the outer measure μ^* for all subsets of \mathbb{R}^n and construct the collection of finitely μ -measurable sets $\mathfrak{M}_F(\mu)$.
 - (b) Construct the collection of measurable sets M(μ) and show that it is a *σ*-algebra on which μ* is *σ*-additive.
- 7. (10 pts) Show that C[a, b] is dense in $L^p[a, b]$ for any p > 0.
- 8. (a) (5 pts) Consider $F = \{f_k\}_{k=1}^{\infty} \subset L^2([-\pi, \pi])$ where $f_k(x) = \sin kx$. Show that *F* is a closed and bounded subset, but not compact.
 - (b) (5 pts) Let $n_k \in \mathbb{N}$, $k = 1, 2, \cdots$ be a strictly increasing sequence. Show that the set $E = \{x \in [-\pi, \pi] \mid \lim_{k \to \infty} \sin n_k x \text{ converges}\}$ has m(E) = 0.
- **9.** (Bonus: 10 pts) Prove the change of variable formula for $f \in L(g(T))$ where $T \subset \mathbb{R}^n$ is open, $g: T \to \mathbb{R}^n$ is C^1 , one to one, and det $g'(t) \neq 0$ for all $t \in T$. (Hint: Use **3.** (b) or Fubini.)