HONORED ADVANCED CALCULUS MID-TERM EXAM 9:10 – 12:40, 11/08, 2011 A COURSE BY CHIN-LUNG WANG

- **1.** (15 points) Let *S* be a set. Show that the cardinality of the power set P(S) is strictly bigger than *S*.
- **2.** (15 points) Let (S,d) be a metric space. Show that (S,d) is compact $\iff (S,d)$ is sequentially compact. (Do " \Rightarrow " first. For " \Leftarrow ", first show that (S,d) is separable.)
- **3.** (15 points) Let $\alpha \in BV[a, b]$. Show that $V(x) := V_{\alpha}(a, x) \in BV[a, b]$ and α is continuous at x if and only if V is continuous at x. Finally show that if $\alpha \in C[a, b] \cap BV[a, b]$ then α can be written as the difference of two strictly monotone continuous functions.
- **4.** (15 points) Let $\alpha \in BV[a, b]$. Show that $f \in R(\alpha) \Rightarrow f \in R(V)$. Based on this, show that $f, g \in R(\alpha) \Rightarrow fg \in R(\alpha)$. Moreover, show that $G(x) := \int_a^x g \, d\alpha \in BV[a, b]$ and $f \in R(G)$ with $\int_a^b f \, dG = \int_a^b fg \, d\alpha$.
- **5.** (15 points) Show that $f \in R(\alpha)$ on [a, b] if and only if it satisfies the Cauchy criterion: For any $\epsilon > 0$, there exists $P_{\epsilon} \in \mathscr{P}[a, b]$ such that $|S(P, f, \alpha) - S(P', f, \alpha)| < \epsilon$ for all $P, P' \supset P_{\epsilon}$. Use this to show that $f \in R(\alpha)$ on $[a, b] \Rightarrow f \in R(\alpha)$ on any $[c, d] \subset [a, b]$.
- **6.** (15 points) Let $\sum_{n=0}^{\infty} a_n \to A$ absolutely and $\sum_{n=0}^{\infty} b_n \to B$. Show that $\sum_{n=0}^{\infty} c_n \to AB$ where $c_n = \sum_{k=0}^{n} a_k b_{n-k}$ is the Cauchy product.
- 7. Let *f* be defined and bounded on [a, b]. If $T \subset [a, b]$, we define the oscillation of *f* on *T* as $\Omega_f(T) = \sup\{f(x) f(y) : x, y \in T\}$. The oscillation of *f* at *x* is defined to be the number $\omega_f(x) = \lim_{h \to 0^+} \Omega_f(B(x, h) \cap [a, b])$.
 - (a) (5 points) Let $\varepsilon > 0$ be given. Assume that $\omega_f(x) < \varepsilon$ for all $x \in [a, b]$, show that there exists a $\delta > 0$ (depending only on ε) such that for every closed subinterval $T \subset [a, b]$, we have $\Omega_f(T) < \varepsilon$ whenever the length of *T* is less than δ .
 - (b) (5 points) For any $\varepsilon > 0$, show that the set $J_{\varepsilon} = \{x \in [a, b] : \omega_f(x) \ge \varepsilon\}$ is compact.
 - (c) (Bonus problem with 10 points) Let *D* denote the set of discontinuity of f in [a, b]. Prove that f is Riemann-integrable on [a, b] if and only if *D* has measure zero.