HONORED ADVANCED CALCULUS
 MID-TERM EXAM
 9:10-12:40, 11/08, 2011
 A COURSE BY CHIN-LUNG WANG

1. (15 points) Let S be a set. Show that the cardinality of the power set $P(S)$ is strictly bigger than S.
2. (15 points) Let (S, d) be a metric space. Show that (S, d) is compact $\Longleftrightarrow(S, d)$ is sequentially compact. (Do " \Rightarrow " first. For " \Leftarrow ", first show that (S, d) is separable.)
3. (15 points) Let $\alpha \in B V[a, b]$. Show that $V(x):=V_{\alpha}(a, x) \in B V[a, b]$ and α is continuous at x if and only if V is continuous at x. Finally show that if $\alpha \in C[a, b] \cap B V[a, b]$ then α can be written as the difference of two strictly monotone continuous functions.
4. (15 points) Let $\alpha \in B V[a, b]$. Show that $f \in R(\alpha) \Rightarrow f \in R(V)$. Based on this, show that $f, g \in R(\alpha) \Rightarrow f g \in R(\alpha)$. Moreover, show that $G(x):=\int_{a}^{x} g d \alpha \in B V[a, b]$ and $f \in R(G)$ with $\int_{a}^{b} f d G=\int_{a}^{b} f g d \alpha$.
5. (15 points) Show that $f \in R(\alpha)$ on $[a, b]$ if and only if it satisfies the Cauchy criterion: For any $\epsilon>0$, there exists $P_{\epsilon} \in \mathscr{P}[a, b]$ such that $\left|S(P, f, \alpha)-S\left(P^{\prime}, f, \alpha\right)\right|<\epsilon$ for all $P, P^{\prime} \supset P_{\epsilon}$. Use this to show that $f \in R(\alpha)$ on $[a, b] \Rightarrow f \in R(\alpha)$ on any $[c, d] \subset[a, b]$.
6. (15 points) Let $\sum_{n=0}^{\infty} a_{n} \rightarrow A$ absolutely and $\sum_{n=0}^{\infty} b_{n} \rightarrow B$. Show that $\sum_{n=0}^{\infty} c_{n} \rightarrow A B$ where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$ is the Cauchy product.
7. Let f be defined and bounded on $[a, b]$. If $T \subset[a, b]$, we define the oscillation of f on T as $\Omega_{f}(T)=\sup \{f(x)-f(y): x, y \in T\}$. The oscillation of f at x is defined to be the number $\omega_{f}(x)=\lim _{h \rightarrow 0^{+}} \Omega_{f}(B(x, h) \cap[a, b])$.
(a) (5 points) Let $\varepsilon>0$ be given. Assume that $\omega_{f}(x)<\varepsilon$ for all $x \in[a, b]$, show that there exists a $\delta>0$ (depending only on ε) such that for every closed subinterval $T \subset[a, b]$, we have $\Omega_{f}(T)<\varepsilon$ whenever the length of T is less than δ.
(b) (5 points) For any $\varepsilon>0$, show that the set $J_{\varepsilon}=\left\{x \in[a, b]: \omega_{f}(x) \geq \varepsilon\right\}$ is compact.
(c) (Bonus problem with 10 points) Let D denote the set of discontinuity of f in $[a, b]$. Prove that f is Riemann-integrable on $[a, b]$ if and only if D has measure zero.
