HONORED ADVANCED CALCULUS FINAL EXAM AM 9:10 – 12:40 JUNE 12, 2012 BY CHIN-LUNG WANG

Each of 1, 2, 3 deserves 20 points, and each of 4, 5, 6, 7 deserves 15 points.

- **1.** Let $f : [a, b] \to \mathbb{R}$ be absolutely continuous.
 - (a) If f' = 0 a.e. on [a, b], show that f is a constant.
 - (b) Show that there exists $g \in L[a, b]$ such that $f(x) = f(a) + \int_a^x g$.
- **2.** (a) Let $g \in L[0,1]$. If $\exists C > 0$ and $1 \le p < \infty$ such that $|\int_0^1 fg| \le C ||f||_p$ for any bounded $f \in M[0,1]$, show that $g \in L^q[0,1]$ and $||g||_q \le C$, where $\frac{1}{p} + \frac{1}{q} = 1$.
 - (b) Let $F : L^p[0,1] \to \mathbb{R}$ be a continuous linear functional, $1 \le p < \infty$. Show that $\exists g \in L^q[0,1]$ with $F(f) = \int_0^1 fg$ and $|F| = ||g||_q$.
- **3.** Let *E* and *F* be Banach spaces and *U* is an open set in *E*. If $f : U \to F$ is a C^k function, where $k \in \mathbb{N}$, and $f'(x_0) \in L(E, F)$ is an isomorphism, show that *f* is locally C^k invertible at x_0 .
- 4. Let *F* be a Banach space and Ω be a compact topological space.
 (a) Show that *L*(*E*, *F*) and *C*(Ω, *F*) are also Banach spaces.
 (b) If *U* ⊂ *F* is open, show that *C*(Ω, *U*) is open in *C*(Ω, *F*).
- **5.** Let E, E_1, E_2 be normed vector spaces, $U \subset E$ open and $f : U \to E_1, g : U \to E_2$ be two maps such that f'(x), g'(x) exists at a point $x \in U$. For any $(,) \in L(E_1, E_2; F)$. Show that (f, g)'(x) exists and derive its formula.
- **6.** Let $k \in \mathbb{Z}_{\geq 0}$, $s > k + \frac{m}{2}$. Show that $H_s \subset C^k(\mathbb{R}^m)$ and there is a constant C > 0 such that $|f|_{C^k} \leq C|f|_s$ for all $f \in H_s$. (Hint: Consider the case k = 0 and $f \in S$ first.)
- **7.** Let $f_n \in S$, $n \in \mathbb{N}$, with $\operatorname{supp}(f_n) \subset K$ for a compact set $K \subset \mathbb{R}^m$. Let s > t. If $|f_n|_s \leq C$ for all n, show that there is a subsequence f_{n_k} which converges in H_t . Show that the conclusion may fail if the supports of f_n are not uniformly bounded.