HONORED ADVANCED CALCULUS
 FINAL EXAM
 AM 9:10-12:40
 JUNE 12, 2012
 BY CHIN-LUNG WANG

Each of 1,2, 3 deserves 20 points, and each of 4, 5, 6, 7 deserves 15 points.

1. Let $f:[a, b] \rightarrow \mathbb{R}$ be absolutely continuous.
(a) If $f^{\prime}=0$ a.e. on $[a, b]$, show that f is a constant.
(b) Show that there exists $g \in L[a, b]$ such that $f(x)=f(a)+\int_{a}^{x} g$.
2. (a) Let $g \in L[0,1]$. If $\exists C>0$ and $1 \leq p<\infty$ such that $\left|\int_{0}^{1} f g\right| \leq C\|f\|_{p}$ for any bounded $f \in M[0,1]$, show that $g \in L^{q}[0,1]$ and $\|g\|_{q} \leq C$, where $\frac{1}{p}+\frac{1}{q}=1$.
(b) Let $F: L^{p}[0,1] \rightarrow \mathbb{R}$ be a continuous linear functional, $1 \leq p<\infty$. Show that $\exists g \in L^{q}[0,1]$ with $F(f)=\int_{0}^{1} f g$ and $|F|=\|g\|_{q}$.
3. Let E and F be Banach spaces and U is an open set in E. If $f: U \rightarrow F$ is a C^{k} function, where $k \in \mathbb{N}$, and $f^{\prime}\left(x_{0}\right) \in L(E, F)$ is an isomorphism, show that f is locally C^{k} invertible at x_{0}.
4. Let F be a Banach space and Ω be a compact topological space.
(a) Show that $L(E, F)$ and $C(\Omega, F)$ are also Banach spaces.
(b) If $U \subset F$ is open, show that $C(\Omega, U)$ is open in $C(\Omega, F)$.
5. Let E, E_{1}, E_{2} be normed vector spaces, $U \subset E$ open and $f: U \rightarrow E_{1}, g: U \rightarrow E_{2}$ be two maps such that $f^{\prime}(x), g^{\prime}(x)$ exists at a point $x \in U$. For any $(,) \in L\left(E_{1}, E_{2} ; F\right)$. Show that $(f, g)^{\prime}(x)$ exists and derive its formula.
6. Let $k \in \mathbb{Z}_{\geq 0}, s>k+\frac{m}{2}$. Show that $H_{s} \subset C^{k}\left(\mathbb{R}^{m}\right)$ and there is a constant $C>0$ such that $|f|_{C^{k}} \leq C|f|_{s}$ for all $f \in H_{s}$. (Hint: Consider the case $k=0$ and $f \in \mathcal{S}$ first.)
7. Let $f_{n} \in \mathcal{S}, n \in \mathbb{N}$, with $\operatorname{supp}\left(f_{n}\right) \subset K$ for a compact set $K \subset \mathbb{R}^{m}$. Let $s>t$. If $\left|f_{n}\right|_{s} \leq C$ for all n, show that there is a subsequence $f_{n_{k}}$ which converges in H_{t}. Show that the conclusion may fail if the supports of f_{n} are not uniformly bounded.
