HONORED ADVANCED CALCULUS FINAL EXAM PM 6:30 – 9:30 JANUARY 06, 2012 BY CHIN-LUNG WANG

1. Let $\alpha \in BV[a, b]$ and $f_n \in R(\alpha)$ on [a, b] for $n \in \mathbb{N}$. Assume that $f_n \to f$ uniformly on [a, b]. Show that $f \in R(\alpha)$ and

$$\int_a^x f_n \, d\alpha \to \int_a^x f \, d\alpha \quad \text{uniformly on } x \in [a, b].$$

- **2.** Prove Levi's theorem for step functions. Namely for $s_n \in S(I)$ and increasing, if $\lim_{n\to\infty} \int_I s_n = A$ exists then $s_n \to f \in U(I)$ a.e. on I with $\int_I f = A$.
- **3.** Prove Fatou's lemma: Suppose that $f_n \in L(I)$ and $f_n \ge 0$ a.e. for all $n \in \mathbb{N}$.
 - (a) Prove that $\inf_n f_n \in L(I)$.
 - (b) If $\liminf_{n\to\infty} \int_I f_n < \infty$, prove that $\liminf_{n\to\infty} f_n \in L(I)$ and

$$\int_{I} \liminf_{n \to \infty} f_n \leq \liminf_{n \to \infty} \int_{I} f_n$$

- (c) State Lebesgue's dominated convergent theorem and prove it using (b).
- **4.** Let $f \in L([0, 2\pi])$ with its *n*-th partial Fourier series being $s_n(x)$.
 - (a) Prove Fejér's theorem: If f is continuous and $f(0) = f(2\pi)$, show that $\sigma_n(x) := \frac{1}{n} \sum_{i=0}^{n-1} s_i(x) \to f(x)$ uniformly, and Parseval's formula holds.
 - (b) If $f \in C^1$, $f(0) = f(2\pi)$, and $\int_0^{2\pi} f = 0$, show that $||f'|| \ge ||f||$ with equality holds if and only if $f(x) = a \cos x + b \sin x$.
- **5.** Using Fourier series to deduce $\zeta(2) = \pi^2/6$, $\zeta(4) = \pi^4/90$, and $\zeta(6) = \pi^6/945$.
- **6.** Show that $D_{12}f = D_{21}f$ at p = (a, b) in the following two cases:
 - (a) Both $D_1 f$, $D_2 f$ exist in a neighborhood of p and are differentiable at p.
 - (b) D_1f , D_2f , $D_{12}f$ exist in a neighborhood of p and continuous at p. Show that $D_{21}f(p)$ exists and equals $D_{12}f(p)$.
- 7. Assuming the inverse function theorem for C^1 maps on \mathbb{R}^n .

(a) State and prove the implicit function theorem.

- (b) Let $f, g_1, \ldots, g_n : (U \subset \mathbb{R}^{n+m}) \to \mathbb{R}$ be C^1 functions and p be a smooth point in the level set $S = \{x \in U \mid g_k(x) = c_k, k = 1, \ldots, n\}$. If f takes its local maximum or minimum at p, show that there are constants $\lambda_1, \ldots, \lambda_n$ such that $\nabla f = \lambda_1 \nabla g_1 + \cdots + \lambda_n \nabla g_n$ at p.
- **8.** Using the axiom of choice to construct a non-measurable subset $E \subset [0, 1]$.