HONORED ADVANCED CALCULUS
FINAL EXAM
PM 6:30-9:30
JANUARY 06, 2012
BY CHIN-LUNG WANG

1. Let $\alpha \in B V[a, b]$ and $f_{n} \in R(\alpha)$ on $[a, b]$ for $n \in \mathbb{N}$. Assume that $f_{n} \rightarrow f$ uniformly on $[a, b]$. Show that $f \in R(\alpha)$ and

$$
\int_{a}^{x} f_{n} d \alpha \rightarrow \int_{a}^{x} f d \alpha \quad \text { uniformly on } x \in[a, b] .
$$

2. Prove Levi's theorem for step functions. Namely for $s_{n} \in S(I)$ and increasing, if $\lim _{n \rightarrow \infty} \int_{I} s_{n}=A$ exists then $s_{n} \rightarrow f \in U(I)$ a.e. on I with $\int_{I} f=A$.
3. Prove Fatou's lemma: Suppose that $f_{n} \in L(I)$ and $f_{n} \geq 0$ a.e. for all $n \in \mathbb{N}$.
(a) Prove that $\inf _{n} f_{n} \in L(I)$.
(b) If $\liminf f_{n \rightarrow \infty} \int_{I} f_{n}<\infty$, prove that $\liminf _{n \rightarrow \infty} f_{n} \in L(I)$ and

$$
\int_{I} \liminf _{n \rightarrow \infty} f_{n} \leq \liminf _{n \rightarrow \infty} \int_{I} f_{n}
$$

(c) State Lebesgue's dominated convergent theorem and prove it using (b).
4. Let $f \in L([0,2 \pi])$ with its n-th partial Fourier series being $s_{n}(x)$.
(a) Prove Fejér's theorem: If f is continuous and $f(0)=f(2 \pi)$, show that $\sigma_{n}(x):=$ $\frac{1}{n} \sum_{i=0}^{n-1} s_{i}(x) \rightarrow f(x)$ uniformly, and Parseval's formula holds.
(b) If $f \in C^{1}, f(0)=f(2 \pi)$, and $\int_{0}^{2 \pi} f=0$, show that $\left\|f^{\prime}\right\| \geq\|f\|$ with equality holds if and only if $f(x)=a \cos x+b \sin x$.
5. Using Fourier series to deduce $\zeta(2)=\pi^{2} / 6, \zeta(4)=\pi^{4} / 90$, and $\zeta(6)=\pi^{6} / 945$.
6. Show that $D_{12} f=D_{21} f$ at $p=(a, b)$ in the following two cases:
(a) Both $D_{1} f, D_{2} f$ exist in a neighborhood of p and are differentiable at p.
(b) $D_{1} f, D_{2} f, D_{12} f$ exist in a neighborhood of p and continuous at p. Show that $D_{21} f(p)$ exists and equals $D_{12} f(p)$.
7. Assuming the inverse function theorem for C^{1} maps on \mathbb{R}^{n}.
(a) State and prove the implicit function theorem.
(b) Let $f, g_{1}, \ldots, g_{n}:\left(U \subset \mathbb{R}^{n+m}\right) \rightarrow \mathbb{R}$ be C^{1} functions and p be a smooth point in the level set $S=\left\{x \in U \mid g_{k}(x)=c_{k}, k=1, \ldots, n\right\}$. If f takes its local maximum or minimum at p, show that there are constants $\lambda_{1}, \ldots, \lambda_{n}$ such that $\nabla f=\lambda_{1} \nabla g_{1}+\cdots+\lambda_{n} \nabla g_{n}$ at p.
8. Using the axiom of choice to construct a non-measurable subset $E \subset[0,1]$.

