GEOMETRY MID-TERM EXAM

11/11, 2009, 12:50-14:20
A COURSE GIVEN BY CHIN-LUNG WANG AT NTU

1. Consider the Helix $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}$ given by $\alpha(t)=(a \cos t, a \sin t, b t)$.
(a) Parmetrizes the Helix by its arc length s.
(b) Show that both $\kappa(s)$ and $\tau(s)$ are constant in s.
(c) Determine all space curves with constant κ and τ.
2. Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular smooth curve parametrized by its arc length such that the Frenet frame $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is well-defined on it.
(a) Prove the local canonical form near the point $\alpha(0)$:

$$
\begin{aligned}
& \alpha(s)-\alpha(0) \\
= & \left(s-\frac{\kappa(0)^{2}}{6} s^{3}\right) \mathbf{T}(0)+\left(\frac{\kappa(0)}{2} s^{2}+\frac{\kappa^{\prime}(0)}{6} s^{3}\right) \mathbf{N}(0)-\frac{\kappa(0) \tau(0)}{6} s^{3} \mathbf{B}(0)+R(s),
\end{aligned}
$$

where $R(s)$ is the error term with $\lim _{s \rightarrow 0} R(s) / s^{3}=0$.
(b) Let $\pi: \mathbb{R}^{3} \rightarrow E$ be the orthogonal projection onto the osculating plane E at $\alpha(0)$ spanned by $\mathbf{T}(0)$ and $\mathbf{N}(0)$. show that the curvature $\bar{\kappa}(0)$ of the plane curve $\bar{\alpha}:=\pi \circ \alpha: I \rightarrow E \cong \mathbb{R}^{2}$ at $s=0$ equals $\kappa(0)$.
3. Let $\alpha:[0, \ell] \rightarrow \mathbb{R}^{3}$ be a regular smooth curve parametrized by its arc length such that Frenet frame is well-defined on it.
(a) Let $S \subset \mathbb{R}^{3}$ be the tubular surface along α with a fixed radius $r>0$. Find a parametrization of S using the Frenet frame.
(b) Show that S is a regular surface if r is small enough.
(c) Compute the first fundamental form of S.
(d) Show that the area of S equals $2 \pi r \ell$.
4. Regular surfaces defined by level sets:
(a) Let $S=F^{-1}(a)$ be the level set of a smooth function $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $a \in \mathbb{R}$ a regular value. Prove in detail that S is a regular surface.
(b) Show that $T_{p} S$ is the plane orthogonal to the vector $\nabla F(p)$.
(c) Consider three surfaces S_{1}, S_{2} and S_{3} defined by $x^{2}+y^{2}+z^{2}=a x, x^{2}+$ $y^{2}+z^{2}=b y$ and $x^{2}+y^{2}+z^{2}=c z$ respectively where $a, b, c \neq 0$. Show that they are all regular surfaces. Moreover, if $p \in S_{1} \cap S_{2} \cap S_{3}$, show that $T_{p} S_{1}, T_{p} S_{2}$ and $T_{p} S_{3}$ intersect each other orthogonally.
5. Let S be a regular surface in \mathbb{R}^{3} with $N: S \rightarrow S^{2}$ the Gauss map. Consider a local parametrization $\mathbf{x}: U \subset \mathbb{R}^{2} \rightarrow S$ with coordinates $(u, v) \in U$.
(a) Show that the matrix representing $d N_{p}$ with respect to the basis $\mathbf{x}_{1}, \mathbf{x}_{2}$ is given by

$$
\frac{1}{E G-F^{2}}\left(\begin{array}{cc}
f F-e G & g F-f G \\
e F-f E & f F-g E
\end{array}\right)
$$

(b) Find the differential equation for a curve $\alpha(t)=\mathbf{x}(u(t), v(t))$ on S to be a line of curvature.
(c) Show that the coordinate curves are precisely the lines of curvature if and only if $F=0$ and $f=0$. Explain that such a coordinate system can be achieved in a neighborhood of p if p is not an umbilical point.
(d) Compute the two principal curvatures of the Enneper's surface given by

$$
\mathbf{x}(u, v)=\left(u-u^{3} / 3+u v^{2}, v-v^{3} / 3+v u^{2}, u^{2}-v^{2}\right) .
$$

6. Let $\alpha(v)$ be a curve in the $x z$ plane and let S be the surface of revolution of α in the z-axis.
(a) For $\alpha(v)=(\phi(v), \psi(v))$ with v being the arc length, compute K and H and determine all such S with $K \equiv 1$. If moreovee S is compact and regular, show that S must be the sphere.
(b) If the curve is given as a graph $\alpha(z)=(h(z), z)$, compute its two principal curvatures and find all $h(z)$ such that S has $H \equiv 0$.
