GEOMETRY MID-TERM EXAM

11/11, 2009, 12:50 - 14:20 A COURSE GIVEN BY CHIN-LUNG WANG AT NTU

1. Consider the Helix α : $\mathbb{R} \to \mathbb{R}^3$ given by $\alpha(t) = (a \cos t, a \sin t, bt)$.

- (a) Parmetrizes the Helix by its arc length *s*.
- (b) Show that both $\kappa(s)$ and $\tau(s)$ are constant in *s*.
- (c) Determine all space curves with constant κ and τ .

2. Let $\alpha : I \to \mathbb{R}^3$ be a regular smooth curve parametrized by its arc length such that the Frenet frame {**T**, **N**, **B**} is well-defined on it.

(a) Prove the local canonical form near the point $\alpha(0)$:

$$\alpha(s) - \alpha(0) = \left(s - \frac{\kappa(0)^2}{6}s^3\right)\mathbf{T}(0) + \left(\frac{\kappa(0)}{2}s^2 + \frac{\kappa'(0)}{6}s^3\right)\mathbf{N}(0) - \frac{\kappa(0)\tau(0)}{6}s^3\mathbf{B}(0) + R(s),$$

where R(s) is the error term with $\lim_{s\to 0} R(s)/s^3 = 0$.

(b) Let π : ℝ³ → *E* be the orthogonal projection onto the osculating plane *E* at α(0) spanned by T(0) and N(0). show that the curvature κ̄(0) of the plane curve ᾱ := π ∘ α : *I* → *E* ≅ ℝ² at *s* = 0 equals κ(0).

3. Let $\alpha : [0, \ell] \to \mathbb{R}^3$ be a regular smooth curve parametrized by its arc length such that Frenet frame is well-defined on it.

- (a) Let $S \subset \mathbb{R}^3$ be the tubular surface along α with a fixed radius r > 0. Find a parametrization of *S* using the Frenet frame.
- (b) Show that *S* is a regular surface if *r* is small enough.
- (c) Compute the first fundamental form of *S*.
- (d) Show that the area of *S* equals $2\pi r\ell$.

4. Regular surfaces defined by level sets:

 $\langle \rangle$

 $\langle \mathbf{a} \rangle$

- (a) Let $S = F^{-1}(a)$ be the level set of a smooth function $F : \mathbb{R}^3 \to \mathbb{R}$ with $a \in \mathbb{R}$ a regular value. Prove in detail that *S* is a regular surface.
- (b) Show that T_pS is the plane orthogonal to the vector $\nabla F(p)$.
- (c) Consider three surfaces S_1 , S_2 and S_3 defined by $x^2 + y^2 + z^2 = ax$, $x^2 + y^2 + z^2 = by$ and $x^2 + y^2 + z^2 = cz$ respectively where $a, b, c \neq 0$. Show that they are all regular surfaces. Moreover, if $p \in S_1 \cap S_2 \cap S_3$, show that T_pS_1 , T_pS_2 and T_pS_3 intersect each other orthogonally.

5. Let *S* be a regular surface in \mathbb{R}^3 with $N : S \to S^2$ the Gauss map. Consider a local parametrization $\mathbf{x} : U \subset \mathbb{R}^2 \to S$ with coordinates $(u, v) \in U$.

(a) Show that the matrix representing dN_p with respect to the basis \mathbf{x}_1 , \mathbf{x}_2 is given by

$$\frac{1}{EG - F^2} \begin{pmatrix} fF - eG & gF - fG \\ eF - fE & fF - gE \end{pmatrix}$$

- (b) Find the differential equation for a curve $\alpha(t) = \mathbf{x}(u(t), v(t))$ on *S* to be a line of curvature.
- (c) Show that the coordinate curves are precisely the lines of curvature if and only if F = 0 and f = 0. Explain that such a coordinate system can be achieved in a neighborhood of p if p is not an umbilical point.
- (d) Compute the two principal curvatures of the Enneper's surface given by

$$\mathbf{x}(u,v) = (u - u^3/3 + uv^2, v - v^3/3 + vu^2, u^2 - v^2).$$

6. Let $\alpha(v)$ be a curve in the *xz* plane and let *S* be the surface of revolution of α in the *z*-axis.

- (a) For $\alpha(v) = (\phi(v), \psi(v))$ with v being the arc length, compute K and H and determine all such S with $K \equiv 1$. If moreovee S is compact and regular, show that S must be the sphere.
- (b) If the curve is given as a graph $\alpha(z) = (h(z), z)$, compute its two principal curvatures and find all h(z) such that *S* has $H \equiv 0$.

2