GEOMETRY - FINAL EXAM

January 14th, 2010, pm 6:10-9:10
A course given by Chin-Lung Wang at NTU

Important: Give your solutions in detail. Each problem deserves 20 points.

1. Denote by $S_{t}, t \in(-\epsilon, \epsilon)$ a normal variation of $S=\mathbf{x}(U)$ defined by $\mathbf{x}^{t}=\mathbf{x}+h N$ for some smooth function h, and let $A(t)$ be the area of S_{t}.
(1) Show that S has $H \equiv 0$ (minimal surface) if and only if $A^{\prime}(0)=0$ for any such S_{t}.
(2) For S being a minimal surface, show that $\left\langle d N_{p}\left(w_{1}\right), d N_{p}\left(w_{2}\right)\right\rangle=-K(p)\left\langle w_{1}, w_{2}\right\rangle$ for any $w_{1}, w_{2} \in T_{p} S$.
2. Define the notion of geodesics on a regular surface and derive the differential equations of the geodesics $\alpha(t)=\mathbf{x}(u(t), v(t))$. For a surface of revolution $\mathbf{x}(u, v)=$ $(f(v) \cos u, f(v) \sin u, g(v))$, prove that $f \cos \theta$ takes constant value along geodesics, where θ is the angle between \mathbf{x}_{u} and $\alpha^{\prime}(t)$.
3. Use the Gauss-Bonnet theorem to prove Jacobi's theorem: If a closed regular curve in \mathbf{R}^{3} has $k>0$ and its principal normal $\mathbf{n}(s)$ form a curve γ on S^{2} without selfintersections, then γ separates S^{2} into two regions with equal area.
4. Use the Gauss-Bonnet theorem to show that
(1) Let S be a regular surface such that the parallel transport between any two points in it is independent of the path, then $K=0$ on S.
(2) Let S be a regular surface homeomorphic to a cylinder with $K<0$, then S has at most one simple closed geodesic.
5. Use the geodesic polar coordinates to show that
(1) Any two surfaces with the same constant curvature K are locally isometric.
(2) Let $A(r)$ be the area of the geodesic ball of radius r centered at $p \in S$, then

$$
K(p)=\lim _{r \rightarrow 0} \frac{12}{\pi}\left(\frac{\pi r^{2}-A(r)}{r^{4}}\right) .
$$

6. State and prove the Gauss-Bonnet theorem.
