GEOMETRY — FINAL EXAM

January 14th, 2010, pm 6:10 - 9:10

A course given by Chin-Lung Wang at NTU

Important: Give your solutions in detail. Each problem deserves 20 points.

- **1.** Denote by $S_t, t \in (-\epsilon, \epsilon)$ a normal variation of $S = \mathbf{x}(U)$ defined by $\mathbf{x}^t = \mathbf{x} + hN$ for some smooth function h, and let A(t) be the area of S_t .
 - (1) Show that S has $H \equiv 0$ (minimal surface) if and only if A'(0) = 0 for any such S_t .
 - (2) For S being a minimal surface, show that $\langle dN_p(w_1), dN_p(w_2) \rangle = -K(p) \langle w_1, w_2 \rangle$ for any $w_1, w_2 \in T_p S$.
- 2. Define the notion of geodesics on a regular surface and derive the differential equations of the geodesics $\alpha(t) = \mathbf{x}(u(t), v(t))$. For a surface of revolution $\mathbf{x}(u, v) = (f(v) \cos u, f(v) \sin u, g(v))$, prove that $f \cos \theta$ takes constant value along geodesics, where θ is the angle between \mathbf{x}_u and $\alpha'(t)$.
- **3.** Use the Gauss-Bonnet theorem to prove Jacobi's theorem: If a closed regular curve in \mathbb{R}^3 has k > 0 and its principal normal $\mathbf{n}(s)$ form a curve γ on S^2 without self-intersections, then γ separates S^2 into two regions with equal area.
- 4. Use the Gauss-Bonnet theorem to show that
 - (1) Let S be a regular surface such that the parallel transport between any two points in it is independent of the path, then K = 0 on S.
 - (2) Let S be a regular surface homeomorphic to a cylinder with K < 0, then S has at most one simple closed geodesic.
- 5. Use the geodesic polar coordinates to show that
 - (1) Any two surfaces with the same constant curvature K are locally isometric.
 - (2) Let A(r) be the area of the geodesic ball of radius r centered at $p \in S$, then

$$K(p) = \lim_{r \to 0} \frac{12}{\pi} \left(\frac{\pi r^2 - A(r)}{r^4} \right).$$

6. State and prove the Gauss-Bonnet theorem.