GEOMETRY FINAL EXAM

There are **2 pages** with **6 problems**. Each problem deserves **20 points**. Show your answers/computations/proofs in details. You may work on each part independently.

- **1.** Let $S \subset \mathbb{R}^3$ be a parametrized regular surface defined by $\mathbf{x}(u, v)$.
 - (a) Derive the Codazzi equations:

$$e_2 - f_1 = e\Gamma_{12}^1 + f(\Gamma_{12}^2 - \Gamma_{11}^1) - g\Gamma_{11}^2,$$

$$g_1 - f_2 = g\Gamma_{12}^2 + f(\Gamma_{12}^1 - \Gamma_{22}^2) - e\Gamma_{22}^1.$$

(b) If the coordinate curves are lines of curvature, simplify the equations to

$$e_2 = rac{E_2}{2} \Big(rac{e}{E} + rac{g}{G} \Big), \qquad g_1 = rac{G_1}{2} \Big(rac{e}{E} + rac{g}{G} \Big).$$

(c) Is there a surface with E = G = 1, F = 0 and e = 1, g = -1, f = 0? How about E = 1, F = 0, $G = \cos^2 u$ and $e = \cos^2 u$, f = 0, g = 1? You may use Bonnet's theorem, and the formula for *K* without proving it that for F = 0,

$$K = -\frac{1}{2\sqrt{EG}} \Big[\Big(\frac{E_2}{\sqrt{EG}} \Big)_2 + \Big(\frac{G_1}{\sqrt{EG}} \Big)_1 \Big].$$

- **2.** Let $\gamma(t) = \mathbf{x}(u(t), v(t))$ be a curve on *S*.
 - (a) Define the notion for γ to be a geodesic and derive its equations in terms of (u(t), v(t)).
 - (b) If *S* is a Liouville surface, namely E = G = U(u) + V(v), F = 0. Show that any geodesic γ satisfies $U \sin^2 \theta V \cos^2 \theta = c$ where $\theta = \angle(\gamma', \mathbf{x}_1)$ and *c* is a constant.
- 3. (a) Compute $\operatorname{ind}_p v$ at p = (0,0) in the following cases: (i) $v(x,y) = (x^2 y^2, -2xy)$, (ii) $v(x,y) = (x^3 - 3xy^2, y^3 - 3x^2y)$.
 - (b) Can it happen that $\operatorname{ind}_{p} v = 0$ for *p* a singular point of *v*? If so, give an example.
 - (c) Let $C \subset S^2$ be a regular closed curve, v a vector field on S whose trajectories are never tangent to C. Prove that each region R with $\partial R = C$ contains some singular point of v.
- 4. Using geodesic polar coordinates to prove:
 - (a) Any two surfaces with the same constant curvature *K* are locally isometric.
 - (b) Let A(r) be the area of the geodesic ball $B_r(p)$, then

$$K(p) = \frac{12}{\pi} \lim_{r \to 0} \frac{\pi r^2 - A(r)}{r^4}.$$

Date: 12:20 – 15:20, January 3, 2014, A course by Chin-Lung Wang at NTU..

GEOMETRY FINAL EXAM

- 5. (Poincaré models for hyperbolic geometry) Let $\mathbb{H} = \{w \mid \operatorname{Im} w > 0\}$ with $ds^2 = |dw|^2/(\operatorname{Im} w)^2$ and $\mathbb{D} = \{z \mid |z| < 1\}$ with $ds^2 = 4|dz|^2/(1-|z|^2)^2$.
 - (a) Show that $\mathbb{H} \to \mathbb{D}$, $w \mapsto z = (w i)/(w + i)$ is an isometry.
 - (b) Determine all geodesics in \mathbb{D} .
 - (c) Let Ω be the region bounded by the 4 unit circles centered at $(\pm 1, \pm 1)$. Compute

$$\int_{\Omega} \frac{4\,dx\,dy}{(1-x^2-y^2)^2}.$$

(You may use Gauss-Bonnet theorem or do it directly.)

- **6.** State and prove, as complete as possible, the Gauss–Bonnet theorem. (A very good solution to this problem may get some extra credits.)
- * If you prefer to write proofs, you may replace **up to 2** problems from **1** to **5**, but not **6**, by (stating and proving) the following global surface theorems:
 - (i) Any $S \subset \mathbb{R}^3$ with constant *K* must be a sphere.
 - (ii) 2nd variation formula for normal variations and Bonnet's theorem on $d \le \pi/\sqrt{k}$.
 - (iii) Fenchel's theorem and Fary–Milnor's theorem on $\int k \, ds$.
 - (iv) Hilbert's theorem on complete surface *S* with K = -1.

Label your solution by n^* if it is for the *n*-th problem. Notice that you will still get at most 20 points for that problem.