GEOMETRY FINAL EXAM

There are 2 pages with 6 problems.

Each problem deserves 20 points.
Show your answers/computations/proofs in details.
You may work on each part independently.

1. Let $S \subset \mathbb{R}^{3}$ be a parametrized regular surface defined by $\mathbf{x}(u, v)$.
(a) Derive the Codazzi equations:

$$
\begin{aligned}
& e_{2}-f_{1}=e \Gamma_{12}^{1}+f\left(\Gamma_{12}^{2}-\Gamma_{11}^{1}\right)-g \Gamma_{11}^{2}, \\
& g_{1}-f_{2}=g \Gamma_{12}^{2}+f\left(\Gamma_{12}^{1}-\Gamma_{22}^{2}\right)-e \Gamma_{22}^{1} .
\end{aligned}
$$

(b) If the coordinate curves are lines of curvature, simplify the equations to

$$
e_{2}=\frac{E_{2}}{2}\left(\frac{e}{E}+\frac{g}{G}\right), \quad g_{1}=\frac{G_{1}}{2}\left(\frac{e}{E}+\frac{g}{G}\right) .
$$

(c) Is there a surface with $E=G=1, F=0$ and $e=1, g=-1, f=0$? How about $E=1, F=0, G=\cos ^{2} u$ and $e=\cos ^{2} u, f=0, g=1$? You may use Bonnet's theorem, and the formula for K without proving it that for $F=0$,

$$
K=-\frac{1}{2 \sqrt{E G}}\left[\left(\frac{E_{2}}{\sqrt{E G}}\right)_{2}+\left(\frac{G_{1}}{\sqrt{E G}}\right)_{1}\right]
$$

2. Let $\gamma(t)=\mathbf{x}(u(t), v(t))$ be a curve on S.
(a) Define the notion for γ to be a geodesic and derive its equations in terms of $(u(t), v(t))$.
(b) If S is a Liouville surface, namely $E=G=U(u)+V(v), F=0$. Show that any geodesic γ satisfies $U \sin ^{2} \theta-V \cos ^{2} \theta=c$ where $\theta=\angle\left(\gamma^{\prime}, \mathbf{x}_{1}\right)$ and c is a constant.
3. (a) Compute ind ${ }_{p} v$ at $p=(0,0)$ in the following cases: (i) $v(x, y)=\left(x^{2}-y^{2},-2 x y\right)$, (ii) $v(x, y)=\left(x^{3}-3 x y^{2}, y^{3}-3 x^{2} y\right)$.
(b) Can it happen that $\operatorname{ind}_{p} v=0$ for p a singular point of v ? If so, give an example.
(c) Let $C \subset S^{2}$ be a regular closed curve, v a vector field on S whose trajectories are never tangent to C. Prove that each region R with $\partial R=C$ contains some singular point of v.
4. Using geodesic polar coordinates to prove:
(a) Any two surfaces with the same constant curvature K are locally isometric.
(b) Let $A(r)$ be the area of the geodesic ball $B_{r}(p)$, then

$$
K(p)=\frac{12}{\pi} \lim _{r \rightarrow 0} \frac{\pi r^{2}-A(r)}{r^{4}} .
$$

5. (Poincaré models for hyperbolic geometry) Let $\mathbb{H}=\{w \mid \operatorname{Im} w>0\}$ with $d s^{2}=$ $|d w|^{2} /(\operatorname{Im} w)^{2}$ and $\mathbb{D}=\{z| | z \mid<1\}$ with $d s^{2}=4|d z|^{2} /\left(1-|z|^{2}\right)^{2}$.
(a) Show that $\mathbb{H} \rightarrow \mathbb{D}, w \mapsto z=(w-i) /(w+i)$ is an isometry.
(b) Determine all geodesics in \mathbb{D}.
(c) Let Ω be the region bounded by the 4 unit circles centered at $(\pm 1, \pm 1)$. Compute

$$
\int_{\Omega} \frac{4 d x d y}{\left(1-x^{2}-y^{2}\right)^{2}}
$$

(You may use Gauss-Bonnet theorem or do it directly.)
6. State and prove, as complete as possible, the Gauss-Bonnet theorem. (A very good solution to this problem may get some extra credits.)

* If you prefer to write proofs, you may replace up to 2 problems from $\mathbf{1}$ to $\mathbf{5}$, but not $\mathbf{6}$, by (stating and proving) the following global surface theorems:
(i) Any $S \subset \mathbb{R}^{3}$ with constant K must be a sphere.
(ii) 2nd variation formula for normal variations and Bonnet's theorem on $d \leq \pi / \sqrt{k}$.
(iii) Fenchel's theorem and Fary-Milnor's theorem on $\int k d s$.
(iv) Hilbert's theorem on complete surface S with $K=-1$.

Label your solution by n^{*} if it is for the n-th problem. Notice that you will still get at most 20 points for that problem.

