GEOMETRY MIDTERM EXAM

1. (15 pt) Prove the iso-perimetric inequality $\ell^{2} \geq 4 \pi A$ for piecewise C^{1} simple closed plane curves, and the equality holds if and only if the curve is a circle.
2. (20 pt) Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular curve parametrized by arc length with $0 \in I, \kappa>0$.
(a) Derive the local canonical form of $\alpha(s)$ at $\alpha(0)$ in terms of the Frenet frame at $s=0$, and sketch the projection curves on the TN, TB, NB planes respectively.
(b) Assume that $\kappa, \kappa^{\prime}, \tau \neq 0$ and denote by $R=1 / \kappa, T=1 / \tau$. Show that α lies in a sphere of radius r if and only

$$
R^{2}+\left(R^{\prime} T\right)^{2}=r^{2} .
$$

3. $(20 \mathrm{pt})$ Let $\alpha:[0, \ell] \rightarrow \mathbb{R}^{3}$ be a regular curve parametrized by arc length so that the Frenet frame is defined, and let S be the tubular surface along α of radius $r>0$.
(a) Determine the range of r so that S is locally a regular surface, (i.e. an immersion).
(b) Compute its area.
(c) If α is moreover simple (injective), show that S is a regular surface for small r.
4. $(20 \mathrm{pt})$ Let $N: S \rightarrow S^{2}$ be the Gauss map with (U, \mathbf{x}) a coordinate chart for $p \in S$.
(a) Show that the matrix for $d N_{p}$ with respect to the bases $\mathbf{x}_{u}, \mathbf{x}_{v}$ of $T_{p} S$ is given by

$$
\frac{1}{E G-F^{2}}\left(\begin{array}{ll}
f F-e G & e F-f E \\
g F-f G & f F-g E
\end{array}\right) .
$$

(b) Derive the differential equation for lines of curvature, and show that the coordinate curves are lines of curvature if and only if $F=f=0$.
(c) Derive the equation for asymptotic curves. Solve them for Enneper's surface

$$
\mathbf{x}(u, v)=\left(u-\frac{1}{3} u^{3}+u v^{2}, v-\frac{1}{3} v^{3}+v u^{2}, u^{2}-v^{2}\right) .
$$

5. $(20 \mathrm{pt})$ Let S be a surface of revolution on a curve α in the $x z$ plane.
(a) For α being parametrized by arc length s, compute E, F, G, e, f, g and K, H.
(b) Determine all such regular surfaces S with $K=1$. When is S compact?
(c) Determine all minimal surfaces of revolution.
6. (15 pt) Let S be the graph defined by $z=f(x, y)$ over a compact domain $D \subset \mathbb{R}^{2}$, with ∂D a smooth curve. Let h be C^{∞} on D with $\left.h\right|_{\partial D}=0$. Consider variations of surfaces S_{t} defined by $z=f+t h$ with $A(t)$ being its area.
(a) Compute H for S, and show that $A^{\prime}(0)=0$ for all h if and only if $H=0$.
(b) For S a minimal graph, show that $A^{\prime \prime}(0)>0$ for any $h \not \equiv 0$.
7. (10 pt) Let S be a minimal surface. Construct isothermal coordinates near any nonplanar points. (Show first that $\left\langle d N_{p}(v), d N_{p}(w)\right\rangle=-K(p)\langle v, w\rangle$.)
