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1 Clifford Actions and the Witten Deformation

Let M be a smooth compact manifold. For any e ∈ TM , and gTM a Riemann
metrics. We can define the dual e∗ with gTM . Then we can defined the Clifford
operator:

c(e)· = e∗ ∧ · − ιe·, ĉ(e)· = e∗ ∧ ·+ ιe· (1)

Then we have the formula

c(e)c(e′) + c(e′)c(e) = −2〈e, e′〉
ĉ(e)ĉ(e′) + ĉ(e′)ĉ(e) = 2〈e, e′〉
c(e)ĉ(e′) + ĉ(e′)c(e) = 0

(2)

And we also have the formula from differential geometry

d =

n∑
i=1

ei ∧∇ei

d∗ = −
n∑
i=1

ιei∇ei

(3)

with ∇ the Levi-Civita connection. This give us

d+ d∗ =

n∑
i=1

c(ei)∇ei (4)

Now, for V ∈ Γ(TM) and T ∈ R, Witten define the deformation of the operator

DT = d+ d∗ + T ĉ(V ) (5)

It is easy to see that DT is self-adjoint and we have the Bochner type formula

Bochner type formula

For any T ∈ R, we have the identity:

D2
T = D2 + T

n∑
i=1

c(ei)ĉ(∇eiV ) + T 2|V |2 (6)
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proof:

Just using equation (2), (4) and (5).

�

2 Estimation Outside the Zero of V

Let || · ||0 be the 0-th Sobolev norm on Ω∗(M) induced by the inner product.
And H0(M) be the corresponding Sobolev space. For each p ∈ zero(V ) (here
we assume it is discrite points) let Up be a neighborhood of it. Then we have
the estimation:

Proposition 1.

There exist constants C > 0, T0 > 0 such that for any section s ∈ Ω∗(M) with
Supp(s)⊂M\Up∈zero(V )Up and T ≥ T0, one has

||DT s||0 ≥ C
√
T ||s||0 (7)

proof:

Since V is nowhere zero onM\Up∈zero(V )Up, there is a constant C1 > 0 such
that on M\Up∈zero(V )Up

|V |2 ≥ C1

From equation(6), we then have a constant C2 > 0 such that:

||DT s||20 = 〈D2
T s, s〉 ≥ (C1T

2 − C2T )||s||20

for any S ∈ Ω∗(M) with support in M\Up∈zero(V )Up. Then equation (7) is just
a consequence of it.

�

3 Harmonic Oscillator on Euclidean Space

We first shrink the neighborhood Up enough and redefine the metric g, such
that on each neighborhood Up, we have the metric is standard:

g = (dy1)2 + ...+ (dyn)2

Hence Up can be identify with an open neighborhood of the n-dimensional
Euclidea space En. We assume that V can be locally written as V = yA for
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some A ∈ Gl(n) Let ei = ∂
∂yi

be an oriented orthonormal basis of En. Then we
can refine the Bochner formula by:

D2
T = −

n∑
i=1

(
∂

∂yi
)2 + T

n∑
i=1

c(ei)ĉ(eiA) + T 2〈yAA∗, y〉

= −
n∑
i=1

(
∂

∂yi
)2 − TTr(

√
AA∗) + T 2〈yAA∗, y〉

+ T
(

Tr(
√
AA∗) +

n∑
i=1

c(ei)ĉ(eiA)
)

(8)

The operator

KT = −
n∑
i=1

(
∂

∂yi
)2 − TTr(

√
AA∗) + T 2〈yAA∗, y〉

= −
n∑

i,j,k=1

(
∂

∂yi
+ Tyk

√
AA∗ki)(

∂

∂yi
− yjT

√
AA∗ij)

(9)

is a rescaled harmonic oscillator. By the standard result of harmonic operator,
we knows that when T > 0, KT is a non negative elliptic operator with kerKT

being one-dimensional and generated by the Gaussian function:

exp(
−T |yA|2

2
) (10)

Furthermore, the nonzero eigenvalues of KT are all greater than CT for some
fixed constant C > 0. For the remaining part, we have:

Lemma 2.

The linear operator

L = Tr(
√
AA∗) +

n∑
i=1

c(ei)ĉ(eiA) (11)

acting on Λ∗(E∗n) is nonegative. Moreover, dim(kerL) = 1 with
kerL ⊂ Λeven(E∗n) if detA > 0, and kerL ⊂ Λodd(E∗n) if detA < 0.

proof:

We write
A = U

√
A∗A

with U ∈ O(n)(singular value decomposition). Also, let W ∈ SO(n) be such
that √

A∗A = Wdiags1, ..., snW
∗ = WSW ∗
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then, one can easily deduces that

Tr
√
AA∗ =

n∑
i=1

si (12)

and
n∑
i=1

c(ei)ĉ(eiA) =

n∑
i=1

c(ei)ĉ(eiUWSW ∗) (13)

now, we define {UW}ij = wij , we can get

n∑
i=1

c(ei)ĉ(eiA) =

n∑
i=1

c(ei)ĉ(ejwijsjW
∗) =

n∑
j=1

sjc(ejW
∗U∗)ĉ(ejW

j) (14)

Set fj = ejW
∗. They are another oriented orthonormal basis of En, then by

equation (12) and (13):

L =

n∑
i=1

si(1 + c(fiU
∗)ĉ(fi)) (15)

Now, we further define
ηj = c(fjU

∗)ĉ(fj)

Then by equation (2) again, we have ηj is a self-adjoint operator and η2
j = 1.

Thus the lowest eigenvalue of ηj is −1. This give us L is a nonnegative
operator.
By applying equation (2), we actually can get relations:

ηiηj = ηjηi

ĉ(fj)ηj = −ηj ĉ(fj)
ĉ(fi)ηj = ηiĉ(fj) if i 6= j

(16)

Then by induction, we have:

dim{x ∈ Λ∗(E∗n) : (1 + ηj)x = 0 for 1 ≤ j ≤ n} =
dim Λ∗(E∗n)

2n
= 1

Moreover, let ρ ∈ Λ∗(E∗n) denote one of the unit sections of kerL, then one has:

ρ = (−1)n(

n∏
i=1

ηi)ρ = (−1)n(detU)(

n∏
i=1

c(fi)ĉ(fi))ρ

Now, it is easy to see that the chiral element:

(−1)n(

n∏
i=1

c(fi)ĉ(fi)) = ±Id|Λeven/odd(E∗n)

Hence, we have ρ ∈ Λeven/odd(E∗n) if and only if det(U) = ±1.

�

Combining the result above, we finally get the result:
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Propostion 3.

For T > 0, the operator

−
n∑
i=1

(
∂

∂yi
)2 + T

n∑
i=1

c(ei)ĉ(eiA) + T 2〈yAA∗, y〉

acting on Γ(Λ∗(E∗n)) is nonnegative. Its kernel is of dimension one and is
generated by

exp(
−T |yA|2

2
) · ρ

Moreover, all the nonzero eigenvalues of this operator are greater than CT for
some fixed constant C > 0 (independent of T ).

4 Witten Deformation via Morse Function

Let f ∈ C∞(M) be a Morse function on M . Then we have the Morse lemma:

Morse Lemma

For any critical points x ∈M of the Morse function f , there is an open
neighborhood Ux of x ad an oriented coordinate system y such that on Ux, one
has

f(y) = f(x)− 1

2
(y1)2 − ...− 1

2
(ynf (x))2 +

1

2
(ynf (x)+1)2 + ...+

1

2
(yn)2 (17)

We call the integer nf (x) the Morse index of f at x. Also, for later use, we
assume that for any two different critical points x, y ∈M of f , Ux ∩Uy = ∅ and
equip M with a metric such that the coordinate isometric to an open subset of
the Euclidean space. Let mi be the number of critical points such that nf = i.
Given a Morse function f(in this step, any function works). Witten suggested
to deform the exterior differential operator d as follows:

dTf = e−TfdeTf (18)

One obviously have d2
Tf = 0, and hence we can define a deform de Rham

complex (Ω∗(M), dTf )

0 Ω0(M) Ω1(M) ... Ωdim(M)(M) 0
dTf dTf dTf dTf

Then

we have the cohomology group:

Hi
Tf,dR(M ;R) =

ker dTf |Ωi(M)

ImdTf |Ωi−1(M)

The first simple conclusion is that
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Propostion 4.

For any i, we have

dimHi
Tf,dR(M ;R) = dimHi

dR(M ;R)

proof:

It is easy to see that α→ e−Tfα gives an well-defined isomorphism from
Hi
dR(M ;R) to Hi

Tf,dR(M ;R).

�

Similarly to the undeformed one, we can develop the Hodge theory via the
deformed exteritor derivative dTf , for α, β ∈ Ω∗(M),

〈dTfα, β〉 = 〈e−TfdeTfα, β〉 = 〈α, eTfd∗e−Tfβ〉

Thus we have
d∗Tf = eTfd∗e−Tf (19)

is the formal adjoint of dTf . Then we also have the operator:

DTf = dTf + d∗Tf (20)

�Tf = D2
Tf = dTfd

∗
Tf + d∗TfdTf (21)

and the Hodge theory tells us:

dim(ker�Tf |Ωi(M)) = dimHi
Tf,dR(M ;R) = dimHi

dR(M ;R) (22)

One can actually verifies that

dTf = d+ Tdf∧, d∗Tf = d∗ + Tιdf

Hence we get
DTf = D + T ĉ(df) (23)

is the special case of equation (5). For general DT , the Laplacian D2
T only

preserve the Z2 grading, but in this case �Tf actually preserving the Z
grading of Ω∗(M)
By the Morse lemma, we have the special case of equation (8) on the local
coordinate for A = Idnf (x)×nf (x) ⊕ (-Id)(n−nf (x))×(n−nf (x)); hence, we have:

�Tf = −
n∑
i=1

(
∂

∂yi
)2 − nT + T 2|y|2 + T

nf (x)∑
i=1

(1− c(ei)ĉ(ei)) + T

n∑
i=nf (x)+1

(1 + c(ei)ĉ(ei))

= −
n∑
i=1

(
∂

∂yi
)2 − nT + T 2|y|2 + 2T

( nf (x)∑
i=1

ιeie
∗
i ∧+

n∑
i=nf (x)+1

e∗i ∧ ιei
)

(24)
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The kernel of the operator:

nf (x)∑
i=1

ιeie
∗
i ∧+

n∑
i=nf (x)+1

e∗i ∧ ιei

on the Euclidean space can be easily found to be

dy1 ∧ · · · ∧ dynf (x)

Hence we can get a refinement of Proposition 3 by

Proposition 5.

For any T > 0, the operator

−
n∑
i=1

(
∂

∂yi
)2 − nT + T 2|y|2 + 2T

( nf (x)∑
i=1

ιeie
∗
i ∧+

n∑
i=nf (x)+1

e∗i ∧ ιei
)

acting on Γ(Λ∗(E∗n)) is nonnegative. Its kernel is one-dimensional and is
generated by

exp(
−T |y|2

2
) · dy1 ∧ · · · ∧ dynf (x)

Moreover, all the nonzero eigenvalues of this operator are greater than CT for
some fixed constant C > 0.

5 Witten’s instanton complex

The key result of the deformation is the proposition below:

Proposition 6.

For any C > 0, there exists T0 > 0 such that when T ≥ T0, the number of
eigenvalues in [0, c] of �Tf |Ωi(M), 0 ≤ i ≤ n, equals to mi.

With he lemma, we can define F
[0,c]
Tf,i ⊂ Ω∗(M) the mi dimensional vector space

generated by the eigenspaces of �Tf |Ωi(M) associated with eigenvalues in [0, c].
Since we have

dTf�Tf = �TfdTf = dTfd
∗
TfdTf

and
d∗Tf�Tf = �Tfd

∗
Tf = d∗TfdTfd

∗
Tf

Hence we have dTf (resp. d∗Tf ) maps F
[0,c]
Tf,i to F

[0,c]
Tf,i+1 (resp. F

[0,c]
Tf,i−1). Thus

one has the following finite dimensional subcomplex of (Ω∗(M), dTf ):

(F
[0,c]
Tf , dTf ) : 0 F

[0,c]
Tf,0 F

[0,c]
Tf,1 ... F

[0,c]
Tf,n 0

dTf dTf dTf dTf

(25)
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And the Hodge decomposition give us

β
[0,c]
Tf,i := dim(

ker dTf |F[0,c]
Tf,i

ImdTf |F[0,c]
Tf,i−1

)

is equal to dim(ker�Tf |Ωi(M)), which is equal to βi = dim(Hi(M ;R))
One of the application of this complex is a proof of Morse inequality:

Morse Inequality

For any integer i such that 0 ≤ i ≤ n,, one has

βi ≤ mi

(weak Morse inequality) and

βi − βi−1 + ...+ (−1)iβ0 ≤ mi −mi−1 + ...+ (−1)im0

(strong Morse inequality). Moreover

βn − βn−1 + ...+ (−1)nβ0 = mn −mn−1 + ...+ (−1)nm0

proof:

The weak Morse inequality is a direct consequence of β
[0,c]
Tf,i = βi. For strong

one, we first find that

mi = dim(F
[0,c]
Tf,i) = dim(ker dTf |F[0,c]

Tf,i

) + dim(ImdTf |F[0,c]
Tf,i

)

= β
[0,c]
Tf,i + dim(ImdTf |F[0,c]

Tf,i−1

) + dim(ImdTf |F[0,c]
Tf,i

)
(26)

Hence we get

i∑
j=0

(−1)jmi−j =

i∑
j=0

(−1)j(βi−j + dim(ImdTf |F[0,c]
Tf,i−j−1

) + dim(ImdTf |F[0,c]
Tf,i−j

))

=

i∑
j=0

(−1)jβi−j + dim(ImdTf |F[0,c]
Tf,i

)

Then the strong Morse inequalities follows.

�

For the case c = 1, the resulting complex is called Witten’s instanton
complex.
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Now, the key point of the construction is to prove Propostion 6, which we
start now. The first few step can be doing more general to the case of general
deformation to vector field V = Ay. We first shrink all the neighborhood Up
isometric to open ball of radius 4a. And let γ : R→ [0, 1] being the bunp
function with γ(z) = 1 if |z| ≤ a and γ(z) = 0 if |z| ≥ 2a. Then we define

αp,T =

∫
Ux

γ(|y|)2 exp(−T |yAp|2)dy1 ∧ ... ∧ dyn,

ρp,T =
γ(|y|)
√
αp,T

exp(−T |yAp|
2

2
)ρp

(27)

Then ρp,T ∈ Ω∗(M) is of unit length with compact support contained in Up.
Let ET be the direct sum of the vector space generated by ρp,T ’s, where p runs
through the set of zero points of V . Since ρp is either even or odd, we have ET
admit the decompostion ET = ET,even ⊕ ET,odd. Let E⊥T be the orthogonal
complement of ET in H0(M). Then we have

H0(M) = ET ⊕ E⊥T
orthogonally. Let pT and p⊥T denote the orthonoal projection operators from
H0(M) to ET and E⊥T respectively. Then we defined

DT,1 = pTDT pT , DT,2 = pTDT p
⊥
T ,

DT,3 = p⊥TDT pT , DT,4 = p⊥TDT p
⊥
T

(28)

Let H1(M) be the first Sobolev space with first Sobolev norm on Ω∗(M).
Then we have

Proposition 7.

There exists a constant T0 > 0 such that

1. for any T ≥ T0 and 0 ≤ u ≤ 1, the operator

DT (u) = DT,1 +DT,4 + u(DT,2 +DT,3) : H1(M)→ H0(M)

is Fredholm;

2. the operator DT,4 : E⊥T ∩H1(M)→ E⊥T is invertible.

We first doing some estimate of DT,i for i = 2, 3, 4.

Lemma 8.

There exists constant T0 > 0 such that for any s ∈ E⊥T ∩H1(M), s′ ∈ ET and
T ≥ T0, one has

||DT,2s||0 ≤
||s||0
T

,

||DT,3s
′||0 ≤

||s′||0
T

,
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proof:

It is easy to see that DT,3 is the formal adjoint of DT,2. Thus one needs only
to prove the first estimate . Since each ρp,T , p ∈zero(V ), has support in Up, by
equation (27) and proposition 3, we have that for any s ∈ E⊥T ∩H1(M),

DT,2s =
∑

p∈zero(V )

ρp,T

∫
Up

〈ρp,T , DT s〉dvUp

=
∑

p∈zero(V )

ρp,T

∫
Up

〈DT ρp,T , s〉dvUp

=
∑

p∈zero(V )

ρp,T

∫
Up

〈DT (
γ(|y|)
√
αp,T

exp(−T |yAp|
2

2
)ρp), s〉dvUp

=
∑

p∈zero(V )

ρp,T

∫
Up

〈(c(dγ(|y|))
√
αp,T

exp(−T |yAp|
2

2
)ρp), s〉dvUp

(29)

Since γ equals to one in an open neighborhood around zero(V ). dγ vanishes
on this open neighborhood. Thus by equation (29), one can easily find that
there exist constants T0 > 0, C1 > 0, C2 > 0 such that when T ≥ T0, for any
s ∈ E⊥T ∩H1(M),

||DT,2s||0 ≤ C1T
n/2 exp(−C2T )||s||0 (30)

and the lemma is just the limited case.

�

By the lemma, DT,2 and DT,3 are compact operators ( They are actually
bounded of finite rank), and we already know DT is Fredholm. Hence we have
prove the first part of propostion 7.
For the second part, one just needs to show that there exist constants T0 > 0,
C3 > 0 such that for any T ≥ T0 and s ∈ E⊥T ∩H1(M),

||DT,4||0 ≥ C3||s||0.

Notice since for s ∈ E⊥T ∩H1(M) one has

DT s = DT,2s+DT,4s,

Then by lemma 8., we just need to show that for some C4 ≥ 0.

||DT s||0 ≥ C4||s||0
when T > 0 is large enough.

Lemma 9.

There exist constants T0 > 0 and C > 0 such that for any s ∈ E⊥T ∩H1(M)
and T ≥ T0,

||DT s||0 ≥ C
√
T ||s||0 (31)
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proof:

We denote Up(b) for the open ball around p of radius b.
Step 1. Assume Supp(s) ∈ ∪p∈zero(V )Up(4a), Then we can assume that we are
in a union of Euclidean spaces Ep’s containing U ′ps, p ∈ zero(V ) and can thus
applied the results of section 3. Thus, for any T > 0, p ∈ zero(V ), set

ρ′p,T = (
T

π
)n/4

√
|det(Ap)| exp(−T |yAp|

2

2
) · ρp (32)

And we can set p′T for all s with Supp(s) ∈ ∪p∈zero(V )Up(4a) by

p′T s =
∑

p∈zero(V )

ρ′p,T

∫
Ep

〈ρ′p,T , s〉dvEp (33)

Since pT s = 0, we can rewrite p′T by

p′T s =
∑

p∈zero(V )

ρ′p,T

∫
Ep

〈(1−γ(|y|))(T
π

)n/4
√
|det(Ap)| exp(

−2T |yAp|2

2
)·ρp, s〉dvEp

As γ equals to 1 near each p, hence there exists C5 > 0 such that when T ≥ 1,

||p′T s||20 ≤
C5√
T
||s||20 (34)

By proposition 3, we have
DT p

′
T s = 0

By propostion 3 again, we actually have C6, C7 ≥ 0 such that

||DT s||20 = ||DT (s− p′T s)||20 ≥ C6T ||s− p′T s||20 ≥
C6T

2
||s0||20 −C7

√
T ||s||20 (35)

Hence there exist T1 > 0 such that T ≥ T1 imply

||DT s||0 ≥
√
C6T

2
||s||0

Step 2. Suppose Supp(s) ⊂M\ ∪p∈zero(V ) Up(2a). By proposition 1, we have
T2 > 0, C8 > 0 such that for T ≥ T2, we have

||DT s||0 ≥ C8

√
T ||s||0 (36)

Step 3. Let γ̃ ∈ C∞ be such that on each Up, γ̃(y) = γ(|y|/2), and that
γ̃|M\∪p∈zeroUp(4a)

= 0. Then for any s ∈ E⊥T ∩H1(M), we have

γ̃s ∈ E⊥T ∩H1(M)
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Then, we get, there exist C9 > 0 such that

||DT s||0 ≥
1

2
(||(1− γ̃)DT s||0 + ||γ̃DT s||0)

=
1

2
(||DT ((1− γ̃)s) + [D, γ̃]s||0 + ||DT (γ̃s) + [D, γ̃]s||0)

≥
√
T

2
(C8||(1− γ̃)s||0 +

√
C6||γ̃s||0)− C9||s||0

C10

√
T ||s||0 − C9||s||0

where C10 = min{
√
C6/2, C8/2}. Complete the proof.

�

Now we can come back to our concrete cases,for D2
Tf operator. In this case,

for x ∈M a critical point of f , we have:

αx,T =

∫
Ux

γ(|y|)2 exp(−T |y|2)dy1 ∧ dy2 ∧ · · · ∧ dyn

ρx,T =
γ(|y|)
√
αx,T

exp(−T |y|2)dy1 ∧ dy2 ∧ · · · ∧ dynf

(37)

Apart from the estimate of lemma8 and lemma9, we have more information
about this operator:

Propostion 10.

For any T > 0, we have
DT,1 = 0; (38)

proof:

For any s ∈ H0(M), we have:

pT s =
∑

x∈crit(f)

〈ρx,T , s〉H0(M)ρx,T (39)

and we also have:

DTf 〈ρx,T , s〉H0(M)ρx,T ∈ Ωnf−1(M)⊕ Ωnf+1(M)

and has compact support in Ux. Thus DT,1 = 0.

�

Now for any positve constant c > 0, let ET (c) denote the direct sum of
eigenspaces of DTf associated with the eigenvalues lying in [−c, c]. Clearly,
ET (c) is a finite dimensional subspace of H0(M). Let P (c) denote the
orthogonal projection to ET (c). Then
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Lemma 11.

There exist C1 > 0, T3 > 0 such that for any T ≥ T3 and any σ ∈ ET ,

||PT (c)σ − σ||0 ≤
C1

T
||σ||0 (40)

proof:

Let δ = {λ ∈ C : |λ| = c} be the counter-clockwise oriented circle. By our
pprevios estimate, once can deduce that there is a T0 such that for any λ ∈ δ,
T > T0 and s ∈ H1(M),

||(λ−DTfs)||o ≥
1

2
||λpT s−DT,2p

⊥
T s||0 +

1

2
||λp⊥T s−DT,3pT s−DT,4p

⊥
T s||0

≥ 1

2
((c− 1

T
)||pT s||0 + (C

√
T − c− 1

T
)||p⊥T s||0)

(41)
Hence, there exist T1 > 0 and C2 > 0 such that for any T ≥ T1 and
s ∈ H1(M),

||(λ−DTf )s||0 ≥ C2||s||0 (42)

Thus for any T > T1 and λ ∈ δ, we have

λ−DTf : H1(M)→ H0(M)

is invertible. Thus the resolvent (λ−DTf )−1 is well-defined. From spectral
theorem, we have:

PT (c)σ − σ =
1

2π
√
−1

∫
δ

((λ−DTf )−1 − λ−1)σdλ. (43)

and by Proposition 10, we have

((λ−DTf )−1 − λ−1)σ = λ−1(λ−DTf )−1DT,3σ (44)

Then, we get:

||(λ−DTf )−1DT,3σ||0 ≤ C−1
2 ||DT,3σ||0 ≤

1

C2T
||σ||0 (45)

for T > T1.

�

Now, we are ready to prove the most important Proposition 6.
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proof of proposition 6:

By lemma 11, there is T5 > 0 such that for T > T5 PT (c)ρx,T are linear
independent for xcrit(f). Thus, for such T , we have:

dimET (c) ≥ ET (46)

Now, if dimET (c) > ET , then there should exist a nonzero element s ∈ ET (c)
uch that s is perpendicular to PT (c)ET . That is

〈s, PT (c)ρx,T 〉0 = 0 (47)

for all x ∈ crit(f). Then we deduced that

pT s =
∑
x

〈s, ρx,T 〉ρx,T −
∑
x

〈s, PT (c)ρx,T 〉PT (c)ρx,T

=
∑
x

〈s, ρx,T 〉(ρx,T − PT (c)ρx,T ) +
∑
x

〈s, ρx,T − PT (c)ρx,T 〉PT (c)ρx,T

(48)
By lemma 11, there is C3 > 0 and T ≥ T5 such that:

||pT s||0 ≤
C3

T
||s||0 (49)

Thus, there exists a constant C4 > 0 such that when T > 0 is large enough,

||p⊥T s||0 ≥ C4||s||0 (50)

Then we find that for T large enough, we have

CC4

√
T ||s||0 ≤ ||DTfp

⊥
T s||0

= ||DTf −DTfpT s||
= ||DTfs−DT,3s||0
≤ ||DTfs||0 + ||DT,3s||0

≤ ||DTfs||0 +
1

T
||s||0

(51)

Hence we get

||DTfs||0 ≥ CC4

√
T ||s||0 −

1

T
||s||0

Hence if T large enough, the asumption s ∈ ET (c) nonzero is contradictive.
Hence we get:

dimET (c) = dimET =

n∑
i=0

mi

Moreoveer, ET (c) is generated by PT (c)ρx,T for all x ∈ crit(f). Now, let Qi
denote the orthogonal projection operator from H0(M) onto the L2 space of
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Ωi(M). Since �Tf preserves the Z−grading structure, we have for any
eigenvectors s of DTf associated with an eigenvalue µ ∈ [−c, c],

�TfQis = Qi�Tfs = µ2Qis

Hence Qis is an eigenvector of �Tf with eigenvalue µ2. Moreover, by Lemma
11, we also have:

||Qnf (x)PT (c)ρx,T − ρx,T || ≤
C1

T
(52)

One can see that when T > 0 large enough, the forms Qnf (x)PT (c) is linear
independent for all x, hence we have:

dimQiET (c) ≥ mi (53)

But we also have:

i=n∑
i=0

dimQiET (c) ≤ dimET (c) =

n∑
i=0

mi (54)

Conbining equation (53) and (54), we get the desired result:

dimQiET (c) = mi (55)

�

6 Thom-Smale Complex

Let f ∈ C∞(M) be a Morse function on an n−dimensional closed oriented
manifold M . Let gTM be a metric on TM , and let

∇f = (df)∗

be the gradient vector field of f . Then we can defines a one parameter
subgroup of the diffeomorphism group (ψt)t∈R of M :

dy

dt
= −∇f(y) (56)

If x ∈ crit(f), then we set:

Wu(x) = {y ∈M : lim
t→−∞

ψt(y) = x}

W s(x) = {y ∈M : lim
t→+∞

ψt(y) = x}
(57)

Be the unstable and stable cells at x respectively.
Assume that the vector field ∇f satisfies the Smale transversality
conditions:
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For any x, y ∈ crit(f) and x 6= y, we have Wu(x) and W s(y) intersect
transversally
In particular, since we know that the dimension of Wu(x) (resp. W s(x))
should be nf (x)(resp. n− nf (x)). Hence if nf (y) = nf (x)− 1, then
Wu(x) ∩W s(y) consists of finite set Γ(x, y) of integral curves γ of the vector
field −∇f , with γ−∞ = x and γ∞ = y along with Wu(x) and W s(y)
transversally.
By [S.Smale Theorem A], there always exists a metric g such that his
transversality conidtions holds.
Now, we fixed an orientation on each Wu(x). Let x, y ∈ crit(f) with
nf (y) = nf (x)− 1. Take γ ∈ Γ(x, y), Then the tangent space TyW

u(y) is
orthogonal to the tangent space TyW

s(y) and is oriented.
For any t ∈ (−∞,∞), the orthogonal space T⊥γtW

s(y) to TγtW
s(y) in Tγt(M)

carries a natural orientation, whith is induced form the orientaion on TyW
u(y).

On the other hand, the orthognal space T ′γtW
u(x) to −∇f in TγtW

u(x) can
be oriented in such a way that s is an oriented basis of T ′γtW

u(x) if
(−∇f(γt), s) is an orented basis of TγtW

u(y).
Since Wu(x) and W s(y) intersect transversally along γ, for any t ∈ (−∞,∞),
T⊥γtW

s(y) and T ′γtW
u(x) can be identified, and hence can compare the induced

orentations on them. Then we defined

nγ(x, y) =

{
1 if the orientation are the same.

−1 if the orientation are different.
(58)

Then we can defined our complex:

Ci(W
u) =

⊕
nf (x)=i

R[Wu(x)] (59)

and the boundary map

∂Wu(x) =
∑

nf (y)=nf (x)−1

∑
γΓ(x,y)

nγ(x, y)W y(y). (60)

The basic result,is

Theorem 12.

(C∗(W
u), ∂) is a chain complex. Moreover, we have a canonical identification

between its homology group H∗(C∗(W
u), ∂) to singular homology group H∗(M)

We now consider its dual complex (C∗(Wu), ∂) and we are going to construct
an isomorphism from this dual complex to the singular cohomology group.
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The de Rham map of the Thom-Smale Complex

We first state the result of Lauudenbach.

Proposition 13.

1. If x ∈ crit(f), the nthe clousure W̄u(x) is an nf (x) dimensional
submanifold of M with conical singularities.

2. W̄u(x)\Wu(x) is stratified by unstable manifolds of critical points of
index strictly less than nf (x).

By this proposition, we have a well defined integration:∫
W̄u(x)

α

for α ∈ Ω∗(M). Moreover, if α ∈ Ωi(M), this integral is not zero only if
nf (x) = i. Hence we get a Z−graded map from Ω∗(M) to H∗(C∗(W

u), ∂):

P∞ : α 7−→
∑

x∈crit(f)

[Wu(x)]∗
∫
W̄u(x)

α (61)

where [Wu(x)]∗ is the dual basis of [Wu(x)].
We are going to prove the theorem:

Theorem 14

P∞ is an quasi-isomorphism
By Stokes theorem and proposition 13, it is easy to see that P∞ is a chain
map. And we are going to prove this theorem via Witten’s instanton complex.

7 Proof of the Isomorphism via Witten’s
Instanton Complex

In the following, we always assume T is sufficient large such that Proposition 6
is valid.
We first endow C∗(Wu) with an inner product such that [Wu]∗ become an
orthonormal basis. And we now define a linear map JT : C∗(Wu)→ Ω∗(M)

JTW
u(x)∗ = ρx, T (62)

Clearly, JT is an isometry preserving the Z-gradings.
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Noew, we let PT denote the orthogonal projection from Ω∗(M) on

F
[0,1]
Tf .(Actually, it is the PT (1) we defined before.)Futhermore, we

definedeT : C∗(Wu)→ F
[0,1]
Tf :

eT = PTJT . (63)

Then we have an estimation:

Theorem 15

There exists c > 0 such that as T →∞, for any s ∈ C∗(Wu),

(eT − JT )s = O(e−cT )||s||0 (64)

uniformly on M . In particular, eT is an isomorphism

proof:

Let δ = U(1) ∈ C be the counter-clockwise oriented circle. By equation (43),
we have for any x ∈ crit(f) and T > 0 large enough,

(eT − JT )Wu(x)∗ = PT ρx,T − ρx,T

=
1

2π
√
−1

∫
δ

((λ−DTf )−1 − λ−1)ρx,T dλ

=
1

2π
√
−1

∫
δ

(λ−DTf )−1DTfρx,T
λ

dλ

(65)

For any p ≥ 0, let || · ||p denote the p-th Soolev norm on Ω∗(M).
By the construction of ρx,T , for small neighborhood of x, we have:

DTfρx,T = 0; (66)

Hence by definition, for any positive p, there is vp > 0 such that as T →∞,

||DTfρx,T ||p = O(e−cpT ) (67)

Take p > 1, Since D is a first order elliptic operator, by G̊arding’s inequality,
we have C,C1, C2 > 0 such that for s ∈ Ω∗M):

||s||q ≤ C1(||Ds||q−1 + ||s||0)

≤ C1(||(λ−DTf )s||q−1 + C2T ||s||q−1 + ||s||0)

≤ CT q(||(λ−DTf )s||q−1 + ||s||0)

(68)

and by equation (42), there also exist C ′ > 0 such that for λ ∈ δ, s ∈ Ω∗(M)
and T large enough

||(λ−DTf )−1s||0 ≤ C ′||s||0 (69)
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Combine equation (68) and (69), we get:

||(λ−DTf )−1s||q ≤ CT q(||s||q−1 + C ′||s||0) ≤ C ′′||s||q−1 (70)

Hence, there exist cq > 0 such that for T large enough, we have:

||(λ−DTf )−1DTfρx,T ||q = O(e−cT ) (71)

uniformmly on λ ∈ δ. Then by Sobolev inequality, we get there exist c > 0
such that:

|(λ−DTf )−1DTfρx,T | = O(e−cT ) (72)

uniformlly on λ. Hence prove the first assertion. Since JT is an isometry, in
particular, we have eT is an isomorphism for T large enough.

�

Now, we define the deform P∞ by P∞,T : F
[0,1]
T,f → C∗(Wu). By:

P∞,T : α 7→ P∞e
Tfα (73)

Being composition of chain map, P∞,T is again a chain map. We also define
two operator F , N on C∗(Wu) by

F [Wu(x)]∗ = f(x)[Wu(x)]∗

N [Wu(x)]∗ = nf [Wu(x)]∗
(74)

Then we have an estimate:

Theorem 16.

There exists c > 0 such that as T →∞,

P∞,T eT = eTF (
π

T
)N/2−n/4(1 +O(e−cT )) (75)

In particular, P∞,T is an isomorphism for T > 0 large enough.

proof:

Take x ∈ crit(f), s = Wu(x)∗. By definition, we have:

P∞,T eT s =
∑

y,nf (y)=nf (x)

eTf(y)Wu(y)∗
∫
W̄ (y)

eT (f−f(y))eT s (76)

By the definition of unstable manifold, we must have:

f − f(y) ≤ 0 (77)
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on W̄u(y). Apply Theorem 15, we have:∫
W̄ (y)

eT (f−f(y))eT s =

∫
W̄ (y)

eT (f−f(y))JT s+O(e−cT ) (78)

for some c > 0. Since supp(JT s) ∈ Ux, we can using the definition of ρx,T to
give us: ∫

W̄ (x)

eT (f−f(x))eT s = (
π

T
)nf (x)/2−n/4(1−O(e−cT )) (79)

By Proposition 13, we have W̄ (y)\Wu(y) is a union of certain W̄u(y′), with
nf (y′) < nf (y). Thus we find that for y ∈ crit(f)m with y 6= x and
nf (y) = nf (x), we then have

x /∈ W̄u(y) (80)

Hence, the by the definition of ρx,T again, we have:

JT s = O(e−c
′T ) (81)

on W̄u(y) for some c′ > 0. Hence we get:∫
W̄ (y)

eT (f−f(y))eT s = O(e−cT ) (82)

Combine all the result, we are done.

�

Finally, we get our proof for theorem 14:

proof of theorem 14:

Since we have already seen that eTf : F
[0,1]
Tf → Ω∗ is an quasi-isomorphism by

Proposition 4. And now P∞,T = P∞ ◦ eTf is an quasi-isomorphism (actually
isomorphism) for T large enough, too. Hence P∞ is an quasi-isomorphism.

�

8 The Product Structure of The Thom-Smale
Complex (Notation)

As we all know, the cohomology is a graded ring with cup product as its
product structure. In this section, we will follows the discussion of C. Viterbo
to encode the product structure on the Thom-Smale Complex. For this, we
first clear the notation on his paper.
Let f being a Morse function on a smooth compact manifold M (In his paper,
the result can be generalized to non-compact cases in certain ways, but we
assume the compactness for simplicity.) And also assume all good property as
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before. For all critical points x, y ∈M of f . We define P (x, y) being all
gradient flow with start points x and end points y.

P (x, y) = {γ : R→M |γ̇(s) = df(s)∗, lim
s→−∞

γ(s) = x, lim
s→∞

γ(s) = y} (83)

There is a natural R action on P (x, y) defined by (t.γ)(s) = γ(s+ t); Hence,
we can defined:

P̂ (x, y) = P (x, y)/R (84)

Clearly, this is the set of all gradient flow from y to x regardless of the
midpoint. Finally, we can define the set:

M(x, y) = {γ(0) ∈M |γ ∈ P (x, y)} (85)

Be the set of points on P (x, y), this is the same as the intersection
Wu(x) ∩W s(y) we defined last time up to the points x, y. By the uniqueness
theorem, we know that P (x, y) is diffeomophic to M(x, y).
Let i(x) denote the Morse index of the critical point x, we then have:

dimP (x, y) = i(y)− i(x)

dim P̂ (x, y) = i(y)− i(x)− 1
(86)

Then the Thom-Smale complex W ∗(f) is defined to be the free R-module with
one generator for each critical points and graded by its Morse index (when M
is not compact, it is useful to define W ∗(f ; a, b) to restrict the discussion to
the region f−1[a, b]), and we can define the coboundary map by:

δ :W k(f)→W k+1(f)

δ(x) =
∑

y∈crit(f),i(y)=i(x)+1

n(x, y) · y (87)

Where the coefficient n(x, y) is the as before (the intersection number of
Wu(x) and W s(y)). We fix the orientation of Wu(x) arbitrarily and define the
orientation of W s(x) by requiring that W s(x) ∩Wu(x) = (+1) · x. We have
known that this cohomology is isomorphic the the de Rham cohomology. Now,
we are going to define the “cap” product structure on the cohomology:

H∗(M)⊗H∗TS(M,f)→ H∗TS(M,f)

9 An H∗(M)-module Structure on the
Cohomology of (W, δ)

Theorem 17.

Let omega be a closed d-form on M , and let π(ω) be the map:

π(ω) :W k(f) →W k+d(f)

x →
∑

y∈crit(f),i(y)=i(x)+d

(

∫
M(x,y)

ω) · y (88)
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Then we have π(ω) commutes with δ, inducing a map in cohomology:

P (ω) : Hk
TS(M,f)→ Hk+d

TS (M,f) (89)

Moreover, this map depends only on the cohomology class of ω in H∗(M), and
we have the associativity;

P (ω)P (ω′) = P (ω ∪ ω′) (90)

As a result, P defines an H∗(M) module structure on H∗TS(M,f)
We will need some lemma to prove this theorem. First is to explore the
structure of the set M(x, y):

Lemma 18.

The closure of M(x, z) may be described as

M̄(x, z) =
⋃
M(x, y1) ∪M(y1, y2) ∪ ... ∪M(yq, z) (91)

The union being over all sequences y1, ..., yq of critical points such that
M(x, y1),M(y1, y2), ...,M(yq, z) are all non empty. Moreover, for any such
sequence (y1, ..., yq), there is a map

G : P̂ (x, y1)× ...× P̂ (yq, z)×∆q+1 → M̄(x, z) (92)

where
∆q+1 = {(λ0, ..., λq) ∈ [−∞,+∞][q + 1]|1 + λj ≤ λj+1} (93)

and

1. The image of G is a neighborhood of M(x, y1) ∪ ... ∪M(yq, z) in M̄(x, z)

2. The restriction of G to P̂ (x, y1)× ...× P̂ (yq, z)×∆q+1◦ is a
diffeomorphism onto its image.

3.

G(a0, ..., aq,−∞, ...,∞, µj , ..., µj+p,+∞, ...,+∞) = G(aj , ..., aj+p, µj , ..., µj+p)
(94)

proof:

Since the paper itself does not contains the complete proof, either, and the
theorem is very intuitive, we omit the proof.

�

The next lemma is to develop a new Stokes’ formula for our application.
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Lemma 19.

Let x, z with i(x)− i(z) = k + 1. Define

∂M(x, z) =
∑

i(y)=i(x)+1

n(x, y)M(y, z) +
∑

i(y)=i(z)−1

n(y, z)M(x, y) (95)

Then we have for any k-form φ:∫
∂M

φ =

∫
M(x,z)

dφ (96)

proof:

We first using a partition of unity restrict our attention to a neighborhood of
M(x, y1) ∪ ... ∪M(yq, z). Since G−1 is a diffeomorphism of such a neigborhood

into P̂ (x, y1)× ...× P̂ (yq, z)×∆◦q+1, we may pull back the form G∗dφ to doing
the integral. By the Stoke’s formula for manifolds with corners, we see that
G∗φ must be integrated only on:

P̂ (x, y1)× ...× P̂ (yq, z)× {−∞}∆◦q
⋃
P̂ (x, y1)× ...× P̂ (yq, z)∆

◦
q × {∞} (97)

By the third property of G, this integration is on:

P̂ (y1, y2)× ...× P̂ (yq, z)×∆◦q (98)

or
P̂ (x, y1)× ...× P̂ (yq−1, yq)×∆◦q (99)

which have dimension < k unless i(x)− i(y1) = 1 (resp. i(yq)− i(z) = 1).
Thus the only integrals of φ that appear are these on M(y, z) (resp. M(x, y))
with i(x)− i(y) = 1 (resp. i(y)− i(z) = 1) and the integral appears once for
each elemet P (x, y) counted with the proper sign. This concludes the proof.

�

. With the help of this Stokes formula, we can now prove the key lemma:

Lemma 20.

π(dω) = δπ(ω) + π(ω)δ (100)

23



proof:

π(dω)x =
∑
t

(

∫
M(x,t)

dω)t

=
∑
t

(

∫
∂M(x,t)

ω)t

=
∑
t

(
∑

i(y)=i(x)+1

n(x, y)

∫
M(y,t)

ω +
∑

i(z)=i(t)−1

n(z, t)

∫
M(x,z)

ω)t

=
∑
t

∑
i(y)=i(x)+1

n(x, y)(

∫
M(y,t)

ω)t+
∑
t

∑
i(z)=i(t)−1

n(z, t)(

∫
M(x,z)

ω)t

= π(ω)δx+ δπ(ω)x

= (δπ(ω) + π(ω)δ)x

Corollary.

If ω is closed, π(ω) induces a map P (ω) : Hk
TS(M,f)→ Hk+d

TS (M,f) which
depends only on the cohomology class of ω.

proof:

If dω = 0, δπ(ω) = −π(ω)δ, hence (−1)deg · π(ω) is a chain map, hence define a
map in cohomology.
If ω = dφ, π(dφ) = δπ(φ) + π(φ)δ, hence φ(dφ) sends cocycles to coboundaries:
it induces the zero map in cohomology.

�

Now, we prove the final part of the theorem

Lemma 21.

Let ω1, ω2 be closed forms, Then we have P (ω1 ∧ ω2) = P (ω1)P (ω2)

proof:

We have

P (ω1 ∧ ω2)x =
∑
z

(

∫
M(x,z)

ω1 ∧ ω2)z

P (ω1)P (ω2)x =
∑
z

(
∑
y

(

∫
M(x,y)

ω1

∫
M(y,z)

ω2))z
(101)

Hence, what we need to prove is the equality:∫
M(x,z)

ω1 ∧ ω2 =
∑
y

∫
M(x,y)

ω1

∫
M(y,z)

ω2 (102)
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We only have term with i(y) = i(x) + k1 = i(z)− k2 in the left hand side.
By the technique of partition of unity, we may assume that ω1 and ω2 vanish
outside neighborhood of M̄(x, y) and M̄(y, z). Then by lemma 18, we can
pullback the problem on the image of P̂ (x, y)× P̂ (y, z)×∆◦2. Now, considering
the cone sapce CP̂ (x, y)× CP̂ (y, z), where
CP̂ (x, y) = P̂ (x, y)× [−∞,∞]/P̂ (x, y)× {+∞} And we have a map:

CP̂ (x, y)× CP̂ (y, z)→ P̂ (x, y)× P̂ (y, z)×∆2(a1, t1, a2, t2)→ (a1, a2, t1, t1 + t2)
(103)

and maps (a1,−∞, a2,∞) to {y}. Now, we can pullback ω1 and ω2 on
CP̂ (x, y)× CP̂ (y, z), and we get two forms φ1, φ2.
By the fact that ω1 vanishes away from M(x, y), we get that in fact

φ1 ∈ H(CP̂ (x, y)× CP̂ (y, z), D1)

φ2 ∈ H(CP̂ (x, y)× CP̂ (y, z), D1)
(104)

where Di = {(a1, t1, a2, t2)|ti ≥ C} for some C. If we let A = P̂ (x, y) and
B = P̂ (y, z), then we have:

φ1 ∈ H(CA× CB,A× CB)

φ2 ∈ H(CA× CB,CA×B)
(105)

Then by the fact of algebraic topology, we have the formula:∫
CA×CB

φ1 ∧ φ2 =

∫
CA

φ1

∫
CB

φ2 (106)

And since CP̂ (x, y)× {(a1,+∞)} goes to M(x, y), we thus have:∫
CP̂ (x,y)

φ1 =

∫
M(x,y)

ω1 (107)

The lemma follows.

�

Finally, we are going to prove that his product structure coincide with the
original cup product one.

Proposition 22.

With the above assumptions. Under the identification of the Thom-Smale
cohomology and the de Rham cohomology. The product structure above is just
the usual cup product.
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proof:

In our case, this proposition is not hard at all. Recall that our identification is
given by:

µ : Hi(M)→W i(X, f)

ω →
∑
x

(

∫
W s

)x
(108)

But this is exactly the definition of P (ω) · 1. Hence the identification of the cup
product and the product we just define is the direct result of the associativity.

�
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