Week 1 Homework

- 1. (a) Any complex submanifold M of \mathbb{C}^n has to be non-compact unless it is finite points.
 - (b) The complex projective space $\mathbb{C}P^n$ is compact.
- 2. (a) Verify the Fubini-Study metric ω_{FS} is positive definite.

(b) Prove that
$$\int_{\mathbb{C}P^1} \omega_{FS} = 1$$
. (Bonus: $\int_{\mathbb{C}P^n} \omega_{FS}^n = 1$.)

Week 2 Homework

- 1. Given a Weierstrass data (ω, g) for the minimal immersion $M \to \mathbb{R}^3$. Show that $g = p \circ N$ where p is the stereographic projection and N is the Gauss map of M.
- 2. Show that a hermitian metric $g_{i\bar{j}}$ is Kähler if and only if $\partial_k g_{i\bar{j}} = \partial_i g_{k\bar{j}}$. Under the complex coordinates, compute the Christoffel symbols and derive the formula for Riemannian curvature tensor. In particular, show that Ricci curvature is given by $R_{i\bar{j}} = -\partial_i \partial_{\bar{j}} \log \det(g_{k\bar{l}})$.

Week 3 Homework

- 1. Determine the conformal transformation group of the Poincare disk.
- 2. Show the details about the Dirichlet principle (Lawson p.64-66). Namely solve the minimization problem as boundary value problem of (vector valued) harmonic functions, give the proof of Lemma 4 in p.64, and use it to complete the proof of Plateau problem.

Week 4 Homework

- 1. Assume that all base topological spaces are paracompact.
 - (a) Show that a vector bundle over a contractible base is trivial.
 - (b) Pull back bundles are isomorphic under homotopic maps.
- 2. Let $E \to X$ be an R (R = real or complex) vector bundle, prove the existence of bundle metrics (Riemannian or Hermitian respectively). If X is a manifold, prove the existence of R-linear connections. If moreover E has structure group G in GL(n, R) (i.e. transitions functions are in G) show that the connection can be chosen so that its curvature has values in the Lie algebra g = Lie(G).

Week 5 Homework

- 1. Suppose that *E*, *F* are vector bundles over *X* and let ∇ be any connection on *E*.
 - (a) (Naturality) Define the pullback connection $f^*\nabla$ on f^*E and show that $f^*c_k(E) = c_k(f^*E)$ for any $k \ge 0$.
 - (b) (Whitney sum formula) $c(E \oplus F) = c(E)c(F)$.
 - (c) (Tensor rule for line bundles) For line bundles L_i ,

$$c_1(L_1 \otimes L_2) = c_1(L_1) + c_1(L_2).$$

- (d) (Normalization) Let *S* be the tautological line bundle over $\mathbb{C}P^n$ and let *Q* be the quotient bundle $(C^{n+1} \times \mathbb{C}P^n)/S$. Show that $S^* \otimes Q \simeq T_{\mathbb{C}P^n}$ and $[\omega_{FS}] = -c_1(S^*)$.
- 2. Show that the heat kernel H(x, y, t) is smooth in x, y by showing that there are constants $C, \delta > 0$ such that $\lambda_n \ge Cn^{\delta}$ for $n \gg 0$.

Week 6 Homework

1. Show that the heat kernel for $H = -\sum_{i=1}^{n} \nabla_i^2 + F$ is given by

$$h(x,t) = \frac{1}{(4\pi t)^{n/2}} \det^{1/2} \left(\frac{tR/2}{\sinh(tR/2)} \right) e^{-\frac{1}{4t} \langle x | \frac{tR}{2} \coth \frac{tR}{2} | x \rangle} e^{-tF}$$

where $\nabla_i = \partial_i + \frac{1}{4} \sum_j R_{ij} x_j$.

- 2. (a) Show that Str[u, v] = 0 for every $u, v \in C(V)$.
 - (b) Let $(e)_{i=1}^{n}$ be an orthonormal basis of *V* and $I \subseteq \{1, ..., n\}$. If |I| < n, say *j* does not belong to *I*, prove that the Clifford prod- $\operatorname{uct} e_{I} = -\frac{1}{2}[e_{j}, e_{j}e_{I}] \text{ where } e_{I} = \prod_{i \in I} e_{i}.$ (c) Show that $S^{\pm} = \{v \mid \epsilon v = \pm v\}$ where $S = S^{+} \oplus S^{-}$ is the spinor
 - module.

Week 7 Homework

- 1. (a) c(a) is skew-adjoint on *E*.
 - (b) The Dirac operator *D* is self-adjoint.
- 2. Let (U, x) be a Riemann normal coordinate charts at $x_0 \in U$ and $E = S \otimes W$ be a complex Clifford module (bundle) over U. We trivialize $TM|_U \cong T_{x_0} \times U$ and $E \cong E_{x_0} \times U$ using parallel translations along radial lines in the chart (geodesics in U through x_0). Denote $c^i := c(dx^i) \in \text{End}(E)$. Show that, on $C^{\infty}(U, E)$, the following asymptotic expansion for covariant derivatives near x_0 holds:

$$\nabla_{\partial_i}^E = \partial_i + \frac{1}{4} \sum_{j;k < l} R_{klij}(x_0) x^j c^k c^l + \sum_{k < l} f_{ikl}(x) c^k c^l + g_i(x),$$

where $f_{ikl}(x) = O(|x|^2) \in C^{\infty}(U), g_i(x) = O(|x|) \in C^{\infty}(U, End(E)).$

(**Hint**: Show that the Lie derivative of the connection matrix ω (1-form) satisfies $L_{\mathcal{R}}\omega = \iota_{\mathcal{R}}\Omega$, where Ω is the curvature matrix (2-form) and $\mathcal{R} := \sum x_i \partial_i$, and then apply the Taylor expansion to it.)

Homework 8

Let M^n be a compact oriented even dimensional manifold.

- 1. Define $\tilde{*} := i^{n/2 + p(n-p)} *$. Show that
 - (1) $\tilde{*}^2 = \text{Id on } \Lambda := \Lambda^*_{\mathbb{C}}(M)$ and in fact $\tilde{*} = \epsilon$,
 - (2) Under $\Lambda = \Lambda^+ \oplus \Lambda^-$ induced by by ± 1 eigenspace of $\tilde{*}$, the index of $D^+ = (d + d^*)|_{\Lambda^+}$ is $\sigma(M)$ (If $n \notin 4\mathbb{N}$ both are zero).
 - (3) Under $\Lambda \cong S \otimes W$, $W = W^+$ is of pure even grading.
- 2. Let $E \to M$ be a complex vector bundle. Consider the twisted signature operator $D^+ : \Gamma(\Lambda^+ \otimes E) \to \Gamma(\Lambda^- \otimes E)$. Show that
 - (1) ind $D^+ = (L(M).ch(E))[M].$
 - (2) For $M = S^{2m}$, it is given by $\frac{1}{(m-1)!}c_m(E)[S^{2m}]$. (Hint: Show that all Pontryagin classes on S^{2m} vanishes.)
 - (3) The only spheres which could admit almost complex structures are S^2 and S^6 . (Bonus: Construct one on S^6 .)

Homework 9

1. (Leray-Hirsch) Let $E \to M$ be a complex vector bundle of rank r with $f : \mathbb{P}(E) \to M$ be the induced projective bundle. Show that

 $H^*(\mathbb{P}(E),\mathbb{Z}) \simeq H^*(M,\mathbb{Z})[\zeta]/(f_E(\zeta))$ as rings,

where $\zeta = c_1(S^*)$ and $f_E(\zeta) = \zeta^r + f^*c_1(E)\zeta^{r-1} + f^*c_2(E)\zeta^{r-2} + \cdots + f^*c_r(E)$ is the Chern polynomial.

2. Show that $e, p_1 : \pi_3(\mathbf{SO}(4)) \to H^4(S^4)$ are both group homomorphisms.