Week 1 Homework

1. (a) Any complex submanifold M of \mathbb{C}^{n} has to be non-compact unless it is finite points.
(b) The complex projective space $\mathbb{C} P^{n}$ is compact.
2. (a) Verify the Fubini-Study metric $\omega_{F S}$ is positive definite.
(b) Prove that $\int_{C P^{1}} \omega_{F S}=1$. (Bonus: $\int_{\mathrm{C} P^{n}} \omega_{F S}^{n}=1$.)

Week 2 Homework

1. Given a Weierstrass data (ω, g) for the minimal immersion $M \rightarrow \mathbb{R}^{3}$. Show that $g=p \circ N$ where p is the stereographic projection and N is the Gauss map of M.
2. Show that a hermitian metric $g_{i \bar{j}}$ is Kähler if and only if $\partial_{k} g_{i \bar{j}}=\partial_{i} g_{k j}$. Under the complex coordinates, compute the Christoffel symbols and derive the formula for Riemannian curvature tensor. In particular, show that Ricci curvature is given by $R_{i \bar{j}}=-\partial_{i} \partial_{\bar{j}} \log \operatorname{det}\left(g_{k \bar{l}}\right)$.

Week 3 Homework

1. Determine the conformal transformation group of the Poincare disk.
2. Show the details about the Dirichlet principle (Lawson p.64-66). Namely solve the minimization problem as boundary value problem of (vector valued) harmonic functions, give the proof of Lemma 4 in p.64, and use it to complete the proof of Plateau problem.

Week 4 Homework

1. Assume that all base topological spaces are paracompact.
(a) Show that a vector bundle over a contractible base is trivial.
(b) Pull back bundles are isomorphic under homotopic maps.
2. Let $E \rightarrow X$ be an $\mathrm{R}(\mathrm{R}=$ real or complex $)$ vector bundle, prove the existence of bundle metrics (Riemannian or Hermitian respectively). If X is a manifold, prove the existence of R -linear connections. If moreover E has structure group G in GL(n, R) (i.e. transitions functions are in G) show that the connection can be chosen so that its curvature has values in the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$.

Week 5 Homework

1. Suppose that E, F are vector bundles over X and let ∇ be any connection on E.
(a) (Naturality) Define the pullback connection $f^{*} \nabla$ on $f^{*} E$ and show that $f^{*} c_{k}(E)=c_{k}\left(f^{*} E\right)$ for any $k \geq 0$.
(b) (Whitney sum formula) $c(E \oplus F)=c(E) c(F)$.
(c) (Tensor rule for line bundles) For line bundles L_{i},

$$
c_{1}\left(L_{1} \otimes L_{2}\right)=c_{1}\left(L_{1}\right)+c_{1}\left(L_{2}\right) .
$$

(d) (Normalization) Let S be the tautological line bundle over $\mathbb{C} P^{n}$ and let Q be the quotient bundle $\left(C^{n+1} \times \mathbb{C} P^{n}\right) / S$. Show that $S^{*} \otimes Q \simeq T_{C P^{n}}$ and $\left[\omega_{F S}\right]=-c_{1}\left(S^{*}\right)$.
2. Show that the heat kernel $H(x, y, t)$ is smooth in x, y by showing that there are constants $C, \delta>0$ such that $\lambda_{n} \geq C n^{\delta}$ for $n \gg 0$.

Week 6 Homework

1. Show that the heat kernel for $H=-\sum_{i=1}^{n} \nabla_{i}^{2}+F$ is given by

$$
\begin{aligned}
\qquad h(x, t) & =\frac{1}{(4 \pi t)^{n / 2}} \operatorname{det}^{1 / 2}\left(\frac{t R / 2}{\sinh (t R / 2)}\right) e^{-\frac{1}{4 t}\langle x| \frac{t R}{2} \operatorname{coth} \frac{t R}{2}|x\rangle} e^{-t F} \\
\text { where } \nabla_{i} & =\partial_{i}+\frac{1}{4} \sum_{j} R_{i j} x_{j} .
\end{aligned}
$$

2. (a) Show that $\operatorname{Str}[u, v]=0$ for every $u, v \in C(V)$.
(b) Let $(e)_{i=1}^{n}$ be an orthonormal basis of V and $I \subseteq\{1, \ldots, n\}$. If $|I|<n$, say j does not belong to I, prove that the Clifford product $e_{I}=-\frac{1}{2}\left[e_{j}, e_{j} e_{I}\right]$ where $e_{I}=\prod_{i \in I} e_{i}$.
(c) Show that $S^{ \pm}=\{v \mid \epsilon v= \pm v\}$ where $S=S^{+} \oplus S^{-}$is the spinor module.

Week 7 Homework

1. (a) $c(a)$ is skew-adjoint on E.
(b) The Dirac operator D is self-adjoint.
2. Let (U, x) be a Riemann normal coordinate charts at $x_{0} \in U$ and $E=$ $S \otimes W$ be a complex Clifford module (bundle) over U. We trivialize $\left.T M\right|_{U} \cong T_{x_{0}} \times U$ and $E \cong E_{x_{0}} \times U$ using parallel translations along radial lines in the chart (geodesics in U through x_{0}). Denote $c^{i}:=$ $c\left(d x^{i}\right) \in \operatorname{End}(E)$. Show that, on $C^{\infty}(U, E)$, the following asymptotic expansion for covariant derivatives near x_{0} holds:

$$
\nabla_{\partial_{i}}^{E}=\partial_{i}+\frac{1}{4} \sum_{j ; k<l} R_{k l i j}\left(x_{0}\right) x^{j} c^{k} c^{l}+\sum_{k<l} f_{i k l}(x) c^{k} c^{l}+g_{i}(x)
$$

where $f_{i k l}(x)=O\left(|x|^{2}\right) \in C^{\infty}(U), g_{i}(x)=O(|x|) \in C^{\infty}(U, \operatorname{End}(E))$.
(Hint: Show that the Lie derivative of the connection matrix ω (1form) satisfies $L_{\mathcal{R}} \omega=\iota_{\mathcal{R}} \Omega$, where Ω is the curvature matrix (2form) and $\mathcal{R}:=\sum x_{i} \partial_{i}$, and then apply the Taylor expansion to it.)

Homework 8

Let M^{n} be a compact oriented even dimensional manifold.

1. Define $\tilde{*}:=i^{n / 2+p(n-p)} *$. Show that
(1) $\tilde{*}^{2}=\operatorname{Id}$ on $\Lambda:=\Lambda_{\mathrm{C}}^{*}(M)$ and in fact $\tilde{*}=\epsilon$,
(2) Under $\Lambda=\Lambda^{+} \oplus \Lambda^{-}$induced by by ± 1 eigenspace of $\tilde{\kappa}$, the index of $D^{+}=\left.\left(d+d^{*}\right)\right|_{\Lambda^{+}}$is $\sigma(M)$ (If $n \notin 4 \mathbb{N}$ both are zero).
(3) Under $\Lambda \cong S \otimes W, W=W^{+}$is of pure even grading.
2. Let $E \rightarrow M$ be a complex vector bundle. Consider the twisted signature operator $D^{+}: \Gamma\left(\Lambda^{+} \otimes E\right) \rightarrow \Gamma\left(\Lambda^{-} \otimes E\right)$. Show that
(1) ind $D^{+}=(L(M) \cdot \operatorname{ch}(E))[M]$.
(2) For $M=S^{2 m}$, it is given by $\frac{1}{(m-1)!} c_{m}(E)\left[S^{2 m}\right]$. (Hint: Show that all Pontryagin classes on $S^{2 m}$ vanishes.)
(3) The only spheres which could admit almost complex structures are S^{2} and S^{6}. (Bonus: Construct one on S^{6}.)

Homework 9

1. (Leray-Hirsch) Let $E \rightarrow M$ be a complex vector bundle of rank r with $f: \mathbb{P}(E) \rightarrow M$ be the induced projective bundle. Show that

$$
H^{*}(\mathbb{P}(E), \mathbb{Z}) \simeq H^{*}(M, \mathbb{Z})[\zeta] /\left(f_{E}(\zeta)\right) \quad \text { as rings, }
$$

where $\zeta=c_{1}\left(S^{*}\right)$ and $f_{E}(\zeta)=\zeta^{r}+f^{*} c_{1}(E) \zeta^{r-1}+f^{*} c_{2}(E) \zeta^{r-2}+$ $\cdots+f^{*} c_{r}(E)$ is the Chern polynomial.
2. Show that $e, p_{1}: \pi_{3}(\mathbf{S O}(4)) \rightarrow H^{4}\left(S^{4}\right)$ are both group homomorphisms.

