Differential Geometry (I) (Fall 2012) Quiz

September 19, 2012, pm 3:30 – 5:00

Dept._____ ID No._____ Name:_____

- A. (20 points) Consider $M = \mathbb{R}$ with one chart given by (\mathbb{R}, ϕ) where $\phi(t) = t^3$. Show that this defines a C^{∞} structure on M. Is M diffeomorphic to \mathbb{R} with the standard C^{∞} structure (\mathbb{R}, id) ?
- B. Let M be a locally compact topological space which is Hausdorff and second countable.
 - (a) (20 points) Show that M is σ compact. Namely, there is a countable sequence of increasing open sets $\{G_i\}_{i\in\mathbb{N}}$ with \overline{G}_i compact, $\overline{G}_i \subset G_{i+1}$ and $M = \bigcup_{i=1}^{\infty} G_i$. (Hint: Show first that the sub collection $\{U_i\}$ in the countable basis with \overline{U}_i compact is still a basis.)
 - (b) (20 points) Show that every open cover $\{U_{\alpha}\}_{\alpha \in A}$ of M has a countable locally finite refinement $\{V_j\}_{j \in \mathbb{N}}$ with \overline{V}_j being compact.
- C. (a) (20 points) Given $f : M \to N$ a C^{∞} map, show that in charts (U, \mathbf{x}) at $p \in M$ and (V, \mathbf{y}) at $f(p) \in N$, df_p is represented by $d\tilde{f}_{\mathbf{x}(p)}$ with Jacobian matrix $\left[\frac{\partial \tilde{f}^j}{\partial x^i}\right]$ where $\tilde{f} = \mathbf{y} \circ f \circ \mathbf{x}^{-1} : \mathbf{x}(U \cap f^{-1}(V)) \to \mathbb{R}^{\dim N}$. Namely $df_p\left(\frac{\partial}{\partial x^i}\Big|_p\right) = \sum_j \frac{\partial \tilde{f}^j}{\partial x^i} (\mathbf{x}(p)) \frac{\partial}{\partial y^j}\Big|_p$.
 - (b) (20 points) Let M be a C^k manifold, $1 \le k \le \infty$, use the theorem that $D_p M \cong (m_p/m_p^2)^*$ to prove

$$\dim D_p M = \begin{cases} \dim M & \text{if } k = \infty, \\ \infty & \text{if } k < \infty. \end{cases}$$

(Hint: For k = 1, study functions $f(x) = (x^1)^a$ for 1 < a < 2.)