NTU 2020 FALL: DIFFERENTIAL GEOMETRY MIDTERM EXAM A COURSE BY CHIN-LUNG WANG

- **1.** Let *M* be a C^{∞} manifold with open cover $\bigcup_{\alpha \in A} U_{\alpha}$. Construct a C^{∞} partition of unity $\{\psi_i\}_{i \in \mathbb{N}}$ subordinate to it with supp ψ_i being compact.
- **2.** Show that if $f \in C^1(U, \mathbb{R}^d) \land C U$ has measure 0 then f(A) also has measure 0.
- **3.** (a) Show that $f : \mathbb{R}P^2 := S^2 / \pm 1 \to \mathbb{R}^3$ defined by

$$[x, y, z] \mapsto (xy, yz, zx)$$

is an immersion.

(b) Construct an embedding $\mathbb{R}P^2 \to \mathbb{R}^4$. Is it possible to embed $\mathbb{R}P^2$ in \mathbb{R}^3 ?

4. Prove Cartan's homotopy formula: if $\alpha \in A^k(M)$ then

$$L_V \alpha = (\iota_V d + d\iota_V) \alpha.$$

- **5.** For $\omega \in A^k(M)$, state and prove Cartan's intrinsic formula for $d\omega$. (If you use the fundamental theorem of tensor calculus then you have to prove it too.)
- 6. (a) Compute H^k_{dR}(Sⁿ) and H^k_{dR}(T²) for all k ≥ 0.
 (b) Let B = B₀(1) in ℝⁿ. Show that every f ∈ C⁰(B, B) has a fixed point.

For 7 and 8, (M, g) is a Riemannian manifold with Levi–Civita connection.

- 7. (a) Prove Gauss' Lemma and the local minimality of geodesics.
 (b) Prove the existence of convex neighborhood at any *p* ∈ *M*.
- 8. (a) Prove the second Bianchi identity R_{ij[kl;m]} = 0.
 (b) Let n = dim M ≥ 3. If

 $R_{ij} = \lambda g_{ij},$

show that $\lambda = s/n$ and λ is a constant.

• You may replace ONE problem above by stating and proving a substantial result you have well prepared but not shown above.

Date: pm 6:00 – 9:15, 11/11, 2020. Show your works in details. Each problem deserves 15 points.