DIFFERENTIAL GEOMETRY II MIDTERM EXAM
 10:10 - 13:10, APRIL 19, 2013
 A COURSE BY CHIN-LUNG WANG

1. (a) Show that a hermitian metric $g_{i \bar{j}}$ on a complex manifold is Kähler if and only if $\partial_{k} g_{i \bar{j}}=$ $\partial_{i} g_{k j}$ for all i, j, k. Under the complex coordinates, show that all the non-trivial Christoffel symbols for the Levi-Civita connection are of pure type: $\Gamma_{i j}^{k}=g^{k \bar{l}} \partial_{i} g_{j \bar{l}}$ and $\Gamma_{i j}^{\bar{k}}=\bar{\Gamma}_{i j}^{k}$.
(b) Derive the formulas for Riemannian curvature tensor and Ricci tensor. In particular, show that $R_{i \bar{j}}=-\partial_{i} \partial_{\bar{j}} \log \operatorname{det}\left(g_{k \bar{l}}\right)$.
2. (a) Let $M \hookrightarrow(N, J, \omega)$ be an oriented $2 m$-dimensional real submanifold inside a complex n-dimensional Kähler manifold, with $d V$ the induced volume form on M. Show that

$$
\left.\frac{\omega^{m}}{m!}\right|_{T_{p} M} \leq d V_{p}
$$

for any $p \in M$, with equality holds if and only if $T_{p} M$ is a J-invariant subspace.
(b) If M is indeed a complex submanifold of a compact Kähler manifold N, show that M minimizes volume in its homology class $[M] \in H_{2 m}(N, \mathbb{Z})$. Also any other minimizer must also be a complex Kähler submanifold.
3. (a) Let M be an immersed minimal surface in \mathbb{R}^{3}. Show that $p \circ N$ induces an isothermal coordinate system near each non-umbilical point $p \in M$. Here $p: S^{2} \rightarrow \mathbb{C} \cup\{\infty\}$ is the stereographic projection and N is the Gauss map.
(b) Describe the Weierstrass representation of immersed minimal surface in \mathbb{R}^{3} by a meromorphic function g and holomorphic one form $\omega=f d z$. In particular show that the conformal factor λ in $d s^{2}=\lambda\left(d x^{2}+d y^{2}\right)$ is given by $\lambda=|f|^{2}\left(1+|g|^{2}\right)^{2}$.
4. (a) Let $(E, \nabla) \rightarrow M$ be a vector bundle with connection ∇. Prove the Bianchi identity $d \Omega=$ $[\omega, \Omega]$ and show that $d c_{i}(E, \nabla)=0$.
(b) Show that $\left[c_{i}(E, \nabla)\right] \in H_{d R}^{2 i}(M)$ is independent of the choices of connections.
5. (a) Let $P: \Gamma(E) \rightarrow \Gamma(E)$ be a positive definite self-adjoint elliptic operator on a compact manifold (M, g) with eigenfunctions $P \phi_{n}=\lambda_{n} \phi_{n}, n \in \mathbb{N}$. Show that ϕ_{n} 's can be chosen to be orthonormal and there exist some $C, \delta>0$ such that $\lambda_{n} \geq C n^{\delta}$ for all n.
(b) What is the definition of heat kernel? Show that the heat kernel of P is given by

$$
H(x, y, t)=\sum_{n=1}^{\infty} e^{-\lambda_{n} t} \phi_{n}(x) \otimes \phi_{n}(y)
$$

6. (a) Construct the complex spinor module S with $C(V)_{\mathrm{C}} \cong$ End S and show that any complex Clifford module E is of the form $E=S \otimes_{C} W$ for some vector space W.
(b) Let $n=\operatorname{dim} V=2 p$ and $\epsilon=i^{p} e_{1} \cdots e_{n} \in C(V)$ where $\left\{e_{1}, \cdots, e_{n}\right\}$ is an ONB. Show that $S^{ \pm}=\{v \mid \epsilon v= \pm v\}$ and $\operatorname{str}(a)=(-2 i)^{n / 2} T \sigma(a)$ for $a \in$ End $S \cong C(V)_{\mathrm{C}}$.
