DIFFERENTIAL GEOMETRY FINAL EXAM AM 8:30 – 12:30, 1/04, 2013 A COURSE BY CHIN-LUNG WANG

- **1.** (a) For any $p \in M$, show that for the Riemann normal coordinate system (U, \mathbf{x}) we have $\Gamma_{ii}^k(p) = 0$ and $\partial_k g_{ij}(p) = 0$ for all i, j, k.
 - (b) Prove the second Bianchi identity $R_{ij[kl;m]} = 0$.
 - (c) Let $n \ge 3$. If $R_{ij}(x) = \lambda(x)g_{ij}(x)$, show that $\lambda = R/n$ must be a constant.
- (a) Derive the first variation for piece-wise C¹ curves. Use it to show that if γ : [0, ℓ] → M is a closed piece-wise C¹ curve which is a critical point of the length functional then γ is a C[∞] closed geodesic.
 - (b) Derive the second variation formula for geodesics. Use it to prove Synge's theorem: An even dimensional compact oriented manifold with K > 0 must be simply connected.
- 3. (a) For a normal variation of closed immersed minimal hypersurface $M^m \rightarrow \overline{M}^{m+1}$ with variation field $\eta = f\vec{n}$, it is known that

$$A''(0) = \int_{M} |\nabla f|^2 - (\overline{\text{Ric}}(\vec{n}, \vec{n}) + ||B||^2) f^2.$$

Use it to show that if \overline{M}^3 has $\overline{R} > 0$, there is no stable minimal immersion of orientable surface M with $g(M) \ge 1$. (Hint: Show that $\overline{\text{Ric}}(\vec{n}, \vec{n}) = \frac{1}{2}\overline{R} - K_M - \frac{1}{2}||B||^2$.)

- (b) Construct an isometrically and minimally embedded flat tori T in S^3 . Why is this not a counterexample to (a)?
- **4.** (a) Prove the Bochner formula: Let $e_i \in T_p M$ be an ONB and $\eta^i \in T_p^* M$ be its dual basis. Then for $\omega \in A^k(M)$,

$$(\triangle \omega)(p) = -\operatorname{tr} \nabla^2 \omega - \sum_{i,j} \eta^i \wedge \iota_{e_j} R(e_i, e_j) \omega$$

- (b) If *M* is compact with $R_{ij} \ge 0$, show that $h^1(M) \le \dim M$. Moreover if $\operatorname{Ric}(p) > 0$ for some $p \in M$ then $h^1(M) = 0$.
- **5.** (a) Let *G* be a compact Lie group. Construct a bi-invariant metric \langle , \rangle on *G*.
 - (b) Compute $\nabla_X Y$ and R(X, Y)Z for $X, Y, Z \in \mathfrak{g}$, and prove $K \ge 0$. When does *G* have Ric > 0? K > 0? Apply your answers to U(n) and SU(n).

The Bonus problem is on the next page:

- 6. Give the details of one and only one problem in the following list:
 - (i) Prove the Gauss Lemma, the local minimality of arc length along geodesics, and the existence of convex neighborhoods.
 - (ii) State and prove the Hopf-Rinow Theorem.
 - (iii) Define Jacobi fields along a geodesic. For *M* a complete Riemannian manifold and $p \in M$, show that $d \exp_p$ is singular at v if and only if there is a Jacobi field $J \not\equiv 0$ along $\gamma(t) = \exp_p(tv)$ with J(0) = 0 = J(1). Use it to prove the Cartan–Hadamard Theorem.
 - (iv) Derive the second variation formula for immersed minimal submanifods and then deduce from it the formula for A''(0) in **3.** (a).
 - (v) Define Riemannian submersion. Derive the formula for the Levi-Civita connection and O'Neil's curvature formula. Apply it to compute the sectional curvature of $\mathbb{C}P^n$.
 - (vi) Define L^2 Sobolev spaces $H_s(\mathbb{R}^m)$, $s \in \mathbb{R}$. Prove the Sobolev Lemma and the Rellich Lemma. Extend all these to a vector bundle over a compact manifold.
 - (vii) Use Garding's inequality to prove the Hodge decomposition theorem on $A^k(M)$.