## NTU 2021 SPRING: DIFFERENTIAL GEOMETRY II MIDTERM EXAM A COURSE BY CHIN-LUNG WANG

1. (a) Describe Weiertstrass representation for immersed minimal surface by a meromorphic function $g$ and a holomorphic 1-form $W$ on an open set $M \subset \mathbb{C}$.
(b) Find the parametrization for Ennerper surface for $M=\mathbb{C}, g=z$, and $W=d z$.
2. (a) Let $M \hookrightarrow(N, J, \omega)$ be an oriented $2 m$-dimensional real submanifold inside a complex $n$-dimensional Kähler manifold, with $d V$ the induced volume form on $M$. Show that

$$
\left.\frac{\omega^{m}}{m!}\right|_{T_{p} M} \leq d V_{p}
$$

for any $p \in M$, with equality holds if and only if $T_{p} M$ is a $J$-invariant subspace.
(b) If $M$ is indeed a complex submanifold of a compact Kähler manifold $N$, show that $M$ minimizes volume in its homology class $[M] \in H_{2 m}(N, \mathbb{Z})$. Also any other minimizer must also be a complex Kähler submanifold.
3. (a) Let $(E, \nabla) \rightarrow M$ be a vector bundle with connection $\nabla$. For $\Phi \in A^{k}(\operatorname{End}(E))$. Show that $\nabla \Phi=d \Phi+(-1)^{k}[\Phi, \omega]$ and $\nabla^{2} \Phi=[\Phi, \Omega]$.
(b) Prove the second Bianchi identity. Use it to show that $d c_{i}(E, \nabla)=0$.
4. (a) Show that the signature is a $\mathbb{Z}$-genus on the real cobordism ring $\Omega$. (You may apply the Poincaré-Lefschetz duality for manifolds with boundary.)
(b) Deduce the Hirzebruch signature formula from Thom's cobordism theorem.
5. (a) Construct the complex spinor module $S$ with $C(V)_{C} \cong$ End $S$ and show that any complex Clifford module $E$ is of the form $E=S \otimes_{C} W$ for some vector space $W$.
(b) Let $n=\operatorname{dim} V=2 p$ and $\epsilon=i^{p} e_{1} \ldots e_{n} \in C(V)$, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is an ONB oriented by $\left\{e_{1}, J e_{1}, \ldots, e_{p}, J e_{p}\right\}$. Show that $S^{ \pm}=\{v: \epsilon v= \pm v\}$ and for $a \in$ End $S \cong C(V)_{\mathbb{C}}$,

$$
\operatorname{str}(a)=(-2 i)^{p} T \sigma(a)
$$

where the Berezin integral $T$ picks up the coefficient of the volume form.
6. (a) Let $E=S \otimes W$ be a Clifford module on $(M, g)$ with Clifford connection $\nabla$. Let $e_{i} \in T_{x_{0}} M$ be an ONB with dual basis $e^{i}$ and $c^{i}:=c\left(e^{i}\right)$. Show that

$$
F_{i j}^{E}=-\frac{1}{4} \sum_{k, l} R_{k l i j} c^{k} c^{l}+F_{i j}^{W}
$$

(b) Prove the Lichnerowicz formula $D^{2}=-\operatorname{tr} \nabla^{2}+c\left(F^{W}\right)+\frac{1}{4} s_{M}$ for the Dirac operator $D$.
(c) Let $p_{t}(x, y)$ be the heat kernel of $D^{2}$ and $\tau\left(x_{0}, x\right)$ be the canonical trivialization of $E$ over $U=B_{x_{0}}(R)$. Denote $k(t, \mathbf{x})=\tau\left(x_{0}, x\right) p_{t}\left(x, x_{0}\right)$ for $x=\exp _{x_{0}} \mathbf{x}$ and $r(u, t, \mathbf{x}):=$ $\sqrt{u}^{n}\left(\delta_{u} k\right)(t, \mathbf{x})$. Find $L(u)$ such that $\left(\partial_{t}+L(u)\right) r(u, t, \mathbf{x})=0$, where $\delta_{u}$ on $i$-form is

$$
\left(\delta_{u} \alpha\right)(t, \mathbf{x}):=\sqrt{u}^{-i} \alpha(u t, \sqrt{u} \mathbf{x}) .
$$

(d) Compute $\lim _{u \rightarrow 0^{+}} L(u)$.

[^0]
[^0]:    Date: pm 6:00-9:30, 4/23, 2021. You may work on each part independently. Each problem deserves 20 points. Bonus will be assigned to very good answer to (part of) 6.

