NTU 2021 SPRING: DIFFERENTIAL GEOMETRY II MIDTERM EXAM A COURSE BY CHIN-LUNG WANG

- 1. (a) Describe Weiertstrass representation for immersed minimal surface by a meromorphic function *g* and a holomorphic 1-form *W* on an open set $M \subset \mathbb{C}$.
 - (b) Find the parametrization for Ennerper surface for $M = \mathbb{C}$, g = z, and W = dz.
- **2.** (a) Let $M \hookrightarrow (N, J, \omega)$ be an oriented 2m-dimensional real submanifold inside a complex *n*-dimensional Kähler manifold, with dV the induced volume form on M. Show that

$$\frac{\omega^m}{m!}\Big|_{T_pM} \le dV_p$$

for any $p \in M$, with equality holds if and only if T_pM is a *J*-invariant subspace.

- (b) If *M* is indeed a complex submanifold of a compact Kähler manifold *N*, show that *M* minimizes volume in its homology class $[M] \in H_{2m}(N, \mathbb{Z})$. Also any other minimizer must also be a complex Kähler submanifold.
- **3.** (a) Let $(E, \nabla) \to M$ be a vector bundle with connection ∇ . For $\Phi \in A^k(\text{End}(E))$. Show that $\nabla \Phi = d\Phi + (-1)^k [\Phi, \omega]$ and $\nabla^2 \Phi = [\Phi, \Omega]$.
 - (b) Prove the second Bianchi identity. Use it to show that $dc_i(E, \nabla) = 0$.
- **4.** (a) Show that the signature is a \mathbb{Z} -genus on the real cobordism ring Ω . (You may apply the Poincaré–Lefschetz duality for manifolds with boundary.)
 - (b) Deduce the Hirzebruch signature formula from Thom's cobordism theorem.
- 5. (a) Construct the complex spinor module *S* with $C(V)_{\mathbb{C}} \cong \text{End } S$ and show that any complex Clifford module *E* is of the form $E = S \otimes_{\mathbb{C}} W$ for some vector space *W*.
 - (b) Let $n = \dim V = 2p$ and $\epsilon = i^p e_1 \dots e_n \in C(V)$, where $\{e_1, \dots, e_n\}$ is an ONB oriented by $\{e_1, Je_1, \dots, e_p, Je_p\}$. Show that $S^{\pm} = \{v : \epsilon v = \pm v\}$ and for $a \in \text{End } S \cong C(V)_{\mathbb{C}}$,

$$\operatorname{str}(a) = (-2i)^p T \sigma(a),$$

where the Berezin integral *T* picks up the coefficient of the volume form.

6. (a) Let $E = S \otimes W$ be a Clifford module on (M, g) with Clifford connection ∇ . Let $e_i \in T_{x_0}M$ be an ONB with dual basis e^i and $c^i := c(e^i)$. Show that

$$F_{ij}^E = -\frac{1}{4} \sum_{k,l} R_{klij} c^k c^l + F_{ij}^W.$$

- (b) Prove the Lichnerowicz formula $D^2 = -\text{tr } \nabla^2 + c(F^W) + \frac{1}{4}s_M$ for the Dirac operator *D*.
- (c) Let $p_t(x, y)$ be the heat kernel of D^2 and $\tau(x_0, x)$ be the canonical trivialization of E over $U = B_{x_0}(R)$. Denote $k(t, \mathbf{x}) = \tau(x_0, x)p_t(x, x_0)$ for $x = \exp_{x_0} \mathbf{x}$ and $r(u, t, \mathbf{x}) := \sqrt{u}^n(\delta_u k)(t, \mathbf{x})$. Find L(u) such that $(\partial_t + L(u))r(u, t, \mathbf{x}) = 0$, where δ_u on *i*-form is

$$(\delta_u \alpha)(t, \mathbf{x}) := \sqrt{u}^{-\iota} \alpha(ut, \sqrt{u}\mathbf{x}).$$

(d) Compute $\lim_{u\to 0^+} L(u)$.

Date: pm 6:00 - 9:30, 4/23, 2021. You may work on each part independently. Each problem deserves 20 points. Bonus will be assigned to very good answer to (part of) **6**.