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Morse Theory and Bott Periodicity

Pei-Hsuan Chang

In this article, we will go through the basics of Morse theory, which Bott calls
“Baby Morse Theory”. It gives us a way to recover the homotopy type of a manifold.
After the proof of Morse theory, as an application to compact Lie groups, we will prove
Bott periodicity theorem, which calculates the homotopy groups of a unitary group in
arbitrary dimension.

We will follow the methods in J. Milnor’s Morse theory (§1~3, §23, and part of
§20,8§22). However, there is a more elementary proof of Bott periodicity theorem, which
does not involve Morse theory. It can be found in M. Atiyah and R. Bott, On the
Periodicity Theorem for Complex Vector Boundle, Acta Methematica, Vol. 112 (1964),
pp. 229~247.

1 Basic Morse Theory

The fundamental concept in Morse theory is: a "good fuction” f : M — R encodes
a lot of information about M. To be more specific, Morse theory studies the critical
points of good functions on M, and gives a nice way to recover the homotopy type of
M.

Consider a smooth function f : M — R. At each point p on M, f induces a map
fe : T,M — TR between the tangent spaces of M at p and of R at f(p).

Definition 1.1. p € M is a critical point of f if the induced map f, is zero. More

specifically, with local coordinate system (z!,--- ,2™), p satisfies
of of of
%(p) = @(p) == axn(p) = 0.

Definition 1.2. The Hessian H;(p) (or f..) of a function f : M — R at p is the

n X n symmetric matrix whose 7j-th entry is where (z',--- ,2™) is the local

f
OxtdzI )
coordinate system at p. We said a critical point p is nondegenerate if the matrix Hy(p)

is nonsingular.



Definition 1.3. The indez of a billinear form H is the maximal dimension of sunspace

of V on which H is negative definite.

The point p is a nondegenerate critical point of f if and only if H;(p) has nullity
equal to 0. The index of H(p) on T,,M will be refered to simply as the index of f at p.
As mention above, we are going to study a ”good function” on M. The notion of a

“good function” is formalised to mean a Morse function.

Definition 1.4. A map f: M — R is a Morse function if all the critical points of f

are nondegenerate. That is, if H;(p) at each critical point p is non-singular.

To reach out goal of studying critical point p, we need a nice coordinate system
to work near p. This important tool is Morse lemma. Furthermore, we only need

information about the index at p to apply this proposition.

Proposition 1.5 (Morse lemma). If p is a nondegenerate critical point of f and the
indez of f at p is A\, then there exists local coordinate (Y1, Y2, ,Yn) in a neighborhood
U of p with y'(p) = 0 for all i and such that the identity

F=fp) =) = = @)+ @)+ (")
holds throughout U.

Before we prove Morse lemma, we firstly show the following;:

Lemma 1.6. Let f be a smooth function in a convex neighborhood V' of 0 in R™, with
f(0)=0. Then

f@r, w0 = 3 g, )
=1

for some suitable smooth finction g; defined in V, with g;(0) = 2L (0).

ox;
Proof.
1 1 n
df (txy, -+ tay) / of
cemy) = dt= [ tawy, o teg)x; dt.
flwy, - ay) /0 o ) 2 8:1:1-( T Tp)x
Just define g;(zq, -+ ,z,) = 01 g—i(t:pl, -+ tx,)dt, then we get the result. O]

Now, we return to the proof of Morse lemma.



Proof of the Morse lemma. By linear algebra, we can easily show that for any such
expression for f, A must be the index of f at p.

It remains to show that there is such suitable coordinate system (y',--- ,y™) exists.
Without loss of generalization, we may assume that p is the origin of R™ and that

f(p) = f(0) = 0. By the previous lemma, we can write

f(zla e 7xn) = Z$igi<w1a e ,l’n)
1=1

for (xy,---x,) on some neighborhood of 0. Since 0 is assumed to be a critical point,

0.0 = L0y =0

By applying the lemma to g;’s, we get

gi(T1, ) = Z%‘hij(%, ),
j=1

for some smooth h;; with

dg; Loogrf 1 0%*f
hii(0) = 29 (0) = Ity b))t dt] = ==L (o).
(0= 550 = | Gaggrtxnotan) - tdl] =55 5 O
It follows that .
[, ) = Z zivihij(T1, - ).
ij=1
Let hy; = %(hw + hj;), and then we have h;; = hj; and f = Z” z;z5hi;. Moreover, the

1_0%f
2 Ox'0xI
This give us the desired expression for f, in perhaps smaller neighborhood of 0. To

matrix (h;(0)) is equal to ( (0)) and hence is nonsingular.
complete the proof, we just imitate the prove of usual diagonalization for quadratic
forms. The key step is as follows:

It will be proved by induction. Suppose that there is a coordinate (uy,--- ,u,) in a
neighborhood U; of 0 such that:

f==4w)? £+ (up_1)? + Z it H (g, - )

L,j2r

throughout Uy, where the matrix (H;;) are symmetric. We may assume that H,,.(0) # 0.



Now, let g(uy,--- ,uy,) be the square root of |H,,(uy, - - uy,)|. Then g will be a smooth,

non-zero function throughout some smaller neighborhood U, C U; of 0. Next, we

introduce new coordinates (vy, -+ -v,) by v; = u;, for i # r.
1
Up =g~ UT+H E wi Hyy
rro .
1>r
By the inverse function theorem, (vy,---v,) can serve as a coordinate function within

a sufficiently smaller neighborhood Uj of 0. So f can be expressed as

F=) )+ vwHj

i<r 9,0 >T
throughout Us. This complete the induction and the proof of Morse lemma. O

Corollary 1.7. Nondegenerate critical points are isolated.

Another important tool for us to prove Morse theory is ” I-parameter group of dif-
feomorphism”. 1t gives us a way to construct the deformation we need in the proof of
Morse theory.

Definition 1.8. A I-parameter group of diffeomorphism of a manifold M is a smooth
map ¢ : R x M — M such that

1. foreacht € R the map ¢; : M — M defined by ¢;(q) = ¢(t, q) is a diffeomorphism
of M onto itself,

2. for all t, s € R we have ;s = ¢y 0 @s.

Definition 1.9. Given a l-parameter group ¢ of diffeomorphisms of M we define a

vector field X on M as follows. For every smooth real valued function f let

This vector field X is said to generate the group ¢.

Lemma 1.10. A smooth vector field on M which vanishes outside of a compact set

K C M generates a unique 1- parameter group of diffeomorphisms of M.



Proof. Given any smooth curve t — C(t) € M, we can define the wvelocity vector
ill—‘t: € T,y M by the idenity %(f) = limy_, w Now, let ¢ be a 1-parameter
group of diffeomorphisms, generated by the vector field X. Then for each fixed ¢ the

curve t — ;(q) satisfies the differential equation %49 = X,

i i(q), With initial condition

©o(q) = q. This is true since

deo(q)
dt

flpen(@) = flee(a)) . flon(p)) = f(p)
= = lim - A = X,(f),

h—0 h h—0

where p = ¢;(q). Also, such a differential equation locally, has a unique solution which
depends smoothly on the initial condition.

Thus, for each point of M there exists a neighborhood U and a number € > 0 so
that this differential equation has a unique solution for ¢ € U, and |t| < e.

By the compactness of K, we can cover it by finite number of such neighborhood
U. Now, let ¢g > 0 be the smalllest of the corresponding e. We setting ¢;(q) = ¢ for
q ¢ K, then this differential equation has a unique solution ¢:(q) for |t| < € and for
all ¢ € M. Also, this solution is smooth as a function of both variables. Moreover, it is
clear that ;s = 1 0 @ for |t],|s|, |t + s| < €y, and each ¢ is a diffeomorphism.

It remains to defined ¢; for |t| > €y. Any ¢ can be expressed as

Pr =P 0pea 0+ 0w Oy,

where P is iterated k times. If k < 0, we just replace P by @ . It is easy to see

vy is well-defined, smooth and satisfies ;. s = ©; 0 @s. m

Remark. The hypothesis that X vanishes outside a compact set is important. For
example, let M be the open interval (0,1) C R, and that X = % be standard vector
field on M. Then X does NOT generate any 1- parameter group of diffeomorphisms of
M.

We now give the proof of Morse theory, and it will be cover by the two main
theorems.
For each a € R, we denote the set {p € M|f(p) < a} by M*. The following theorem

is significant as it shows us the homotopy type of M* can only change if a moves past a



critical point, we will investigate the effects of when a moves past a critical point after

this theorem.

Theorem 1.11. If f is a smooth real valued function on M, a < b and f~'{a,b] is
compact and contains no critical points of f, then M® is diffeomorphic to M°. In fact,

M? is a deformation retract of MP.

Proof. The idea of the proof is to push M® down to M® along the orthogonal trajectories
of the hypersurfaces f = constant.
Notice that the vector field grad f can be characterized by the identity

< X, grad f >= X(f),

for any vector field X. grad f vanishes precisely at the critical points of f. Also, for a

curve ¢ : R — M with velocity vector Z—ﬁ;, we have
dc dc d(co f)
e df>=—(f)=

Let p: M — R be a smooth function which equal to m throughout the
compact set f~![a,b]; and which vanishes outside of a compact neighborhood of this

set. Define X by
X = plg)(grad f)g-

Then X satisfies the condition of Lemma so X generated a 1-parameter group of
diffeomorphism ;.
For each ¢ € M, consider the function g,(t) = f(p:(q)). If vi(q) € f~'a,b], then

dgq(t) _ df(eula) __ dpula)

dt dt dt

ygrad f >=< X, grad f >= +1.

Therefore, g,(t) is linear with derivative 1 as long as ¢;(q) € f~![a,b]. So f(pi(q)) =
t + f(q), whenever f(y:(q)) € [a,b]. Thus, ¢, o : M — M is a diffeomorphism carries
M® to MP.

To see M is a deformation retract of M?°, define a parameter family of maps 7, :
M — M by

) = Pia—f@)(q) ifa< flg) <b.

It is easy to see 1 is identity, and r; is a retraction from M? to M“. This complete the

{q if f(q) <a

proof. O



With the next theorem, we will have completely characterized the homotopy type

of M based on a Morse function f defined on it.

Theorem 1.12. Let f : M — R be a smooth function, and let p be a nondegenerate
critical point of f with index X. if f(p) = ¢, Suppose for some e >0, f~1[c—¢€,c+ ¢ is
compact. It also contains no critical points of f other then p. Then for all sufficiently
small €, M°T¢ has the homotopy type of M€ with a X\ cell attached.

Proof. We first modify f to a new function, F', that agrees with f except for in a small
neighborhood of p. Then, when we look at those ¢ such that F(q) < ¢ — ¢, there will
be an extra portion that M ¢ will not have. Studying this extra portion will allow us

to prove the theorem. By Morse lemma, we may write f as

f —c— ($1)2 . (x)\)2 + (x)\+1)2 4. (SL’")Z,
where (z!,--- ,2") is a local coordinate in a neighborhood U of p such that
zi(p)=--=a"(p) =0

Next, choose € > 0 sufficiently small so that the image of U under the diffeomorphism
imbedding (z',---,2") : U — R™ contains the closed ball {(z!,---  2™)| > (2%)? < 2¢},
and f~![c — €, ¢+ €] is compact and contains no critical points other that p.

We now let g be a smooth function such that:
1. g(0) > ¢
2. g(r) =0 for r > 2¢;
3. =1 < ¢ (r) <0 for all r.
We defined F' to be a function in U by
F= [ =gl A4 2@ )R)
It is convenient to define two functions &,n: U — [0,00) by

E= (") 4 (2M)? and n= (M2 - (")



Then f=c—¢+nand F =c—E&+n— g(£+2n). By the construction of g, g > 0 for
all r > 0. Moreover, g(r) = 0 when r > 2¢. So we find that F' < f when £ + 2n > 2,
and F' = f when £ 4 21 > 2e.

Claim 1. The region F~'(—o0,c+ €] coincides with the region M¢*e.

Proof of the clatim. If €+ 2n > 2¢, then F = f.
If £+ 2n > 2¢, we have

1
FSf:a:—§+7]§c+§£+n§c+e.

So the region & + 21 > 2¢ lies in both F~!(—o0, ¢+ €| and M*e. O
Claim 2. The critical points of F in U are the same as those of f in U.

Proof of the claim.  Notice that

%—lg=—1—g’(£+2n)<0

88—521—29,(€+277)>1,
and OF  OF

AF = G de+ 5o d

So dF = 0 in the region & + 2n < 2¢ if and only if d¢ and dn are both 0. Then F' has
no critical points in U other than the origin, which was the only critical point of f in

U. O
Claim 3. The region F~'(—o00,c — €] is a deformation retract of McTe.

Proof of the claim.  Consider F~'[c —¢,c+¢|. By Claim 1 and F < f, we get
Flle—ec+e Cflle—ec+e.
Therefore, F~![c — ¢, ¢ + €] is compact. Also,
F(p)=c—g(0) <c—¢

so the only possible critical point p of F' is not in F~'[c — ¢, ¢+ ¢]. Thus, we can apply
Theorem which gives the desired result. O



For convenient, we denote this region F~!(—o0,c—¢] by M “UH, where H denotes
the closure of F~'(—o0,c— €]\ M.
Now consider the cell e* consisting of all points ¢ with &(¢) < ¢, n(¢) = 0. Note
oF

that e is contained in the "handle” H, since %€ < 0, we have

F(q) < F(p) <c—c¢,

but f(q) =c—£&(q) +n(q) >c—eforgeer. Soe* C Fl(—oc0,c—¢]\ M CH.
Claim 4. M €Ue" is a deformation restract of M~ €U H.

Proof of the claim.  Define r; be the identity ontside U, and define r, within U as
follows.

Case 1 On the region ¢ < ¢, define r; by

(b, a") e (2t 2N M ™).
It is easy to cheak r; maps F~!(—o0,c — €| into itself since g—l; > (0. Also, r; is the

identity and 7o maps this region into e’.
Case 2 Within the region € < £ <7+ ¢, define r; by

(931,... L") — (331’... ,x)‘,stx)‘ﬂ,--- LSz,

where the number s; € [0, 1] is defined by

E—¢
-

St:t“—(l—t)

Thus, r; is again the identity, and ro maps this region into f~!(c —€). Notice that r; is
continous as £ — ¢, n — 0, and this definition coincides with that of the Case 1 when
E=e

Case 3 On the region n+¢€ < £ (i.e. on M ). Let r; be the identity. This coincide
the Case 2 when £ =7 + €.

Hence, we get the desired maps 7;. O

Together all these four claims, we complete the proof of the therorem. O

It is amazing that a study of local behavior of a Morse fuction f can determine the

homotopy type of M.



2 Conjugate Points and Path Space

To prove the Bott periodicity theorem, we need several tool. Some of them are appli-

cations of Morse theory.

Let M be a smooth manifold and let p and ¢ be two (not necessarily distinct) points
of M. A piecewise smooth path from p to q will be meant a map w : [0,1] — M such
that

1. there exists a subdivision 0 =ty < t; < --- <t = 1 of [0, 1] so that each w

[ti—1,ti]
is smooth;
2. w(0) =pand w(l) =gq.
We denote the set of all piecewise smooth paths from p to ¢ in M by Q(M;p,q), or
briefly by Q(M) or €.
Suppose now thatM is a Riemannian manifold. The length of a vector v € T,M
will be denoted by |jv]| =< v,v >3, For w € ), define the energy of w from a to b

(where 0 <a<b<1)as
b
Etw) = |

Definition 2.1. Let p = y(a) and ¢ = v(b) be two points on the geodesic v with a # b.

2

d
“Nar

dt

We denote E} by E.

p and ¢ are said to be conjugate along ~(t) if there is a non-zero Jacobi field J along
~(t) which vanishes at ¢t = a and t = b. The multiplicity of the conjugate points is the

dimension of the vector space of all the Jacobi fields satisfying this condition.

Notice that the indez of the Hessian of E
E. :T,QxTQ—=R

is defined to be the maximum dimension of a subspace of 7.} on on which F,, is
negative definite.

To compute the index of a geodesic, We will state the following theorem without
proof. This theorem allow us compute the index by counting the multiplicity of all the

conjugate points.

Theorem 2.2 (Morse). The index A of E.. is equal to the number of points y(t), with
0 <t <1, such that y(t) is conjugate to ¥(0) along 7; each such conjugate point being

counted with its multiplicity. This index X is always finite.

10



Now, we are going to introduce a useful tool which connect the multiplicity and the

eigenvalue of a special linear transformation on 7, M.

Theorem 2.3. Let v : R — M be a geodesic in a locally symmetric manifold. Let
V = 21(0) be the velocity vector at p = v(0). Define a linear transformation Ky :
T,M — T,M by Ky(W) = R(V,W)V. Let ey,--- ,e, denote the eigenvalues of Ky .
The conjugate points to p along v are the points y(7k/\/e;) where k is any non-zero
integer, and e; is any positive eigenvalue of Ky . The multiplicity of v(t) as a conjugate
point is equal to the number of e; such that t is a multiple of w/\/e;.

Proof. First observe that Ky is self-adjoint:
< Ky(W), W' >=< W, Ky(W') > .
This follows immediately from the symmetry relation
<RX,Y)Z, W >=< R(Z,W)X,Y > .
Therefore we may choose an orthonormal basis Uy, - -+, U, for M, so that
Ky (U;) = e;U,

where ey, --- , e, are the eigenvalues. Extend the U; to vector fields along v by parallel

translation. Then since M is locally symmetric, the condition
R(V,U,))V = e;U;
remains ture along . Any vector field W along v may be expressed uniquely as
W(t) = Wi(t)Uy(t) + - - WL (t)U,(¢).

Then the Jacobi equation2 W + Ky (W) = 0 takes the form S> 2%, + 3 e,W;U; = 0.

dr? ar?
Since the U;’s are everywhere linearly independent, this is equivalent to the system of

n equations
d*W;
R +e;W; = 0.

If e; > 0 then

w;(t) = ¢; sin(y/e;it),

11



for some constant ¢;. Then the zeros of W;(t) are at the the multiples of t = 7/,/e;.
If e; = 0, then W(t) = ¢;t and if e; < 0, then W;(t) = ¢;sinh(y/|e;|t), for some
constant ¢;. Thus, if e; < 0, W;(¢) vanish only at ¢ = 0. This complete the proof. [

Let v/d be the length of minimal geodesic from p to ¢, and denote E ~10,d] by Q%
The next theorem shows what conditions make the relative homotopy group m;(2, Q%) =

0. These conditions have something to do with the index of geodesic.

Theorem 2.4. If the space of minimal geodesics from p to q is a topological manifold,
and if every non-minimal geodesic from p to q has index at least Ny, then the relative

homotopy group m; (2, Q%) is zero for 0 < i < Ag.

The proof will be based on the following lemmas:
Let K be a compact subset of R", and U be a neighborhood of K, and let f: U — R

be a smooth function such that all critical points of f in K have index > \.
Lemma 2.5. If g : U — R is a smooth function such that

dg B af

P g O’ f

d —
s ean 81"[81'] 8@0%

<

for all i,7 uniformly throughout K, for some small €, then all the critical points of g
have index > \.

Proof. let
9g

0, > 0.

K=

Let e (z) < --- < e () be the n eigenvalues of the matrix that has ij-th entry (a)g%xj ).

So we see a critical point of x is of index at least A\ if and only if elgambda(x) is

negative. Note that these functions are continuous as the eigenvalues of a matrix
depend continuously on the entries of the matrix.

Now, consider m,(z) = max{K,(z), —(e,)*} and define m(x) similarly. As the
critical points of f have index at least g, we must have —e?o (z) > 0 whenever Kf(x) =
0. So my(z) > 0, for all z € K. Now, let § be the minimum of m;. Suppose g is so
"closed” to f so that

|Ky(z) — Kf(x)| < 0 and |620([E) - e}\o(x)| < 0. (%)

12



Then m, is always positive; hence, every critical point of g will have index at least
Ao-
Finally, it is easy to show that (x) will be satisfied providing that

dg Of 0*g 0*f
— < d — <
‘al’z 8:172 can (9:1:18:1;] a&fzal'j =&
for sufficiebtly small €. This proves the lemma. O]

We can now show a special case of the desired theorem.

Lemma 2.6. Let f : M — R be a smooth function with minimum 0, such that each
Me = f710,c] is compact. If M° is a manifold, and the critical points of M \ M° has
index at least N, then m.(M, M°) =0 for 0 <r < ).

Proof. Choose a neighborhood around each point of M? so that M is a retract of the
open set which is unions of the neighborhoodWe may assume that each point of U
is joined to the point of M of which it is in a neighborhood of (we can shrink the
neighborhood so that each neighborhood contains only one point of MY if necessary).

Let I" be the unit cube of dimension r < \y. Consider a function
h:(I",S7) — (M, M").

We are going to show that h is homotopic to a map k' where f'(I") C M°,

Firstly, We choose a g that approximates f on M€, where c is the maximum of f on
h(I"). By the previous lemma, we can choose g such that it has no degenerate critical
points and each critical point has index at least .

Let § be the minimum of f on M \ U, then g~'(M°) has the homotopy type of
the union of g~!'(—o00,d] and cells of dimenstion A\. Then consider h : (I",S") —
(Me, M°) C (g7 (—o0,c+€), MY).

Since r < A, then h is homotopic to some A’ that maps into (¢~ (—o0, d), M?). This
is true because all the critical points of g have index > \. However, g~!(—o0, 2¢] is
contained in U and U can be deformed into M°, so we have m,.(M, M°) = 0. O

proof of the Theorem[2.4. We use the energy function restricted to IntQ(to,- - ,tx) to
relate the previous theorem to geodesics. Note that the energy function satisfies all the
hypotheses of the previous theorem except that it does not range over [0, 00). We can
fix this by just applying some diffeomorphism that takes the range of E into [0, c0).
Call such a diffeomorphism f, then applying the previous lemma to the function f x F
gives m;(IntQ(tg, - -+ ,1)k), Q%) = 0 as desired. O

13



There is a more useful form of Theorem [2.4] and in fact, this is what we use to prove

the Bott periodicity theorme.

Corollary 2.7. If the space of minimal geodesics is a topological manifold, and if every
non minimal geodesic has index at least Ny then m;(Q%) is isomorphic to wi1(M) for i

at most A\g — 2.

Proof. 7;(04) is isomorphic to m;(Q2) for i less than \g— 1 because the relative homotopy

group is 0, and m;(2) is isomorphic to ;41 (M). O

3 Bott Periodicity Theorem

Let C™ be the space of n-tuples of complex numbers, equipped the standard Hermi-
tian inner product. The unitary group U(n) is the group of all linear transformations
S : C" — C™ which preserve this inner product. Equivalently, using the matrix repre-
sentation, U(n) is the group of all n x n complex matrices S such that SS* = I; where
S* denotes the conjugate transpose of S.

For any n x n complex matrix A the exponential of A is defined by the convergent

power series expansion:
Lo 13
expA=1+A+ A+ A+ -
2! 3!
The following properties are easily verified:
1. exp(A*) = (exp A)*; exp(TAT ') = T(exp A)T™;

2. If A and B commute then exp(A+B) = (exp A)(exp B). In particular, (exp A)(exp —A) =
1.

3. The function exp maps a neighborhood of 0 in the space of n x n matrices diffeo-

morphically onto a neighborhood of I.

It follows from the above that A is skew-Hermitian (i.e. if A+ A* = 0) if and only

if exp A is unitary. It is easy to see:

4. U(n) is a smooth submanifold of the space of n x n matrices;

5. the tangent space of T;U(n) can be identified with the space of n x n skew-

Hermitian matrices.

14



Thus, the Lie algebra g of U(n) can be identified with the space of skew-Hermitian
matrices. For any tangent vector at I extends uniquely to a left invariant vector field
on U(n). A directly computation shows that the Lie bracket of left invariant vector
field is as same as the Lie bracket of matrices, [A, B] = AB — BA.

Since U(n) is compact, it processes a left and right invariant Riemannian metric.
Notice that the map exp : T;U(n) — U(n) defined by exponentiation of matrices
coincides with the exponential map defined by geodesics on the resulting Riemannian
manifold. In fact, for each skew-Hermitian matrix A, the map ¢t — exp(tA) defines a
1-parameter subgroup of U(n) and hence defines a geodesic.

We now define an inner product by

< A, B >= Re(trace(AB")) = ReZAUBZ-j.

i7j

It is clearly that this is positive definite, 0 < A or B = 0, conjugate symmetric and
linear on g. This inner product on g induced a left invariant Riemannian metric on
U(n). To check that the resulting metric is also right invariant, we check it is invariant

under the adjoint action U(n) on g.

Definition 3.1. An adjoint action is: each S € U(n) determines an automorphism
X = SXS7! = (LsRg")X. The induced mapping (LsR™'), is denoted Adg. As
exp(TAT™') = Texp(A)T™!, we then have Adg A = SAS™.

We see that the inner product is invariant under Adg by direct computation:

< Adg A, Adg B > = Re(trace((Ads A)(Adg B)))
= Re(trace(SAS™H(SBS™)))
= Re(trace(SAS™'(S71)*B*S*))
= Re(trace(SAB*S™)) (- SeU(n))
(trace(AB

= Re(trace(AB)) =< A, B >

It follows that the corresponding left invariant metric on U(n) is also right invariant.
Given A € g we know that there exists T € U(n) such that TAT ! is in diagonal

form:
ial

TAT ' =
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where the a;’s are real. Also, for any S € U(n), there exists T' € U(n) such that:

ia
etal

et
elaz

TST! = _ ,

where the a;’s are real again. Hence, exp : g — U(n) is surjective.

We may treat the special unitary group SU(n) in the same way. SU(n) is defined
as the subgroup of U(n) consisting of matrices of determinant 1. It is easy to show that
for T € U(n) such that TAT ! is diagonal, then

det(exp A) = det(T(exp A)T™) = det(exp(TAT ")) = erace(TAT™) — gtrace 4.

This shows that the Lie algebra of SU(n), ¢/, is the set of all matrices A such that
A+ A* =0 and trace A = 0.

To apply Mores theory, we need to consider the geodesics from [ to —I. In other
words, we consider all A € g = T;U(n) such that exp A = —I. Suppose A is such
matrix. If it is not of diagonal form, let 7' € U(n) so that TAT ! is diagonal. Then we
have:

exp(TAT™ ') = T(exp) AT ' =T(-1NT" = —1I.

Thus, we may assume that A is diagonal:

ial

Then

16



So in this case, exp A = —1I if and only if A is of the form
iklﬂ
ikgﬂ'
ik, m

for some odd integers ki, - -, k,.
It is clearly that the length of geodesic t — exptA fromt =0tot =1 1is

|A| = \/Re(trace AA*)) = /trace(AA*),

so the length of the geodesic is determined by

ki 4+ K2

Thus, A determines a minimal geodesic if and only if each k; = 41, and in this case
the length is m/n.

Now, treat A as a linear map from C” to C", then A is complete determined by
Eigen(ir), the eigenspace with respect to eigenvalue im, and Eigen(—iw), the eigenspace

with respect to eigenvalue —im. In fact, since C™ splits as
Eigen(im) & Eigen(—in),

it can only determined by Eigen(im), which can be an arbitrary subspace of C". Hence,
the space of all minimal geodesic in U(n) from I to —I can be identified with the space
of all sub-vector-space of C".

Unfortunately, this space is inconvenient to use since its element has varying dimen-
sions. This difficulty can be removed by replacing U(n) by SU(n) and setting n = 2m.
In this case, all the discussion above remain valid. But the additional condition that
ki + - koy = 0 with k; = £1 restricts Eigen(im) to being an arbitrary m-dimensional

sub-vector-space of C*™. This proves the following:

Lemma 3.2. The space of minimal geodesics from I to —I in SU(2m) is homeomorphic
to the complex Grassmann manifold G,,(C*™), consisting of all m-dimensional sub-

vector-spaces of ¢*™.

17



Lemma (3.2 shows the minimal geodesics from I to —I in SU(2m) is a manifold. To

apply Corollary 2.7 we also need the information about index of non-minimal geodesics.
Lemma 3.3. Every non-minimal geodesic from I to —I in SU(2m) has index > 2m+2.

Proof. To compute the index of non-minimal geodesic from I to —I on SU(2m), let
A € ¢ be a matrix corresponds to a geodesic from I to —I (i.e. the eigenvalues of A
have the form ikym,--- ik, where k;’s are odd integers with sum zero).

We need to find the conjugate points to I along the geodesic ¢t — exp(tA). According
to Theorem [2.3] these will be determined by the positive eigenvalues of the linear
transformation

Ka:g — ¢,

where

Ka(W) = R(A,W)A i[[A, W1, Al

We may assume A is diagonal matrix:

i]i]lﬂ'

ik,
with ky > ky > -+ > k,. It W = (w,), then a direct computation shows that
[A, W] = i?T(kj — kg)w]'g,

and hence

So,
KA(W) = —(k] — kg)ZQUjg.

Now we find a basis for g’ consisting of eigenvectors of K4, as follows:

1. For each j < ¢, let E;; be the matrix with +1 in the jf-th entry, —1 in the jf-th
place and zeros elsewhere. It is in g’ and is an eigenvector corresponding to the

eigenvalue = (k; — k).

2. Similarly for each j < £, let £, be the matrix with +¢ in the j/-th entry, —i in
the j¢-th place and zeros elsewhere. It is in g’ and is an eigenvector corresponding

to the eigenvalue = (k; — ky)?

18



3. Each diagonal matrix in g’ is an eigenvector with eigenvalue 0.

Thus, the non-zero eigenvalues of K4 are the numbers %Q(kj — k¢)* with k; > k.
Each such eigenvalue is to be counted twice.
Now consider the geodesic v(t) = exp(tA). Each eigenvalue e = %Q(kj —kg)? >0

give rise to a series of conjugate points along v corresponding to the values

t =

E
o

v
\/_
This gives

2 4 6

= (kj — ko) (kj — ko) (ky — ko)

ke

The numder of such value of ¢ in (0,1) is equal to kj% — 1 (We need to minus one

since the value ¢ = 1 is not included).
Now let us apply the Index Theorem. For each j,¢ with k; > k‘g, we obtain two

copies of the eigenvalue = ke 1) to the

1
index. Sum over all j, ¢, this gives

(k;j — k¢)?, and hence a contribution of 2(

A= (kj— ke —2)

ki>kg

for the index of the geodesic 7.
Now, we divided it into three cases:
Case 1 At least m+1 of the k;’s are negative. In this case at least one of the positive

k; must be > 3, and we have

)\>23—— 2) = 2(m +1).

Case 2 At least m+1 of the k;’s are positive. In this case at least one of the negative

—3, 80
)\>Zl—— 2) = 2(m + 1).

Case 3 m of the k; are positive and m are negative but not all are £1 (since we
assume that v is non-minimal). Then one is > 3 and one is < —3, so
m+1

Zmz_(?)—(—l)—2)+Z(1—(—3)—2)+(3—(—3)—2)—4m22(m—|—1).
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Thus, in either case we have A > 2m + 2. This proves Lemma.

Then now we can prove the following:

Theorem 3.4. The inclusion map G,,(C*™) — Q(SU((2m); I, —1I) induces isomor-

phisms of homotopy groups in dimensions < 2m. Hence,
7T2Gm<(CQm) = 7ri+1SU(2m),

fori < 2m.

Proof. By Lemmal3.2] Q(SU(2m); I, —I) is a topological manifold, since it is isomorphic
to G, (C*™). Also, every non-minimal geodesic has index at least \g = 2m + 2, then

by Corollary
TG (CP) = (07 ™) 22 7,1 (SU(2m)),

fori < X\g—2=2m. O

We are now going to establish the relation between of homotopy groups of U(m)
and those of SU(m).

Lemma 3.5. The group WiGm((CQm) is isomorphic to m;_1U(m) fori < 2m. Moreover,
Wi_lU(m) = Ti_lU(m + k)

fori<2m, k € N; and
m;(U(m)) = ;(SU(m)),

forj # 1.
Proof. We can choose fibrations

U(m) — U(m +1) — §*m+

and

U(m) — U(2m) — U(2m)/U(m).
From the first one, we get
e — 7TiS2m+1 — Wi_lU(m) — 7TZ'_1U(m + 1) — ’7Ti_182m+1 —
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and this becomes
0— 7T7;,1U(m) — ﬂi,lU(m + 1) — O,

when 7 < 2m.

Also, the second fibration gives
e — WZU(Qm)/U(m) — ﬂi,lU(m) — 7Ti,1U(2m) — 7T171U(2m>/U(m) —

which implies m;(U(2m)/U(m)) = 0, for ¢ < 2.
Notice that the complex Grassmann manifold G,,(C*") can be identified with
U(2m)/(U(m) x U(m)), so we have a fibration:

U(m) — U2m)/U(m) — G, (C*™).
Using this fibration and m;(U(m)/U(2m)) = 0, for i < 2m, we now get:
Wsz(C%n) = Wi_lU(m),

for ¢ < 2m.

Finally, from the fibration
SU(m) — U(m) — S*,

we obtain that

78U (m) = 7,0 (m),
for j # 1. This proves the lemma. O

From now on, we use m;U to denote the i-th stable homotopy group of the unitary

group.
So, we see that:

7TZ‘_1U = 7T,~_1U(m) = WiGm(CQm) = 7Ti+1SU(2m) = 7Ti+1U.

The first and the third isomorphism follows from Lemma and the second isomor-
phism comes from Theorem [3.4, This proves the famous Bott Periodicity Theorem.

Theorem 3.6 (Bott Periodicity Theorem). Fori > 1,
iU = mi U
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1 Introduction

Let E, F — M be two real or complex vector bundle over a compact manifold
M. Let P:C*®(M,E) — C® (M, F) be an elliptic operator. The index of
P is defined by

ind P :=dim ker P — dim coker P
=dim ker P*P — dim ker PP~*.
We had already studied that the index of an elliptic operator is expressible

as an integral on M via the heat kernel. This is known as McKean-Singular
formula

ind P = / (trg, Hpsp (x,2,t) — trp, Hpps (z,x,t)) dvoly (z) .
M

1



Also, in the lecture, we had introduced the Dirac operator D on a Clifford
module E. In order to prove the local index theorem, we need to use the
Lichnerowicz formula and the Getzler scaling method.

In this report, we will give a different approach to Atiyah—Singer index
theorem via twisted signature formula due to Gilkey [Gil95]. Precisely, we
will fiest study the index of twisted Dirac operator for the vector bundle E:

+
D:C> </\ (T*M) @ E) NYVoLs (/\jF (T*M) @ E) .
Then, we will prove the twisted signature formula:
indD:/ L(M)ch(FE)
M

using the invariance theory. Finally, based on the twisted signature formula,
we will prove the Atiyah—Singer index theorem for general elliptic operator P
by interpreting the index as a function on K-ring under K-theory language.

In the second section, we will introduce the important invariant for an
elliptic operator. These invariants are highly related to the heat kernel
H (z,y,t) of the elliptic operator P. In the third section, we will study
the invariance theory on manifolds and vector bundles. Explicitly, we will
prove that all the invariants in terms of derivatives of metric and connection
one form are all linearly span of wedge products of Pontryagin classes of T'M
and Chern classes of E. This will help us in proving the twisted signature
formula. In the fourth section, we give the proof of twisted signature formula
via the invariants. After that, in the fifth section, we will prove the Atiyah—
Singer Index Theorem for general elliptic operators. To achieve this goal, we
need to interpret the index of an elliptic operator as a function in K-theory
language:

ind: K (X(T"M);C) /K (M;C) — C,

where X (T* M) is the fiberwise suspension of the unit sphere bundle S (7*M).
Then, we will prove that the group K (X (7T*M);C) /K (M;C) is generated

by the special bundles {H+(EUPE) oy Then, the Atiyah—Singer Index
Ee&Vect(M

Theorem reduce to these special case that we may simply apply the twisted
signature formula.

As a supplement, in the last section, we will give a sketch of original
proof of Atiyah—Singer Index Theorem |AS63]. There are three key points
in the proof. First, we introduce the group of elliptic symbols Ell (M). By
analyzing the group, we reduced the Atiyah—Singer Index Theorem to the
twisted signature formula. Next, we introduce the cobordism ring A on
the pair (M, E), where E is a complex vector bundle on M. Using the

2



knowledge of singular integral operators on manifolds, we can prove that the
null-cobordant elements in A satisfy the theorem. Therefore, the concept
of index is well-defined on the cobordism ring A. Finally, generalizing the
Thom isomorphism theorem, we see that A ® Q is generated by (CIP’%, 1)
and (S%,V}) as a polynomial algebra. Eventually, to achieve the theorem is
to verify the case CP* and S% as the generators of A ® Q.

2

Local Formula for the Index

Theorem 1. Let P be a self-adjoint elliptic operator of order d > 0 on a
vector bundle E over compact manifold M™ such that the symbol op (z,£)
of P is positive definite for £ # 0. Then,

1.

If we choose a coordinate system for M near a point x € M and choose
a local frame for E, we can define e,(x) depending on the symbol
op(x,€) such that if H(t,z,y) is the heat kernel of e~ then

txm ast— 0"

i.e., given any integer k, there exists n(k) such that:

H(t,z, ) (x) < Cptt for 0 <t < 1.

<
n<n( oo,k

Moreover, e,(z) € END(E, E) is invariantly defined independent of the
coordinate system and local frame for E.

Theorem 2.

(a)

Let P, : C*(E;) — C* (E;) be elliptic self-adjoint differential opera-
tors of order d > 0 with positive definite symbol. Weset P =P, & P; :
C>®(E, & Ey) — C* (E, & E,). Then P is an elliptic self-adjoint par-
tial differential operator of order d > 0 with positive definite symbol
and e, (z, P, ® Py) = e, (x, P) ® e, (v, P).

Let P, : C® (E;) — C* (E;) be elliptic self-adjoint partial differential
operators of order d > 0 with positive definite symbol defined over
compact manifolds M;. We let

P:P1®1+1®P2COO(E1®E2)—>COO(E1®E2)

3



over M = M;x M. Then, P is an elliptic self-adjoint partial differential
operator of order d > 0 with positive definite symbol over M and

en(x, P) = Z ep (z1, P1) @ eq (22, )

pHq=n

Proof. These follow from the identities:

e—t(Pl@Pg) — e—tpl EB e—tPQ

e—t(P1®l+l®P2) — e—tpl ® e—tPQ

so the heat kernels satisfy the identities:

H(t,z,x, P, ® P,) = H (t,z,z,P)® H (t,x,x, P)
H(t,z,z, A®1+1® ) =H (t,71,21, ) ® H (t, 22,72, ).

We equate equal powers of ¢ in the asymptotic series:

Dt T en(r, PL@ P)
~ Zt%en (.ZU, Pl) S Zt%en (ZL’, PQ)
Zt%en(x, Pol+1®P)

N {Zt%ep (:cl,P1)} Q {th% (:cg,Pz)}

Hence, the proof is complete. O]

We define the scalar invariant
an(z, P) = Tre,(z, P),

where the trace is the fiber trace in E over the point x. These scalar invariants
an(x, P) gives

Tretp—/ Trg, H(t,z,z) dvoly(z)
M

[e.e]

~) T / an(z, P)dvoly ().
M

n=0

This is a spectral invariant of P which can be computed from local informa-
tion about the symbol of P.



Let P be an elliptic operators on the vector bundle £ and let A; be the
associated Laplacians. We define:

an(x, P) = (1) Tre, (x,A))

then McKean-Singer formula gives

o0

ind(P) = Z(—l)iTr et tndm/ an(z, P) dvoly(x)

i n=0 M

Let t — 0T, we get the following theorem.

Theorem 3. Let P be an elliptic differential operators on the vector bundle
E over compact manifold M™.

(a) a,(z, P) can be computed in any coordinate system and relative to any
local frames depending on the symbol of P and of P*.

(b) . .
/Man(x,P) dvoly(z) :{ gl (P) ;Z;Z

3 Invariance Theory

We let P, denote the ring of all invariant polynomials in {g;;, gij.k. Gijikes ---
the derivatives of the metric, for a manifold M of dimension m. We defined
ord (gij.a) = |a; let P, ,, be the subspace of invariant polynomials which are
homogeneous of order n. Then, we have the following useful coordinate free
characterization:

Lemma 4. Let P € P, then P € P,,, if and only if P(c?g) (zy) =
¢ "P(g) (zo) for every ¢ # 0.

Proof. Fix ¢ = 0 and let X be a normalized coordinate system for the metric
g at the point xy. Suppose that zo = (0,...,0) is the center of the coordinate
system X. Let Y = cX be a new coordinate system, then we have

0 _ 0 (D 9N (0 o

d; = C_|Oé‘dg gij;a (Y7 029) = C_Ialgij;a<X7 g)
This implies that if A is any monomial of P that:
A (Y, g) (z9) = ¢ "W A(X, g) (20)

Since Y is normalized coordinate system for the metric ¢?g, P (c%g) (zg) =
P (Y,c%g) (x) and P(g) (x¢) = P(X,g) (7). This proves the Lemma. O
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If P € P,,, we can always decompose P = Fy+- - -+ P, into homogeneous
polynomials. Above lemma implies the P; are all invariant separately. There-
fore, P, has a direct sum decomposition P, = Py o B Prm1 @ B Pppn®- -
and has the structure of a graded algebra. Using Gauss lemma and Taylor’s
theorem, we can always find a metric with the g;;., (o) = ¢;j.» arbitrary con-
stants for |o| > 2 and g;; (z9) = 0;j, gijuk (x0) = 0. Consequently, if P € P,
is non-zero as a polynomial, then we can always find g so P(g) (zo) # 0 so P
is non-zero as a formula.

Finally, note that P,,, is zero if n is odd since we may take ¢ = —1 in
the above lemma.

Lemma 5. a, (z,A,) defines an element of P, ,,, where A, is the Laplacian
on p-forms.

Proof. First, the Laplacian is defined to be A = dd* 4+ d*d = +d*xd*+xdxd.
In the flat metric metric, Laplacian is given by A = — > % which is smooth
in the metric g. For general metric, we parametrize the metric and we can
differentiate the matrix representation of Hodge star * and each derivative
applied to * reduces the order of differentiation by 1 and increase the order
of gij.a by 1. Thus, the linear term and the constant term of Laplacian is
also smooth in g;;, gij.x, and gij.ke.

Note that e, (x, A) for the second order elliptic operator A is defined as

H(t,x,x) ~ t%en(:ﬁ, P),

n>0

where H(t,z,z) be the heat kernel of e7**. Then, a,(z,A) = Tre,(z,A) is
the fiber trace and a,(z, A) is homogeneous of order n in Py, . O

Weyl’s theorem (See theorem |10]at the end of this section) on the invari-
ants of the orthogonal group gives a spanning set for the spaces P, ,:

Lemma 6. We introduce formal variables R, ;yigi,:i5..4, for the multiple co-
variant derivatives of the curvature tensor. The order of such a variable is
k + 2. We consider the polynomials in these variables and contract on pairs

of indices. Then, all possible such expressions generate P,,. In particular,
(1) {1} spans Py.o.
(2) {RU’U} Spans Pm,g.

(3) {Rijijieks Rijij Rikr, Rijir Rijik, RijiiRijri} spans Pp, 4. This particular
spanning set for P,, 4 is linearly independent and forms a basis if m > 4.



If I ={1<4 <---<ip,<m},let [I| =pand de’ =dx;, A+ Ndx;,. A
p-form valued polynomial is a collection {P;} = P for |I| = p of polynomials
Prin{gj, gijik, -+ -} Wewrite P =32, Prdz" as a formal sum to represent
P. If all the {P;} are homogeneous of order n, we say P is homogeneous of
order n. We define:

P(X,g) (x0) = Y_ Pi(X, g)de’ € \'(T"M)

to be the evaluation of such a polynomial. We say P is invariant if P(X, g) (x¢)
P(Y,g) (zo) for every normalized coordinate systems X and Y. Similar to
above lemma, we have

Lemma 7. Let P be p-form valued and invariant. Then, P is homogeneous
of order n if and only if P (c*g) (x¢) = ™" P(g) (x¢) for every ¢ # 0.

Proof. Fix ¢ = 0 and let X be a normalized coordinate system for the metric
g at the point xy. Suppose that zy = (0, ...,0) is the center of the coordinate
system X. Let Y = cX be a new coordinate system, then we have

0 _ a0 L (0 0N_ (0 0
83/,7 6’@ g (9yz’(9yj —9 8xi’8xj

dy = clelde Jijsa (Y7 029) = Ci‘OK'gij;a(Xa 9)

dyt Ao AdyP = Pdzt A - A daP.
This implies that if A is any monomial of P that:

A (Y, ) (wo) = "M A(X, g) (20)

Since Y is normalized coordinate system for the metric ¢?g, P (c%g) (x) =
P (Y,c%g) (xg) and P(g) (x¢) = P(X,g) (7). This proves the Lemma. O

Let Py, »p be the space of p-form valued invariants which are homogeneous
of order n.

Let Pj(g) = p;j(T'M) be the j-th Pontryagin class computed relative to the
curvature tensor of the Levi-Civita connection. If we expand p; in terms of
the curvature tensor, then p; is homogeneous of order 2j in the { R;; } tensor
so p; is homogeneous of order 45 and invariant in P, 4;4;. If p is a partition
of k =iy +4---+1i;, we define p, = p;, ... pi; € Pmakar- The {p,} form a basis
of the Pontryagin 4k forms. Also, by considering products of these manifolds
with flat tori 7™~** we see that the {p,} are linearly independent in P,, 41, 4%
if 4k < m.



Lemma 8. P, ,,, is spanned by the Pontryagin classes, i.e.,
(1) P = 0if n is not divisible by 4k.

(2) Ppakar = span{p,} for 4& < m has dimension w(k), where 7 (k) is the
integral partition number of k.

Proof. There is a natural restriction map r : Py, np — Pm—1n,p- Note that
T Pomn — Pm_inn is injective for n < m since r (Adz* A -+ AdaP) =
Adzx' A---Adzx? appears in r(P). The Pontryagin classes have dimension 7 (k)
for n = 4k. By induction, ™™™ : Py, nn — Pponp is injective so dim Py, . <
dim P, , . Apply this lemma for the special case n = m. If n is not divisible
by 4k, then dim P, ,, = 0 which implies dim P,,,, = 0. If n = 4k, then
dim Py nn = (k) implies that (k) < dim Py pn < diM Py, < 7(k) so

dim Py, ., = 7(k). Lastly, since the Pontryagin classes span a subspace of
exactly dimension 7(k) in Py, p.n, this completes the proof. O

Finally, we discuss the invariance on vector bundles. Let E be a complex
vector bundle. Suppose that E is equipped with a Hermitian fiber metric
and let V be a Hermitian connection on E. Let §= (s1,...,54,...,5,) be a
local orthonormal frame for £ and introduce variables w,;; for the connection
1-form;

V (84) = Wapidr' @ 83, ie., Vi=w® 5.
We introduce variables wgpio = dS (wap;) for the partial derivatives of the
connection 1-form. We shall also use the notation wep; k... We use indices
1 <a,b,--- < v to index the frame for E and indices 1 < i, 5,k < m for the
tangent space variables. We define:

ord (Wapia) = 1+ ||  and  degy, (Wapiza) = 0 + (k).

Let Q be the collection of polynomials in the {wgp.q } variables for |a| > 1. If
Q € Q, we define the evaluation Q(X, 5, V) (x¢). We normalize the choice of
frame § by requiring V(5) (zo) = 0. We also normalize the coordinate system
X as before so X (z9) =0, g;;(X, g) (xo) = 6,5, and g;;.6(X, g) (xg) = 0. We
say @ is invariant if Q(X,35,V) (z9) = Q (Y,5,V) (o) for any normalized
frames §, §' and normalized coordinate systems X, Y’; we denote this common
value by Q(V). Let Q,,,, denote the space of all invariant p-form valued
polynomials in the {wgp.} variables for |a| > 1 defined on a manifold M
of dimension m and for a vector bundle of complex fiber dimension v. Let
Qmnpo denote the subspace of invariant polynomials homogeneous of order
n in the variables {wapi;o } of the connection forms. Similarly as was done for
the P, we can show there is a direct sum decomposition

Qmpw = @ Qmnpe and Q. =0 forn—podd.
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Let P be invariant and let A be a monomial. We let ¢(A, P) be the
coefficient of A in P. We say A is a monomial of P if ¢(A, P) # 0. Let T; be
the linear transformation:

Tﬂ<x’“)_{ o ifk#£j

This is reflection in the hyperplane defined by z; = 0. Then
T (A) = (—1)%e 4

J

for any monomial A. Since
TP =Y (—1)*We(A, P)A=P = c(A P)A.

we conclude deg;(A) must be even for any monomial A of P. If A has the
form:

A= Girjian - Girgrson
we define the length of A to be:

((A) =r.

It is clear 2((A) +ord(A) = >_; deg;(A) so ord(A) is necessarily even if A is
a monomial of P. This also provides another proof P,,, = 0 if n is odd.

In addition, we let R, . denote the space of p-form valued invariants
which are homogeneous of order n in the {gij.o, wak;s} variables for |a| > 2
and || > 1. The spaces Py, pp and Qy,ppp are both subspaces of Ry npo-
Furthermore, wedge product gives a natural map Py, n p@Qmn/ p 0 — Romntn! ptp/ v-
We say that R € Ry, pp0 is a characteristic form if it is in the linear span of
wedge products of Pontryagin classes of T'(M) and Chern classes of E. The
characteristic forms are characterized abstractly by the following Theorem.

Theorem 9.
1. Rinpe =01if n <porif n=pandn isodd.
2. If R € Ry pnne then R is a characteristic form.

Proof. Let 0 # R € Ry npo- Note that an invariant polynomial is homoge-
neous of order n if R (c?G,V) = "R(G, V). Also, n — p must be even and
that if A is a monomial of R, A is a monomial of exactly one of the R;. We
decompose A in the form:

A - giljl/al e giqjq/aqwalblkl/ﬁl tet warbrkr/ﬁr = AgAw
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and define ¢(A) = ¢+ to the length of A. We choose A such that deg,, (A7) =
0 for £ > 2q. By making a coordinate permutation we can assume that the
k, < 2¢+rfor1 < v < r. We choose the f3; so that (k) = 0 for
k>2q+r+1, fa(k)=0for k >2¢+r+2,..., 5.(k)=0for k > 2q+ 2r.
This choice of A so that deg,(A) = 0 for k > 2¢(A). If A is a monomial of R;
for I ={1 <4y <--- <i, <m} then deg; (A)is odd. We have the estimate
p <, <2(A) <> ||+ > (I8u] + 1) = n so that Prppe = {0} ifn <p
or if n — p is odd. Hence, we prove the first part of this theorem.

In the limiting case, we must have equalities so |o,| = 2 and |B,| = 1.
Furthermore, i, = p so there is some monomial A such that deg;,(A) = 0 for
k> p=mnand Adx'A---AdxP appears in R. Consider the natural restriction
map

T Rimnpo = R—1npo

and the argument above shows r : Rynne —+ Rm—1nne 18 injective for
n < m. Since the restriction of a characteristic form is again a characteristic
form, it suffices to prove the second part for the case m = n = p.

Let 0 # R € Ry nn0, then Ris a polynomial in the {g;;.ke, Wapi;; } variables.
The restriction map r was defined by considering products M; x S!. Fix non-
negative integers (s,t) so that n = s +¢. Let M; be a Riemannian manifold
of dimension s. Let M, be the flat torus of dimension ¢ and let E5 be a
vector bundle with connection Vy over My Let M = M; x My with the
product metric and let ¥ be the natural extension of Es to M which is flat
in the M, variables. Explicitly, if m9 : M — M is a projection on the second
factor, then (E,V) = 75 (E2, V) is the pull back bundle with the pull back

connection. We define
(s (R) (g1, V2) = R(g1 x 1, V).

Using the fact that Py ,, ,, = 0 for s < p; orny < p; and the fact Oy , pox =0
for ¢ < py or ny < po, it follows that () defines a map

T(s,t) + Rn,n,v — Ps,s,s X Qt,t,t,v-
Algebraically, let A = A9A“ be a monomial, then we define:

(4) = 0 if degy, (A9) > 0 for k > s or deg, (A“) >0 for k <s
W =1 A otherwise.

In this definition, we set g;;.x¢ = 0 if any of these indices exceeds s and set
Wapiz; = 0 if either ¢ or j is less than or equal to s.
We will use these projections to reduce the proof to the case in which

Re€ Qui1p. Let 0 # R € Ry and let A = A9A% be a monomial of R. Let
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s =20(A%) =ord(AY) and let t =n —s = 2¢(A¥) = ord (A*¥). We choose A
such that degy (A9) = 0 for k > s. Since deg;(A) > 1 must be odd for each
index k, we can estimate:

t < Zdegk(A) = Zdegk (A“) < Zdegk (A¥) = ord (A%) = t.

k>s k>s k

Then, as all these inequalities must be equalities, we conclude deg, (A“) =0
for k < s and deg, (A¥) = 1 for k > s. In particular, this shows that
(s, (R) # 0 for some (s,t) so that

@ T(s,t) - Rn,n,n,v — @ Ps,s,s & Qt,t,t,v

s+t=n s+t=n
is injective.

Finally, we prove that Q;;:, consists of characteristic forms of E. Note
that P, , consists of Pontryagin classes of T'(M). The characteristic forms
generated by the Pontryagin classes of T'(M) and of E are elements of R, 5, .0
and 7(sy) just decomposes such products. Thererfore, 7 is surjective when
restricted to the subspace of characteristic forms. This proves 7 is bijective
and also that R, ,, . is the space of characteristic forms. This will complete
the proof.

Now, we have reduced the proof of Theorem to showing Q;;,, consists of
the characteristic forms of £. We noted that 0 # @ € Q;;,, is a polynomial
in the {wapi;;} variables and that if A is a monomial of @), then deg, (A4) =1
for 1 < k <'t. Since ord(A) = t is even, we conclude Q;;+, = 0 if ¢ is odd.
The components of the curvature tensor are given by:

Qapij = Wabiyj — Wapjyi  and Qg = E Qapijdr; N dx;
up to a possible sign convention. If A is a monomial of P, we decompose:

A= Wagbrigia » » » Waybyiz_13its

where 2u = t. All the indices i, are distinct. Then, we can express P in
terms of the expressions:

A= (wa1bli1;i2 - Walbliz;h) ce (waubuitflﬂt - waubuitﬂ'tfl) dxil ARERRA dmit
:Qa1b1i1i2 Ce Qaubuit—litdxil VASRERIVAY d.’Eit

Using the alternating structure of these expression, we can express P in terms
of expressions of the form:

Qg A A Qauby

11



so that @ = Q() is a polynomial in the components €, of the curvature.
Since the value of @) is independent of the frame chosen, @) is the invariant.
Hence, we see that in fact () is a characteristic form which completes the
proof. ]

Weyl’s theorem on invariants In the remaining of this section, we will
review H. Weyl’s theorem briefly. Let V' be a real vector space with a fixed
inner product. Let O(V) denote the group of linear maps of V' — V' which
preserve this inner product. Let @*(V) =V ®---®V denote the k-th tensor
product of V. If g € O(V), we extend g to act orthogonally on @*(V'). We let
z — g(2) denote this action. Let f : ®*(V) — R be a multi-linear map, then
we say f is O(V) invariant if f(g(z)) = f(z) for every g € O(V'). By letting
g = —1, we can see there are no O(V) invariant maps if £ is odd. We let k =
2j and construct amap fy: @*(V) = (VeV)o(VeV)e --o(VeV) - R
using the metric to map (V®V) — R. More generally, if p is any permutation
of the integers 1 through k, we define z — 2, as a map from @"*(V) — @*(V)
and let f,(z) = fo(2,). This will be O(V') invariant for any permutation p.
H. Weyl’s theorem states that the maps {f,} define a spanning set for the
collection of O(V') invariant maps.

For example, let & = 4. Let {v;} be an orthonormal basis for V' and
express any z € ®4(V) in the form a;j,v; ® v; @ v, ® v; summed over repeated
indices. Then, after weeding out duplications, the spanning set is given by:

fo(2) = aiijj,  f1(2) = aizi,  fa(2) = @iy

where we sum over repeated indices. fy corresponds to the identity permuta-
tion; f; corresponds to the permutation which interchanges the second and
third factors; fo corresponds to the permutation which interchanges the sec-
ond and fourth factors. We note that these need not be linearly independent;
if dimV =1 then dim (®*V) =1 and f; = fo = f3. However, once dimV is
large enough these become linearly independent.

We are interested in p-form valued invariants. We take @*(V') where k—p
is even. Again, there is a natural map we denote by

fP(2) = fo(z1) AN A (22)

where we decompose ®@F(V) = @ P(V) @ @P(V). We let fy act on the first
k — p factors and then use the natural map ®@P(V) A AP(V') on the last
p factors. If p is a permutation, we set fP(z) = f?(z,). These maps are
equivariant in the sense that f?(gz) = gf?(z), where we extend g to act on

AP(V) as well. Again, these are a spanning set for the space of equivariant
multi-linear maps from ®@*(V) to AP(V).

12



If £ =4 and p = 2, then after eliminating duplications this spanning set
becomes:

f1(2) = @ignv; Aok, fo(2) = aijikv; A vk, f3(2) = aijriv; A vg
f1(2) = ajiriv; Ao, f5(2) = @jinvi A vk, f6(2) = ajgivj A vg.

Again, these are linearly independent if dim V' is large, but there are relations
if dim V' is small. Generally speaking, to construct a map from ®F(V) —
AP(V) we must alternate p indices (the indices j, k in this example) and
contract the remaining indices in pairs (there is only one pair i, here).

Theorem 10 (H. Weyl’s Theorem on the invariants of the orthogonal group).
The space of maps { I } constructed above span the space of equivariant
multi-linear maps from @V — APV

The theorem becomes an algebra problem and we refer to Weyl’s book

[Wey39].

4 Twisted Signature Formula

Untwisted Case Let A (7*M) be the space of complex valued forms on
M™ and € be the chirality element on A (7T*M). e gives an endomorphism
e : N(T*M) — A\ (T*M) so that €2 = 1. Also, ¢(§)e = —ec(§) for any &, so
e anti-commutes with the symbol of (d + d*). If we decompose A (T*M) =
AN (T*M)® A\~ (T*M) into the £1 eigenvalues of €, then (d+d*) decomposes
to define:

(d+d*)s: C™ (/\i @) - c= (AT @w)
where the adjoint of (d + d*)4 is (d+ d*)_.

Proposition 11. Write D = (d+ d*), : C= (A" (T*M)) — C= (A~ (T*M)).
Suppose that 4 | m, then we have

indD =0 (M),
where o (M) is the signature of M.

Proof. Note that if w is a harmonic form in A?(T*M), then w + ew €
ker D AE- Then, if ¢ # %, we have an isomorphism

= *
D‘/\+(T*M)ﬂ(kerAqukerAm*q) — ker D ‘/\_(T*M)m(kerAq@kerAqu) .
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Then, we obtain that

ind(D) = ind <D|/\+m/\m/z> = dim ker <D|/\+m/\m/g> — dim ker <D|/\7 m/\mn)
/\m/2> — dim (/\_ Nker(d + d*) /\m/2) :

For w € A" Nker (d + d*)| \ms2, We have xw = w (as € = x on A", so

[w]-[w]:/Mw/\w:/Mw/\*w>O.

Similarly, for w € A~ Nker (d 4 d*)| \m/2, we have [w] - [w] < 0. Finally, since

/\'m/2) :

= dim </\+ Nker(d + d*)

Hi? = ker(d + d*)| /2
Jr
= (/\ Nker(d + d*)

It follows that

/\m”) © (/\ Nker(d + d”)
ind(D) = o(M).

Moreover, by the Hirzebruch signature formula, we have
ind(D):/ L(M).
M

Twisted Case Let FE be a complex vector bundle over a compact man-
ifold M equipped with a Riemannian connection V. We take the Levi-

Civita connection on T*(M) and on A (T*M) and let V be the tensor
product connection on A (T*M) ® E. We define an operator (d+ d*) :
CO(M,N(T*M)® E) = C* (M, \(T*"M) ® E) by the composition

(d+d), : C™ (/\ (T*M) @ E> 5, o (T*M @ \(T*M)® E)
B oo (/\ (T"M) ® E) .

Note that if £ = 1 is trivial vector bundle with flat connection, then the
resulting operator is just d + d*.

We define eg = e ®@ 1 on A\ (T*M) ® E, then we have ¢ = 1 and eg
anti-commutes with (d+ d*)g. The +1 eigenspaces of eg are A* (T*M)® E
and the twisted signature operator is defined by the following:

(d+d)E: C (/\i M) o E) == (N (T M) e ),

14



where as (d + d*)5 is the adjoint of (d + d*)}. Then, we have the following
theorem.

Theorem 12 (Twisted Signature Formula).

ind (d + d*)}, = / L(M)ch(E).
M
Before we give the proof of this formula, we first construct a non-trivial
line bundle L over S? such that [, chy (L) = 1. This example will help us
in proving the formula.

Example 13. Let e(z) be a linear map from R™ to the set of self-adjoint
matrices with e(z) = |z|?I. If {v,...,v,} is any orthonormal basis for R™,
then {e(vo),...,e(vy)} forms a set of Clifford matrices, i.e., e (v;) e (v;) +
€ (Uj) (& (Uz) = 2574

If z € S™, we let II4(z) be the image of 1(1 + e(z)) = my(z). This is
the span of the +1 eigenvectors of e(z). If e(z) is a 2k x 2k matrix, then
dimIIL(z) = k. Then, we have a decomposition S™ x C?* = II, & II_.
We project the flat connection on S™ x C?* to the two subbundles to define
connections V4 on I1. If €] is a local frame for I1. (zg), we define ey (x) =

m.€l as a frame in a neighborhood of z5. We compute

Viei = Widﬂ'ieg:, Qiei = Widﬂ'idﬂ'iei.

Since €Y. = ey (xp), this yields the identity:

Oy (xg) = medmrdry ()

Since {2 is tensorial, this holds for all x.
Let m = 2j be even. We want to compute ch;. Suppose first zo =
(1,0,...,0) is the north pole of the sphere. Then:

1
Ty (w0) = B (1+eo)
1
dry (xg) = 5 Z dx;e;
i>1

i>1
1 N
Q+ (I‘O)] — _ (1 + 60) (5 ; dx261>
=27 ml (1 +eg) (e1...em) (dxy A--- Adxyy,)



The volume form at xg is dxy A - - - A dx,,. Since e; anti-commutes with the
matrix ej ... e,,, this matrix has trace 0 so we have computation:

™

© N\ J
ch; (1) (o) = <2L) 27" Imltr (eg . . . en) dvol (zq) /4.
A similar computation shows this is true at any point xy of S™ so that:

1

/m ch; (I, ) = (%)j 27" Imltr (eg . .. ep) vol (s™) /5!

Since the volume of S™ is 712177 /m!, we conclude:

Lemma 14. Let e(x) be a linear map from R™"! to the set of self-adjoint
matrices. Suppose that e(z)? = |z|*I and define bundles II.(x) over S™
corresponding to the £1 eigenvalues of e. Let m = 2j be even, then:

/ ch; (Ily) =277 Tr (eg . . . €m) -

In particular, if

(1 0 (01 (0
“={o 1) 2=\ 10) 27\ =i o

then tr (egeres) = —2i so [g, chy (II) = 1 which shows II, is a non-trivial
line bundle L over S2.

Now, we begin our proof of twisted signature formula.
Proof. Let A% be the associated Laplacians to (d + d*)5. Then, we have
ind ((d + d*)3) = dimker (A}) — dimker (A7) .

Then, using local formula for the index, we can write

ind ((d + d°)5) = /M an (2. E) = /M (an (2, A5) — ay (2, A7) dvoly (x)

Note that the leading symbol of A% is [£|2]. The first order symbol is linear in
the g;;.x and the connection form on E. The 0-th order symbol is linear in the
gij:ke and the connection form and quadratic in the g;;.; and the connection
form. Thus, a,(z, E) € Rypnme. Theorem |§| implies a,, = 0 for n < m while
am is a characteristic form of T'(M) and of E.

If m =2 and v =1, then Ry 22, is one dimensional and is spanned by the
first Chern class ¢;(E) = ch(E) = ;=Q. Consequently, a; = c-¢; in this case.
Also, by direct computation on above example this normalizing constant
is given by ¢ = 1.
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Lemma 15. Let m = 2 and let L be a line bundle over M?2. Then,
ind ((d+ d°)5) :/ er(L).
M

Now, we know a,, (2, E) is a characteristic form which integrates to ind ((d + d*)}),
so it suffices to verify the formula

ind (d+d)5= 3 /LS(M)/\cht(E).
4s+2t=m M

If E; and E5 are bundles, we let £ = E;® Ey with the direct sum connection.
Since Af = AE ® AEQ, we conclude

ind (d + d*)j = ind (d + d*) 5, + ind (d + d*), .

Since the integrals are additive, the local formulas must be additive. Then,
we have

an (z, By & Ey) = a, (z, Ey) + a, (z, E) .
Let {Pp}\p\:s be the basis for Py, 4545 and expand
am(x, E) = Z Pp A Qm,t,v,p
4|p|+2t=m

for Qm.tv,p € Qm2t 2t a characteristic form of E. Then the additivity under
direct sum implies:

Qm,t,v,p (El S E2) - Qm,t,m,p (El) + Qm,t,w,p (E2> .

If v =1, then Qu i1, (E) = c-ci(E)" since Q,9:9¢1 is one dimensional.
If A is diagonal matrix, then the additivity implies:

Qmtwp(A) = Qmivp(A) =cC- Z )\é = c-chy(A).
J

Since () is determined by its values on diagonal matrices, we conclude:

Qmivp(E) = c(m,t,p)chy(E)

where the normalizing constant does not depend on the dimension v. There-
fore, we expand a,, in terms of ch;(E) to express

(2, E) = Y PnoANchy(E)  for Py € P

4s42t=m
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We complete the proof of the theorem by identifying P, ; = Ls by the Hirze-
bruch signature formula. Hence, we have reduced the proof of the theorem
to the case v = 1.

Now, we prove by induction on m; The above lemma establishes this
theorem if m = 2. Suppose m = 0 mod 4. If we take E to be the trivial
bundle, then if 4k = m

am(m, 1) = Lk = Pm,k

follows from the Hirzebruch signature formula. Then, we may assume 4s < m
in computing P, ;. Let M = M; x S? and let F = E, ® B, where Fj is a line
bundle over M; and where Ej is a line bundle over S? such that |, 21 (E2) =1
constructed in the example [13] We take the product connection on E; @ Ey
and decompose:

AN E =N E)e N\ EB)e N\ E)e N\ (B)
AN E =N E)o N E)e N E)e N\ (E)

The decomposition of the Laplacians yields
ind (d + d*); = ind (d + d*), ind (d + d*) 1,
= ind (d + d*), .
Also, since the signatures are multiplicative, the local formulas are multi-
plicative that

am(x7 E) = Z ap (371, El) aq ('7:27 EQ)
pt+g=m
and the fact a, = 0 for p < m; and a, = 0 for ¢ < my. Thus we conclude:

(2, E) = apy (21, B1) Qg (22, E2) ,
where mo = 2 and m; = m — 2. Besides, we use the identity:
ch (E; ® FEy) = ch (E;)ch (E»)
to conclude

ind (d + d*), =ind (d + d*)

:{ 3 /M Pms/\cht(El)}/MZ)chl (B)

4s42t=m—2
= Z / Pm,s/\Cht (El)
4s42t=m—2 "7 M
Also, P, s = P2, for 4s < m — 2. Therefore, by induction, P,,_, = Lj
and we complete the proof of the theorem. O
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5 Toward the Atiyah—Singer Index Theorem

In this section, we shall discuss the Atiyah-Singer theorem for an elliptic
operator by interpreting the index as a map in K-theory. Let P : C* (E;) —
C* (E3) be an elliptic complex with leading symbol op(z,§) : S(T*M) —
Hom (E4, Ey). We let ¥ (T* M) be the fiberwise suspension of the unit sphere
bundle S (T*M). We form the disk bundles Dy (M) over M corresponding
to the northern and southern hemispheres of the fiber spheres of X (7% M).
We define 1T, (3,,) by the bundle E;" U E; over the disjoint union D (M)U
D_(M) attached using the clutching function op(z,§) over their common
boundary S (T*M). If E; is a rank k bundle, then II,(¥,,) is a rank &
bundle on 3 (T*M). Then, the Atiyah—Singer Index Theorem states that

Theorem 16 (Index theorem). Let P : C* (E;) — C* (E,) be an elliptic
operator. Let Td(M) = Td(T'M ® C) be the Todd class of the complexifica-
tion of the real tangent bundle. Then,

ind(P) = (—1)dimM/E( Td(M) A ch (1, (3,,)) -

T+ M)

Remark that the additional factor of (—1)3mM could have been avoided if
we changed the orientation of X (T*M).

The first step of the proof is to reduce to the case dim M = m even and
M orientable. If m is odd. We can take @ : C* (S') — C* (S') to be an
elliptic operator with index +1. Then, we form the operator R = P ® ) and
thus reduce to the even-dimensional case. If M is not orientable, consider
M’ to be the orientable double cover of M. Then, we can reduce the proof
to the orientable manifolds.

Before the next step, we recall the topological K-ring and the Chern
character on it. Let X be a compact Hausdorff topological space. The
Grothendieck group K (X) is the free abelian group generated by all complex
vector bundles on X modulo short exact sequences. Besides, the tensor
product of bundles induces a commutative ring structure on K(X). An
important cohomological invariant is the Chern character ch : K (X) —
H* (X;Q) which is a ring homomorphism.

Next, we interpret the index of an elliptic operator to the C-valued map
on the K ring.

Lemma 17. There is a natural map ind : K (X (7*M);C) — C which is
linear so that ind(P) = ind (I (X,,)) if P : C®(E;) — C*®(FE,) is an
elliptic operator over M with symbol op.
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Proof. We simply define ind : Vect (X (T*M)) — Z so that ind (I (X,,)) =
ind(P) if P is an elliptic operator. Also, we have ¥, .00, = Yo, ® Xy, and
therefore 111 (Yo ,00,) = 4 (3s,) @ 114 (2,,). Moreover, we have ind(P &
Q) = ind(P) +ind(Q). Thus, we extend the map to ind : K (X (T*M)) — Z
to be Z-linear. Finally, tensoring with C to extend ind : K (X (T*M);C) —
C. O

Lemma 18. Let 7 : X (T*M) — M be the natural projection map. If £ €
K (X (T*M);C) can be written as 7*E) for £y € K(M;C), then ind(E) = 0.
Thus, ind : K (X (T*M);C) /K(M;C) — C.

Proof. 1If E = 7* E4, then the clutching function defining E'is just the identity

map. Consequently, the corresponding elliptic operator P can be taken to
be a self-adjoint operator on C*°(FE) which has index zero. O

These two lemmas show that all the information contained in an elliptic
complex from the point of view of computing its index is contained in the
corresponding description in K-theory. Since the index map is linear, it
suffices to prove the Atiyah—Singer Index Theorem on the generators given
by the twisted signature operator due to the following lemma:

Lemma 19. Assume M is orientable and of even dimension m. Let Py be the
operator of the twisted signature operator of £. The bundles {H+(EU . )}
generate K (X (T*M);C) /K (M;C) additively.

To prove this lemma, we need following lemmas:

Lemma 20. Let P: C* (A\") — C>= (/A7) be the operator of the signature
operator. Let w = chy, /o (II4(X,,)) € H™ (X (T*M);C). Then, if wyy is the
orientation class of M, we have

EeVect(M)

1. wy A w gives the orientation of 3 (T*M).
2. If S™ is a fiber sphere of ¥ (T M), then [, w = 2"/2.

Proof. Let (x1,...,x,) be an oriented local coordinate system on M so that
the {dz;} are orthonormal at xy € M. If € = (&,...,&,) are the dual fiber
coordinates for T*M, then:

op(€) = Z V=1¢; (e (dx;))

gives the symbol of d+d*, where ¢(-) denotes the Clifford multiplication. We
let e; = v/—1c(dx;); these are self-adjoint matrices such that eje; + exe; =
20,;. The orientation class is defined by:

e=+v-1 /2c(dx1) c(dry) = (—V=1)"2e; .. e,
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The bundles /\i are defined as the +1 eigenspaces of €. Consequently,

Sopen) = te+ Y _ &

Therefore, when S™ is given its natural orientation. by lemma |14 we have

/ chy o I (Xs,) = V-1 [2g-m/2 tr(eey...em)
=v-1 /22_m/2 tr (ex/ —1m/2e)

— (_1)m/227m/2 tr([) — (_1>m/227m/22m

— (_1>m/22m/2
Besides, S™ is in fact given the orientation induced from the orientation on
Y (T*M) and on M. At the point (z,0,...,0,1) in 7*M & R the natural
orientations are:

of X :dxqy A -+ Ndx,,
of X(T"M) :dxy Nd&y N -+ Ndxy, N\ dE,
= (=1)™2dxy A - Ndxp NdELA -~ AN dEy,
of 8™ :(=1)™/2d&; A -+ A dEy,

Thus, with the induced orientation, the integral becomes 2"/? and the lemma
is proved. O

Consequently, w provides a cohomology extension and we conclude the
following lemma:

Lemma 21. Let p: X (T*M) — M where M is orientable and even dimen-
sional. Then,

L. p*: H*(M;C) — H* (X (T*M); C) is injective.

2. Ifwis as defined in Lemma 20}, then we can express any o € H* (X (T*M) ; C)
uniquely as o = p*a; + p*ags A w for some o; € H*(M;C).

Since p* is injective, we shall drop it and regard H*(M;C) as being a
subspace of H* (X (T*M);C).

The Chern character gives an isomorphism K(M;C) ~ He®*(M;C).
When we interpret Lemma [21]in K-theory, we conclude that we can decom-
pose K (X (T*M);C) = K(M;C) ® K(M;C) ® I1,(X,,). ch(E) generates
Hev*(M; C) as E ranges over K (M; C). Therefore K (X (T*M);C) /K(M;C)
is generated as an additive module by the twisted signature operator with
coefficients in bundles over M. 11, (¥p,) = E® 1, (Xp) if Pg is the symbol
of the twisted signature operator on E. This proves the lemma [19]and hence
Atiyah—Singer Index Theorem.
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6 Original Proof Atiyah—Singer Index Theo-
rem

Setting and statement First, we recall the topological K-ring and the
Chern character on it. Let X be a compact Hausdorff topological space.
The Grothendieck group K (X) is the free abelian group generated by all
complex vector bundles on X modulo short exact sequences. Besides, the
tensor product of bundles induces a commutative ring structure on K (X).
An important cohomological invariant is the Chern character ch : K (X) —
H* (X;Q) which is a ring homomorphism.

For two vector bundles E, F' on a topological space Y with an isomorphism
o on a suitable subspace Y;, we can define a difference element

d(E,F,0) e K(Y/Yy),

where Y/Yy is Y with Yy pinched to a point by the following way. Let
I =[0,1] and form the subspace

A=Y x0UY x1UYyx1

of Y x I. On A, we define a complex vector bundle L by putting F on Y x 1,
F onY x0 and using o to join them along Yy x I. Then, d(E, F, o) is defined
to be the image of L in the following composition of maps:

K(A) = Ky (Y X I/A) = K1 (S (Y/Y)) = K (Y/Yo),

where K group is defined using vector bundles on a suspension of the space
and Ky, K7 groups fits into an exact sequence similar to the relative homology
exact sequence.

We denote by B(M) the unit ball bundle of 7% (M). Since an elliptic
operator P : C* (E) — C* (F) gives an isomorphism between the sphere
bundles, it defines an element

d(p"E,p"F,o(D)) € K(B(M)/S(M)),

where p : B(M) — M is the projection. Hence, P defines an element
chd(E,F,0(P)) € H(B(M)/S(M);Q).

Also, using the Thom isomorphism

¢+ H*(M;Q) = H™™(B(M)/S(M); Q),
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we obtain finally the element
¢  chd(E, F,0(P)) € H(M;Q)

which we shall simply denote by ch(P). Now, we can state the Atiyah—Singer
Index Theorem.

Theorem 22 (Atiyah—Singer Index Theorem). Let P : C* (M, E) — C* (M, F)
be an elliptic operator. Let Td(M) = Td(TM ® C) be the Todd genus of
the complexification of the real tangent bundle. Then,

ind(P) = /M Td(M)ch (P).

The group of elliptic symbols Let P: C* (M, E) — C*> (M, F) be an
elliptic operator with symbol o (P). The index of P ind (P) only depends on
the symbol o (P). By definition, an elliptic operator gives an isomorphism
on the 7*E — 7*F, where 7 : S (M) — M is the projection from the sphere
bundle S (M) to M, we may regard the index as a function

ind P : Iso(n"E, 7" F) = Z

mapping the symbol o (P) to ind (P).
By the direct computation, it is easy to show that

1. ind (o (P)® o (P')) =ind (o (P)) + ind (o (P")).
2. ind (o (P)® o (P')) =ind (0o (P))-ind (o (P")).

3.ind(c(P)) = 0if o(P) : m*E — 7"F extends to an isomorphism
p*E — p*F on ball bundle B (M), where p : B(M) — M is the
projection.

Let us define an equivalence relation on the set of all elliptic symbols by
o ~ o if there exist o;(i = 1,2, 3,4) which extend to B(X) such that

UI@@1:&2<U@Q3)Q4

and denote the set of equivalence classes by Ell(M). It is an abelian semi-
group under @ and (i)-(iii) above show that ind induces a homomorphism

ind : EIl(M) — Z.

The function p defined by
(o) = [ ehio)Ta(an
M
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defines another homomorphism
w: Ell(M) — Q.

Then, Atiyah—Singer Index Theorem asserts that p = ind.
Now, the first key step in the proof is to determine Ell(M).

Proposition 23. Ell(M) is an abelian group and the tensor product makes
it into a K (X)-module. If dim M is even, Dy denotes the operator d + d* :
AN T*M — N\ T*M, and 0y = o (D) then EI(M)/K(M)o, is a finite
group.

This is proved by showing tha Ell(M) = K(B(M)/S(M)), then apply-
ing the Chern character and observing that ch (0g) is an invertible element
of H*(X;Q).

Proposition 23| reduces us to checking that ind (£ ® 0¢) = u (E ® oy) for
all vector bundles £ on M. We will write

w(E®og) =p(ME), ind(E® o) =ind(M,FE)

to emphasize the base manifold M since we will change the base manifold in
the later proof.

Cobordism If E = 1is the trivial vector bundle, then the equality u(M, 1) =
ind(M, 1) is just the untwisted signature formula. Now, we introduce the
equivalence relation of cobordism on pairs (M, E') where M is a smooth com-
pact oriented manifold of even dimension and E is a complex vector bundle
on M:

(M, Er) ~ (M3, E»)

if there exists a smooth compact oriented manifold Y with boundary 9Y =
MyU(—Ms;). (=M, denotes X, with the opposite orientation) and a complex
vector bundle U on Y with UJ,, = E;. Then, the set of cobordism classes
forms an abelian group under the disjoint union operation as the the additive
operator. We denote this group by A. Then, the second key step in the proof
of Atiyah—Singer Index Theorem is:

Proposition 24. If (M, E) ~ 0in A, then p(M, E) = 0 and ind(M, E) = 0.

This proof is highly based on the knowledge of singular integral operators
on manifolds (cf.[See61]). If T is a singular integral operator from F to F,
then we can define the symbol of 7', ¢ (T) : Int (E, F') — Hom (7*E, 7*F)

1K denotes the “reduced” group of K.
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given by a Fourier transform. Also, the symbol map on singular integral
operators is surjective. The key point in the proof is to find a singular integral
operator such that its symbol is the symbol of twisted Dirac operator.

sketch of proof. Let 0Y = M and U|,, = E. On Y, the elliptic differential
operator D = xd + dx operates (choose a Riemannian connection V on F)
on the vector bundle ), A*T*Y @ E. Then, D> =1 on M and thus along
the boundary M, this vector bundle splits into £y ® E and Fy ® E as we
discussed in the twisted Dirac operator. Then,

Du=0, ul,, € Ei®E
Du=0, ul,; € E,QF

are well-posed boundary problems in the sense of [ADN59] which give rise to
a singular integral operator 7" on M (see [AD62]) such that ind(7") = 0, and
o(T) = E ® oy. O

Now, by the following generalized Thom isomorphism theorem, we can
determine A ® Q.

Proposition 25. A ® Q is the polynomial algebra generated by (C]P)Qi, 1),
i=1,2,..., and (S¥,V}), j = 1,2,..., where V; € K (5%) has ch; (V;) a
generator of H¥ (S%;7) C H% (S%:;Q).

To complete the proof of Atiyah—Singer Index Theorem, for dim M even,
we therefore need only check that ;1 = v on the generators of A® Q). In fact,
one can prove that both p and + are multiplicative, i.e., that

(M, En) - p (Ma, Ba) = (M x Ma, By @ Ey)
and similarly
ind (My, Ey) - ind (My, Ey) = ind (M; X My, E1 ® Es).
Using this one is finally reduced to checking the following:
1. The Hirzebruch signature of CP?" is equal to 1.
2. The Euler number of S?" is 2.

By using the multiplicative property of the index the case of an odd-dimensional
M can be reduced to that of the even-dimensional manifold M x S?.
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CONSTRUCTION OF 28 DIFFERENTIAL STRUCTURES ON §7

YU-TING HUANG

INTRODUCTION

We have seen how Milnor construced exotic 7—spheres in class. In this report, our main
goal is to give a explicit construction of all 28 differential structures on S7. The first
part introduces the results on group of homotopy spheres done by Kervaire and Milnor
[6], which gives us a different understanding toward diffeomorphism class of topological
sphere. In the second part, we will follow Brieskorn’s work [1]. He considers a series of

hypersurfaces and constructs all differential structures on S with some of them.

1. GROUP OF HOMOTOPY SPHERES

In this section, we will go through several results about groups of homotopy sphere

(from [6]). From now on, all manifolds are compact, oriented and C*>°—differentiable.

Definition 1.1. Two closed n—manifolds M; and My are h-cobordant if the disjoint
sum M; + (—Msy) = OW is the boundary of some manifold W, where both M; and

(—My) are deformation retracts of W. Clearly, it is an equivalence relation.

Definition 1.2. For two connected manifolds M; and M,, choose imbeddings 7; : D™ —
M and 5 : D™ — M. The connected sum of My and M is obtained from the disjoint
sum (M; —i;(0)) + (M3 —i5(0)) by identifying i1 (tu) = io((1 — t)u) for each u € S"1.
Denote it by M;#Ms. It can be shown that the connected sum is independent of the

choice of iy, is.

Remark 1.3. Let W, and W, are (n + 1)— manifolds with connected boundaries. We

can construct a manifold W such that OW = oW, #0W, with the following technique.

Let H"™ = {x € R""!||z| < 1,29 > 0} be the half-disk and D" = {z € H""'|x, = 0}.
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Choose imbeddings
iq : (H™, D) — (W, OW,),
so that i, 0 ;! reverse the orientation. Define W from
(W1 —i1(0)) + (W2 —i2(0)), ¢=1,2

by identifying iy (tu) = ia((1—t)u) for t € (0,1),u € S"NH™. Then W ia a differential
manifold with OW = oW #0W,. We denote (W,0W) = (W1, OW,)#(Wa, OWs).

Both this operator and connected sum are additive under taking signature.

Theorem 1.4. (0,,#) is a group.

We prove the following lemmas first.

Lemma 1.5. Let My, M| and M be closed and simply connected. If M; ~ M| then
Mi#My ~ M{#Ms.

Proof. We may assume n > 3. Let iy : D™ — M, and M; + (—M]) = 0W;, where
M, and (—M]) are deformation retracts of Wj. Choose p € My, p’ € Mj, and an arc

A C Wy connecting p and p’ so that a tubular neighborhood of A is diffeomorphic to
R™ x [0,1]. Thus, we have the imbedding

iR x [0,1] — Wi,
where i(R™ x {0}) C M, i(R™ x {1}) € M} and ({0} x [0,1]) = A. Define W from
(W1 = A) + (M, — ix(0))
by identifying i(v, s) = ia(;; — v) x {s} for each v € D" — {0} and s € [0,1]. Then
Mi#EMs + (—(Mi#M>)) = OW.

It remains to show M;# M, and —(M|#M,) are deformation retracts of W. By the
Mayer-Vietoris sequence, it suffices to show that the inclusion M; — {p} - W — A is
a homotopy equivalence. Since n > 3, M| — {p’} and W; — A are simply connected.
Consider the homology exact sequence from the pair (M, M; — p) to (Wy, W, — A).

Since M is a deformation retract of W7y,

Hy.(My) = H,(Wy).



Combined with
Hy, (M, My — p) = Hp(Wy, W, — A),
we have
Hy (M — p) = Hy(Wy — A).

Thus, M; — {p} - W — A is a homotopy equivalence. O

Lemma 1.6. Let M be a simply connected manifold. Then M ~ S™ if and only if M

bounds a contractible manifold.

Proof. Suppose M ~ S™ with M + (—S™) = OW. Obtain W’ by filling in D"*!. Then
OW' = M. Since S™ is a deformation retract of W and D"*! is contractible, W' is
contractible.

Conversely, suppose M = 0W’ with W’ contractible. Obtain W by removing the
interior of an imbedded disk. W is simply connected and OW = M + (—S™). Map the
homology exact sequence of the pair (D" S™) into that of the pair (W', W). Since
D™ and W’ are contractible, we can apply the same argument Lemma 1.5 and obtain

that S™ is a deformation retract of W. By Poincaré duality,
Hy(W, M) ~ H"™ % (W, ") = 0.

Then Hy(M) = H (W), hence M is a deformation retract of . O

Proof of Theorem 1.4. From Seifert-Van Kampen theorem, the connected sum of
two n—homotopy spheres is still an n—homotopy sphere. Note that |©;] = |Oy] = 1,

SO we may assume n > 3.

e By Lemma 1.5, # is well-defined on ©,,.
e S" is the identity:
For any n—manifold M, take iy : D™ = S™ — {N}, it is easy to see that M#S"

is diffeomorphic to M. Thus S™ is an identity of ©,,.
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e — M is the inverse of M in ©,,;:
By Lemma 1.6, it suffices to show that M#(—M) bounded a contractible man-
ifold. Define W from

<M iy (%D”)) x [0,7] + 5™ x H?

(i(tu),0) = (u, ((2t — 1)sind, (2t — 1) cos9))

by identifying

for each % <t<1,0<60<m Then W is a contractible differentiable manifold
with OW = M#(—M).

e Associativity and commutativity of ©,, are clear. OJ

From Theorem 1.7 and Theorem 1.8, we will see that ©,, is the set of all diffeomorphism

classes on topological n—sphere, when n > 5.

Theorem 1.7. (Generalized Poincaré conjecture) Every homotopy n—sphere, n # 3, 4,

is homeomorphic to S™. (See [11])

Theorem 1.8. Two homotopy n—sphere, n # 3,4, are h—cobordant if and only if they
are diffeomorphic. (See [12])

Definition 1.9. A smooth manifold M is parallelizable if T'M is trivial and is s—parallelizable

if TM & e is trivial, where € is the trivial line bundle over M.
Theorem 1.10. Homotopy spheres are s—parallelizable.

Proof. Since the case we concern about is n = 7, we will only prove the simpler case
n=3,5,6,7 (mod 8). For the cases remained, see Theorem 3.1 [6].

Let ¥ be homotopy n—sphere. By Theorem 1.7, ¥ is a topological n—sphere. We can
trivialize T on both hemisphere. This overlap part induces a map f : S*~! — SO(n).
It suffices to show that

s" 1L S0(m) < SO(n +1)
4



is null-homotopic. By Bott’s computation [2], the stable group m,_1(SO) = 0 when

n=3,5,6,7 (mod 8). Moreover, from the homotopy exact sequence of fibration

SO(n+k) — SO(n+k+1)

|

Sn+k

, we have 1, 150(n+ 1) = m,_150(n + k) for all k£ > 1.
Therefore, ¥ is s—parallelizable. O

We have proved the following theorem in class.

Theorem 1.11. Let M be a n—dimensional submanifold of S"** k > n, then M is
s—parallizable if and only if the normal bundle is trivial. Moreover, a connected man-

ifold with nonempty boundary is s—parallelizable if and only if it is parallelizable.

We define a subgroup bP,,; C 0, as follows. A homotopy n—sphere M represents
an element of bP,, if and only if M is the boundary of a parallelizable manifold. We

have shown that parallizable is invariant under h—cobordism in class.

Definition 1.12. Let X, Y be manifolds and i : X < Y be an imbedding. Consider the
imbedding ¢ : X < R""*. By tubular neighborhood theorem, we can factor through ¢

as the zero section imbedding to NxY followed by an imbedding into R"**.
X —— R
[
NxY
We consider the following sequence of maps

NyY L Rvtb (RMF) T ~ gntk L T(NyY) ~ D(NxY)/S(NxY)
X

, where t sends points in the image of the disk bundle of NxY under j to their preimages

in the disk bundle and other points in S"** to the point made by collapsing the sphere
5



bundle. i.e. the base point of T(NxY'). t is called Pontryagin-Thom construction.

For homotopy n—sphere M, by Theorem 1,10, M is s—parallelizable and by Theorem
1.11, the normal bundle of M in S™** is trivial. For a field of normal k—frame ¢, the

Pontryagin-Thom construction yields a map
p(M, @) : S™F — Sk,

The homotopy class of p(M, ¢) is an element in m,,4(S*). Denote p(M) = {p(M, p)} C
Tk (S¥). From now on, we choose k > n + 2, then m,,;(S¥) is stable and denote

Hn = 7Tn+k(sk).

Lemma 1.13. The subset p(M) C II,, contains the zero element of II,, if and only if

M bounds a parallelizable manifold.

Proof. Suppose M = OW with W is parallizable, then the imbedding i : M — S"**
can be extended to W — D" +1 Let ) be the normal k—frame of W and ¢ = |-
Then p(M, ¢) : S™™* — S* extends over D1, Thus, p(M,¢) =0 € 11,

Conversely, suppose p(M,¢) = 0. Then there exists W such that OW = M and ¢

extends to a normal frames over W. By Theorem 1.11, W is parallelizable. U

Lemma 1.14. If M and M’ are s—parallelizable then

p(M) +p(M') C p(M#M') C II,,.

Proof. Consider M x [0,1] and M’ x [0,1]. Apply the construction in Remark 1.3 to
glue only M x {1} and M’ x {1} instead. Then we can construct a manifold W with
boundary (M#M') + (—M) + (—M’).

Choose an imbedding W — S™** such that M# M’ goes to S"™* x {1} and (—M) +
(—=M") goes to S"t* x {0}. For ¢, ', normal frame on (—M) and (—M’), it can be
extended to a normal frame on W. So p(M, @) + p(M', ¢") € p(M#M’). O



Lemma 1.15. p(S™) C II, is a subgroup. For any ¥ € O, p(X) is a coset of p(S™).
Thus, 3 +— p(X) defines the homomorphism p’ : ©,, — II,,/p(S™).

Proof. For the first statement, apply Lemma 1.13 to S"#S5™ = S™, then we get
p(S") +p(S") C p(S"#5™) = p(5"),

Also, apply Lemma 1.13 to S"#3 = ¥ and X#(—X) = 5", then we find that p(X) is a
coset of p(S™). O

By Lemma 1.13, the kernel of p’ consists exactly all M € ©,, which bounded a paral-
lelizable manifold. Then bP,; is a subgroup of ©,, and ©,,/bP,; is isomorphic to a
subgroup of II,,/p(S™).

Remark 1.16. From [4] p(S™) can be discribed as the image of Hopf-Whitehead ho-
momorphism J, : 7,(SO(k)) — mn4x(S*). We will not give the details here. II,, /p(S™)
can be computed explicitly. In particular II7/p(S7) = 0.

Thus, we have ©; = bPg. This result will help us to construct the differential structures
on ST later.

In the following, we will consider 4m—manifolds M bounded by a homotopy (4m —
1)—sphere ¥.. We denote 0, as the positive generator of signatures of all s—parallelizable
My bounded by S*™~!. We hope to use o(M) to characterize the h—cobordism class

of ¥ in bPy,,. Eventually, we have

Theorem 1.17. Let ¥; and Y5 be homotopy spheres of dimension 4m—1, m > 1, which
bound s—parallizable manifolds M; and M, respectively. Then ¥; is h—cobordant to
Y if and only if

o(My) = o(My) (mod o,,).

The key point of this theorem is a result in another Milnor’s work [8]. We will state it

below and sketch the proof of Theorem 1.17.
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Definition 1.18. Let M be a n—dimensional manifold, n = p+ ¢+ 1 and ¢ : S? x
D1 — M be a differential imbedding. Define M’ from
(M — (S” x {0})) + D' x 51

be identifying p(u,tv) = (tu,v) for u € SP,v € S4t € (0,1]. We say M’ is obtained
from M by spherical modification.

Lemma 1.19. (from [8]) Let M be a parallelizable 4m-manifold with 4m > 4 bounded
by a homology sphere, then the homotopy group of M can be killed by a sequence of

spherical modification is and only if o (M) = 0.

Proof of Theorem 1.17.
Let o(My) = 0y,. Suppose o(M;) = o(Ms) + o(My). By Remark 1.3, we construct

(M,0M) = (=M, —OM;)#(Ms, OMy)#(My, O0M,),
where OM = —X #X,# 541 = -3, #%,. Since
o(M) = —o(M) + (M) + o(Mp) = 0,

from Lemma 1.19, OM = =¥ 1#3, = 0.

Conversely, let W be an h—cobordism between —X;#Y, and S*™~1. Obtain M from
Gluing W to (—My, —OMs)#(Ms, OM,) along the common boundary —%;#%,. Then
M is s—parallelizable, bounded by S*™~!. Then

0=0(M)=—0o(M;)+ o(Ms) (mod o).

O
By Theorem 1.17, we obtain that for n = 4m — 1, bPy,, is a subgroup of a cyclic group
of order o,,,. In fact, we have bPy,, = 0,,/8. (See [7])

In [5], Kervaire and Milnor gave a formula to compute o,.
O = 227122 — 1) B jmam /m,

where B,, is the m—th Bernoulli number, j,, is the order of the cyclic group Ji(m4m,_1(S0))

and a,, equals 1 or 2 according as m is even or odd. In particular, form = 2i.e. M € O,

0y =224 and |bPs| = 28.
8



2. THE CONSTRUCTION OF ELEMENT IN O

In this section, we follow Brieskorn’s paper [1] to see the explicit construction of 28

differential structure on S7.

Notation. Let a = (ay,...,a,) be a n—tuple of integers with a; > 1. The following

are notations we will use in this section.
(1) Xo=X(ay,...,a,) ={2€Czf* + -+ 20 =0}
2) X, =X(ay,...,a,) = X(a,...,a,) NS*L

)

)
4) M, (t) := Z,(t) N D* and %, (t) = Z,(t) N S2" L.

) Go = G(ay,...,a,) is a graph with vertices ay,...,a, and there is an edge
connecting a; and a; if and only if ged(a;, a;) > 1.
We will use Y, to construct the differential structures on S”. For every k, one has
automorphism wy,, the multiplication of k—th coordinate by &, = e2™/%  on Z,. Denote

2, as the group generated by those wy.

Q0 =[] 2.
k

Let J, = Z[Q,] and I, be the ideal of .J, generated by elements of the form 1+ wy +
cee wgk_l.
Lemma 2.1. The singular homology H;(Z,, Z) vanishes when ¢ # 0,n—1, and H,,_1(Z,,Z) ~
Jof 1y
Proof. We will construct a simplicail complex & such that & is a deformation retract
of =, then we can compute H;(&,Z) instead. Let
e = {(21, e ,Zn> S Ea|Zk S Rzo},
which is homeomorphic to the standard simplex A,,_;. Let
E={(z1,...,2) € Ealz* € Rxo},
which is a simplicial complex consists of images of e under the action of €,:

0— Jae — @ Jal,..,,di,...,an{aie} — @ Jal,...,di,...,(fj,...,an{aiaje} e,
i 1<j
9



where Jo, d;,an = Zl[ 1z Za,]- By computation, we can see that H;(&,Z) = 0 if
i #0,n— 1. Let

(1 — wk)e.

e =
k=
Then
H, 1(&,Z) = Je = J,/1,.
It remains to show that & is a deformation retract of =,. First, consider a complex

analytic hyperplane
X ={(m,...,n.) € C"| Zm =1},

Si = {n € X|n; = 0}.

Construct a deformation retraction from the hyperplane system (X, Sy, ...,S,) to the
simplicial system (A, 1, A, _1,...,0,A,_1): this can be done by combining the de-
formation retraction from complex to its real part and the deformation retraction on

A,,_1 symbolized by the below figure (captured from [10]).

/ak

By the change of variables, z, = 77,1 , we get a deformation retraction from & to =,.

U
Remark 2.2. H, (Z,,Z) ~ J,/1, is a free Z—module of rank [];_,(a; — 1).

Lemma 2.3. For n > 3, Z, is simply connected. (And therefore (n — 2)—connected).
10



Proof. From Lemma 2.1, we have & is a deformation retract of =,, so it suffices to
show that (&) is trivial. The vertices of & are p; = (0,...,&;,0,...,0), where & is
the primitive ay—th root of unity and 0 < s < a;. There is exactly one edge connecting
p;,py, for i # k and exactly one 2—simplex passing through triple pf, p3, pt for distinct
7,7, k. Then, the edge path connecting p}, pj,pfC is homotopic to the edge connecting
p!, ph, and the edge path connecting p!*, pfj, D;2, pff is homotopic to the edge path con-

necting p;*

D p;? for some j # i, k. Both operations reduce the number of edges of the
path by 1. Therefore, one can convert every closed edge path in & into an obviously
zero homotopic path by repeatedly using them. So &5 and thus also =, is simply con-

nected. ]

Consider ¥, C S?"~!. By Poincaré duality and Alexander duality, we have
Hi 1(3,,Z) = H" 2742, Z) ~ Hy(S*™ ' - %,,Z).
Moreover, we have the homeomorphism ¢ : (S?"~! —3,) x (0,00) — C" — X,, where
o((z1,...,20),7) = (1Y% 2, ... 7Y% 2,).

Therefore, S?*~! — ¥, is a deformation retract of C* — X,. To compute the homology
of 3, it suffices to look at Y, := C" — X,. Define p: Y, = C* ~ S by p(z1,...,2,) =
2+ -+« + 2% which is a locally trivial bundle with fiber =,(%).

Now, consider the action of the generator of 71(C*) = m(S') on H,_1(=Z,,Z). The

action induces a family of diffeomorphism on fibers h; : 2, — =Z,(e'), where
t t
t yeeeAn) = 1%Ly -+ - s W®pen /-
hi(z1 zn) = (wiz W, Zn)

In particular, ho, : 2, — Z4 by hog(21,...,2,) = (W121,...,ws2,). This induces the
linear map w = [[,_, wy on H,_1(Z,,Z). Denote the characteristic polynomial of the

linear map w by A,(t).

Lemma 2.4.

O<ip<ag
11



Proof. We can regard J,/I, as a tensor product ®}_,Vj, where Vj is a Z—module
spanned by w!. Then w can be regarded as w; ® - - - w,,. For every ay—th root of unity

Ty = f,i’“, 0 < 1 < ay, the vector

ap—1

Z:c};wZGVk®C

r=0
is an eigenvector of w; with eigenvalue :c,gl. Therefore,

n akfl

1> #wied/LecC

k=1 r=0
is an eigenvector of w with eigenvalue & --- £ ™. By calculating the dimension, we

can see that all eigenvectors are of this form, so

Aty= JI - ---&n.

0<ip<ag
We have the exact sequence (see [9], p. 67)

o Hy (B0, 2) S Hy 1 (B0, Z) — Hy1 (Yo, Z) — -+ -

Therefore, H;(Y,,Z) vanishes when i # 0,1,n — 1,n and it vanishes for i = n — 1,n if

and only if 1 — w is an isomorphism, that is

Ay(1) =det(l —w) = £1.
Lemma 2.5. For n > 4, 3, is at least (n — 3)—connected.

Proof. ¥, is a deformation retract of X, — {0}. Denote X; = {z € X,|z, = 0}. The
inclusion X, — X; — X, — {0} induces the surjection m (X — X;) — m (X, — {0}).
Define ¢ : X, — Xz — C* by ¢(z2) = z,, which is a fibration with fiber =,(—z%"). By
Lemma 2.3 and the long exact sequence of homotopy group

0= 7T1(Ea) — 7T1(Xa — X@) — 7T1(C*) =7 — WO(Ea) = 0,
we have 7 (X, — X3) = Z. Therefore, m1(3,) = m (X, —{0}) is abelian. By the previous

argument on H;(Y,,Z) and Hurewicz’s theorem,

Wl(za) ~ Hl(Ea, Z) ~ HQ(YCL, Z) =0
12



and for 1 < n — 3,

T(50) ~ Hi(S0, Z) ~ Hiyy (Ya, Z) = 0

Next, we formulate a condition of a component K C G,:

K consists of an odd number of points and ged(a;, a;) = 2 for every a;,a; € K. (%)

Theorem 2.6. If n > 3 and a; > 1 for every k, then the following are equivalent
(1) X, is a topological sphere
(2) Au(1) =1
(3) G, fulfills one of the following conditions
(a) G, has at least two isolated points

(b) G, has one isolated point and there exists at least one K satisfying ().

Proof. (1)<(2): By Lemma 2.5, 3, is simply connected. By Theorem 1.7, ¥, is a topo-
logical sphere if and only if 3, has the homology group of S?"73. Since H; (34, Z) =
H;(Ya,Z) =0fori # 0,1,n—1,n, it suffices to show that H,,_1(Y,,Z) = H,(Y,,Z) = 0.
From the previous argument, H,_1(Y,, Z) = H,(Y,,Z) = 0 if and only if A,(1) = £1.
From Lemma 2.4, A,(1) must be 1.

(2)<(3): Also from Lemma 2.4,

Au(t) =[] ®a(®),

where ®4(t) is the cyclotomic polynomial and d runs through orders of ﬁil .- & Note
that ®,m (1) = g for every prime ¢ and ®4(1) = 1 if d is not a prime power. This implies
A4(1) = 1if and only if for every i = (iy,...,4,) with 0 < i < ay, the order of £ ... &in
is not a prime power.

Let K is a component of G,. For convenience, write K = {ay,...,a,}. Let

R(K) = [{(i1, - 00)|0 < < ag, & --- &7 = 1}].

r

We see that x(K) = 0 if and only if K is an isolated point or K satisfies the condition
(%). Moreover, there exists at least two components K and K, with x(K;) = k(K3) =0

if and only if the order of £/ ... & is not a prime power for every i = (iy, ... ,4,) with
13



0 < i < ag. Thus, (2) and (3) are equivalent. O

Next, define

Ya(t) = Z4(t) N S* 1 and M,(t) = Z,(t) N D",
where D** = {z € C"||z| < 1}.
When |t| is small enough, M,(t) is a differentiable manifold with boundary >,(t).
Furthermore, when |¢| is small enough, M,(¢) has a trivial normal bundle in C". Then
by Theorem 1.11, M,(t) is parallelizable. Lastly, from [3] (Also, see the lecture notes in
class, Problem 5.16), we have ¥(ay,...,a,) is diffeomorphic to 3,(¢) when |¢| is small
enough.
From now on, we choose a small enough #; such that all above statements are satisfied,

and denote M, = M,(ty). Then we can summarize that

Lemma 2.7. M, is a bounded parallelizable manifold, where dM, is diffeomorphic to
Ya. M, — 0M, is diffeomorphic to Z,.
Theorem 2.8. For odd n > 5, let X (aq,...,a,) be a topological sphere. Then the
diffeomorphism type of 3, is determined by o (M,). We have

o (M) =0, — 0o,

where o = the number of n-tuples of integers

J=01,-dn), 0<gr<ay

with
Jk
0< — <1 d 2
kz_; o (mod 2)
and o, = the number of n-tuples of integers (ji,...,Jn) with

_1<Za_k < 0 (mod 2).
k=1

Proof. Use the same notation as in Lemma 2.4. Let
n ap—1 n ap—1

v; = H E xywy, and v = H g YeWh,

k=1 r=0 k=1 r=0
14



where ), = 5;’“ and y, = fi’“, be eigenvectors on H, 1(Z,,C) = J,/I, ® C. Then the

intersection number

(vi,v;) = (=)= DO=22(0 g og) H(l ) H(l + Yk + -+ (TRyr) ™).
k k

This implies (v;, v;) # 0 if and only if iy, + j, = a;, for every k. Therefore, v; +v,_; and
i(vj — v4—;) form an orthogonal basis for J,/I, ® R, where
(V) + Va—j, Vj + Vo) = (0 (Vj = Vay) 1 (U = Vay)) = 2 (V); Vary)

It remains to prove that (vj,v,—;) > 0 if and only if 0 < Y, ZTZ < 1 (mod 2), and
. . i T o gk
(vj, Va—j) < 0if and only if —1 <37, 2 <0 (mod 2).

(H a;1> (v, 0a_) = (—1)"T" <H (1—a;") + H (1- l’k))
=2Re(-1)"T ] (1 - )

= 2Re(—1)nT_1 H <—2iemilkc sin 7Tj—k>

Qg
= 2Re (—eﬁi(ﬁzii) H 2sin Wi—i)

Since sin 7'['2—}“ is always positive, by discussing the exponential term, the result follows.
k

O

Corollary 2.9. Take n =5 and a = (3,6k — 1,2,2,2), ¥,(to) is a topological 7 sphere
and

o(M,) = 8k.

Proof. The first statement follows from Theorem 2.6. We compute the o(M,) by
Theorem 2.8.
Note that j; =1 or 2 and j3 = j4 = j5 = 1. Then

N j 3
k1 2 B
;ak_3+6k—1+2'

If jo =1,




Then 0 < Zizli—’; < 1 (mod 2) if and only if k < j, < 6k —2 and —1 < Zzzli—z <
0 (mod 2) if and only if 1 < jo < k — 1.
If jo = 2,

Sod 2,k 3o Ly
feqp 3 Gk—1 2 6k—1 6 ‘
Then 0 < Y7, 2 < 1 (mod 2) if and only if 1 < j, <5k —1and -1 < Y}, & <

0 (mod 2) if and only if 5k — 1 < jo < 6k — 2.
We conclude that o = 10k — 2, 0, = 2k — 2 and o(M,) = 8k. O

We conclude that ¥,(ty) with a = (3,6k — 1,2,2,2) are topological 7—sphere which

bounds parallizable manifolds M,. Apply Theorem 1.17, where oy = 224, ¥, () with
a=(3,6k—1,2,2,2),k=1,...,28 are all differential structures on S”.

16
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Kazdan-Warner Problem for Surfaces

Po-Sheng Wu

1 Introduction

Main Problem. (Kazdan-Warner) Given (M, g) a compact Riemmanian
manifold without boundaries, and a function R € C®(M), is there any
comformal metric § = ¢?g, such that the scalar curvature with respect to

3 is exactly R?
In this note, we deal with the case of surfaces (n = dim M = 2)

Observation. In the case dimM = 2, we have R = 2K and R = 2K,
where K is the sectional curvature (Gaussian curvature). By Gauss-Bonnet
theorem,

/ Kdy = / e?Kdy = 2ty (M),
M M
thus we have the necessary condition:
1. If x(M) < 0, then K is negative at some point.
2. If (M) = 0, then either K = 0 or K changes sign.
3. If x(M) > 0, then K is positive at some point.

However these conditions are in general not sufficient.



Conformal changes of curvatures. Under local coordinate, we have

. ¢, 0% 9%
Ivlg._l““kl(agll_}_ 8t _ 98ij

i~ 28 5 T ox  ond
1 ou ou ou
_ 1k okl
=T 5 G + gy — 88" 50
S| LAY ¥ S
_ T t t ¢
i = 3t axlf + 15T — I

= R,] — (Au)gij, (7’1 = 2)
ﬁ = gl]ﬁlj = e_zu(R - ZALL)
Thus Kazdan-Warner problem for surfaces is equivalent to solving the fol-

lowing PDE on M.
Au—K+e*K = 0. (1)

2 Casel: x(M) <0

We may try to study this case by sub- and sup- solution method.

Proposition 2.1. On a compact Riemannian manifold (M, g), consider the
semilinear PDE Au + f(x,u) = 0, where f € C®°(M x R). If there exists
¢, € C2(M), such that ¢ < 1 and

Ap+f(x,¢) >0,  Ayp+f(x,9) <0,

(We call ¢ and ¢ a sub-solution and a sup-solution for the PDE respec-
tively.) Then there exists u € C* s.t. ¢ < ¢ and (1) holds.

Proof. Since M is compact, we can choose A,c > 0 such that —A < ¢ <
P < Aand ct + f(x,t) increasing in t € [—A, A]. We rewrite (1) into

Lu = F(x,u),

A

where L is an elliptic operator defined by Lu = —Au + cu, and F(x, u)
ct + f(x,t). By maximum principle (looking at the minimum), we can see
that L is a “positive” operator, in the sense Lu > 0 = u > 0, or equiva-
lently, Luy > Lup = uy > us.

On the other hand, we have the following result of Schauder estimate:

2



Proposition 2.2. As an operator L : C>* — C%* between Holder spaces
(x € (0,1)), L has a compact inverse L~ 1.

Consider two sequences of sub- and sup- solutions { ¢ }, {{x } given by

o=, 1 =L (F(x,¢x))
Yo=19, e =L(F(x, )
We inductively show that ¢ < ¢ < ¢p < --- < ¢ < Py < 9. First,

notice that Loy = F(x,¢r) > Loy, so ¢ < ¢x.1 by positiveness of L.
Now if ¢ < ¢, then

Lgri1 = F(x, ) < F(x, ) = Lipgy,

thus ¢x1 < P11 again by positiveness of L.

Thus we have pointwise convergence

{oe} mu{p} wap<u<u<y.

Since ¢, Px, LPi, Ly are all bounded, using the following L”-estimate, we
can show that {¢} }, {1 } are bounded in the Sobolev space W>? for p > n:

Proposition 2.3. For u € W?F(M) with p > 1, we have the following
inequality:
[llwzr < C(l[ullee + || Aullr)

for some constant C > 0.

Hence by Sobolev embedding theorem?, {¢}, {1;} are also bounded
in C1* witha = 1— y- As aresult, {¢}, {x} converges in C* to u,u
respectively, and
Lu = F(x,u),Lu = F(x,u),

and then by elliptic regularity theorem, u, u are smooth solutions to (1).

ITheorem 9.13 of [2]
2Theorem 7.26 of [2]



Now we may apply the method to the problem (n = dim M = 2)

Corollary 2.4. In the case of x(M) < 0, if (1) has a sup-solution ¢ in C?,
then it has a smooth solution.

Proof. We only have to show that there is also a sub-solution ¢ such that
¢ < 9. Choose an f € C*(M) such that

Af =K—Ky,

where Ky = [Kdu/ [ dy is the mean value of K, which is negative by
Gauss-Bonnet theorem. Note that [(K — Ko)du = 0, so such f exists by
Hodge decomposition. Now we consider ¢ = f — ¢ for some constant
¢ > 0. We have

A¢p — K+ Ke* = —Ky+ RKe? 2 > 0

for c sufficient large, and we also take c large enough so that f —c < ¢,
then hence we find the ¢ we want.

Theorem 2.5. In the case x(M) < 0, if K < 0, then (1) has a smooth solu-
tion.

Proof. As previous, we only have to show that there is also a sup-solution
P for (1). Choose an f € C®(M) such that

Af =K —Ky,

where Ko = [Kdu/ [du < 0. Consider ¢ = —af + b for some constant
a,b > 0. We have

A — K+ Re?¥ = (aKg — K) + (e 722 _ 1)K < 0
for a, b sufficient large, so we find the ¢ we want.

For general K, the problem remains unsolved.



3 Casell: y(M) =0

For the case y(M) = 0, we have a complete criterion for K that (1) has a
smooth solution:

Theorem 3.1. For the case x(M) < 0, (1) has smooth solution if and only
if one of the following condition holds:

(1) K=0,or
(2) K changes sign and [ Ke?/du < 0,

where f € C*(M) is a solution of A f = K. (Note that such f exists since
[ Kdy =2mtx(M) =0.)

Proof. Necessity. Suppose u is a solution of (1), then consider v = u — f,
then N
Av = Au— K = -+ K (2)

Times e2° on both side and integrate, we obtain

/Kezfdy = — /e_ZUAv = — /26_2”]V0\2d;4 <0

by Green’s identity. If the equality holds, then Vo = 0, so v must be a
constant, which implies | K = 0 by (2). Thus if K # 0, then we must have
i Ke*!du < 0, and also K have to change sign by Gauss-Bonnet theorem.

Sufficiency. If K = 0, then obviously we can take u = f, so we only
have to deal with the second case. Consider the subset of W2? (M),

S&{uc Wz'p(M),/udy = /Kequ“zfdpt =0}

It is nonempty since K changes sign. We want to minimize in S the Dirich-
let energy

Al
Ju) 2 5 [ IVuldy

Suppose there is a minimizer 1y € S, then by the theory of Lagrange mul-
tiplier, ug is an emtreme of

/ |Vu|> 4+ au + K>+,

5



Compute the variation in u gives
Aug + « + 2pKe* 02 =0,

Integrating over M gives
aA = 2B / Re?"0+2f gy =,

where A is the area of M. Thus e~2"0 Aug + 2BKe?/ = 0. Again integrating
over M gives

2ﬁ/K€2fdpt = /eZ”OAuody.
= —2/6_2”0|Vu0|2 <0
which implies B > 0 by the condition.
Thus we have vy = ug + 5 log 2 is a weak solution of (2), i.e., u = up +

% log 2B + f is a weak solution of (1). By elliptic regularity, if we can show

that e" € LP(M) for all p > 1, then u is a smooth solution. To do this we
need the following Lemmas.

Lemma 3.2 (Trudinger). For any compact Riemannian surface (M, g), there
exists B,C > O such thatany u € wl2 satisfying

/udy = O,/ |Vul?du <1

has [ eP**du < C.

Proof. We fix a partition of unity {(U;, ¢;) }*_; with each U; diffeomorphic
to a 2 dimensional Euclidean disc D, and let u; = ¢;u, thus u =) ; u;.

We first prove that on each U; = D with standard Euclidean metric,
there exists ¢y > 0 such that

luilly < cov/PlIVuill,  Vp=2.



For v € C}(D), we have the following identity,
2n/ No(y) -log(|x — yl)dy
Xy
= 57 [, Vo) iy

By Holder inequality (+ + = = 1),

41
q

‘GP—‘

o) < o [ (IVo) Pl =yl )" [x =yl H Vo[ Fay

< o ([ wetRle—sitay)” ([ 1s=siar)" ([ o)

the middle term is controlled by

— |4 </ ~44y = 214 2).
/Dlx y| dy < 2D!yl y m(p+2)

ST
==

Taking pth power and integrate over x and we have

/D |o(x)|Pdx < c1(p +2)g+1 (/D |Vv(y)|2dy>g
) </D ‘v(x)‘pdx); s avp (/D |Vv(y)\2dy)%

since C! is dense in W'2, we have on each (U;, g),

luillp < cov/PlIVuill2,

for some ¢y depend on g.

Now we have

lully < Y lluillpy < coy/P Y IIVuil2
< /P Vull2 + [|ull2)

by equivalence of sobolev norms. We further use the following estimates:

7



Proposition 3.3 (Poincare-Wirtinger). For any u € W?(M), there exists
C > 0 such that

lu = uoll2 < C||Vull,
where 19 = [ udy/ A is the average of u.

Since we have ug = [ udu = 0, we obtain

[ullp < cay/PlIVul2

Now consider the Taylor expansion of P’ with |Vul| <1, we have
2 1
[efan= [ ¥ (Bluf+ A
k=1"
1
< kzl H(Zkﬁcﬁ)k +A<LC

for B sufficiently small (Take p = 2k.)
Lemma 3.4. There exists C,# > 0 such that for any u € wi2

u 1
[ etdu < Cexply|Vul3+ 5 [ udn)

Proof. We may assume Vu # 0, and let uy = u — % [ udy. We write

2
Z/l() 1 2
ung < _ + —||Vu ,
”—ﬁ<uwnz) 2 Vula

where S is the constant appeared in the last lemma. Note that satis-

Uo
. N . | Vil
ties the condition of the last lemma, thus taking exponent and integrating
over M gives

1
/e“odpt < CeXp(@HVuH%)I

1
and hence the original statement. (Take 7 = i
Lemma 3.5. For u € W2(M), we have ¢* € L? forall p > 1.

Proof. Replace u by pu in the above lemma.



We still need to show the existence of the minimizer of J. Suppose {uy}
is a minimizing sequence of / in S, i.e,,

J(u;) — co = inf J(u)

ues

Then by Poincare-Wirtinger inequality we have

NI—=

|luill2 < C||Vu;|l2 = 2CJ (u;)

So {u;} is bounded in W'?, and there is a subsequence {u;} weakly con-
verging to some 1y € W2, We have J(uy) < ¢y by the weak semi-lower-
continuity of J. On the other hand, we can show that [ Ke*'dy is a contin-
uous functional of u in W'?-weak topology, and hence

/Kezuoﬁfdy = lim /KeZ“erzfdpt =0

i—00

and also [ uodp = 0, hence ug € S and J(ug) > ¢o by the definition of co.
As a consequence, 1 is a minimizer of | in §, and we complete the proof
of the theorem.

Proof of the continuity of | Ke?*dy. Suppose {u;} weakly converges to
u, then by Rellich-Kondrachov theorem, they are strongly converge to u
in L? for p > 1, thus

/IZ(e e)dy = / / Ke" =W dydt — 0

asi — 0, by Lemma 3.4. and Holder’s inequality.



4 Caselll: y(M) >0

Only partial results are known for x(M) > 0. In this case, M must be
diffeomorphic to S? or RIP2. We first consider the case M = S? with the
standard 2-sphere metric g (K = 1).

Proposition 4.1. On (S?,g), If ¢ is a first eigenfunction of A, i.e.,
AP +2¢ =0,
then any solution u of (1) must satisfies

/(VIZ -V¢)e*dy =0

Note that ¢ can be seen as a linear function on IR® restricted to S2.

Proof. Multiply (1) by Vu - V¢ and integrate over S?, we have

/(Vu Vo) Audy — /(Vu -Vo)du + /(Vu -V¢)Ke*dy = 0

we deal with these three terms respectively. Note that ¢ ;; = —¢g;j, so we
have

[(Vu- V) Audp = ~ [ V(Vu-Vg) - Tudp
1
=~ [ VUTuP) o+ [ [TuPpdy
1
— o [ IVuP(29 +29)dn =0,
/ (Vi - Vp)dp = — / pAudp = / p(Ke™ — 1)dp = / pKe*dy,
/(Vu - V)Ke*dy = %/(veZM - V) Kdp
. 1 = 2u 1 K 2u
=—5 | (V(Ke )-V¢)du—§/(VK-V¢)e dy
1) 1 (oo
= — [ ReDgau— 5 [(VR- V)

summing up the three terms then the proposition follows.
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With this, consider K = 1+ e with € > 0 sufficinet small so that K > 0,
then the above proposition says

e/ |V|2e®du =0,

which implies V¢ = 0, or ¢ is a constant, contradiction. This shows that
even K > 0 is not sufficient for (1) to have a solution.

Nevertheless, we have the following result:

Theorem 4.2. On (S?%,¢), if K(x) = K(—x) for all x € 2, and K is positive
somewhere, then there is a solution u € C*®(S?) such that u(x) = u(—x)
for all x € S2.

Thus for standard RIP?, the condition that K is positive somewhere is
necessary and sufficient.

We need the fact that in this case (S? and symmetry) we can actually
take the constant # in Lemma 3.4 to be a number close to 1/327, that is,
we can take B = 87 — ¢ with small ¢ in Lemma 3.2. We first prove for
B = 4m — ¢/2 if we drop the condition u(—x) = u(x).

The first step is to symmetrize u into a radially symmetric function u
using the following Polya-Szego inequality [4].

#

Lemma 4.3 (Weil-Polya-Szego). Let (M, g) be a Riemannian surface such
that the sectional curvature of M is bounded from above by k, with B C
M an open subset diffeomorphic to R?> and with smooth boundary. For
u € WH2(B) and u* is a radially symmetric function on a geodesic ball B*
onS =k 1/252 (2-sphere of radius k~1/2) monotone in latitude, such that
|B¥| = |B| and |(u*)71((t,0))| = |u~1(t,00)| for any t € R, then we have
u* € W2(B*) and

Vit () Pps < [ [Vu(x) Ppar
[ V0P < [ 19u(x)Pdyn

(and hence we can replace u with u* if M = S? and k = 1.)
Now we rewrite things into spherical coordinate. Let 0, ¢ be the longi-
tude and altitude of the 2-sphere, then the metric can be written as

ds® = d¢* + cos 6 d6?,

11



and the area element is
dy = cos0 do d¢.

The conditions on u is then
/ |Vul?dy = /(u% +cos 26 ué) cos 6 do d¢

7T
:27r/ ué cosfdh <1,

—TT

/udy=27t/ucos€d9=0.

6
Parametrize 6 by t such that e=*/2 = tan <§ - %) ,and let

w(t) = (4m)2u(6),  p(t) = sech’s

then the conditions become
/|Vu|2d],t = / W' (£)?dt < 1,
/u dy = / w(t)p(t)dt =0,

and we want a bound for

/ e L P p / " elime/sm g (1) ay.

[e0]

Note that p(t) has the properties

o(t) < Coe™ ), / o(t)dt =1
for some constant Cy. By Cauchy’s inequality we have

< (/Srw’(t)zdt) (/Srldt) <|r—sl|.

2

(w(r) — w(s))? = </ w’(t)dt)
Write (1 —e/87)? =1 — 1, then

/°° e(l—s/Sn)zw(t)zp(t)dt < Cpe1-0G /°° e~ Tt = 2Cye1-DC1 71

—o0 —0o0
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if we have the following estimate
w(t)? < |t +C
for some constant Cy. To show this inequality, we write

o(s)(w(t) —w(s)) < p(s)|(t—s)[1/?

integrate over s and we have
w(t) < [ p()l(t =) ds < (Jf] + €)'

for some C; > ([*_p(s)|(t —s)|/? ds)? — |t| for all t.

Remark. In fact the boundedness is also true for § = 47, but that requires
a longer argument controlling the case when

6 21— max(w(r) — w(s))?/|r

is small.

We return to the case p = 871 — € with u(—x) = u(x). In Lemma 4.3,
we take B to be a hemisphere on $2, and k = v/2, then the lemma implies

1
IVt o) Paps < 5 [ V() Pduse,

where S = — 52, and thus

N

1
/52 Vit (V2x) Pdug < 5/52 Vu(x) Pl ga

if we scale u* to the standard 2-sphere. Now we can run the same estimate
for the function \/Eu#(\/ix), and we have [ eBT—e)? g 1 bounded.

Now consider the set S = {u € W'2(S?), [udu = 0, [ Ke**du > 0}.
This is nonempty since K is positive somewhere. We want to minimize

13



J(u) = 5 IVull3 — 27log [ Ret'd

1 27
h 2 inf e
Note that cg = inf,cs J(u) > (2 ry—
1

34and § = —.

MET = 3w —ae
a minimizer uy € S. The theory of Lagrange multiplier and calculus of
variation then gives

) |Vul|3 + ¢; > —oo by Lemma

A similar argument of case II shows that | has

477K e2H0

Au 4+ —-— —
0 [ Ke?ody

A=0

for some multiplier A. Integrate over S? gives 471 — 471\, hence A = 1 and
we have u = ug + 3 log( 2 [ Ke*0dy) is a solution of (1).
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WITTEN’S PROOF OF THE POSITIVE ENERGY THEOREM

Bt (R092210009)

ABSTRACT. We mainly follow the presentation by Parker[4] and put an em-
phasis on computations left out (we omit those clearly presented in his paper)
with a digression on the asymptotic behaviour of solutions of certain elliptic
operators in R™[3], which is later used to estimate the boundary terms in the
Bochner formula.

1. INTRODUCTION

The positive energy theorem, in mathematical terms, is a theorem concerning
an inequality of certain integrals (known as energy E; and momentum py to physi-
cists), and the flatness of an oriented 3-dim spacelike complete hypersurface M in
4-dim Lorentzian manifold N with signature (—++4) when some asymptotic data
and positivity of certain curvature are assumed. More precisely, given Einstein
equations

Ra,g — %gaﬁR = 87TGTaﬂ

we assume for an orthonormal basis {e, } on M (where e is a timelike vector normal
to M and {ei, ez, e3} tangent to M), Too > 0 and T, is a non-spacelike covector.
In particular Tpg > (—Tp;7%)1/? where j ranges from 1 to 3 (known as dominant
energy condition to physicists. Later we will see this corresponds to the positivity
of certain curvature). The asymptotic data is to assume M the shape of a compact
set K joining by a finite number of pieces M; = R3 — B where B is a contractible
compact set, and the diffeomorphism being given has the specific properties that
the metric on each piece only differ from standard metric on R® by g;; = d;; + ai;
with the asymptotic

aij = O(r~1),0pa;; = O(r~—2),and 9;0ka;; = O(r™?)
also the second fundamental form of M shall be h;; = O(r=2) and dxh;; = O(r=3).

Positive Energy Theorem. Under these assumption, E; > |P;| on each M;, and
M consists of only one M; with N flat along M if E; = 0 is further assumed.

The integrals are defined as

. 1 i
Ei=lim 155 /SR’l(aj 9ij — 0:g;5)dS1

. 1
lim
R—oo 167G Sk
1

Dk = 2(hix, — Gixhyj)dQ



2. THE SPINOR OF Cl31(R)

The proof relies on what is called hypersurface Dirac operator in Witten’s words,
but before that we shall specify which spinor bundle on M we are working on. At
the linear algebra level, recall that in class we use a complex structure J to obtain
our spinor for R™ case through tensoring C. There is not much difference here
except we adapt the idea of isotropic space, where V @ V is changed to W @& W’
with the property that g(w,w) = 0 for w in W or W’  and the Clifford action is
given by restricting C back to R. Explicitly we exhibit a basis

W, er = %(ex +e) ey= %(ey Jrz:ez)

W' e3 = ﬁ(ex —e) e4= ﬁ(ey —iey)
where {e;,e,, ey, e.} is the standard basis for the Lorentzian metric. Now we set
{1,e1 Aea,e1,ea} to be an ordered basis for the spinor, the real vector te; + xe, +
yey + ze, in matrix form is

U_[O A} WithA_[t—?c y“ﬂ
y—iz t+z

where A = A — tr(A)I is called the time reversal matrix and — det(A) corresponds
to the length of this vector under Lorentzian metric, and the universal covering
Spin(3,1) — SO(3,1) is still the twisted adjoint’ given in the textbook. For our
purpose we shall now devise a hermitian inner product on the spinor, and it is better
to be invariant under Spin(1,3) (or equivalently U is hermitian under this inner
product) so that when lifting the connection V, the inner product will be compatible
with V. In matrix form above we let our inner product to be (¢, ) = ¢! B, then
we require

BU =U'B so that B = [? é}

Unfortunately this inner product is not positive definite, but recall that we are
working on a spacelike hypersurface M so e, is special among others. Specifically
we let (¢,¢) = (erp, ) and associated with this choice of e; is an inclusion of
Spin(3) C Spin(3,1). This inner product is positive definite and is invariant under
matrix U above. Now the point is that instead of lifting the full SO(3,1) frame
bundle F(N) we only lift SO(3) to its Spin(3), since we are essentially working on
a spacelike hypersurface where only SO(3) is required when patching up different
local charts. From the theory of Stiefel-Whitney class, it is known that this patching
is possible for oriented 3-dim manifold?. The conngt\ign V in the ambient space IV
then also lifted to a connection on spinor bundle *F(N) x, S where *F(N) is the
patching of F(N) only by SO(3) and p is the spin representation of Spin(3,1). As
remark above, V is compatible with the inner product (,). As usual, there is an
induced connection V on hypersurface so we can also lift this to be a connection
on the spinor bundle. Fixing an orthonormal frame with ey normal to M

k~ 0
eawaj(ai) =€ wkj(ai) +e hij
Hn fact Spin™(3,1) 22 SL(2,C) though we do not use this

2This seems to be an exercise in Milnor’s book][2] although I do not have time to study through.
2



where w are the connection forms, then under the lifting e; A e; — —Se’e’ we have

1 .
Vi = vz — ihijeoej

and for similar reason (,) is compatible with V.

3. THE HYPERSURFACE DIRAC OPERATOR
The Dirac operator we consider here is
3
D= eVt
i=1

the interesting idea of using V is that it entails the second fundamental form, which
shall tell us the flatness of the hypersurface. In the following, we will do our local
calculation with V;e;|, = 0 and Voe;|, = 0 where 7,5 range from 1 to 3. First
notice that Z is formal self-dual

d[(¢, ep)e; s p] = [(Vig, e'p) + (¢, €' Vi)
= 106,6(Fi = Fhige el p) — (€ (T = Shige )6, )l

with = e A e? A e? the volume form. Now as computed in class
9?2 = _V.V. 1R elede®ef _ ol
= —ViVi = SRagije’e’ete” — hije'e’V;

except there is an additional last term which arise naturally since V;e7| p= —hijeo
as i, j only range from 1 to 3 (while «, 5 range from 0 to 3). Now notice the formal
dual Vi = —V,; — h;jele® (see Parker for details), so the last term combines with
—V1V1 into

PP =-V'V+ R

a Bochner formula where &% denotes the curvature terms. Later we shall inspect
the integral form of this formula to obtain the postive energy theorem in the spir-
its of vanishing theorem. We have once computed & in an exercise for the full
Raﬁ%eaeﬂeweA case which gives 2R, now ¢, j only range from 1 to 3 so in this case
& = (R — Rapoje®e’e’e’). First

Felel = Rojape®e’elel = 2Ry pe e’ el

= 2R0j5]‘6ﬁ€0 = —2R00 — 2Roj€0€j

e’
Ragoje &

where the second equality comes from the 1st Bianchi identity as for {j, a, 8} dis-
tinct those terms cancel out, while the third equality comes from j # {3,0}. Mirac-
ulously, from Einstein equation Ry; = 87GTy; and Royo + %R = 87GTyy we see the
curvature term is exactly Z = 47G(Tyo + Toje’e’) and by the dominant energy
condition we have the positivity of curvature % > 0.

3



4. PROOF OF THE POSITIVE ENERGY THEOREM

The proof relies on what is called a constant spinor on the asymptotic ends
M;. Remember our M; is defined by a special choice of coordinates, we define the
constant spinor Yy to mean 0;1y; = 0 under this special choice® of coordinates on
the asymptotic end M;. Now we first state an existence theorem where the positive
energy theorem follows directly from this

Theorem 4.1. Let 1)y be constant spinors on each M, then there exist a harmonic
smooth spinor i (that is ¢ = 0) on M with the asymptotic

lim 717 — o] =0
r—00

for any € > 0 in each M; and the formula

k
/M(<V¢, V) + (0, ) = 47G Y (Bi(or, Yor) + (Por, prjda®da? vor))
=1

where dx? is the standard basis* on each M; = R? — B and dx° is from R3 ¢ R!.

Proof of the Positive Energy Theorem. We choose our constant spinors g = 0
on each end except M,, where we let 1g,, to be the eigenvector of the matrix
Ppnjdz®dz? with eigenvalue® —|P|. The formula then directly shows E,,, —|Py,| > 0.

For the second claim, let E,, = 0 and notice |P,,| as well. We choose our
constant spinor {¢%,} to form a basis in M, while ¢f* = 0 on all the other M;,
then we obtain smooth {¢*} with 29 = 0 as stated in the above theorem. Now
the RHS is identically zero so it follows Vi¢® = 0 as Z > 0. The asymptotic of ¢
then shows ¥* — 0 on each M; except M,,, but this contradicts to the following
elementary lemma unless there is only one end M,,.

Lemma 4.2. 6 If V¢ = 0 and 1i_>m Y(v) = 0 along a path v in M; then p =0
y— 00
identically on all M.

Proof. This follows from |d||?| < |h|-|1|? and h = O(r~2) so that |dIn ||| < Cr—2
and hence [¢(x)| > |[¢(xo)| for |z| > |zo|(see Parker for details). O

It remains to prove N is flat along M. From the lemma above we see ¥® is
linear independent everywhere (Let ¢ = 3 ¢, and apply the lemma) on M.
Now V¢* = 0 shows Ragijeo‘eﬁ ¥ = 0 and notice spinor representation is faithful
(as Spin(3, 1) is a covering map so their Lie algebra differential map must has zero
kernel) and ¢ is a basis so Ragi; = 0 (beware 4, j only range from 1 to 3). Now at
least R = —2Ry;0; and Ry = Ryjo; (be careful with g signature), then the Einstein
equation shows 0 = Rgg + %R = 8GnTyy so from Rap = 87G(Thp — %gagT) and
the dominant energy condition Tog > |Tag|, Rap = 0 and hence all Rogyn =0. O

3Tn fact the spinor bundle on R3 — B is trivial up to isomorphism.
4Notice dz as a Clifford action is constructed from the metric d;; while el is from gij = 6i5 +agj,
but as noted before we choose that from §;; though they are all isomorphic to the trivial one.
5As (Pp;dz®dz’)? = |P|? but the eigenvalue is not all | P| as it is not a multiple of identity matrix
as dz¥ is hermitian while dz7 is skew-hermitian.
6This is possibly the only place where complete M assumption is used
4



5. PROOF OF THEOREM 4.1

From the nature of M we shall expect to divide our discussion into compact set
K and M;. As it is known that the Rellich lemma no longer hold on non-compact
domain in general, we consider a modified Sobolev norm defined as the following

Definition 5.1. Forp > 2 and %—% <5< 2— %, s =0 or 1 we consider the space
7

H.5.p the completion of C§° compact support smooth sections under the norm

S )
9] 5,0,p = 3”‘JrlJr V¢||p +llo d)Hp

where || - ||, is the standard LP norm

ol = ([ )

and o > 1 is a smooth function with the properties

o =1 on the asymptotic end M 2R
c=11n M_UlMl,R
where we identify M; as R> — B so M, , = M; — B, a ball B C B, of radius r.

Proof of Theorem 4.1. We consider a cutoff function 5 r for each M; where 5, p =
1 on M; sr and 0 outside M, or and construct a spinor 1 as

k
Yo = Z Bi,rY0
=1

Now from the formula
1 1
Vjili = (%1/) — kajlekelz/) — ihjkeoekzb

and h = O(r?), I = O(r~2) we see 219 = O(r~2) (remember the constant spinor
o is defined to satisfy 0j1p0; = 0). We now need a technical result

Theorem 5.2. Forp>2and0 < <2— % orp=2 and § = —1 the operator 2

is an isomorphism between 4 s, and 5 541, with bounded inverse.®

Observe that Py € 4,145, for those p > 2 and 0 < 6 < 1 — % or p =2 and
6 = —1, we see the following equation

D1 = =D
has a unique solution 11 € J#4 s, and hence 1 = o+, is a harmonic spinor. This
spinor satisfies the desired asymptotic behaviour. To see this, notice 11 € J4 5, so
in particular o® (11, 9)/2 € WP for all 0 < § < 1 — %. From Morrey’s inequality
(see Evans 5.6.2) we see for p > 3 (larger than dimension 3) that W1 is continuous

embedded into C°, which shows the desired asymptotic decay.
Now we shall derive the formula from the integral Bochner

| w90+ @ gun = [ an+ jdnle e Vsole:
M M

"From h = O(r~2) and I = O(r2) we can replace ¥ by the usual coordinate derivative  on R3
and the norm is still equivalent when restricted ¥ to a M;. Here we want to define it globally so
¥ is used

8The smoothness of solution 1 is a local property so the elliptic theory on compact set suffices.

5



As noted by Parker n can be replaced by 7, but there is a typographical error which
shall correct to

d[<w07 [eivej]w1>ek - /1,} = [(Vﬂ/foa [eivej]wl> + <"/}07 [ei7 ej}vﬂ/)l”ei By

where {i,7,k} on the LHS is the sum of all cyclic permutation. The computation
is essentially the same done in Parker (3.5). For example, the additional term in
e1 N\ eg are

(1o, hijeleole!, €211b1) + (Yo, Va([e', €?])ih1) — (Yo, hajel egle’, e?]up1)—
(%o, Va(le', €*])¢n)

where V1 ([e!, €?]) = —2h11€%e?—2hzel e’ cancel out with (hiiele®+hige?e?)[el, e?]
from the first term and the rest term are also similarly cancel out. By doing so
it is only required to study {v1, V¢, Vi)o}. Now it is tempting to use the Stoke’s
theorem to study this integral, but this may not work out since our knowledge on
{11, Vb, Vibp } is all about integral, which seems unlikely to tell us anything about
them on OM;, (it evidently has measure zero in whole M;). An alternative way is
to smear out M, over r to 2r (so it no longer has measure zero in M;). This idea
is facilitated by a cutoff function w,, say w, = 0 on U;M; 9, and 1 outside U; M ,.
with the addition property |dw,| < 2r~! (easy to achieve by rescaling), then by
dominated convergence theorem (we shall use dij € Ly, see Parker for details) and

integration by parts
/ dn = lim —/ dw, A1)
M r—00 M

By an elementary inequality

/M (dwy A 1 < 2nduw 2 (1Y ]2 + [ Vooll)

and from [[¢p1dw, |2 < 2|lo ™ (1 —w,2) 2 (the reason why we require |dw,| < 2r~!
is that o~! will come out) by dominated convergence theorem again the RHS tends
to 0 (as we know that ¢; € S _12). Now we observe that |e! —dz!| = O(r~!) (this
norm is understood as some matrix norm for example) then it is safe to replace e
by dx® and the integral only differs by O(r~!), which under r — oo is the same.

1

_5/ (Yo, [dz*, dx? 1V jbo) D; 2 o
oM.,

We write dzFda! = %[dzk ,dx'] and plug in all the terms in the expression of V ;1
in coordinates, and we use the following two formula (¢, 7 is from 1 to 3)

[dz’, da’][dz", da'] = —4(5% 67" — 67 67%)
[da, da?]da’da® = 2(6 dada? — 67%dada?)

The first formula follows from noticing that i # j and k # [ so this leaves us with

either i = k and j =l or i = [ and j = k. As first case [dx?, dz][dx?, dxT] =

4(dx'dz?)? = —4 we see the formula holds. Similarly i # j for the second formula

so either i = k or j = k, and in the first case 2(dz'dx’)dz"dx* = 2d2°dz?. Finally

using the formula for I'y;; and its symmetry I'y;; = I'xi; we have proved the formula

shown in Theorem 4.1. O
6



6. PROOF OF THEOREM 5.2

As usual we shall first establish a weak solution before any further discussion.
Here we consider J# _; 2 (by construction a Hilbert space) and apply a well known
theorem for weak form on Hilbert space.

Theorem 6.1 (Lax-Milgram). Given a bounded bilinear form B(u,v) which is also
coercive on a Hilbert space V', then B(u,v) = f(v) has a unique solution u € V for
any bounded linear functional f.

We now let® B(u,v) = (Zu, Zv)s and f(v) = (n,v)s (weak form of Z%u = 7).
Lemma 6.2. For (p,d) stated in Theorem 5.2, 9 : 56 5, — H,541,p 15 bounded.
Proof. From the inequality

1) oDyl < 20 VY], < 20 P, + 2ot Ry,

and |h| < Co~? so the last integral converge for ¢ € J4 5. O
To prove the coercive part, we shall derive some estimate for asymptotic part.

Lemma 6.3. For sufficiently large R we have the following estimate of ¢ € J4 12

||o-_1w||§;M112R S 16va||%;ML,2R

=~ 6
V301, 0 < 5HV¢||§;ML,2R
Here the subscript M or denotes integration over M oR.

Proof. It suffices to verify this for C§°, but we first work on usual R™. In this case
dps = r2drdS in spherical coordinates so from integration by parts!©

) oo L) 1/2 ) 1/2
-2 272 2 2/.2
/2 Rt <2 / " relvldhar < ( / "4y dr) ( / e dr))

and the last inequality is from Cauchy-Schwarz and gives the formula

/ r 21 2dps < 16 / o] Pdps
M 2r

M 2R

Here d|¢| can be further estimated

dw, ) _ (V9) _ o
||| < = < [VYl
2[¢| ||
At minimum [¢| = 0 if it is differentiable (almost everywhere, but we are going to
integrate anyway so this suffices) then LHS is zero so inequality still holds. Now
gi; differs from 6;; by O(r~') so for R large enough this inequality still holds if dpus

is replaced by the volume form ,/gdus. The second inequality is using |h[ < Cyr—2

~ ~ Ci, _
||vw||2§Ml‘2R > vaH2§ML,2R - |||h|'l/)||2;Mz,2R > ||Vw||2§Ml,2R - E”U 1¢||2§ML,2R

and use first inequality. O

9Notice there is no boundary term encoded in our weak formulation, this is because we are working
on J,—1,2 and in fact the boundary term will vanish (similar calculation as d7).
10The boundary term is collected in the integral Ir[¥1215%| < 2R [7p dlv|?dr <[5 r(20|d[y])dr
7



Proposition 6.4. For sufficiently large R, we have a constant cg so ¢ € J4 12
(6.2) 19017 1.2 < crll 293

Proof. As before we use the cutoff function Sr define in proof of theorem 4.1 to
write i, = (1 — Br)y and vex = BrY, we also pick R large enough so that the
estimate in the above lemma holds. First we notice for the compact portion iy,
Rellich lemma still works, we shall show the inequality

(6:3) [nl3 < erlVebinll3
Suppose not, let 1, be a sequence such that k||Vi||3 < [|¢x]|3 and by rescaling
we may assume k||Vi||3 < 1 so ¢, € W2 and Rellich lemma then provide a
subsequence vy, — 1 in L? which in terms show ¢ € W2 and V¢ = 0 as well (see
Evans 5.8.1) From Lemma 4.2 for C§° that Vi) = 0 = ¢ = 0 and by a density
argument we see this inequality holds. From this we have

IViinllz < [[Vehinll2 + l[Allo - ltbinll2 < c2l Vibinll2

For the asymptotic portion, Viex = dBr -1 + g - Vi) and we also set |df| < c3o~1
so from the estimate in the above lemma ||Vibex|| < c4]| V0|2, now'!

1
V13 = SVl + Vil — sl VI3

so it follows cg||Ve[|2 < ||[V4)||2. Finally we know from integral Bochner that

129113 = VY3 + (v, 2)
for C§° so by a density argument it is also true for J# _; 2. In particular since
Z > 0 so we have

C6 |1 S Ce | —
12¢15 > V3 > 5||le|§ +3ollo YlI3 > erlly|

the last inequality is also from Lemma 6.3. O

2
1,—-1,2

At first sight one may wonder whether we can solve for n € L? as it is not immediate
(n,-) defines a bounded functional over 4 _; 2, but remember C§° is dense in L?
and we surely can solve for C?, the theorem then follows from a short argument.

Proof for n € L2. Given n € L? we find a sequence 7; in C§° to approximate and
let Z1; = n; be their solutions. Since we have the estimate in Proposition 6.4, 1;
is also a Cauchy sequence so has a limit ¥, and by triangle inequality we see

129 = nll2 < el = illy,—1,2 + c2lln — nill2

the two terms on RHS follows from inequality (6.1) and (6.2) respectively. O

It is not clear from this argument that our solution is unique or not, to this end
Proposition 6.5. 7 : 54 12— L? is injective.

Proof. The solution 21 = 0 being smooth and Vi = 0 is clear (C* regularity is
local and by Bochner). In view of Lemma 4.2, it remains to show v decay to zero'?
by observing that

/ lr~ 12 (r?dr) < oo
2R

Urom this inequality ¢=*|a|? + c|b|2 > 2(a, b) and that for Vibex.
12Though not necessary, for § > 0 we can obtain a better exponent decay as demonstrate above
by Morrey inequality
8



s0 ¢ must tends to zero (this does not show uniform but along some path). O

This completes 77,1 2 case. For other J4 5 ,, we first note that JA s, C 94 _12
is a continuous embedding, which can be shown by Holder inequality (see Parker).
Now if we have the following estimate

(6.4) [Pll160 < csplinllos+ip

for the weak solution ¢ € 4 _;2 obtained above, then by an almost identical
argument to 1 € L? we complete the proof, so let us finish this.

7. PROOF OF || - 1,5, ESTIMATE

As before, we divide our discussion into v;, and ... For the compact portion
we can use LP-estimate and notice that we know 2 has unique solution if it exists,
so by similar argument (but this time we use LP-regularity here instead of Rellich
inequality, see Gilbarg-Trudinger Lemma 9.17) in inequality (6.3) we can in fact
show (remember ¢ = Yu)

[Vinllp:e < e1llnllp;rc and |91

Sketch of LP-estimate on K. (from Gilbarg-Trudinger) As in class, we decompose
an elliptic operator into L = Lo+ L1 + Ly on a small ball where Ly is the constant
coefficients 2nd-order terms, Li its 2nd-order variation, and Ls the lower order
terms. We then estimate on each small ball and patch up to the compact set K.
As in class, we use an LP estimate for Ly and an interpolation between W%? and
W?2P so it all boils down to LP-estimate on Ly, which is the standard laplacian A
on R™ after some linear transformation.

pii < calnllpx

7.1. LP-ESTIMATE FOR STANDARD LAPLACIAN ON R™. For Au = f classically we
have Green representation formula

ulz) = /B Gz — ) f(y)dy

where G is the fundamental solution and f € C§°(B), then we extend this to
f € L?(B) by a density argument. Now we can view 9;0;u as an operator T on L?,
with 9; understood as weak derivative that

Tf = 0,0, /B Gz — ) (v)dy)

so the LP-estimate is equivalent to || T f||, < c||f|lp, T is called strong type p. For
p = 2, using Green 1st identity one can show

(1) | Seour=[ 5

Rn Z’J Rn
where the boundary terms vanish from an estimate on G. On the other hand for
p = 1 we remark that the strong type no longer holds. An example is provided by

u(r) = /Tl de

in unit ball B. From A = r'="9,(r"~'9,u) + --- and |0%u| > d?u we require

" 10,u — 0 but r"?9,u ¢ L' (B)
9



near origin, the first corresponds to Au € L'(B) and the 2nd |0?u| ¢ L*(B). Thus,
we can at most anticipate a weak type estimate for p = 1, namely

C1
pe(t) =z € Blf(x) >t} < I fl
To prove this, a subdivision of space is used. For a fixed ¢ > 0,

1. (starter) Pick Py such that K C P, and / f <t|P
P
2. Apply bisection on Py ’

3. Pick those sub-cubes P that / f < t|P| and repeat the process.
P

There is some quick observation on this subdivision, for those P cannot be further
subdivided by this procedure

)
7.2 t<— [ f<omt
(7:2) 7] /5
(73) |f| S t a.e. on PO — U(]?ilpj

the LHS is from P cannot be further subdivided and RHS from P predecessor,
and |f| < t can be seen from Lebesgue differentiation theorem. We write function
f = g+ h where g is defined by

a
— f forzeP;
g(z) = ¢ |P5l Jp, !

f(z) otherwise

with P; the sequence of cubes described by the procedure above. First

pry(t) < prg(t/2) + pre(t/2)
and the estimate for T'g is
4 2n+2 2n+1
pra(t/2) < 5 [1P < 2= [l < Z -1l

where the first is Chebyshev inequality and (7.1), the second is from |g| < 2"t
almost everywhere by (7.2) and (7.3) while the third by construction of g. For the
part h, we shall study it on each P;. Let hy; € C§°(F;) be a sequence converges to
hxp, in L2-norm with the additional property that its integral over P, is identically
zero (easy to achieve by adding some small constant), then we have

Tw=/kﬁmam—%aawmmw@
P

since the last term average out by the construction on hy;, where y; is the center
of P, then we use mean value theorem and the fundamental solution to obtain

CT’[
ey e ML

where 7; is the size of P;. Now if we integrate over the region with P, scooped out,

/ |Thi| < 01/ [P |
Po—P P,

Consequently, we have by letting ¥ — oo and summing over [

/‘ wm§c/w
P()*U?ilpi

10
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This is a strong type on Py — U72, P;, but we do not obtain any strong type on
U372, P, so for that part we could only say its measure is bounded by Ca f[[1/¢
from (7.2) to obtain a weak type. Finally, we introduce an analytic tool

Theorem 7.1 (Marcinkiewicz interpolation). If T is of weak type p and weak type
q, then T is of strong type r for p <r <gq.

This establishes LP-estimate for 1 < p < 2. For p > 2 we use the idea of LP dual
space

ITfl, = sup /B (Tf)g

llgllp==1
and the inequality follows from integration by parts

/ (Tf)g = / #(Tg) < I FI,ITg]
B B

so apply the estimate 1 < p* < 2 for g we also obtain p > 2 case. ]

p*

7.2. A SMALL DEVIATION FROM CONSTANT COEFFICIENTS. Now we shall exhibit
a J4 s p-estimate for 1)cx. In the same spirit of compact case, we expect to relate
our operator to the constant coefficients operator, and build the estimate on it. To
be more explicit, we shall construct a series of Z5 and g% on R? parametrized by
R, where g{}(z) = 0;; + (3z)(gi;(x) — ;;) and the Dirac operator Zg is defined by

3

. 1 .

DR = E e Vi — 56(3x)hij(x)eoej
i=1

where!? 6? = 0; + B(3z)T;(z). From this construction we have %2y = Z?Zl dz'o;
(the most beloved 28 = —Ags), while P = 9 on M, g, and the perturbation of
coefficients has that

sup el — dz'| < e and supo - B(3z)(|Ti| + |hij|) < e
RS RS
This is exactly [|Zr — Zo|| < € when R is sufficiently large and if we happen to

show 2 is a Banach isomorphism, then as having inverse is an open condition we
are done. Now we state the estimate on —A, which is a special case of [3] Thm 2.1.

Theorem 7.2. Forp>2and0<d<1— % we have the estimate

S el 0qull, < clllz**? Agsull,

] <m
for allu € JA 12 and |z|?T9 Agsu € LP(R3).
Proof. We begin by noticing the fundamental solution is G(x,y) = ci|z—y| ™!, then

1
et < s [ (G gees ) i1l

for f = —Agsu. We shall remark that this integral viewed as an integral operator
with the kernel K(z,y) defined as in the parentheses, is a bounded operator over
LP(R3). Tt then follows that

(7.4) lzPully < exlll™° Agsull,

I3Notice the connection form is not changed, we just slightly perturb the matrix e’é
11



To see this, we first observe by |z| < |z — y| + |y| that
< 1 n 1
Tl =yl Pt e —yllyl?

K(z,y)
so we just estimate the two terms. By AM-GM inequality |z| > ([T>_, |z:])"/® we
see this can be further reduced to 1-dim case, which is exactly the following lemma

Lemma 7.3 (Schur). Let K(z,y) > 0 and K(\x, \y) = A" K (x,y), then
/0 y VK (Ly)dy = C < o0 = H/O K(w,y)f(y)dpr < Cllfllp

Proof. Write K (x,y) = 7 'K (1,y/x) and apply Minkowski integral inequality. [
Now from the standard LP-estimate
Rl [0atllp;ar < CQ(RQHAU’HP?AR + llullp;ar)

(those R arise naturally by rescaling) for an annulus Agp = {R < |z| < 2R}. It
then follows by multiply both sides R’ and with some manipulations that

210 ullyian < el Al

finally we sum over R = 2/, then use (7.4) to conclude. O

o
A 12 ullpar)

Finally we remark that Zu = 1, so the estimate for u establishes (6.4) for tex.

8. HIGHER DIMENSIONAL GENERALIZATION

The idea above can be extended to higher dimensions[1], but first we shall ask
ourselves why one shall do this after all. In fact, if one can exhibit locally con-
formally flat coordinates in a neighborhood B, then by r — 7~! this will flip the
coordinates to

m
gij = (1 + 7"”772) (Sij + aij

where a;; is the higher order terms, and notice m is related to the integral

m(n - ].)VOI(S”) = lim (ajg” - &g”)dQZ
R— o0 Sk
so the positive mass theorem will tell us m > 0, and m = 0 if and only if M — B is
isometric to R™. This is interesting in itself, or we shall remark that this is a step
in proving compact Yamabe problem. Now we state relevant assumptions.

Assumption (Bartnik). Let M be a complete Riemannian manifold which admits
a spin structure with scalar curvature R > 0, and require some decay'* condition
say gij — 0ij € Wap —r(Mp) where 7 > 1(n —2).

First notice if we take up this route of proving positive mass theorem, we need
a spin structure though it is not always true. Nevertheless, we briefly describe how
to extend the above calculation to this specific version in higher dimension, and the
following will be sketchy.

1. The constant spinor g is still subjected to a particular choice of coordi-
nates, but we will show this choice is superficial in some sense later.

M¢he exponent 7 here of Bartnik is slightly different from that § of Parker, —7 —n/p =4
12



2. The boundary term in Bochner formula is still the mass, and here we do
not bother ourselves with hypersurface so Vi = 0 will directly imply ¢ = 0
so the argument is much more direct.

3. The injectivity of Z follows from || 2|3 = |V |3 + (¥, 1 Ry) and R > 0,
so as before V¢ = 0 but now it shows ¢ = 0 directly.

4. The relevant estimates over weighted Sobolev space are essentially the same
where they are done similarly by summing over annulus Ag, and an estimate
of Green function G(z,y) = c,|z — y|>~™ of the standard Laplacian Agn
followed by using Schur would give weighted Rellich—-Kondrachov.

We close this section with two theorems showing the mass and the choice of coor-
dinates are more or less intrinsic to M itself.

Theorem 8.1 (Bartnik [1] 3.2). Let 2 and 2% be two coordinates with asymptotic
decay of T or higher, then

" — (4527 +0")] = o(r'™7)
where A; is a constant orthogonal matriz and b® some constants.

Sketch of proof. First we know Az’ = gij;-k € Wop1-r s0 we can solve Av’ =
Az’ and obtain harmonic coordinates z? — v*, and similarly for z' — w?. Notice
dimker A = n+1 (Roughly speaking, using an expansion at infinity for elements in
ker A, then dim ker A can be computed from the dimension of harmonic polynomial
of degree k) this implies both {1, z* — v} and {1, 2" —w'} consists a basis for ker A
and from this we can relate them by a constant orthogonal matrix. (]

Theorem 8.2 (Bartnik [1] 4.2). Given two coordinates x* and z* with decay T >

1(n —2) then their mass are the same.

Sketch of proof. Notice from the asymptotic assumption

) 1 o
|91 6" (T — 50;1og lg]) = 0915 — Digys + o(r™'7*7)

and the LHS appear in the divergence term in scalar curvature R, so this gives a
geometric interpretation of mass in terms of a limit of an integral of scalar curvature.
Now notice the change of frame is A7 4+ o(r~7) from above, so one may check all
additional terms are in correct order so that one can discard them in the limit and
obtain the same integral. O
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Note for the Solutions to the Yamabe Problem

Shi Chen, B07202036, Department of Physics, NTU

1 Introduction to Yamabe Problem

To introduce what does the Yamabe problem mean, we first recall some knowl-
edges about conformal deformation of Riemannian metric.

Definition 1.1. Let (M,g) be an n(> 2)—dimenstional smooth Riemannian
manifold. Given g another Riemannian metric on M, we say g is conformal
to g iff there exist a diffeomorphism f of M onto M and a porsitive function
p € C*°(M) such that g = pf*g. In the case f is the identity map, we say g is
point wise conformal to g. On the other hand, if § = g, i.e. g = pf*g for some
positive function p, then f is called a conformal transformation of (M, g).

Let C, = {pg | p € C=°(M),p > 0} be the set of Riemannian metrics on
M pointwise conformal to g. A nature problem arising is Given (M, g) and a
function K € C°°(M), does there exist § € C4 such that the scalar curvature R
of g is equal to the given function K?

For arbitrary function K, this problem is easily disproved since we all know
there are some topological constraint on the scalar curvature (for example, the
Gauss-Bonnet theorem for surface). Hence we restrict the problem to the most
interesting case which K is a constant. For dimensition 2, this problem is
just the unifromization theorem of Riemann surface. For dimension > 3, this
problem is the so-called Yamabe conjecture, which was studied by H. Yam-
abe(1960), N. Trudinger(1968), T. Aubin(1976), and has been completely solved
by R. Schoen(1984). The answer is also affirmative when the manifold is com-
pact (there are counterexapmles for noncompact case, see [5]).

The goal of this note is to show the proof of Yamabe problem. In this note,
we consider that case that (M, g) is a compact, smooth, Riemannian manifold
without boundary (in general, we can also discuss this problem in the category
of complete, non-compact Riemannian manifold, but the study in this direction
is in complete).

To start the disscussion of the proof of Yamabe problem, we have to first
investigate how the scalar curvature transform when the metric transform con-
formally:



Proposition 1.2.(the conformal deformation of scalar curvature) Given a Rie-
mannian manifold (M.g) and p € C*(M), p > 0. If g = pg , then we have
R=p 'R~ (n—1)p"*Ap — 3(n —1)(n - 6)p~?|Vp|*.

Proof: We have:

fk = 1~kl(% % _ %)
97 \ogi T oxi Ol
lpfl kl ( 6pgil apg_]l _ 80913 )
2 oxJ Ort Oz
1 . Ologp

=TF + (5 ,
”+2( O

dlogp i 0logp
+ O oz 999 Thy )

Take the result into the formula of Ricci curvature. After some tedius cal-
culation , we get:

~ n—2

n—2
Rij = Rij—— —

1 n—2
+—(ogp) i(log p)). ;=5 (Allog p)+——=IVpl*)gs;

(log p),i;+
Taking trace, we get the desired result.[]

For the case n > 3, we define p = uﬁ, then we have:

. nt2 4(n—1) Au)

n—2

So our problem reduces to solving the equation:

4(n—1)

n+2
Au— R Aun—=2 =0
(n+2) U U+ Aun—2

for some u© > 0 and constant \.

2 Conformal Invariant \(M)

From now on, we using the notation:

2n n—2
P T T a1y ta

The operator L is called conformal Laplacian of (M, g). then the equation be-
comes:
Lu = P!

Yamabe observed that this is the Euler-Lagrange equation of the functional

_ f]V[ Rgdpg



restricted to the conformal class C,. Indeed, if we define Q(u) = aQo(uP~2g) =
aQo(g). Since we know the scalar curvaure of g is Ry = a'u!"PLu, and
dpg = uPdp, so we have:

for functional:
B = [ aludp= [ (Vuf+ aRi?)dn
M M
ul 2 = ( / fufPdp)?/?
M

called the Yamabe queotient. Then we can compute the variation for positive
u:

55 — (V0 V0w + 2aRudud) _ B[y lePdu> (] purudys)

[l [lull3
_ QfM(—Au + aRu — AP~ 1) Sudp
[lull3

By integration by part and A = E(u)/|[ul[}.

Since 2/p = 2’;;4 < 1, we can find ¢ > 0 such that 1/¢+ 2/p = 1 and by

Holder’s inequality, we get:

[ radal < ([ Rrdwa [ el =l
M M M
Hence the functional Q(y = u) is bounded from below, Define
AM) =inf{aQo(g) | § € Cg} = inf{Q(u) | u € C*°(M),u > 0}

By definition, A(M) only depends on the conformal class of g not g itself; hence
A(M) is a conformal invariant.More over since we have the inequality:

IVulll2 < [[Vull2

the restriction of u to be positive is not necessary, and since C*° (M) is densed
in L#(M) we can also defined:

M) = inf{Q(u) | u € LF(M),u # 0}

The reason why the conformal invariant play a key role in the Yamabe prob-
lem is the theorem:

Theorem 2.1. Let (M, g) be an n-dimensional compact Riemannian manifold
without boundary. If A(M) < A(S™), then the Yamabe problem is solvable for



(M, g). Here S™ is the n-spherewith the standard metric.

To prove the theorem, we needs some lemmas. First, we consider the Sobolev
inequality:

A(/ lu[P)?/P g/ |Vau|?dz, Yu € C°(R™)

n Rﬂ,

Tt can be shown (ref.[1]) that the best constant A can be defined as:
A = inf{Qge (u) | u € CRRN\{0}} = nln — w2/

for w, being the volume of S™.

Secoond, we consider the stereographic projection m : SM\{P} — R", then

we have: 4
—1yx 2 —27.2

T — dS = i p ds
for gg, ds® the standard metric on n sphere and Euclidean space respectively;
hence, 7 is an conformal transformation. So we have Qgn(u) = Qgrn (@) for a4 =
puom~t. Since for all u € C°°(S™), we can approximate it by u; € C§°(S™\{P})
, and corresponding u; is compact support; therefore A(S™) > A.

In the section 4, we will prove the result:

Lemma 2.2. For any compact Riemannian manifold (M, g) without boundary,
we always have A(M) < A. As a corollary, we get A(S™) = A.

Note that the number p = % is the critical exponent for the Sobolev
embedding L2(M) < L9(M) to be compact. In other word, we have the em-
bedding is compact for 1 < g < p.(ref. Rellich—-Kondrachov theore, [2] and other
L? estimate) This makes it difficult to using the minimization method to obtain
minimal critical points of ). Yamabe’s method is to decrease the power p to s

and using the limiting procedure (corrected by Trudinger).

For all s € [1,p) we deinfe:

E(u
[lul2

~

Qs(u) =

By the same analysis as @@, we find that @, is bounded from below and hence
we can define:

Ao = inf{Qs(u) [ u € LY(M)\{0}}
Note that the signature of Ay is the signature of F(u) which is same as the first
eigenvalue of L.

For the next, we considering the two lemma:



Lemma 2.3. limsup,_,, \s < A(M). If \; >0, then A\, — A(M) as s — p.

Proof. It is easy to see that for a fixed sequence 0 # u; € L2(M) such that
Qp(w;) = Q(u) — A(M), we have A\; < Qs(u;) = Qp(u;) as s — p. This shows
the first assertion. When Ay > 0, Q4(u) > 0 for all u. The we get:

[lull2

Qp (u) = Qs (u)

3

The latter term can be estimated by Holder ineqeuality:

a2 = Jubdn®s < Quisdue /o[ 1w =l vol(aayass
M M M

Hence, we get \, = A(M) < A\ V2(/571/P); therefore liminfs_,, Ay > (M),
proving the lemma.[]

Lemma 2.4.Let 2 < s < p. Then there exists us € C°(M), with us > 0 amd
[lus||s = 1, such that Qs(us) = As and u, satisfies the equation

_ s—1
Lus = Asu;

Proof: Taking a minimizing sequence {u;} C L3(M), such that Qs(u;) — As.
We may assume u; > 0 as before and since Q4(tu) = Q4(u) for all positive
constant ¢, we may also assume ||u;||s = 1. Thus,

Qs(uw;) = E(w;) = ||Vuz||§ + a/ Rufd,u — A
M

Hence ||[Vu;||3 < 1 + eaf|ui]|3. But we also have |[u;]|3 < cf|u;||3 by Holder
ineqeuality. So {u;} is a bounded sequence in L?(M); Therefore, we can as-
sume {u;} converges weakly in L?(M) to some us. As weak limit, us satisfyes
[|Vus||2 < liminf;_ o [|[Vu||2. Since the embedding L?(M) < L*(M) is com-

pact , we have:

[ Radn s [ R, and ), - .
M M

it follows that Qs(us) < lim Qs(u;) = As; hence Qs(us) = As. There fore u, is a
L2- weak solution of the Euler-Lagrange equation. To apply the regularity for
the elliptic operator to the equation, we must have to show the smoothness of
the function (-)*~!; i.e. we need to show that wu, is strickly positive.

Since u; > 0, we may assume ug > 0. From the Euler-Lagrange equation, we
can find ¢ > 0 such that Aus — cus < 0. By the maximum principle of Lapla-
cian if ug = 0 at some point , then us = 0, which is impossible since ||us||s = 1.
Hence ugs > 0 and prove the theorem.[]



Now we can proof the key theorem in this section:

Proof of theorem 2.1.: It is easy to see that if us jas an uniform upper bound:
us < ¢, then by the qrgument in the proof of Lemma 2.4. we can obtain a
subsequnce of ug € C*®, where k is any positive integer and 0 < o < 1, then
there exist a subsequence s; — p such that u,, converges in C*(M) to some
u € C°(M) positive which satisfies:

Lu = P71 and Q(u) = A

(The existence part is by Ascoli-Arzela theorem and smoothness is from reg-
ularity theorem) where A = lim A;;. By lemma 2.3., we have A < A\(M) but
Q(u) = A. Hence A = A(M) and u is an absolute minimizer of (). Therefore, it
suffices to show that us has a uniformly bounded.

Suppose not, there exist s — p, ur = us, and z; € M such that ug(zx) =
maxur = my — 00. By compactnesss, we may assume z — zg € M. Take
R.N.C. centered at zy and the corresponding coordinate of z is zy. Then
zr — 0. In coordinate, the equation of wy is:

1
V()

for A\, = As,, we may assume the equation is defined on |z| < 1. Now set

6j(@gij(x)6iuk) — aR(gg)uk + )\kuzkfl —0

vg(z) = my fug (S + o)
where 0 = m,?isk)/2 — 0 (the scaling trick). Then vy is defined on a ball of
radius pr = (1 — |xg|)/dx — oo and satisfies the equation:

1 g
b—aj(bka}j&-vk) — CLVUE + )\kvzk_l =0
k

where we use the notation:
a) (z) = g" (Opx + zx) — 04y
bi(2) =/ g(6kw + x1) — 1

Ck(l‘) = a,mllciskR(ékaj + xk) —0

The convergence is C''- convergence on any compact subset of R”. Notice that
by definition vy, < v (0) = 1. Hence we may know apply the LP Schauder interio
estimate (ref. [3]) for elliptic operator to get:

l[vkllc2.e(py) < C(R), VE > k(R)

Take a sequence R, — 0o. By the argument of diagonal subsequence, we obtain
a subsequence {v,,} such that v,, — v € C*(R¥) and converges on Bg, in C?
convergence. then we get v is a non-negative solution of

Agv+ P 1 =0



on R™ with v(0) = 1. By maximum principle again we have v > 0. By Lemma
2.3, if A(M) > 0 we have X\ = A\(M), otherwise A < 0.
Now by definition we have:

s _ s « Sk SOk __ SO
| vne= [ iy < i = o
TI=39% 1/2(Tk

/ vPdr <1

/ |Vo|2de < oo

Hence by Fatou’s lemma,
Similariy, we have:

(by the L? estimating we doing in Lemma2.4.). Now let 1 € ¢5°(R"™) be a cut-off
function such that 0 <7 <1, and n =1 on B; and nn = 0 outside B; for By, By
two open ball in R™. Define vg(x) = n(x/R)v(z). then we have:

/ (V0 = v) + [v — vrl")dz — 0

as R — oo by the standard analysis of cut-off function. Integrating the differ-
ential equation of v, we get:

/ )\vpfldew:—/ 'URAOde:/ Vv - Vogdz

Taking R — oo, we get:
/ |VolPde =\ [ oPdx
Rn R

For the case A < 0, we have v is a constant, but v € L? hence v = 0 contradict
to v > 0. For A > 0, we get A = A(M). Then by Sobolev inequality, we get:

A(/ vPda)?P < / |Vo|?de = )\(M)/ vPdx
Since 1 > fRn vPdx > 0 and 2/p < 1, we get:
AMS™) =A< /\(M)(/ oPdx) 72/P < \(M)

n

contradict the assumption, hence prove the theorem.[]

The theorem reduce the Yamabe problem to the estimate of A\(M). And to
do so, we take the method formulated by J. Lee and T. Paker, which will be
introduced in the next section:



3 Conformal Normal Coordinates and Asymp-
totic Expansion of Green’s Function

In this section, we fixed (M, g1) an compact Riemannian manifold without
boundary. And for all other metric g on M, we say g is conformal iff g € Cg,.

In this section, we need to defined the Weyl tensor which was not mentioned
in the class:

-
(n—1)(n-2

The special property of Weyl tensor is that it is an conformal invariant. The
purpose of this secion is developing a appropriate coordinate system and con-
formal metric such that we can expand the Green’s function of the conformal
Laplacian in such coordinate system to do further estimate. The coordinat sys-
tem we want is:

1
Wikim = Riklm+§(Rimgkl_Rilgkm+Rklgim_kagil)+

Theorem 3.1.(existence of conformal normal coordinate) Let M be a
Riemannian manifold of dimension n > 3, and let P € M. For any integer
N > 2, there exists a conformal metric g on M such that in a normal coordinate
system for g at P

det(gij) =1+ O(TN)

where r = |z|. Furthermore, if N > 5 then we may require:
1
R =0O(r*) and AR(P) = —6|W(P)|2,

where R and W are the scalar curvature and Weyl tensor respectively. Such
metric together with its normal coordinate is called a conformal normal coordi-
nate system at P

To prove the theorem, we need three lemma:

Lemma 3.2. Let P € M, and let T be a symmetric (k + 2)-tensor on T, M,
k > 0. There exists a unique homogeneous polynomial f of order (k + 2) such
that in the normal coordinate system of g the metric § = €2/ ¢ satisfies

Sym(@kRZ])(P) =T

where Sym(-) denote the symmetrization operator for tensors.

Proof: Let z; be the normal coorinates of g at P, and r = |z|. We denote the
space of homogeneous polynomials of order m by P,,. Let F(z) = R;;(z)z'z?
be the homogeneous polynomial correspond to the symmetric tensor R;;. By
Taylor expansion, we have:

k42
F(z) =Y F"™(z)+ O(r*?)
m=2

) R(gilgkm_gimgkl)



where

F(M):m Z Z@K i ( mx])

|[K|=m—2 ,j
Notice that we have:
Rijx = Ok Rij(P) + Sijx
Where S;;, is a polynomial whose coefficients consist of derivatives of order less
than | K| of R;; at P. Hence if f € Py 2, then we have S*in = S;jk for |K| = E.
Notice that the lemma is equivialent to:

0= > (Rijx(P) - Tyx)a'a’z™ = KIFE2)(2) + Y (Sijx — Tiji )z’ s’z
|K|=k |K|=k
and the Euler’s formula for homogeneous polynomials is:
221 0,0;f = (2'0,)*f —2'0if = (k+2)(k+1)f
And Af = Agf + O(r* + 1), hence we get by the of R;; and Rij we derived in
the begining:
FE) () = PR () + 2'27[(2 — n)9;0; f — Do f6i]
= FE(2) — (n = 2)(k + 2)(k + 1) f — r* Ao fdy5]
To prove the lemma , we just need to show that the operator 72V, + (n —

2)(k+2)(k + 1) is invertible on Pj2, then we get the unique f, which follows
from the next lemma:

Lemma 3.3. The nonzero eigenvalues of 72Aq on P, are:
{N=2j(n—24+2m—2j) | j=1,..,[m/2]}

The eigenfunction corresponding to A; has the form r2ia), where ¢ € Pr—2; is
a harmonic polynomial.

Proof:The lemma obviously holds for m = 0 or 1. Assumme now m > 2 and
f € Py, satisfies r2Agf = Af, the we have Agf € P,,,_2 and:

Ao f = No(r? Ao f) = Ag(r?) Ao f+4z'0; Ao f+1r2 AZ f = (2n+4(m—2)) Ao f+1r2 Al f

So we have:
T2Aof(Aof) = (/\ —2n —4m + 8)Aof

This implies that, either Agf = 0 are (A —2n —4m+8) is an eigenvalue of r2Ag
on P,,_o. In the latter case, we can write f = A~1r2Aq fthe proof is now by
induction.[]

Lemma 3.4. In the normal coordinate system of g, det(gij) can be written as:

det(g;;) = 1— 3lex T _ER” wiad ok —(QORU,/CH— Rhpijm Rhiim— RURM)J? xjxka?l—i-O( %)
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Proof: The geneous proof of this equation is by Jacobi field. Note that in
the Normal coordiante, the variation of geodesic is just vs(t) = t(r + s£),
hence the Jacobi field is nothing but X (vs(t)) = 97,(t) = t&. And we have
the Jacobi euqation VX = Rr(X), where Rr(X) = R(T,X)T. Consider
f#) = |X(7(t))|?. Using Jacobi equation and initial condition X (0) = 0 and
ArX(0) =&, we have

Vrf(0) = 0,V7f(0) = 2(£,€)(0), V7.£(0) = 0

V£ (0) = 8{R-&,€)(0), Vi.f(0) = 20((V-Rr)¢

V3£(0) = 36((VZRT)E,€)(0) + 32(R-€, R-£)(0

Hence we get:
(€. €)(tr) = 721X (0(t))”
t? t3 tt o
all term are evaluate at 0. By polarization formula, we get:
1 1 . 1 2 o
3 ERW%WW$k+(*Rpijq,kl+*Rm‘ijqklm)wW$k$l+0(r5)

20 45
and the lemma follows.[J

,6)(0)
)

ot4

(Rt Br6) +O(°)

Ipq(T) = Opg+ Rpijqxiwj"’

Now we can prove the theorem:

Proof of Theorem 3.1: We prove it by induction. Assume that g satisfies:
det(gy;) =1+ O("N),N > 2

Consider the proof of Lemma 3.4., each term in the expansion of the determinent
of order k takes the form:

ert* [(VE2R)E €) + Bi(€,9)]

where ¢, is a number, and By, is a bilinear form with coefficients consisting of
derivatives of R, of order less than k& — 2, hance the expansion can be written
as:
det(g;;) =1+ Z ek (Rijx — Tin)xixij + O(TNH)
|K|=N—-2

where T;j K is a symmetric tensor depending only on the drivatives of order less
than k —1 of the curvature. Than we can using the defromation of Lemma 3.2
to kill T' (since f € Py, we have T =T).

Now assume that N > 5, Then from det(g;j) = 1+ O(5) we know the
coefficients in Lemma 3.4 vanish. This means at P we have:

(a)Rij =0,
(b)Rij,k + Rﬂm‘ + ka- =0

2
(C)Sym(Rij,kl + §Rpiijpklm> =0

10



(a) give us Rijkl = Wz]kz and
Rijri — Rijak = Rig Rmj + R Rim =0
together with (c) gives us:
(Rijki + Ririj + 2R gt + 2R i) 2" 27+
2
9
WoikmWotim + WokjmWplim + Wpikem Wpjim)z'2? = 0

(Wpiijpklm + Wpikapjlm + kaimejlm+

Contracting 4,7 and by the symmetry of the Weyl tensor and Bianchi identity
(RJ(P) = 2R1‘j7i) we get:

2

(BR;j + Rijrk + 3

Wipkajpkm)x’x] =0

Contract again, we get:
-1

Finally, by (a) we have R(P) = R;;(P) = 0 and by (b) we have R ;(P) = —2R;;;
together with the Bianchi identity we get R ; = 0.0J

Now we discuss the expansion of Green’s function in conformal coordinates
when N sufficient large. Due to our goal, we can restrict on the case A(M) > 0.
In this case, by Lemma 2.4 there exists us > 0 satisfying Lus = Au$™! for
2 < s < p. Therefore, the scalar curvature of ¢’ = u?~2g is R’ = a 'ul™PLug, =
a~'Asuf~P > 0. Hence the conformal Laplacian:L’ = —A’ + aR’ has unique
Green’s function G5 € C°°(M\{P}) such that:

L'G"s =6p, and G’ >0
And we have:
L(ugv) = uP~'L'v
Hence
Gp = us(P)usG's

will be the Green’s function of L. Hence we know that the Green’s function of
conformal Laplacian exist if AM > 0. In particular, we can expand it in the
conformal normal coordinate at P, then it is equal to( the asymptotic Euclidean
Green’s function):

1

O = 2

277 (1+ o(1))

Defined G(z) = (n — 2)wp—1Gp(z), thenw we get the following asymptotic ex-
pansion:

Theorem 3.5. In a conformal normal coordinate system, G has the following
asymptotic expansion:

11



1. If n=3,4,5 or M is locally conformally flat in a neighborhood of P, then:
G=r"4+A+az)

where A is a constant, & = O(r), and a € C?* unless n = 4; for n = 4,
a = Py(x)logr + ag, where Py(z) is a homogeneous polynomial of degree
2 and ag € C?H

2. Forn=6 a
G=r"- @|W(P)|2 logr + a(z),
where a(z) = P(x)logr + ag for some polynomial P with P(0) = 0 and
oo € C?h,
3. Forn>17,
G =4 — (WP = Ryl + ala)
12(n — 4) *12(n — 6) " ’

where o = (P(x)logr + ag)r?~" for some polynomial P(x) and oy € C*#

Proof:We may write G = r?>7"(1 + 1) the asymptotic expansion of G. If a
function depends on r only, then in a normal coordinate system on has:

— ; n—1
Af = 067 V0 )

Indeed, using polar coordinate (r, £), where £ € S"~!, the metric has expression
by Gauss lemma:
g = dr® + hij(r,)d&;dg;

and we have vVh = r"*1,/g; hence the expression above. Using g =1+ O(r"),
we find that:
A2 = Agr?™" 46,

Where 6 € Cnv, the set of smooth functions on a neighborhood of the origin
whose derivatives of up to N’-th order vanish at the origin. We can make N’
arbitrary larger if we let N large enough. Since we have:

Agr? ™" = —(n —2)wp_16p = Ar? " = —(n —2)wp_16p + 0.
Thus the equation of Green’s function becomes:
L(r* ™)) +aRr®* " =0

Using the notation:
Lo = —1r?Ag + 2(n — 2)70,

and o
K =7%(A — Ag) +2(n — 2)(rd, — ¢"z'9;)

12



The the equation is equivalent to:
Loty = K¢ + aRr?(1 + ) + 6

To fund the asymptotic expansion, we want to fund ¢ € C(B\{0}) of o(1)
such that: B
L(rzfnw) +aRr* ™ eC @Cilogr

Which is equivalent to:
Lot — K¢p — aRr*(1 4+ ) € Ci_1 ® Cpy1 logr,
If we define ¢ = 1) — 1), then:
L(r*~"¢) € C*(B)

we want to conclude r2~"¢ € C?* by regularity. Let v be the solution of the
following Dirichlet problem:

Lv = L(r* "¢), and v |[spp=12""¢

By reguarity againg, v € C**. But w = r?> "¢ — v satisfies Lw = 0 and
w|pp = 0. Since ¢ = o(1), we have w = o(r?~"). Hence for any ¢ > 0, we have
€G > w for r = 1(i.e. OB) and r sufficient small. Notice also LG = 0 on B\{0}.
By maximum principle apply to eG — w, we get ¢G > w. In particular w < 0.
If we consider —eG instead, we get w > 0. Hence w = 0 and 72~ "¢ = v € C?H.
As a result, we get G = 727"(1 + 1) + v, where v € C%#,

Now, we are aiming to find an appropriate 1) which satisfies the condition.
Consider the first case n is odd. Suppose ¥ = 1 + ... + 1, where ¢, € Cj.
Consider the equation:

Loty — K — aRr*(1 + ) € Cy,

Since R = O(r?), we get aRr? € C4, we can take 1) = 1) = th3 = 0 satisfy the
equation for k < 4. By induction, if we have ¢ = 1), + ... + ¢, satisfies above
equation, we can first write the right hand side by its Taylor expansion, i.e.
by, + Cg41 for by € Py.. Since Lemma 3.3 asserts that L is invertible on Py for
odd n (where 2k(n — 2) is not equal to eigenvalues of 72A¢). Let ¢ = L by,
Then v = 9 + ... + 1y, satisfies (3.11) with C, replaced by Cj,1. By induction
we are done.

Consider the case n is even. The above construction still holds for k£ < n —2
where Lg is still invertible on Px. but not holds for & > n — 2, where the
invertibility is violated. The trick is that Lq is self-adjoint on P, with respect
to the inner product (3" arx!, > brz!) = S arb;. So we have P, = ImLg @
KerLg. Now KerLg # {0}, we can take ¢y, = py + qi logr, where py + g € Pg.
Computations show:

Lo(pr + qrlogr) = Lopi + (n — 2 — 2k)qx + (Logg) logr

13



Since any by € Pj can be written as by = Lg + ¢, where Logr = 0, hence we
can take:

VY = pr + (n —2— Qk)_lqk logT.

When k = n — 2, by Lemma 3.3, we have KerLg is spanned by "2, There-
fore:

wn72 =pn—2+ crn—? IOg’I’
Now, for f = f(r), we haveL

Kf= Tzﬁi[(%Rikljxkxl +01)r~ al f(r)]

where 6 € C3. By symmetry of the curvature, Rikljxlasj = 0. Hence if f(r) =
cr" 2logr; Then we have Kf € Chy1 © Cpyrlogr. Hence, Kip,—2 € Cp @
Cpn+1logr.. Finally, we get:¢p = 91 + ... + 1, satisfies:

Lotp — K¢ —aRr*(1 +1) € Ci_1 ® Cpy1 logr.

For n = 3, we get ¢ =0, for n = 5, we get ¥ = py + q4, and for n = 4,
=1y = pa(x)logr. Those cases are easy.

In the case where M is conformally flat near P, one may take Euclidean
neighborhood of p, then Ag(r2~"¢) = 0 in that neighorhood. By regularity, we
have 2~ € C*. Hence (a) holds trivially.

Now for n > 6, ¢ = 14 + ... +1,,, and we need only to find the leading term
4. By previous analysis, we have:

Loy = %GTQ(‘?kalxkxl

For n > 6, using AR(P) = Z:[W(P)|?, one substitues ¢ = r?byz*z! to get:

a 7"4

12(n — 4) [12(n ~6) |

e = W (P)|? = R u(P)x*z!r?]

which is the result of (c). For n = 6. we using vy = r2(bgl + cxllogr)z*z!
instead, then we get:

_;a[
DY

which is the result of (b). O
For the next step, we need to using the positive mass theorem, to do so, we
need some definition:

4
R’kl(P)l’kl’lT2 + T |W(P) |2 log ],

Yy 15

Definition 3.6. A Riemannian manifold (M, g) is called an asymptonically
flat manifold of order r if M = My U My, where My is compact, and M, is

14



diffeomorphic to R™\Bpg for some R > 0 and the differomophism provieds a
coordinate system gy on M such that:

9ij =04 + Oyl ™"), Ogis = O(ly| =), OxOugs; = O(ly|~"?)

This coordinate system is called an symptotic coordinate system.
Then we can assert the generalized positive mass theorem(ref. [4]):

Theorem 3.7. Let (M,g) be an n-dimensional asymptotic flat manifold of
order (n — 2). Assume that in the asymptotic coordinates we have:

gi; = (1+ Ap*")dij + hij

where A is a constant, p = |y|, hi; = O(p'™™), Oxhi; = O(p~™) and 0;0,h;j =
O(p~™~1). Assume further that the scalar curvature R > 0, R € L'(M,g)).
Then A > 0. A =0 iff (M, g) is isometric to the Euclidean space R™.

Using the positve mass theorem, we can prove the result below:

Theorem 3.8. In n = 3,4,5 or M is conformally flat in a neighborhood of P,
the constant A in the expansion of G is non negative. Moreover, A = 0 iff M is
conformally equivalent to the standard S™.

Proof: Consider § = G g. Then (M\{P}, j) has scalar curvature R = 0 since
LG = 0. Futher, consider the expansion of GG in conformal normal coordiantes
and that g;; = d;; + fij, where fi; € C™, 0, f;;(P) = 0, we know that:

. _ 4 n—
gij(w) =71+ mAT %)dij + Bij(x)

where 8 = O(r"~%), 98 = (r"~%), 39 = O(r"~7). now take the asymptotic

X

coordinates {y'} by y; = iR Then in the new cooridnate system §;;(y) =

T4gij (.13), i.e.

4
gij(y) = (1 + mAP%")%‘ + Bij(x)

where Bij(y) = p_4ﬁij(#) satifies the condition of positive mass theorem.

Hence A > 0 and A = 0 iff (M\{P},§) is isometric to R. Since R™ is con-
formal to S™\{a point}. not hard to see that (M, g) must be conformal to S™.
0

4 Resolution of Yamabe Problem

Finally, we are equipped enough to prove the Yamabe problem:

Theorem 4.1. Let (M,g) be an n(> 3)-dimensional compact Riemannian
manifold without boundary. There exists a conformal metric § = pg such that

15



the scalar curvature of g is a constant.
Thanks to Theorem 2.1, it is suffice to prove the following result:

Theorem 4.2 Let (M, g) be an n(> 3)-dimensional compact Riemannian man-
ifold without boundary. Suppose that (M, g) is not conformally equivalent to
the standard S™. Then A(M) < A(S™).

Proof: To prove the theorem, it suffice to construct a text function ¢ on M such
that Q(¢) < A(S) = A. For this purpose, we defined a family of funtion on R™:

_ € n—2)/2
ue(z) = (m)( M

By direct computation, we find that those function achieve the best Sobolev
constant on R™ and we have:

Aue +n(n —2)uP~t =0

Thus we have:

/ —ucAucdr = n(n — 2)/ uPdx :/ |Vu|2de
n n ]Rn

So we have

ny __ _ fR" V’U/€|2d$ _ D 2/n

case (1): m > 6 and (M, g) is not a locally conformally flat manifold.

In this case, there exists a point P € M such that the Weyl tensor is not
vanishing at P (ref.[1] p.235). Let « be a conformal normal coordinate system
at P, and use this system to difined a cut-off function 7 such that n = n(r)
and 0 < n <1 withn =1 on B, and n = 0 ouside By, for sufficiently small p.
Furthermore, we require that |Vn| < ¢p~!. Defined ¢ = nue, we claim that it is
the desired test function for € sufficiently small. Since ¢ depens on r only.

m/|V¢qu=/w|a¢Fv@w
M B,

s/ 10,621 + cr)da

:/ |Vu€|2dx—|—c/ rN|Vu6\2dx—|—/ IV (nue) 2(1 + er™N)da
BP Bp ng\B,,

where N is sufficiently big. By direct computation, we find that the second
integral is of order O(e") and the third integral is of order O(e"¥~2) and the for
first integral, we get:

J

|Vu|2dz = n(n — 2) / uPdz + / Ue duc ds
B, B, or

16
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by the differential equation of u. and since d,u. < 0, we get:

/ |Vu6|2d:r§n(n—2)/ uldx
B

3 By

:n(an)(/B ui’dw)Q/”(/B uPdx)?/P

P P

< )\(S")(/B uPdzx)?/P

P

Hence we get the first estimation:

/\V¢\2du<)\(8")(/ W)/ 4 cen=?
M

By

On the other hand,

[ oau= [ e + [ oy vais

B2ﬂ\Bﬂ
> / uldr — c/
B B

P P

> / uldr — ce”
B

P

rNufdm—/ (u)?(1 4 er™)dx
Ba,\B,

And in conformal normal coordinate, we have R = O(r?) amd VR(P) =
Fw(P)P:

/ Ro*dp = / [lﬁiajR(P)xi + 27 + O(r®)|n*uide
M By 2

1 o

<5 [ 90;R(P)a’ +alnulde +c / Pulrdde
2 /B,, Ba,

1

2p -
= 5/ 772u§d7"/ aiajR(P)xlxjds—i—c/ nulrdde
0 |z|=r Bj,

2p 2p
= w;_1 AR(P) / nzufrnﬂdr + cwn—1 / nQufr"+2dr
n 0 0

2p
< —01|W(P)|2/ nQUST”Hdr
0

P
< 701|W(P)|2/ uw?r™tdr
0

And we have:

Py 1 P € 2 1 . [ it
/ uZr™t dr:/ (5—=3)"" r"tldr =€ / —_—
0 o € +7r 0 (1 + t2)n_2

Directly compute the integral, we get: For n = 6

/ Re2dp < —c|W (P)[2e4 log
M

17



andn>7
/ Rp*dpu < —c|W(P)|*e*
M

Combine all three estimate, we get for n = 6:
B) = [ 1VoPdna [ Rotdu< XS0l - oW (P)F logel + O(e)

and for n > 7:
E(¢) < AS™)I¢llz — e[ W (P)[*e* + O(eln — 2))

Since |[W(P)| > 0, we have Q(u) < A(S™) for € small enough.
case(2). N > 6 and (M, g) locally conformally float.

Let P € M. Since M is locally conformally float, we may find a conformal
normal coordinate system at P such that g;; = d;;. By Theorem 3.5., we have
G=7r> "+ A+ ax), for a« € C®, and a(x) = O(r). Let p > 0 be sufficiently
small, n be the cut-off function, then we define:

ue(x) if r S P,
¢(z) = { eo(G(z) —n(z)a(z)) if p<r<2p,
eoG(x) otherwise

Here, ¢p > 0, € < p and we require:
€ n=2
62 + p2) 2

for the continuity. Since R = 0 in By,, we have:

olp? "+ A) = (

| (voPraretyin=c [ (VGPraRGH s [ @(19(a)P-296-V (ga)dn
M\B, M\B, Ba,\B,

Since a« = O(r), we have Va = O(1) and |V(na) < C|. Therefore, form

|[VG| < cr'="in the ball, we see that the last integral in the above equation

< ¢ped. Since —AG + aRG = 0 in the region, we can take integration by parts

to get:
63/ (IVG]* + aRG?)dp < —e¢ Ga—GdS
M\B, 9B, or
Hence:
2 2 oG 5
(V6P + aRe*)dp < —¢ | G5 ds+ < epel
M\B, o, Or

An, similarily to the case (1), we have:

[ (V@P +areyin= [ s
B

P B,

ou
:nn—Q/ ufd:r:—i—/ Ue——ds
( )Bp B, or
Oue

SA(S")(/ ufd:c)Q/”Jr/ Ue—=—ds
B oB, or

P
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And a easy estimate:

/¢pd,u2/ ¢pdu:/ uPdx
M B, B,

Conbine them all, we get:

ou oG
E < mn 2 2 TPe 2T
@) SN +epe + | (ucge — 4650
At r = p, we get:
G000~ (2 A O()
and: 9
U = —(n = 2)ej (07" + 249!+ 0(p7)

Hence, the integral < —(n — 2)w,,_14€2 + cped; hence we get:
E(¢) < ASM9ll; + (—(n = 2)wn—14 + cp)eg

Since ¢ is indepedent of p and A > 0, we have Q(#) < A(S™) for p small.
case(3). n=34 or 5

Let P € M and let  be a conformal normal coordinate system at P. By
Theorem 3.5., G = r>~" + A + a(z), with a(x) = O(r) and Va = O(1). Take
the same test function as in case 2, but we cannot assume conformally flat in
this case, i.e., we only have:

gij = 0ij +O(r?), g=1+0(r") and R = O(r?)
Then the calculation is modified by:
| (196 + arey
M\B,
:/ 2(|VG? + aRG?)dp + eg/ (IV(na)|* = 2VG - V(na) + aR(n*a?* — 2naG)du
M\B, M\B,

§e(2)/ (IVG|? + aRG?)dp + cpe?
M\B

P

and the integration by parts and LG = 0 give us:
/ (|VG|? + aRG?)dp = —/ G+\/99" 0;Gnds
M\B, dB,

oG y
= —/ G’—O\/ﬁdu—/ G+/g9" 0;an;ds
oB, or 4B,
where Gy = 72~ + A and n is the normal vector. Hence we have:

oG
/M\B (IVo]> + aR¢p?)du < —€5 /63 Ga—ro\/ﬁdqucpeg
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And we have:
[ (9P +anrd)au= [ (V6P +are?) it < [ [VuPde+ b
B, B, B,
Therefore by the smilialr argument as in case(2), we get:

ue
or

oG

~ 4G or

B(O) < NS0l + o+ [ (u )ds
8B,

which is the same as case (2) hence we get Q(¢) < A(S™).
In summary, in each cases, we indeed have A(M) < A(S™) hence prove the
theorem.l
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1 Introduction

This survey is mainly based on S-T Yau, On The Ricci Curvature of a Compact Kahler
Manifold and the Complex Monge-Ampere Equation.

Our first goal is to solve the Calabi conjecture:

Theorem (Calabi conjecture). Let M be a compact Kéhler manifold with Ké&hler metric
g. Let
Ji’ag dz* ® dz°
be a tensor whose associated (1,1)-form %fiag dz® A dz” represents c¢i(M). Then we
can find a Kéhler metric g whose Ricci tensor is given by Rag dz® ® dzP.
Furthermore, we can require that g has the same Kéhler class as g. In this case, g is

unique.

To solve this conjecture, we will see (in Section 4) that it suffices to prove the following

theorem:

Theorem. Let F € C*¥2*(M) and f,, e’ = 1. Then there is ¢ € C**1*(M) for any
0 <« < 1 such that § = (g;; + ¢;5) d2* ® dz’ defines a Kéhler metric and

det (g,-; + 902-3) =e det(gi;).

In the first three sections, we are going to use Schauder theory and continuity method
to find a solution of this partial differential equation. Hence, we must have the second
and third order estimates, which will be completely computed in Section 2 and 3. Similar
to what we establish Hodge theory through Garding’s inequality, we can find a solution.

After proving the theorem and the Calabi conjecture, we consider the complex Monge-

Ampere equation. In section 5, we will solve the equation
det(g;7 + pi5) = |s|*"e” det(g;7),

where s is a nontrivial holomorphic section of a line bundle L. The main difference
between these equations is whether the functions on the right-hand side vanish or not.

To solve this problem, we consider the equation

det(g;; + pi;) = Ce(Is® 4 €)"e" det(g,),




where C. is a suitable constant that will be determined later. Then by estimate the
differentiability of (., we will get a solution when ¢ tends to zero.

In Section 6 ~ 9, we consider more general right-hand side of the complex Monge-
Ampere equation. For instance, we will replace the function F'(z) by F(x,¢) and apply
iteration method to solve it. In the end, we can solve the equation

t -ty

tn1+1 o 'tn1+n2

det(gﬁ + 9013) = @) det(gﬁ),

where t; = Z?Zl |s;/? with k; > 0 and s; being a section of some holomorphic line

bundle.




2 Estimates up to Second Order

Consider the equation
det(gﬁ + %‘j) =e det(gg) (2.1)

where F € C3(M).
We are going to find solutions ¢ of (2.1) such that §; dz’ ® dz’ = (g;; + ¢;5) dz* ® dz’
defines a Kéahler metric on M.

Before proving the existence of ¢, we need a priori estimates of ¢. Since F' € C3(M),

we assume that ¢ € C°(M). We will give second order estimates of ¢ up to second

/90:0.
M

derivatives under the normalization

Differentiating (2.1), we get
Fp=g" (Qﬁ,k + ‘Pijk) - Qijgﬁ,k = gij(p;ijk'
We differentiate the above equation again and obtain

Fio = =3 (9 + ume) (957 + 2in)
+ g” (gz] ke + (pmkﬂ) + gtjg 9w Zgw k gﬁgﬁﬂ

= 39000 — 3757 Pk (2.2)
Let A be the Laplacian associated with the metric g. Then

A(Dp) = 30,0, (9690@'3)

gkggwtpzykﬁ + g égzzg(pm + g Egzlggouf + g Zgzzgngk‘ (23)

Since M is Kéhler, we may take g; = dij, 9,5, = 95: = 0 and p;; = 0;5;;. Then
inserting (2.2) into (2.3), we have

A(D) = AF + 357000 + 57 R — R + 8% Rigeneis- (2.4)




Since g” = Z’j(l + (,Oﬁ)_l,

T 1.7 @,T (pf.
UR—ys — Riys + §" R 70 = —R:p—t— + Rz jp—
9" g it T 9 A50P5; e o g o

_p. Pi(Pa — Pi)
1+ R 1+ og)

_1 <_ _ valeg—ea) R 0a(vis — oa) )
2 I+ i) (1+ o) 1+ i) (14 ©g)
1 (¢ — i)’

T2 (14 o) (1 + o)
4 \2
> <infRW) : (1 (i — i) )
i 2 (L+ 7)1+ ¢g)

1 -
= (inf Ry ) - i %i —m?).
i#e L+ g

Combining (2.4) and the above equation, we see that

~ e . 1+ Vi
A(D@) > AF + G857, o=+ [inf Ry | - " m2> . 2.5
( QO) - g-g Spknz%ge (27% u%) (1 _}_90@ ( )

Let C be a positive constant. We want to estimate ec¢z(e_c¢(m+ Ay)). Using (2.5)

and Schwarz inequality, we have

CON (e (m + L)) = A(Dp) + C2 Vgl (m + L)

- O (2(Ve, V(20)) + (Be)m + ¢) )

~ V(Lp)?

> A(Dy) — T A —C(Zw)(erAso)

Fa Pri; Pik; Z 1> ‘Pkm
(1 + o) (1 +95) m+As0 14+ ¢z

iR ). (EeE e
+(£lgRW) (HW m) C(Ap)(m+ Ap).  (2.6)

By Schwarz inequality,

‘ Z Spkk 1 ( PrkiPrki )
i < 7 i 1 + _
m+Asoz L+p; — m+Ap 2 (1+ 7)1+ 0 2+ o)
< Pri; Piksj
T (T ) (1 + o)

Inserting the above equation into (2.6), we obtain

(2.7)

B+ B9) 2 AF +int R

Note that




So, we get

N 1 -
eCPA( P m+ Dg)) 2 AF = m inf Ry + inf R - (Z 1 Ii;)
1
~Om(m + £9) + Clm+ 8p) 3
= AF —m? i;lg Rizg — Cm(m + Ap)

1
C+inf R;; JAN . 2.8
(crntra) oY @Y

By AM-GM inequality,

N Ym—1)
Z 1 > (2(1 + S%)) — (m+ D)V D F/m=1),
1+ ¢ [T(1+ ;)

Choose C so that

(2.9)

£l
Then

eC“’Z(e—C‘P(m + Ap)) > AF —m? i;l?Rm — Cm(m + Ay)

# (€ i Rag ) /D 4 gy (210

By maximum principle, at some point x that e*CW(m + Ay) achieve its maximum, we
have

0> AF—m? igRﬁ@ — Cm(m+ Ay)
+ <C’ + 125 R,LW) e~ F/m=D (m  Agp) L/ m=D),

Hence (m+Ay)(x) has an upper bound C; depending only on sup (—AF), sup | inf; 2 R |,
Cm and sup F.

Since e~“?(m + /) achieves its maximum at z, we have the following inequality

0 <m+ Ap < Crefleinfe), (2.11)

We want to estimate sup |¢|. Since

m+ Do =Y (1+¢;) =g"g; >0,

(2

we can estimate sup ¢ by using the Green’s function.




Let G(p,y) be the Green’s function of the operator A on M. Let A be a constant

(depending only on M) such that G(p,y) + A > 0. Then
o) = [ Gln)et) iy = [ (Glo)+ D600 dy
by the normalization of ¢ (which gives ¢ € Im A). Therefore,
sup ¢ < msup /M(G(p, y) +A)dy.

The inequality and the normalization also imply

7[ ms][ ISupw—wH][ sup |
M M M

< 2msup /M(G(p, y) + A)dy. (2.12)

p

Let us now give an estimate of —inf . Choose N large enough so that N+inf,+, R;;; >
N /2. Then, by (2.9),

1 N _p
i g E > e~ F/(m=1) m/(m=1)
(N + %ng Ru%) (m+ Ayp) ( > 5 € (m+ Ayp)

L+ ¢35

There is a constant C; depending only on sup F' and m such that

geF/(ml)(m + Ap)™ MY > ONm(m + Ap) — NCy.
Inserting above inequalities into (2.7) with C replaced by N, we get
eN@Z(e_N‘p(m + Ap)) > AF —m? %QERZ-;@ — NCy + Nm(m + Ap).

Therefore,

NN N (m + L))

> ef (AF —m? %QERZ.M — NCg) + Ne™Fm(m + Ayp)

= el (AF —m? }QﬁRﬁe@ — NCs5 + mQNeian_F) +mNe™ ¥ A

=ef <AF —m? %gRﬁ@ — NC5 + m2NeianF) +me™E (—eNP NN 1 N2V p|?)

> me™F (—eNPAe™NV £ N2|Vp|?) — Cs,

where C5 depends only on N, F and M. Multiplying the above inequality by e~¥¥ and

integrating, we get the inequality

2
/ |v€—N<p/2|2 _ ﬂ/ 6—N<p|v¢|2 < ﬁe—ian/ e—Ncp‘
M 4 Ju 4m M




Claim. We have an estimate of [, e ¥ (depending on N, F' and M).

Proof of Claim. We are going to prove this statement by contradiction. Suppose there

exists a sequence {;} satisfying the above inequality and (2.12) such that

lim/ e N¥ = o,
M
] -1
e Nei = o= Nvi (/ eN‘P") (2.13)
M

It follows that [, [Ve "#/2|? is uniformly bounded from above by a constant. Since

Then we define

so that fM e Néi = 1.

Wt2 cc L*(M), there exists a subsequence of e™V%/2 which we may assume is itself,
converges to f € L?(M).
For any A > 0,

5 2
Vol{x|>\§eN3"i/2}:Vol{x —logA—l——log/ Nei < gpl},

Since lim fM e N¥i/2 = 50, we conclude that, for i large enough,

N —log/ N*‘”<|90|}
—log\+ —1 e Nwi .
_(Nog +N0g/M ) /MI%I

By (2.12), [, l¢:] is uniformly bounded and thus,

Vol{z | A < e N%/2} < Vol {:1:

Vol{z | A < e M?/2} 0
for all A > 0. For all A\ > 0, we get

A ~
Vol{z | A < f} < Vol {I A o |f_e_m-/z|} +V01{

_AQ/ If - ‘N%/2|2+v01{

Since f is the L?limit of e N%/2 f is zero almost everywhere. This is a contradiction

because [, f*=1. [ |

—N@/?}

A o —NW2} 0. (2.14)

Using (2.11) and the Schauder estimate, there are constants C3 and Cj depending
only on M such that

sup |Vo| < Cj (e_cmf“" +/ |g0]> < Cye”@inte 7). (2.15)
M




We introduce the geodesic ball trick. Let ¢ be a point in M where ¢(q) = inf p. Then

in the geodesic ball, with center ¢ and radius

—%infgp
04(670inf<p + 1)’

© is not greater than %inf ©. Since we may assume — infy to be large (otherwise we get
an upper bound), we may assume that the radius is smaller than inj(A). Then we choose

N larger so that N > 4m(C'. Since

1. 2m
—“Ng ~ —Ninfe/2 ~Ninfe/2 —5infy >
e >e Vol(B) Z e . ,
/B; = ( ) ~ <C4(6—C’1nfgo ]_)

we have an estimate of —inf .

Together with the estimate of sup ¢, we get an estimate of sup |¢|. The inequalities
(2.15) and (2.11) then give estimates of sup |Vy| and sup(m + Agp). Since (045 + ¢;5)
is positive definite, we can find upper estimates of (1 + ¢;) for each i. The equation
[1,(1 + ¢;) = e then gives a positive lower estimate of (1 + ¢;;) for each i. Hence, the
metric ¢ is uniformly equivalent to g.

So we get

Proposition 1. Let M be a compact Kéhler manifold with metric g. Let ¢ be a real-
valued function in C*(M) such that [, ¢ = 0 and (g;; + ¢;;) dz' ® dz’ defines another

metrix tensor on M. Suppose
det(gij + %‘j) =e det(gg).

Then there are positive constants Cy; ~ Cy, depending on inf ', sup F, inf AF and M
such that sup |p| < Cy, sup|Ve| < Cyand C3-g < g < Cy - g.




3 Third-Order Estimates

We now estimate the third derivatives .5 assuming ¢ solves the equation (2.1) and

F is C3(M). Consider the function
S =37 7" 5w > 0.
We are going to compute AS. We say that
e A~Bif|A—B| <VS+1,
« A¥BIif|[A-B|<S+VS5+1.

Since g is uniformly equivalent to g, we see that ¢z >~ 0.

Claim. Take g;7 = 055, 9i71 = 957 = 0 and @5 = ;595 at a point. We have the following
estimate:
’w'ijka - e 2 “Pijka PipiaPpih + PP’
~ ; 1+ oupp ’ 1+ 0

A5 = 0t 21+ o) (0T o) (1 F o) (3.1)

Proof of Claim. Since g is uniformly equivalent to g,

AS = §°°S;,

~iD ~qT ~j5 ~kl ~iT ~jp ~qB ~kt

=g (—g 9755 eaapieers — 975 T T Cugapijerst

—gﬁgjsflkpgq%pqﬁ%jk@?si + flﬁﬁjsflkt%'jw%@?st + §i?§js§kt90ﬁk@m¥3) N

~ g’ <—2§iﬁ§(ﬁ§j G g i rst — 3" 5P T T CoapLinPrst

+§ﬁ§lj8§kt<9@z‘jkﬁ%sfs + SOijk%D?szB))a

ip ~qa ~bF ~js =kt

~ 57 (2573757 T Gata g st + 2075 F T T vt e o

jb~as ~kt ~iD ~qT ~j5 ~ka ~bt

+ 29757 5" 5% G Lavapaiznerst + 26797 75 3" Pava O PiirPrst

— 25P57 7 T (0 B Pije Orst + CopBPijhaPrst T P aPijhPrsia)
+ 35T 5% G Cavayggpirers + 3T T T T PavaPpga CiihPrst

+ 37555 5" ava g Cinfrst + " 7T GG CavatP gz PigrPrst
~iF ~ip ~Gs ~kt

— G775 5" (PpaijePrst + CpgaPighaPrst + PrgdPijh Prsia)

~iF ~jb~as ~kt

— (2557 7 Pava + 37 TG T Lava) (P15 0rst + PiikPrsi)

+9g Wg jsg H (9013k5a Prst T+ PijkBPrsia + PiikaPrsis + Pijk PrstBa ) ) : (3 : 2)

10



From the commutation formula, we have
_ _ D _ P
PijkBa = PijBka + <907I?RZB]€ - SOP'RikB>a
S PP _ ., _pP _pp _ P
= PiBajk T (‘Pszﬁ‘ja %Bij> LT (901PR]-’,3;€ SOPjRikE>a
= PiBojk- (33)

We can see from (2.2) that

70,50 = Fia + 375000 (3.4)
Differentiating this one more time, we get
gﬁ%ﬁk% = gﬁgnj@;n%s@;im + Fgs + (gﬁngO;tﬁZW;ijk) .
By (3.3),

ga’g%jkﬁa = f]aﬁ@aﬁﬁk
= fl@gqﬁ‘ﬂqﬁk‘ﬂaﬁﬁ + F ik T <§p6§@¢pﬁ@aﬁi> .
= 3757 LaphPazis + Fiju — 579" 5 0avk Py Pusi

- gpﬁgaagquOEbk@qu@aBi + gpﬁgaagppﬁjk(pagi + gpﬁgaagpqugpaﬁik‘ (35)

Using (3.2), (3.4) and (3.5), we get

~ip ~qa ~br ~js ~kt

AS =257 (f/iaé”ﬁf/‘ﬁﬁj *T" Pava LpiPiinPrst + G TG TG Carat 3 PisnPrst
~qT ~jb ~as ~kt ~qr ~js ~ka ~bt

+G7 5" 5 59" PavaPapaPignrst + GG TG soabasoqpawgksofsz)

= 2575755 (Fuppiusorst + 5707 GunpPasy s

+§a’6¢qp390i3ka Orst + gaBSquE%}kSD?sta)
+ 37 (55 7G5 e Pt + 57 GG T ety i et

7 ~9p ~qs ~ka ~bt

+97 55" 579" avaPugpin st + 97 5T 55" PavaPugp Piin %z)
~iT ~jp ~qs ~kt

—3"g"9"g <Fqﬁ§0i3k90is¥+gtﬁgaﬁgptﬁp§0aﬁq9@ﬁk¢?5i

+§a5<ﬁqpﬁ%3ka90?st + gaﬁs%pﬁ%jk@?sm)
— 325" 7° 5" eava + 37T 57" Pava) (Pi5k5rst + PijhOrsia)
+ 2Re (57575 ra 55 oupisPuy + Figi = 3575 arno i Pu
_pBroazby, oo+ PPy o + spBrag, )
g g g @abk@qugoaﬁz g g Spqukgpaﬂz g g gpqugpaﬁzk‘

+ 3577 T (k5 rsto + PijhaPrsia)-

11



Take a coordinate such that at some point, g;; = 0y, 9,5, = g;77 = 0 and ;5 = 0;50;;. We
get

AS = 2 PipaPapaPijkPak T 2 PrpaPaiaPijkPap + PraaPizaPijrPipk
(1 + @aw) (1 4+ @7) (1 + 9;5) (1 + @) (1 + 0pp) (1 + 0gq)
— 9Re (sopm%jkasopjk + PipaPijkPipka T soz-pasoijksapjm)
(14 @aa) (1 + 0i7) (1 + ¢7) (1 + @) (1 + ¢pp)
|@ikal” + |@ikal”
(1 + @aa) (1 +07) (1 + 07) (1 + opz)
Pijka — Wipfz:;"‘ 2 + | Pijka — ‘Pﬁiaﬂop?i;f?%@pja 2 0
B 1+ ¢aa) 1+ 07) 1+ 970+ 9)

By (2.5) and Proposition 1,

}(pkljl .
Agp >Z (1 + our) (1 +05) .

where (' is a constant that can be estimated. Take C5 large enough, we get
A (S + Cop) > —C3(S + VS + 1) + Co(CyS — Cy) > Cs8 — Co,

where Cy ~ (g are positive constants that can be estimated.

Using maximum principle, we see that
Cs (S + CoAp) < Cs + C5C2 M.

The estimate on Ay then gives an estimate of sup (S + CyAp) and hence of sup S. Finally,

we get the estimates of ¢ 5. for all 4, j, k.

Proposition 2. Let M be a compact Kédhler manifold with metric g. Let ¢ be a real-
valued function in C®(M) such that [,, ¢ = 0 and (g;; + ¢;;) dz' ® dz’ defines another
metric on M. Suppose

det(ﬂﬁ + %’3) =" det(f]ﬁ)'
Then there is an estimate of ¢ in terms of g, sup [F|, sup [VF|, sup (supm ‘FQD and

Sup (Supwk’ ‘FJkD

12



4 Solutions of the Equation
So we are going to solve the equation

det(g;;) = e’ det(g;5), (4.1)

][eF =1. (4.2)

With the estimates of Section 2 and Section 3, we shall now prove that if ' € C*(M) with

where F' satisfies

k > 3 and F satisfies (4.2), then we can find a solution ¢ of (4.1) where ¢ € C*t12(M)
for any 0 < o < 1. (C*12(M) are the functions whose (k + 1)-derivatives are Holder
continuous with exponent «.) We are going to use the continuity method. Consider the

set

S = {te[o,l]

det(g; + ;7 !
dotlgi + vi5) = ][ et has a solution in C**1¢(M) ¢ .
ett det(gij) M

Since 0 € S, we need only to show that S is both closed and open in [0, 1].

S is open: Let

U= {(p e CFhe () ‘ / ¢ =0 and (g;7 + ;) is positive definite. }
M

and

B= {fe(]’“—w(M) ‘]ile}.

Then U is an open subset of a hyperplane in the Banach space C**1%(M) and B is a
hyperplane in the Banach space C*~1%(M). We have a map G : U — B:

_det(g; + »55)

G(o) =
() det(g;;)
We see that
det(g;7 + ©o,i7)
dG,, = Y N
0 det(gij) o

where A is the Laplacian of the metric (g;; + ¢ 7) dz' ® dz7.
It is well-known that the condition for Agp = f to have a weak solution on M is that
[y fdVol,, = 0. Hence the condition for

det(gij + ‘Po,i})
det(gz‘})

A04,0:f
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to have a weak solution is that | /= 0. The Schauder theory makes sure that ¢ €
Ck+he(M) when f € C*1(M), which is exactly the tangent space of B. The solution
is unique if we assume that [,, ¢ = 0. Hence dG,, is invertible. By the inverse function
theorem for Banach spaces, G maps an open neighborhood of ¢y to an open neighborhood

of G (¢o) in B. this proves that S is open.

S is closed: Let {t,} be a sequence in S with limit ¢, € [0,1]. Then we have a sequence

¢, € CFT12(M) such that

-1
det (gﬁ + goq,ﬁ) = (][ et‘?F) -elal det(gﬁ) and / 0, = 0.
M M

Differentiating the above equation (in direction d,), we have

1
(dettang) - 508,) eun = () - 0 dertag). (43)
M

Proposition 1 and Proposition 2 shows that the operator (det(gqﬁ) . §278i5j> is uni-
formly elliptic and the coefficients are Holder continuous with exponent « for any 0 <
a < 1.

Using the Schauder estimate, we get an estimate on the C**-norm of ¢,, (and ¢,5
similarly). So the coefficients of (det(gqﬁ) .g;‘?aﬁj) have better differentiability. The
Schauder estimate now gives better differentiability of ¢, and ¢, 5.

Iterating the process, we get C**1“estimates of ¢, (since F € C*(M)). So the
sequence {¢,} converges in the C*%norm for a € [0,1) (by the compact embedding

Ck+LL s kL) 0 a solution g of the equation

i) ([ r)”
et det(g;7) M .

Hence S is closed.

Theorem 1. Assume that M is a compact Kéhler manifold with metric g. Let F be
C*(M) with k& > 3 and f,,e" = 1. Then there is a function ¢ in C**(M) for any
0 < a < 1 such that (g;; + ¢;7) dz* ® dz’ defines a Kahler metric and

det (gl; + %3) =e det(gi;).

Corollary (Calabi conjecture). Let M be a compact Kahler manifold with Kéhler met-
ric g. Let Raﬁ dz® ® dz° be a tensor whose associated (1,1)-form %Rag dz® A dz°
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represents ¢1(M). Then we can find a Kéhler metric § whose Ricci tensor is given by
Ra? dz® ® dz®. Furthermore, we can require that this Kéhler metric has the same Kéhler

class as the original one. In this case, the required Kahler metric is unique.

Note that
R,5 = —0,0plog det(g;5). (4.4)

Since we assume that %éoﬁ dz® A\ dz° represents c; (M), we see that
R, =R,5— 0.05f (4.5)

for some smooth real-valued function f.

By Theorem 1, we can find a smooth function ¢ so that (g,5+ ¢.5) dz® ® dz° defines

a Kéhler metric and that
det(g,5 + ¥.5) = Ce’! det(g,3), (4.6)
where C' is a constant chosen to satisfy the equation

][ Cel =1.
M

From (4.4), (4.5) and (4.6), it is easy to see that Raﬁ dz® @ dz” is the Ricci tensor of
(9o + Pap) dz* ® dz°. This proves the Calabi conjecture.

Remark. The uniqueness was proved by Calabi and will also be indicated and proved

in Theorem 2.
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5 Complex Monge-Ampere Equation with Degener-
ate Right-Hand Side

Let L be a line bundle over M. Let s be a nontrivial holomorphic section of L. Suppose

L is equipped with a Hermitian metric. Then we have a globally defined function |s|? on
M.

For k > 0, we consider the equation
det(g;; + i) = |s[**e" det(g5), (5.1)

where F' is a smooth function such that

][ 5|2kl = 1.
M

In order to solve (5.1), we approximate the equation by
det(gij + %‘3) = Oa(|3|2 + 5>k€F det(sz)a (5.2)

where € > 0 is a small constant and

. = (]i(|s|2+5)keF) e (]i\sﬁkef“) .Y

By Theorem 1, (5.2) has a smooth solution . such that (gﬁ + gpeﬁ) is positive definite

and

/M 0. = 0. (5.3)

We are going to prove that when ¢ — 07, . tends to a solution of (5.1). So we need
some estimates of . which are independent of €.

To estimate inf p. and Ay, we notice that, when s # 0,

Als]? V52| |s]?
Al 2 = — > -A1 2> A1 2|, 4
og(lsP +2) = o~ ey 2 ap g AloslP 2 = [BloglsP|. (54

Since A log |s|? is the trace of ¢; (L) with respect to g for s # 0, we see that A log(|s|*+¢) is
uniformly bounded from below. Note that both sides of the above inequality are smooth.

By taking limit to the points where |s|? vanish, we see that the above inequality holds on

M.
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Let A, be the Laplacian of the metric g.. Then according to (2.10), we have

D (e (m + Dpe)) 2 k Dlog(Jsf + &) + AF —m* nf Ryggg — mC(m + D)

(m—l—AgOE)H_l/(m_l)
eF/(mfl)(|S|2 _‘_E)k/(mfl)'

+ Ot (O + inf Rm) (5.5)

Same as in Section 2, we get
m+ Ap, S eCleeminive), (5.6)

For s # 0, A log|s|* is dominated from below by the trace of ¢;(L) with respect to g..
Hence there is a positive constant C; independent of £ such that

1
I+ Peii '

Aclog|s|” > —Cy ) (5.7)
Let p be any non-negative number. Then by Schwarz inequality, when C' > pCh,

e“P A (e (|s]P +e)P) = A(|s]” +e)P + 2(V.(|s]* + )7, Ve %)

+ (|s]?+e) (|Vse‘0% 2 CAEgps)
V.(|s]2 + e)r|?
> A (]s|? p_ Ve — 2 PA Q.
> A(]s]* +e) (FEEE C(|s]” +e)PAcp

= (|s|* + )P Aclog(|s]* + )P — C(|s]* + )P Aipe

1
> —pOu(sf” +2V Y

— (= pO)(sP+er Y —

i 1+ Peii

(s + 2
CL/mer/m

— C(Is]* + e)P Ao

—mC(|s]* + )P

> m(C —pCi) —mC(|s|* + )7,

where the last inequality is due to the AM-GM inequality. Multiplying the above inequal-
ity by (|s]? 4+ )¥ef'~C#: and integrating, we get

sup F' —Cype
Ce / e (
M

S|2 + €)k+p

5’2 +€)k+p 2 C/ eFchpE(
M

> (C —pCﬁ)Og_l/m/ 6—C<p5(|8|2 + g)(m—I)ks/m—i-pe(m—l)F/m
M

2(C=p0n) [ O (Jsf 4 pim k.
M

By the above inequality, we see that, for all ¢ € [mT’lk +p, k+ p}, there exists a
positive constant Cy such that

/ e_c“"e(|s|2 +e) < C’g/ e_G“’E(|S|2 + 5)k+p.
M

M
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Hence, for n € N such that p — % >0,

[ o ist e g s [ el spaaprig [ O (s e,
M M M

Let n be the largest integer so that p — (”_Tl)k > 0. Then we have k € [k‘ +p—" ktp—

m
@} and hence,

/ =% (|52 4e)* < O / O (|5 +e) T < < Gy / = (|s]+2)"P. (5.8)
M M M

for some C3,C% >). By (5.5), we can find positive constants Cy and C5 such that

e“P N (679 (m+ D)) = Cy(m+ D) = Cs.

keF—Ccpg

Multiplying the above inequality by (|s|? + ¢) and integrating, we obtain

05 esup F—inf F

[ oo v o m+ g < S [ 0o ot
M CV4 M

Since m + Ay, > 0, it follows from the above inequality that we can find a positive

constant Cg independent of e (for € small) such that

/M =0+ (

s + )" (m + Age)

8‘2+€)k+1ﬂg05 S/ 670@5(
M

<y / e O (|32 + )",
M

Integrating by parts in the above inequality, we derive

C / O (|5 + ) Ve < (k+1) / e (| + &) (Ve VIsI?)
M M
‘|‘CG/ 6_0%(|S’2—|—€)k
M

k+1)?
S ( + ) / G_C%(|8|2+€)k_1 ‘V|S|2|2
¢ Ju

1
+ ZC/M e (Is|* + )F T [Viee |
+06/ =0 (|s[2 + &)
M

Hence,

10 [ O s+ Tl < b+ 1 [ O (s ) Vs
M M

+ CCG/ e (s> + )",
M
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On |s| #0,
[VIsP|" = [sPAlsl” = |s|*Alog]s|.

Note that A|s]* and |s|* are upper bounded and Alog |s|? is lower bounded. So we see

that

|V\3|2‘2 < (sup Als|]* + max{sup |s|* - sup(—Alog s]?),0}) - |s|>.

Since both side are smooth on M, we see that |V|s[2|” is dominated by |s|> on M. Together

with (5.8), we see that

/ ‘V (670905/2(‘8|2 +€)(k+1)/2)
M

1
(k+ 1)2/ e” 9% (|s]? + ) ‘V|3|2|2 + —02/ e~ (|s]2 + &) Vo, |
M M

‘ 2

<

N | —

2

2
(k + 1)2/ e”O% (|s]? + )t ‘V!s]2|2 + 506’6/ e~ % (|s]? + ¢)*
M M

IA
o~

e % (|s]2 + ¢)*

24\
=

< / e” P (|s]* + )" (5.9)
M

Using the Green’s function as before, we get an estimate of |’ 1 |©e| that is independent

of €, we apply the normalization trick in Section 2 that (5.9) gives an estimate of

/M e=C%-

independent of . (Suppose there is no estimate. Then we can find a sequence ¢; — 0

S|2 4 €>k+1

such that [,, e %% (|s|2 + £..)¥*! tends to infinity. Then we define
M J

-1
e 0% = 7% (/ em %5 (|sf? +€j)k+1) :
M

By (5.9), (s> + ;)" 729% converges to some f in L*(M). Using the L'-estimate
of |pc| on the set {x € M | |s| > 1/n}, we see that f =0 a.e. and get a contradiction.)

As in (2.15), inequality (5.6) and the estimate of sup . give an estimate of

V|
e—Cinfoe +1

independent of . Now we use the geodesic ball trick. For some geodesic ball B of radius

_ Cy(—infyp,)

R efCinfc,of5 + 1’
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. is not greater than %inf @e. (Here C is a positive constant independent of €, and R is

less than the injectivity radius of M.) We see that

/ efNinprE(ls‘Q + E)kJrl > eNinprE/Q/ |S’2(k+1)
B B
R
> eNinfapE/2/ T,a(k+1)d7,
0
. ak+a+1
o> L vt (Crl=infer) -
~ 2a(k+1) e~ Cinfoe 41
By choosing N > 2C(ak + a+ 1), we get an estimate of — inf ¢, independent of ¢ and
(5.6) gives an upper estimate of m + A, independent of ¢.
Now we want to find the third-order estimate. Let p > 0 be a smooth function in M
with supp p C K. Since (|s|? + ¢)*e!” has a uniform lower bound over K, the metric g. is

uniformly equivalent to g.

As in Section 3, we define

iT _js ki

Se = 029292 Pesigiest-
From (2.6), we can find positive constants Cs and Cy independent of ¢ such that
pAa (A@a) 2 CSpSE - C9p

Integrating the above inequality with respect to the volume form (|s|* + ¢)*ef dVol, we

see that

08/ pS.(|s]2 + 2)Fe” gog/ p(|8|2+6)keF—|—/ Acp- D - (s +2)FeF
M M M

Note that the RHS can be estimated. Since inf|s| > 0 on K, we can find an estimate of
[5s PSe independent of e.

Since the compact set K and the function p are chosen arbitrary, we see that we have
found an L'-estimate of S. over any compact subset K of M which is disjoint from the

divisor of s. Say
/ S. < CK, (510)
K

where C'x is independent to e.

Let
B(R) = {(21,--- , Zm)

Z\zﬁgR} C K

%

be a coordinate chart. We want to estimate S.(0) by the L;-norm of S; over B(R).
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Using the computations of Section 3, we know that there are positive constants Cq

and C1; independent of € and ., such that on B(R),
JAVN <Ss + Ciolp: + Cny Z |Zi|2> > C125: — Ci3 + CnAA (Z |Zi|2) > 0.

We may also assume that the function S. = S, + CioAw. + C1y (Zl |z,|2 + 1) > 0.
The Dirichlet problem
Ay =0 on B(R),
Yv=2S. ondB(R).
has a smooth solution S.. By the maximum principle, S. > S. > 0 in B(R).
Since g. is uniformly equivalent to g on B(R), we know that S. is a solution of a
uniform elliptic equation of divergence form whose elliplicity is estimated (this means

that the eigenvalues have a uniform bound).

By Moser’s Harnack inequality

we get
5*5(0)5/ S.. (5.11)
B(R)

Let o be a non-decreasing C'*°-function defined on R such that
(i) o(t) =0 for t <0,
(ii) o(t) =1 for t > and
(iii) o'(t) < 2 for all ¢.

For 7 < R, we define ¢.(s) = [“to(r —t)dt. We see that ¥, (r) = ¥.((3; [z]*)"?)
vanishes outside a compact subset of the interior of B(R).

By direct computation, we have

D (r) = gI0:0,0r(r) = 10’ (1 = )92 (9ir) (Oy7) — 5o (7 — )92 0,91

£

— N | =

= ro’(r =) (Or) (Byr) = 5o(r = )g?.

\)
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Multiplying the above equation by S. det (9epg) and integrating with respect to the Eu-

clidean volume form dFE, we obtain (by integration by parts)

0= / (Aagg)@m(r) det (gopg) dE = / S. (Acpr(r)) det (gepg) AE
B(R) B(R)

N _ _ 1 B -
= / Scro’ (1 —1r)g? (0ir)(0;7) det (gepg) AE — 5 / Seo (T —1r)g? det (g=pq) dE.
B(R) B(R)

Since ¢ > 0, and ¢’ > 0, it follows from the above equation that

1 — -
—inf(?det 5—> S.o(r —r)dE
2 B(R) g (Gepa) B ( )

< sup <rg?(8i7“)(5j7") det (g5p§)> / S.o'(t —r)dE.

B(R) B(R)

Therefore, by the uniform bound of g., we can find a positive constant C'4 independent

of o, 7, € such that

/ S.o(r — r)dE < 014/ 5'50'(7 —r)dE.
B(R) B(R)

Letting 7 — R, we may replace 7 by R in the above inequality. Then

/ S.dE < / S.dE.
B(R-9) B(R)\B(R-9)

Letting 6 — 07, we see that fB(R) S.dE can be estimated by fé)B(R) S_. Since Selopr) =

20,

5’5]33(3) and S. > 0, we conclude from (5.11) that there is a positive constant Cj5 inde-

pendent of . and ¢ such that

S.(0) < S5.(0) < 015/ S..
dB(R)

Since C15 can be chosen to be independent of R when B(R) lies in K, we can integrate

the above inequality (over R) to find an estimate of S.(0) in terms of the L'-norm of S.

over K. Together with the L'-estimate (5.10) of S., we get an estimate of S. on K.
Using the method in Section 4, we can estimate the higher derivatives of .. Differ-

entiate

det (gg + g&sﬂ-;) = O.(|s]® + e)ke” det(g;7)

in direction 0. Then

(9?&-53') ek = O (log (Co(|s]” + £)*e" det(g;)) ) -
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Since we have Lipschitz estimates (Holder exponent 1) of these coefficients over K,
the Schauder estimate shows that all higher derivatives of ¢. can be estimated over these
sets.

Since K is arbitrary, by letting ¢ — 0%, we can now conclude that {p.} has a subse-
quence converging to a solution ¢ of (5.1) such that ¢ is smooth outside of the divisor of

s and {|¢;]} is bounded for all 4, j.

Theorem 2. Let L be a holomorphic line bundle over a compact Kéahler manifold M.
Let s be a holomorphic section of L. Let g be the Kahler metric of M. Then, for any
k > 0 and any smooth function F' with f,, |s|**¢" = 1, we can find a solution ¢ of the
equation

det (g5 + ¢;7) = |s[*"e” det(gy5)

with the following properties:

(i) ¢ is smooth outside the divisor of s, and

(ii) Ay is bounded over M

Furthermore, any function v satisfying the above properties must be equal to ¢ plus a

constant.

Proof. We only need to prove the last statement. We claim that, if f is a function such

that {|f;;/} is bounded over M for all i, j, then

/M(Zf)\sy%ef“ = 0. (5.12)

Indeed, if we let ¢(ge);; be the (¢, j)-th cofactor of the matrix (g, ;), we have
/ (A (|s]? + e)kel” = / c(ge)gfzdz" Ao NdZ" NdZV Ao AdZ™ =0, (5.13)
M M

Since ¢(g:);; and f;; are bounded independent of ¢, we can use the Lebesgue dominated
convergence theorem to obtain (5.12) from (5.13).
Now let 9 be another solution of (5.1) satisfying the properties mentioned in the

theorem. Then we have
det (g9 + 95 + (¥ — ¢);3)
det (gg + 4,01-3)
Using the AM-GM inequality, we have

=1.

Aw—9) = (m+ B -¢) ~120
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Since Wﬁ‘ and ‘gpiﬂ are both bounded, ‘(1/1 — 90)%‘ is also bounded over M and ¢ — ¢ €

CY(M). We may assume that ¢ — ¢ > 0 by adding a constant to ) — ¢. Then applying
(5.12) to f = (¢ — ©)?, we obtain

2 [ w-pBu-g)+2 [ Fw-of = [ Z@-e?) =0

Since (¢ — ¢) > 0 and Z(zﬁ — ) > 0, we conclude that ,va —¢)=0and ¢ —pis a

constant. |

24



6 Complex Monge-Ampere Equation with More Gen-
eral Right-Hand Side

Consider the following equation:
det (gl-; + gog) = F(@:9) det(gﬁ), (6.1)

where F'(x,t) is a smooth function defined on M x R with F, > 0.
If such ¢ exists, then integrating (6.1), the integral of the RHS is equal to the volume

of M. So we assume that there exists a smooth function 1 such that

][ efF@d) = 1.
M

We are going to use an iteration method to solve (6.1).

Lemma 1 (Uniqueness of the solution of (6.1)). Let ¢ and ¥ be two smooth solutions of
(6.1) such that both (g5 + ¢;5) dz' ® dz7 and (g;; + ¢;5) dz' ® dz’ define Kéhler metrics
on M. Then ¢ — ) is a constant.

Proof. Note that
det(gi; + @it (v — 90)13) — F@y)—F(zy)
det (gij + %‘3)

Let A, be the normalized metric Laplacian of the metric (g; + ¢;7) dz* ® dz’. Then it

follows from the AM-GM inequality and the above equation that we have the inequality
By the mean value theorem we have

e )
Fla.) = Flao) = [ Filo.r)dr = R i) (6() - ¢(0),

where t(z) is a number between inf {(x), ¥ ()} and sup {p(z), ¥ (z)}.

Since F; > 0, we can combine the inequality and the equation above to conclude that
whenever ¥ (x) — ¢(x) is strictly positive, A, (1) — ¢)(x) is nonnegative.

Suppose sup () — ¢)(x) > 0. By the maximal principle we see that 1) — ¢ is locally
constant on the set {x € M | (¢ — ¢)(x) > 0}. Interchanging ¢ and 1, we see that ¢ — ¢

must be a constant function. [ |
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We now introduce the iteration method. By Theorem 1, we can find a smooth function

o such that (g;5 + ¢y ;7) dz' ® dz’ defines a Kahler metric and
det(gﬁ + @0,2‘3) = @) det(gij)- (6.2)

If we define
o = o £ sup |po — ¢,
then both ¢ and ¢, satisfy the equation.
The set A = {(z,t) | © € M,pf(x) >t > ¢y (x)} is a compact subset of M x R.

Hence we can define

k= sup Fi(z,t)+1>0.
(z,t)EA

For each i > 1, we define ¢ and ¢; as the smooth solutions of the following equations:
e z,0F
det (gaB + 90223) — ek(% 0 )+ (x5 ) det(gaﬁ) (63)
so that g = (gag + goiiag) dz® ® dz° define Kihler metrics.
Lemma 2 (Existence of ¢). Let M be a compact Kahler manifold with Kéhler metric

g. Let F(z) be any smooth function defined on M. Then, for any constant k& > 0, there

exists a unique smooth function ¢ such that
det(gﬁ + %’3) = ket det(!]i})
and (g;7 + @;7) d2' ® d7’ defines a Kéhler metric.

Proof. As in Theorem 1, we can use the continuation method where the one parameter

family (with parameter t) of equations is
det(gij + %‘j) = ket det(gﬁ).

By maximum principle and AM-GM inequality, when ¢ achieves its maximum at a point

Zp, we must have

E(p(xo)-f—tF(:co) — det(gﬁ + SOIE) <1.
det(g;) —

This implies immediately sup¢ < —(t/k)F(x). Similarly one can draw an estimate of

(&

inf p. Since k > 0, the uniqueness part follows from Lemma 1. [ |

Claim. Foralli>0, ¢; < ¢y < el <o
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Proof of Claim. The proof is almost based on the maximum principle and AM-GM

inequality. We induction on 7. For i = 0, we see that

det (g, + gpiﬁ) _ kel —kof JF(xp]) det(g,5)

S ke —6) o) det(g,) = ke —28) qet (gaB + %“ 3)'

At the point where ¢ — ¢ achieves its maximum, by AM-GM inequlity,

det(g.3 + ¢} 15) < det(gaz + 95 5)-

Hence sup(¢; — ¢f) < 0. Similarly, sup(p, — ;) < 0.
To show that ¢; < o}, by (6.3) we see that

det (gag + SOIQB)

— kel —oT )+ F(z08) —F(z,05) —k(e§ —25)
det (gag + 901,aE)

Since ¢ > ¢y, by mean value theorem we get

Therefore N
det (gCYB + SOI,&B)

Lol oklel —e1)
det (gOéB + (’Ol,ag)

At the point where o] — ¢ achieves its minimum, (by maximum principle and AM-
GM inequality,) the RHS of the above inequality is greater than or equal to 1 and hence
Pl > o7

For general i. Applying (6.3) twice, we have

det (gaB + 80:;1,043)

=e
det(g,5 + ¢,

k(e —e)HF (el )—Flawi )=kl —oi 1) > kel —ef)
- Y
z,aB)

where the inequality is due to MVT. Hence the maximal principle shows that ¢ > ¢ ;.
Similarly one can show that ¢;” < ¢, ;.

To prove that ¢/, > @7, by (6.3) we see that

det(g.5 +o"
© (go‘ﬁ * ('0”1’0{5) — Fei— i) HF (2l )~ F (a7 )—k(of —¢7 )

det (gaﬁ + gOz'_-s-l,oﬁ)

Using ¢;” > ¢; , one can repeat the above argument to show that ¢ > ¢ . U
Therefore both ¢ and ¢; are uniformly bounded. Again, we want to find a uniform

estimate of gpjag. As in Section 2, it suffices to estimate Ay} .
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Let A be the Laplacian operator associated with the metric g;". Let C' be any positive

constant such that C' + inf, .y Rz > 1. Then by same computation as in (2.8), we have

eCENF (€O (m+ pl)) = (A — Aply) + g F gz, 6t y)
+ 9P Fal@, 7)1, 5+ 97 Fia@, 0801
+ Fy(, W;r—l)’v@;r—ﬂz + Fy(z, %'tl)ASO;LA
— Cm(m+ D))

1
i - +
+ (C + gélanu) (m+ Ag;") E

1 + sz,raa'

Since sup |¢;"| has been estimated, it follows from Schauder’s estimate that
sup V| < (sup |Apf | +1) .
As in (2.9),

Z % > (m + A(p;r)1/(’”*1)e(*k(@j*%T_1)+F(x,¢f_1))/(mfl)
1 + @i,aa

2 (m+ ApHYm=h.,

Noting again that sup |p; | has been estimated, it follows from above inequalities that

there are positive constants C7, Cs, independent of 7, such that

CFLNF (e (m+ D))

> Cy(m + D)V =1 _ ¢, ((m + A ) + (m+sup Apj ) + 1)

e point where e=C¥#i m—+Ae;) achieves its maximum, the RHS must be non-positive
At the point wh Ce ©; , p

and so
Cy (m+sup A7) Y < en S el Gy (m o+ sup A ) + (m+ sup Al ) + 1)
Then we can find a positive constant C3, independent of 7, such that

(m+supAyp]) < % (m +sup Mg ) + Cs.

By iteration, this gives

m + sup Apg

: 2C,.
9 +20s

m + sup Ap;” <

Therefore we have found estimates for gojaﬁ. To find uniform estimate of @jaﬁv, let

_ 4ol +Pp +vd, + +
Si=9;"9;"9; Pi by Pitvg
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By a computation similar to that of (3.1), we have

AF(S; + CuAT) > C58; — Cs/Sin/Si1 — Cr, (6.4)

where Cy ~ C; are positive constants independent of <.

Since |Ap; | has been estimated, it follows from the maximum principle that

sup 9; < %\/supSi\/supSi_l + % + Cysup |Ap]|.
5 5

It should be noted that in (6.4), we can choose Cj to be arbitrarily large if we are allowed
to increase C; and C;. In particular, we may assume that 2Cy < C5. By AM-GM

inequality,

C 3 1
Fi\/sup S’i\/sup Si1 < 7 5up Si + T3 SUP Si_q.

Then we get

1 4C
sup S; < = sup Si_; + —~ + 4C, sup |Api|.
3 Cs
By iteration, we can find a uniform estimate of S; and hence a uniform estimate of gpjam.
Letting ¢ — oo, we can then obtain a solution of (6.1). The Schauder estimate

guarantees the solution to be smooth.

Theorem 3. Let M be a compact Kahler manifold with Kahler metric g. Let F(x,t)

be a smooth function defined on M x R with F; > 0. Suppose that, for some smooth

function ¢ defined on M,
][ Fb(@) _
M

Then there exists a smooth function ¢ on M such that
det(g;; + @) = ") det(g;5)

and (g;;+ ¢;;) dz' ® dz’ defines a Kéhler metric. Furthermore, any other smooth function

satisfying the same property differs from ¢ by only a constant.

Corollary. Let M be a Kéhler manifold with ample canonical line bundle. Then there
is a Kahler-Einstein metric whose Ricci tensor is the negative of the metric tensor. Fur-

thermore, a metric of this form is unique and depends only on the complex structure of

M.
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By hypothesis, —c¢; (M) is represented by some positive (1,1)-form /—1 g5 dz' N d7.
Take this form as our Kihler form. Since the closed (1,1)-form —Addlog det(g,;) also

represents c¢; (M), we can find a smooth function f such that
90 log det(g;5) = \/—_1913 dz' N dZ + 00f.
Now by Theorem 3, we can solve the equation
det(gﬁ + %’j) =/ det(gﬁ)
so that (g;5 + ;) dz' ® dz’ defines a Kéahler metric. By these equations we have

—90log det(g; + i) = —00p +00f — —1g;5 dz' N dZ — 00f

This is indeed the metric we want.
For the uniqueness. Suppose that g;; is another such metric. Then its Kéhler form
must represent — ¢1(M). Hence we can find a smooth function ¢ defined on M such that

97 = 9;7 + V7. Together with the fact that —R = g, we get

—90 log det(g; + ;) = —vV—1g;5 dz' N dZ — 00y
= —001log det(g;;) + 00 f — DO,

which is equivalent to

- det(gﬁ + ¢13) f—y\ _

Therefore,

det(g;7 +v5) = eVre=f det(g,;)

for some c. The function 1 4 ¢ then satisfies the equation. Lemma 1 shows that ¢ — ) is

a constant. Hence,
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7 Degenerate Complex Monge-Ampere Equation with
General Right-Hand Side

In this section, we combine the main results of the last two sections.
Let L be a line bundle over M. Let s be a nontrivial holomorphic section of L. Suppose
L is equipped with a Hermitian metric so that the function |s|? is globally defined on M.

For k > 0, we consider the equation
det (gz'j + %’3) = |S|2k€F(m’¢) det(gij)u (7.1)

where F'(x,t) is a smooth function defined on M x R with F; > 0.
As in Section 6, we assume that there is a function ¢ whose partial derivatives 9,5 are

uniformly bounded on M so that

][ |52l @v) = 1,
M

We approximate (7.1) by
det(g;; + @) = C(|s* + )" 9 det(g;5), (7.2)

where € > 0 is a smooth constant and

~1
C. = (][ (Js|” + E)keF(x7w5)) :
M

Consider a sequence of smooth functions {¢.} such that ¢. — @ uniformly on M and
that sup ‘¢57i3| is uniformly bounded on every coordinate chart.

By Theorem 3, we can find smooth solutions . of (7.2) such that (g;;+ . ;) dz' @ dz’
defines a metric. As in the proof of Theorem 3, we get an estimate of sup |.| in the
following way.

Let ¢ and ¢- be two smooth solutions of the equation
det(g; + @i7) = Ce(Is[* + €)™ det(g;) (7.3)

such that T > 1. > ¢-. Then the arguments of Theorem 3 show that ¢ > . > ¢ .
On the other hand, for the unique solution of (7.3) with fM ¢ = 0, we can find an
estimate of sup |p| which is independent of . (This is seen in the proof of Theorem 3.

Note that boundedness of A, is needed.) In particular,

sup || < max{sup [ |,sup [o] |} < sup |¢| + sup ¢ — b < 2sup|p| 4 sup |-
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is bounded from above by a constant independent of ¢.

Let us now proceed to estimate Ay, from above. Then, as in (5.5), we have

€N (e (m+ Dp.)) > g F g+ 67 Fupe + 99 Fygpei + 97 Fupe ooy — mEy
+ kA log(|s[” + €) — m* inf Ry —mC (m + D)

(m + Ay, )™/ (m=1)
F/m=D)([s|2 1 2)b/(m=D)"

#Cm0 (C4in Rog )

Choose C so that C + infiz R > 3C > 1. Then noting (5.4) and the fact that sup ||

is bounded, we can find positive constants C; and C5 independent of £ such that
Ao (79 (m+ Dpe)) 2 O (m+ D)™V = Cy ((m+ Do) + [V +1). (74)
On the other hand, by Schauder’s estimate and the estimate of sup |¢.|, we have

sup [Vee| S (sup |Ape| +sup |o.|) S (sup (m + Ap.) +1).

By the maximum principle, we get an upper estimate of m + Ay.. Therefore, we have
uniform estimates of |<,06’Z~3| on every coordinate chart of M.

Using the uniform estimate of ¢, ;z, we follow the arguments of Section 5 to provide
higher derivative estimates of . on compact subsets of the complement of the divisor of

s. Letting ¢ — 07, we have then proved the following theorem.

Theorem 4. Let L be a holomorphic line bundle over a compact Kéhler manifold M
whose Kéhler metric is given by g. Let s be a holomorphic section of L. Let F(z,t) be a
smooth function defined on M x R such that F; > 0. Suppose, for some function ¢ with
47| bounded on every coordinate chart of M, we have f,, |s[*e"*¥) = 1. Then we

can find a solution ¢ of the equation
det (g5 + @i7) = [s*e" ) det(g;7)
with the following properties:
(i) ¢ is smooth outside the divisor of s, and
(ii) Ay is bounded over M.

Furthermore, any solution satisfying the above properties must be equal to ¢ plus a

constant.
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Proof. We have only to prove the last statement. Let A be the normalized Laplacian of

the metric (g;; + ¢;5) dz' @ dz’. Then we claim that if f is a C'-function on M such that,

for all 1, 7, fiﬂ is bounded on every coordinate chart of M, then

/ A(f?)|s]FeF@#@) = . (7.5)
{z|f(z)>0}

Approximating f by a sequence of smooth functions, we may assume that f is smooth.
For all § > 0 such that the boundary of {z | f(x) > 0} is a C'-manifold (which is true
for § ¢ E, where E the set of critical values, whose measure is zero by Sard’s theorem),

we know that by Stoke’s theorem,

[ AUl + e
{z|f(x)=>6}

can be expressed in terms of the boundary integral of 2fd, f. Here 0, is the normal of
the sets {z | f(z) = d} taken with respect to our metric (g;; + ¢, ;5) dz’ ® dz’. It is clear
that
/ (|s|]? + e)kel@e=(@) qVol — 0 as 0 — 0"
{z|6>f(z)>0}

So we can find a sequence §; — 0T such that

6; - Vol({z | f(x) = 6:})

tends to zero as ¢§; tends to zero. Otherwise, for some ¢ > 0,

6C
Vol = dn > —dn =
/[M]\E ol({z | f(x) = n}) ?7_/0 iy = o

a contradiction.

Combining this with the boundary integral, we conclude that
/ A(fA) (s + e)Fef@e=®) 5 g as i — o00.
{z|f(z)>6:}

Hence we have
/ Aa(fQ)(|S|2 +6)keF($7<P£($)) —0.
{z|f(z)>0}

Letting € — 07 as in Theorem 3, we see that (7.5) follows from the above formula.
Suppose now that 1 is another solution of (7.1) with all the properties described in
the theorem. Then

det (9@3 + o5+ W — 90)@) _ F@)—Flop)
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Consider the set Q2 = {z € M | (x) — p(z) > 0}; if it is nonempty, then the AM-GM

inequality shows that the inequality
Z(w — ) > m - FEpE)=Flae))/m _pn > (7.6)

holds on Q. (Note that F; > 0 is used here.)

Applying (7.5) to f =19 — ¢, we get
~ ~ 2
2 / (1 = Q)AW — )5 e N 4 2 / [V = @)| s
Q Q

= [ B = plspreres 0.
Q

Combining (7.6) and the above equality, we see that %/(1/} —p)=0o0n Qand ¢ — p is
a constant on each component of Q = {z | ¥(x) — p(z) > 0}. Since ¥ — ¢ is continuous,
this is possible only if €2 is empty or © = M. In the first case, ¥(z) < p(z) for all x € M.
In the second case, 1 — ¢ is a constant. Interchanging ¢ and ¢, we conclude easily that,

in any case, ¥ — ¢ is a constant. [
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8 Complex Monge-Ampere Equations with Meromor-

phic Right-Hand Side

Let Ly and Ly be two holomorphic line bundles over a compact Kédhler manifold M.
Let s; and sy be two (non-trivial) holomorphic sections of Ly and Lo that are equipped
with Hermitian metrics so that we have globally defined functions |s;|? and |ss]? on M.
Then, for k; > 0 and ks > 0, we shall study equations of the form

|81|2k1

‘82’2@

det(gﬁ + %‘5) = e’ det(gﬁ),

where F'is a smooth function such that

‘51|2k1 F

M | 52|

= 1. (8.1)

As before we approximate the PDE by the equation

(Js1]> + &)™
(|s2]* 4 €)*=

In order to prove that the normalized solutions ¢. of the above equation converge on the

det(g;5 + ¢i;5) = C- " det(g;7)

where

complement of the divisors of s; and sy, we consider the expression (|s|? + £)Pe=%= (m +
Ap.) with p > 0.

We compute the Laplacian of the above expression as follows:

eCWE _
(Is2]? + 5)pA€ ((Jsaf* +€)7e™ ¥ (m + Ap.))
eCee ) p.—Cop
= Wﬁs(ﬂsﬂ +e)Pe” %) (m + Ap.) + A (Ap.)
2eC e 9 p.—Cp
+m<ve((\52| +&)Pe” %), V(D))
eCSOs 9 p —Co
> mﬁs(ﬂsz\ +e)e %) (m + Ap.) + A (Ap.)
. 2 . 2 o V. (Ag.)?
V.plog(Jsaf? + ¢) = o) P + Bipe) = ==L
VE(AWEMQ
> 240 Ay |
=z (m+ A@E)(pﬁg 10g(|52| +5) CAESDE) m+ N, + AE<A90€)
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By applying the same reasoning as in (2.5), (2.6) and (2.7), we have

eCve
A ((J52]* 4+ 2)Pe™ % (m + A,
(|82|2—|—5)p (<| 2’ ) ( % ))
> (m + A‘Pepra 10g(|82|2 + 5) - CA&QE) +AF
I
+ ki Alog(|s1)? +€) — kaAlog(|se]® + ¢ —anR--( —E’n—mZ).
(S log((si? +) ~ koS log(lsal’ +) +inf A (373"
As in (5.7), we have a positive constant C; which is independent of ¢ such that
1
Al 2 > —pC' .
pO:log(|ssf* +2) > —pCi Yy 17 o

Note that

1
Asﬁpazm—zl+w7

Combining the above inequalities and equation and computing as before, we can find

positive constant Cy and C3 which are independent of ¢ such that

eCpe

(Is2f? + )P
> (C —pCi+ };IERiz[E) (m + Aype) Z

Ac (([s2? + )P (m + Lepe))

1
1+ Peii

—Cy—mC (m+ Dpe) — kgAlog(|32|2 +¢)

(’82|2 4 5)kg/(m—l)
(j1*+ 27D

— Cy —mC (m+ Ap.) — kaAlog(|se]* + ). (8.2)

(m + Agps)m/(m_l)

> (s <C —pCi + i.ggRim>

Clearly, for any fixed p, we can choose C' large enough so that
Cs <C’ — pCh + %I#IER%Z€> (Is1]? + 5)—k1/(m—1) >1
With this choice of C', we consider the point where (|sy|? + £)Pe~“?<(m + A¢p,) achieves
its maximum. At this point,
(|s2]® 4 €)%/ ™=V (m 4+ A )™ ™1 < max {Co,mC(m + Ap.), ko Nlog(|sa]* +€)} -
It follows easily from the above inequality and

Also|®
AlOg(‘Sz’Q + E) S m

that
sup ((|s2]” +€)Pe” % (m + Ap.)) < (C™ ' + 1) max {sup ((|so|* + )Phe/me=Cee)
sup ((|sz]? 4 )P F2e= %) |

sup ((|32|2 + 5)p—(m—1)/m—k2/m€_c¢g>}.
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From (8.1), k2 < 1. Hence the third term in the RHS of the above inequality will be

the dominating term. If we choose p = %““2 + Cq with ¢ > 0, we see that

m—1+ko
m

sup ((|saf? + )

+qu_c%(m—|—A<ps)> SJ (C«m—l +

1) (sup(|s2|* + 5)‘16_%)0

. (8.3)

We are going to estimate sup |p.|. As in (2.12), we have an estimate of sup ¢.. Hence

it remains to found an estimate of infy. Integrating (8.2) with respect to the volume

24 k1 _
form &%efﬁ C¢e dVol, we have

2 m—2)k
Cs (C —pCh + infRZ-W) ei“fF/ e~ (1" +e) .
il o (

5|2 +¢) T

_ s1)? +e)k
_k:z/Me Cws—(’(22ij+€)z2peFﬁlog(]sﬂQ—l—s)

< Gromr [ o (2o
S P

2k
+ mCeS“pF/ e’c%m(m + Ape).

M (Isal? + e)r==r

We can find a positive constant Cy which is independent of € such that

2
AIOg(’SQ‘Z—i—S) = | |’2‘
Hence,

. (81> +e)™
/JVIE CS"EW@FA lOg(‘SQP +€)

o (siP et

(&
N /M (Is]? + e)r2=P

2 k1
5/ e*CQOE (|Sl| +‘€)_ Alog(|82|2+8)+/
M

(s + )7

By AM-GM inequality, we know that, for any ¢ > 0,

2 k1
—Cpe |81| +5)
m/ |52’2+€)k2 p< +A905)

e (Alog(|sal® +¢) + Cy)

) (m=2)k
(Is2f* +&) =

c [ e fin
P (i

e R s
N M

For any p > 0, we choose C' large enough so that C' — pCy + infiz R;5 >

Then we choose ¢ so that

m 1 N
((m - 1)5ﬁ) CesPF = §C3 (C —pCh + }QERZW) emtr.

—-p

Alogls|* > —Cy.

70905 M
(152 + )

(m 4+ Ape)m=

(m+ Ay

(8.4)

(8.5)

(8.6)

C>1

37



Substituting (8.6) into (8.4) and keeping (8.5) in mind, we see that we can find positive
constant C5 and Cg which are independent of ¢ and C' for which
2 k1 2 kl
o APy G [ e (B
/Me (522 +€)k2,p( m + Ay) C Me (532 1 £)r og(|sa|” +¢)
S 06/ 6_0%—081‘2 +e)™ + Cﬁ/ e O (s + €)™ . (8.7)
M ( M (

|59|% + g)k2P |s|? 4 ¢)2k2—p

In order to make use of the above inequality to derive an integral estimate e~“%:, we

shall assume that the integral [, [s2|72™* is finite. Choose p = C5 + k.

Claim. We have

2
V(eCsos/2 (1] +e)k/2 >

(512 + e)k2-p)/2

/]W _
5C</M (e_cws%Yﬁl) o (8.8)

Proof of Claim. Integrating by parts in (8.7), we have

_cp. (Is1]P + o)t 2
_k]_/]\/le ® W(V’Sl‘ ,VS05>

oo (s
(p k )/ ( <V‘ 2’ ,Vg05>

\52|2+5)k2 pt1
- (Is1]? +5)k1 / o, (si]P+e)f 2

+C Cpe N2 T =/ C oe v ’v
/ (Is2|* + )" = (|22 + &)k2— i1 (Ve Visaf)
k1Cs G (|51|2+5)k1 1
S N (s
(p—k2)05 —cp._ Ui +)" Vs, 2|2
T e (|s2]? + )ke—p+2 | |52 ‘

<C/ ~Cip: |31|2+5k1 +C/ e (1 +2)™

(Isaf? + &) (sl + )2’

(V]si]*, V]sal)

By (5.4), we have

2 k1 2 k1
07/ e_c“"f—(lsli +e) - Z/ e_c“"f—(lsli +e) —Alog(]s1|* + ¢)
M (|s22 +e)p=h> = [y (|s2]? +e)p=h2

- (s> + )
2 [ (0 o e Vi Vsl
(i +f= o
(s oy VIsiF

(Is1]* + ) 2
WW%N\&I) :

+ K
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Hence, using the above inequalities and the assumption that p = C5 + ko, we get

/M V(e—c% M )1/2

|sa|? 4 )P

e Cve 51 +¢e)k 51|24 g)kr—2
- [ (e il + UL gy
M

4 5] + )kept2 (Is2|* + e)*==P

o (IsifP +e)® 2 (|s1]? 4+ g)kr 1 2 2
+C W|V908| + Qkil(p - k’2) (|82|2 T €)k27p+]_ <V|81| ,V|32| >
(Is1” +2)™ ) (|s1]2 + )11 2
—20p k) (|s2]? 4 ¢)kz—ptl (Voe, Visa|) — 2k10w<vwa, Vis1])

e—Ce (|S1‘2 +€)k1 2 (‘S1|2 +€)k1_2 2
< 02 v 2 ]{72 V 2
o /M 4 ( % (|sg|2 4 €)k2—p+2 } 2] | h (|s2]? + )k2—p | 1l ‘

(|s1]> + &) (Js1]> + &)t
(P 2 (5ol 2y
250 k) [, (o e

(p—ka+C5) [ (|s2f* + )27
_k105 <|81|2+6)k1 1

+C?

[Vpe|? + 251 Cs (Vls1]*, V]s2|?)

(sa? + )™
(5ol s
G2 (|1 +e)™
(|s2]? + &)k2—pH1 C (|sa]? + e)Fa—p+2
RC: Tkl UsaP 2™ ] oy oUsiP+O™ o Grs )
(|s2]? + &)k 6(|82|2+€)2k2—p 1 (|so]? + €)k2—p Pe; 1
e—Cl= (’51‘2 +g)k1—1 (‘81|2 —|—8)k1_2 ,
< —]{TC—VHV( 2 kQ—v 9
_/M 4 ( 1 (’52‘2+5)k27p< ¥ |s1|%) + 1(‘82’24—8)’“2*1" |s1] ‘
(Is1)* + &)

<V]81|2 V) —C

Ve |

(V]si]?, V]sal?) —

Vsl

+Cs

+hi(p — ko) (52 5 oyt (V]s1]%, Vs2|?)
Lo, sl et (s e )
(Is2]? + )= (Is2]? + )2

e O (Is1]* + )" (|s1]* + ) )
< CCs+ kC7)—F—— + CC,
_\/];4 4 (( 6+ 1 7)(|82|2+8)k2_p + 6(|32|2+5)2k2—p

m—1

2 ki o\ meT\ ™
<0 . (51 +¢) )
~ </M < (122 + ) /

where the last inequality is due to the Holder inequalities

m—1

" A
/e—c% (s +)™ / 1)’" / o—Cloe (|s1]? + &)k )ml
M <|S2’2 +€)k27p B M M (‘52’2 —|—g)k2fp ’
" mo\ P
/G‘Cwe (Is: +e)™ (/ (|51\2+5)mk1)m / (6_04.05 (Is1]* + )" )m_l
v (P e = Ay (sl e/ A (IsoP + )7

and the assumption [, |ss|7*™" < o0. |

Since we have an estimate of [, |¢.|, we can use the method of Section 5 to find an

2 k ]
[ <c (151 + )t ) :
M (Is2]? + g)k2—p

estimate of
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which is independent of ¢.
From the above inequality, we conclude that when p = C5 + ky and N is a large

constant, we can find a positive constant Cyg independent of £ such that

2 ke

—Ne-. 2 K 2 Cs _ —Ne-. (Is1]* +¢)
e si|©+e Sol“ 4+ €)= e ——— < (k. 8.9
/M (I it ) /M (|s22 +)kep = ° (89)

From (8.3) and the estimate of sup ., we derive that, for any ¢ > 0,

sup <(|32|2 +€)m771n+k2+cq(m_|_ A@E)) S_, (Cm—l_l_l)eCSup‘Pe(Sup6_805(|82|2_|_E)Q)C7 (810)

where C' is any positive constant so that
k

Cs (C — (= A+ 0q) O+ }25R1145> > sup(|s|” + ).

Using (8.9) and (8.10) we shall show that, for any g > 0, e=%=(|s|? +£)? has an upper
bound which is independent of €. Note that we may assume ¢ is small enough.

Suppose not, we could find ¢; — 07 and z; — x¢ in M such that

e~ %= @) (|52 () + £;)7 = sup (e_%i(

$o|* +€i)?) — oo.

Suppose the sequence {&;*|s2|?(z;)} is bounded. Then e?e~%=(*) — co. On the other
hand, using (8.10) and the L'-estimate of (., we can apply the Schauder estimate to get

sup e~%=i (|so|* + 5i)q)c
Amirln%*z +Cq
A

+ 1

sup [Voo| < (€™ + 1)

It follows from the above estimate, |V|s3|?| < |so| and AM-GM inequality that

(sup e=%= (|s9]? + 5i)q)c
m—1+ko -‘qu
i m
sup e=%i (|s9]? + ei)q)c
amj%k?—f—c“q

7

- Vlssf?

cm 1
~ \32]2+6+( +1)

+1

sup [V (log(|sz|* + 1) — =)

~1/2

<(cmt 4 1)( +¢;

Clearly we may assume that sup (log(|s2|*>+¢;)? — ¢.,) > 0. Then proceeding geodesic

ball trick as in Section 2, we can now conclude that

Cs 2/ e Noei
M

2m
> gﬁ—+k2+0q sup(log(|82|2 +&)?— ©e,) i+ Ci—aN |
BN (sup e#¢i (|s2]? 4+ €;)7)¢ + 1 i

s1” + )" (|s2f* + &) > / embg(&i('”‘2+51))q*906¢)€f1+c5 (eil]s2]” + 1))~
M

N/2

(7 sup e (|sa]” + £9)7)

s3|% + €;)? is bounded.

Taking N > 4mC, the above inequality shows that sup e~ ¥ (
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So we may assume that &; ' |sy|?(z;) — oco. For each z;, let B; = B(x;, 6;) be a geodesic

ball around x; such that, for each x € B;,
3112 2 Lo
g lsal*(@i) 2 [s2)°(2) 2 Slsal (i). (8.11)

Let Cy > sup|V|ss|?| sufficiently large enough. Then we may assume

1

0; = 50 —[s2]*(23),

and is smaller than the injectivity radius of M. It is easy to derive from (8.10) that, over
the ball B;,

(sup e~%ei (|s]? + £;)9)¢
(m—11kz)/m+Cq"
(%!52\2(%‘)) ’ !

0<m+ Ay, S

By applying the Schauder estimate on the balls B; and B} = B(x;, %), we get
(sup e %= (|sa]? + &;)4 fB | e, |
5215 |V§051|( ) (’82‘ ( )) m— 1+k2)/m+Cq 6i2m+1
< (supe=#i(|sof* +2:)1) [, 1#e,
= (salPlan)) P50 oo

Since we have an estimate of [}, |¢.,|, it follows from the above inequality that

(sup e~ %= (|sg]? + £;)9)¢ 1
(Isal? ()" HHmECT ([ ()Pt

sup [V (log(|saf” + )7 — ¢e,)| S (8.12)

z€B]

Since s; is holomorphic, one can find positive constant a such that, for any small r > 0

and z € M,
/ ‘81’%1 2 re.
B(z,r)

As before, we may assume that sup(qlog(|sa|? + &;) — ¢.,) > 0. Then proceeding the
geodesic ball trick as above, we can now conclude from (8.11), (8.12), the above inequality

and €71 |sy|?(z;) — oo that
Coz [ e+ (ol +2)%0 2 [ MO g P s ) O
M

> ((Sup e~ % (|so]* + )1

m—1+k
(|saf2(zs)) 7+

(|52 (@) N (Sup e i (|so|* + 5z‘)q)

a

1 o 2 q
+ (1522 (x ))2m+1> -sup(log([s2|” + )7 — ;)

N/2

+¢;)? can be estimated by

Take N large enough, we see that the quantity sup e=“%: (

a constant independent of i.
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In conclusion we have proved that, for any ¢ > 0, log(|ss|* +€)? — . is bounded from
above by a constant independent of €. In particular, —¢. is uniformly bounded over any
compact subset K of the complement of the divisor of s5. From (8.10) and the estimate
of sup ¢., we see that both |¢.| and |Ay.| are uniformly bounded over K. The arguments

of Section 5 now show that one can find uniform estimates of {¢, .} over K.

Theorem 5. Let L; and Ly be two holomorphic line bundles over a compact Kéahler
manifold M whose Kéhler metric is given by ¢g. Let s; and s, be two holomorphic sections
of L; and Ly, respectively, and let F' be a smooth function defined on M such that

|2k’1
F

51 e’ =1 and /|52\2mk2<oo.
M

2k
M |s2]2
where k; and ky are two non-negative integers. Then we can solve the equation

|81|2k1

52l

det(gﬁ + %‘j) = e det(gij)
so that

(i) ¢ is smooth outside the divisors of s; and sy with sup ¢ < oo,

(ii) (¢s) is a bounded matrix outside the divisor of s, and, for any ¢ > 0,

|82 |2(m—1+k2)/m+qu0

is bounded on M,
(iii) for any ¢ > 0, the function ¢ — glog |s3|? is bounded from below,

(iv) the matrix (g;; + ;) is positive definite outside the complement of the divisors of

s1 and ss.

Furthermore, if we assume that

1
/M |55 [2(m—L+kz) /g <

for some ¢ > 0, the any two solutions of the equation which has the above proper-
ties (i), (ii) and (iv) must differ from each other by a constant. If we also know that
(| sg|2m—1+k2)/m+a) =1 ig integrable over every analytic disc of M, then the unique solution

¢ is bounded from below on M.
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Proof. We have only to prove the last part. Suppose 1 is another solution of the equation

with (i), (ii) and (iv). Then the AM-GM inequality shows that

A — @) > c-1. 1] . (Is2| . 313
(1/} 90 ) = m ( 5 |82|2k2 (|81‘2 +8)k1 m ( )
Let k be any constant. We claim that, over Q. ={z € M | (¢ — ¢.)(x) > k},
| wp—Raw =g <o (8.14)
e,k

In fact, for § > 0, Qx5 = {z € M | (¥ — p.)(x) > k — dlog|sy|*} is disjoint from the
divisor of s, by property (i). Hence both (1;;) and (¢.,;;) are bounded on € ;s and we

can integrate by parts on (2. ;s to find
| W=kt SloglsaP)A(w g — b+ Slog sl
Qs,k’,é

—— [ V- -k logls PP (.15
Qe ks

Using property (ii) and the assumption fM |82‘2(m711+k2)/m+q < oo, we can find a constant

C'(e) independent of § such that

/Q log [s3[2] 8 (t) — 0.)| < / log o2 A + / log [s5[2| A
e,k,0

Qe ks Qe ks

1/2
< (/ | 5o 201k (10g |82|2|A¢|)2>
Qe k)5

. 1/2
- + [ loglsPle
(/stk,é |S2|2(m—1+k2)/m+q> O s €

< C(e). (8.16)

It follows easily from (8.15), (8.16) and the boundedness of |A, log|sy|?| that

hm (dj — Pe — k>Aa(¢ - 908) S O-

+
0—0 Qa,k,é

Using the definition of €2, ; 5, we see that, over Q. 5, () —p. —k) is bounded by a constant
independent of § when ¢ is small. The function (¢p—@.—k)A.(1v—¢.) is therefore uniformly
integrable and we can apply Lebesgue’s dominated convergence theorem to prove (8.14).

Applying (8.13) and (8.14), we can now prove the following inequality:

1/m
1 s (s o)
_ _ — . . > . .
/ngk(d} e — k) (m m(C’E S (5t o) 0 (8.17)
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When ¢ — 07, the integral on the LHS tends to zero. Let K be a compact subset of

the complement of the divisor of s5. By (8.13) and the above inequality, we have

2k 2 ko \ 1/m
lim ) (1/} — . — k) <TTL —m (Cgl . |51| . (|32| +5> > + Ag(w . st)> —0.
KN ek

0+ 52?2 ([s1]? + )™

Let Qy ={z € M | (v —¢)(x) > k}. Then the above equation gives
| @-o-nBw- =0
KNQy

As in (8.13), we know that A(1) — @) > 0 and hence, A() — ¢) = 0 on 4. The AM-GM
inequality now becomes equality, so ¢;; = ¢;; on K N 2. Since k and K are arbitrary,
7 = ;7 on the complement of the divisor of s,. Letting first § — 0% and then ¢ — 0%

in (8.15). We get

/ Sw-oP<—tm [ (- RO 02),
KNQy,

+
e—0 Qe

which is equal to zero by (8.17). Hence, 1) — ¢ is constant.
It remains to prove that —infy < co. From (8.3) and the estimate of e™%¢(|sg|? + £)¢

for any ¢ > 0, we know that, for any ¢ > 0,

m—1+ko

sup ((m+Agp€)(|32|2—|—€) +%) <1 (8.18)

Let x be any point on the divisor of s;. Let D, be an analytic disc passing through x
such that s is not zero on 9D,. Then |p.| is uniformly bounded on 9D, when ¢ — 07.

It follows from (8.18) that when we restrict . to D,, the absolute value of its Laplacian

is estimated by (|s2]* + 6)_(7”7;%2—’_%) over D,. Cauchy integral formula gives
— 0 A
oD, < P D, # D

Integrate over the curve y(t) = tp + (1 — t)p, where p = ‘%', we get

0:0)] < 10:()] + / 100(:)| - log(z ) ~loglz = )| &=

1
+ —— |log(z —p) —log(z — p
/ etz =)~ log(z )

m

Using Holder inequality and taking a smaller ¢, we obtain an estimate of |¢.| on D,. Since

x is arbitrary, we can conclude the boundedness of . |

44



9 The General Case

Let ty, to, ..., ty,4n, be non-zero non-negative functions defined on M such that
t; = Z§=1 \sj\%j, where k; > 0 for each j and sq, s, ..., s¢ are holomorphic sections of
some holomorphic line bundle.

Then we consider

ty oty

tn1+1 e 257"014%2

det(g;7 + ¢i7) = @) det(g;5), (9.1)

where F'(x,t) is a smooth function defined on M x R with F; > 0.

Then we assume t;’s satisfying the following properties:

o there exists a smooth function v defined on M such that

f tl PN tnl eF(xﬂ/)) _ 1
M 25m+1 o 'tm—&-nz

o (tnye1-tpyiny) | is integrable over M.

o for some ¢ > 0,

‘A 10g<tn1+1 T tn1+n2)’(m_1)/m

(tn1+1 e tn1+n2>q/m

is integrable over M and over every analytic disk of M.

As before, we have

Theorem 6. Let M be a compact Kéahler manifold. Suppose that, in equation (9.1), the
t; are functions satisfying the above mentioned properties. Then we can find a solution ¢

of (9.1) such that

(i) ¢ is smooth outside the divisors of the ¢;’s and sup |¢| < oo,

(tn1+1 e tn1+n2>q+1/m (AQD)
(’A log tn1+1 T tn1+n2‘ + 1)(m71)/

(i) sup — < 00, and
(i) (g;7 + i) d2* ® dz defines a Kéhler metric outside the divisors of the t;’s.

Furthermore, any solution of (9.1) satisfying the above three properties differs from ¢

by a constant.
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Corollary 1. Let M be a compact Kahler variety with log terminal singularity such
that the canonical line bundle is ample. Then there is a Kéhler-Einstein metric whose

Ricci tensor is the negative of the metric tensor on the smooth part of M.

Take a resolution of singularities 7 : M — M so that
Ky=mKy+ ) agE
Ec&
and ap > —1 for all F € £. We know that there exists cg € QT such that
L=m"Ky—) cgE
E€E

is ample. Then

Ky=L+) (ap+cp)E
Ee&

gives

—a(M) = (L) + ) (ap + cp) ci(E)

Since c1(L) is represented by some positive (1,1)-form /—1g; dz' A dz’. Take this

form as our Kéhler form on M. Then — Cl(M ) is represented by

V=lhgzdz' NdZ = (ag + cg)0dlog|sp|.

Since the closed (1,1)-form —ddlogdet(g;;) also represents ¢i(M), we can find a

smooth function f such that
90logdet(g;) = V—1g;dz" A dz’ — Z(GE + cp)0dlog |sp|? + 00f.
Now by Theorem 6, we can solve the equation (since ag + cg > —1)

det(gg + Spl.j) — H ’SE‘Q(CLE'FCE) et ! det(gﬁ)
E

so that (g;7 + ¢;7) d2* ® dz’ defines a Kéhler metric outside | J.. E. By these equations
we have
—d0logdet(g;5 + pi5) = —00¢p — V—1gzdz" N dZ
= —vV—=1(9;5 + ¢i7) dz' N dZ’

on the M. Since the smooth part of M is isomorphic to some open subset of M , we get

the metric we want.
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Definition. (Isotropic curvature conditions)

(i) We denote by strictly PIC the set of all algebraic curvature tensors that have positive
isotropic curvature in the sense that R(p, @) > 0 for all complex two-forms of the form
© = (e1 +iez) A (e3 +iey), where {eq, ea, €3, €4} is an orthonormal four-frame.

Note that R(p, @) > 0 if and only if Ry313 + Ri414 + Rogoz + Rogoq — 2R1934 > 0.
Moreover, by summing all the indices, PIC implies positive scalar curvature.

(ii)) We denote by uniformly PIC the set of all algebraic curvature tensors that have uni-
formly positive isotropic curvature in the sense that there exists a constant 6 > 0 such
that R(p, ) > 4605 > 0 for all complex two-forms of the form ¢ = (e; +ie2) A (e3+iey),
where {eq, ey, €3, €4} is an orthonormal four-frame.

(iii) We denote by (weakly) PIC the set of all algebraic curvature tensors that have non-
negative isotropic curvature in the sense that R(p, @) > 0 for all complex two-forms of
the form ¢ = (e; +ie2) A (e3 + iey), where {e1, ea, €3, €4} is an orthonormal four-frame.

(iv) We denote by (weakly) PIC1 the set of all algebraic curvature tensors satisfying R(¢, ¢) >
0 for all complex two-forms of the form ¢ = (e; +iex) A (e3+iXey), where {eq, ea, €3, €4}
is an orthonormal four-frame and A € [0, 1].

(v) We denote by (weakly) PIC2 the set of all algebraic curvature tensors satisfying R(p, @) >
0 for all complex two-forms of the form ¢ = (e; +iues) A(es+idey), where {eq, s, €3, €4}
is an orthonormal four-frame and A, p € [0, 1].

Note that PIC2 C PIC1 C PIC.

Definition (e-close). If U C M is an open subset and g, go are two Riemannian metrics on
U, we say g is e-close to gg on U if

19 — gollfe—11,09 < e

Here the norm is, for a tensor T°

N
1T %0y = sup Y [VET ()],
zelU k=0
where the pointwise norm is the Euclidean one.

Before giving the next definition, we need some notations.

e B(x,t,r) denotes the open metric ball of radius r, which respect to the metric g(t)
at time t, center at x.

e P(x,t,r, At) denotes a parabolic neighborhood, that is the set {(2,t') : 2’ € B(x,t',r),t' €
[t,t + At] or t' € [t + At,t] depend on the sign of At}

Definition (neck). There are two kinds of necks.
2



(1) A ball B(x,t,e'r) is called an e-neck if, after rescaling with the factor r—2, it is
e-close to the standard neck S"~! x |, with product metric, where S"~! has constant
curvature 1, and | is an interval with length 271,

(2) A parabolic neighborhood P(z,t,e 7, r?) is called a strong (or a evolving) e-neck if,
after rescaling 2, it is e-close to the evolving e-neck, which at each time ¢ € [—1, 0]

has length 27! and scalar curvature (1 —¢')~".

Definition (cap). Let us fix a small number gy = go(n) and let 0 < ¢ < 5. We say that a
compact domain Q C (M, g) is an e-cap if the following holds:

e The domain (2 is diffeomorphic to unit ball B", and the boundary 0f2 is a cross-
sectional sphere of an e-neck.

o If O C Qis a compact domain diffeomorphic to B™ and the boundary 9 is a cross-
sectional sphere of an (g5 — £)-neck, then there exist a diffeomorphism F : Q — B
and an (gq + ¢)-isometry f : 9Q — S"~! with the property that F|yq : 9Q — S* 1 is
isotopic to f.

Definition. In the Ricci flow, we can categorize necks and caps depending on whether the

scalar curvature blows up or not.

(1) An e-neck is called
e an e-tube if the scalar curvature stays bounded on both ends.
e an c-horn if the scalar curvature stays bounded on one end tends to infinite on
the other.
e an double e-horn if the scalar curvature tends to infinite on both ends.
(2) An e-cap is called
e an e-cap if the scalar curvature stays bounded on the end.
e an capped e-horn if the scalar curvature tends to infinite on the end.

Theorem 1.1 (cf. S. Brendle [6, Th. 1.2]). Assume that n > 12. Let IC be a compact
set of algebraic curvature tensors in dimension n that is contained in the interior of the

PIC cone, and let T' > 0 be given. Then there exist a small positive real number 6, a large
fls) 0

s

positive real number N, an increasing concave function f > 0 satisfying limg_,
and a continuous family of closed, convex, O(n)-invariant sets {F; : t € [0,T]} such that
the family {F, : t € [0,T]} is invariant under the Hamilton ODE (cf. [6], [7]) 4R = Q(R);
I C Fo; and
Fi C{R|R - 60Sid ®id € PIC}
N{R|Ricy, + Ricys — S+ N > 0}
N{R|R+ f(S)id ®id € PIC2}

for allt € [0,T].



capped e-horn

FIGURE 1. Kinds of necks and caps (cf. [9, P.415])

Here, @ denotes the Kulkarni-Nomizu product. Instead of stating the precise defnition,
we use it in our speacial case: if A and B are symmetric bilinear forms, then (A ® B);ju =
AirBj — AyBji, — Aj By + Aji Biy,.

Via Hamilton’s PDE-ODE principle (cf. [15, Th. 3] or [14, Th. 10.16]), Theorem 1.1 gives
curvature pinching estimates for solutions to the Ricci flow starting from initial metrics with

positive isotropic curvature:

Corollary 1.2 (cf. S. Brendle [6, Th. 1.3]). Let (M, go) be a compact manifold of dimension
n > 12 with positive isotropic curvature, and let g(t) denote the solution to the Ricci flow

with initial metric go. Then there exist a small positive real number 0, a large positive real

number N, and an increasing concave function f satisfying limg_, .o ! (SS) = 0 such that the
curvature tensor of (M, g(t)) satisfies

(i) R—0Sid ®id € PIC.
(ZZ) RiCH + RiCQQ —60S + N 2 0.
(iii) R+ f(S)id ®id € PIC2.

for allt > 0.

Property (iii) can be viewed as a higher dimensional version of Hamilton-Ivey pinching
estimate in dimension 3 (cf. [19], [21]). It ensures that blow-up limits are weakly PIC2. And
Property (i) ensures that blow-up limits are uniformly PIC.

When studying ancient solutions to the Ricci flow that are weakly PIC2 and uniformly
PIC, an important ingredient is the Harnack inequality for the curvature tensor. In [18],
Hamilton first proved the version for solutions to the Ricci low with nonnegative curvature

operator, and Brendle generalized to any solution to the Ricci flow that is weakly PIC2 in
[4].



Theorem 1.3 (cf. R. Hamilton [18]; S. Brendle [3]). Assume that (M, g(t)), t € (0,T), is a
solution to the Ricci flow that is complete with bounded curvature and is weakly PIC2. Then

1
0eS + 2(VS,v) + 2Ric(v,v) + gS >0

for every tangent vector v. In particular, the product t - .S is monotone increasing at each

point in space.

Integrating the differential Harnack inequality along paths in space-time, we obtain the
following;:

Corollary 1.4. Assume that (M, g(t)) is an ancient solution to the Ricci flow that is com-
plete with bounded curvature and is weakly PIC2. Then

dg(t1) (151, 5172)2

S(x1,t1) < exp( 2t — 1)

)S(I27 t2)
whenever t; < ts.

Also, we state some splitting theorems, which are based on the strict maximum principle
(cf. [17], [4]).

Proposition 1.5. Let (M, g(t)), t € (0,7, be a (possibly incomplete) solution to the Ricci
flow that is weakly PIC2 and strictly PIC. Moreover, suppose that there exist a point (xq,to)
in space-time and a unit vector v € T, M with the property that Ric(v,v) = 0. Then, for
each t < to, the flow (M, g(t)) locally splits as a product of an (n — 1)-dimensional manifold
with an interval.

Proof. Suppose not, then 37 € (0,ty) such that (M, g(7)) does not locally split as a product
of an (n — 1)-dimensional manifold with an interval. Since (M, g(7)) is strictly PIC, we
conclude that (M, g(7)) is locally irreducible. The Ricci tensor of (M, g(t)) satisfies the
evolution equation

Oy Ric = ARic+ 2R *x Ric,
where (R x Ric)iy = > | RipkgRicy,. Since R is weakly PIC2, the term R x Ric is weakly

p,q=1
positive definite. The strict maximum principle (cf. S. Brendle [4, §9] or R. S. Hamilton
[17]) shows that the null space of Ricy,) defines a parallel subbundle of the tangent bun-
dle of (M,g(7)). Since(M,g(T)) is locally irreducible, this subbundle must have rank 0.

Consequently, the Ricci curvature of (M, g(7)) is strictly positive.

Let € be a bounded open neighborhood of the point py with smooth boundary. Choose a
smooth function f: Q — R such that f > 01in Q, f = 0 on 95, and Ricy(ry — fid is weakly
positive definite. Let F : Q x [r,t,] — R denote the solution of the linear heat equation
with respect to the evolving metric g(¢) with initial data F'(-,7) = f and Dirichlet boundary

condition F' = 0 on 0 x [1,%p]. The maximum principle shows that Ric,y) — F(-,t)id is
5



weakly positive definite at each point in  x [7,to]. Since F(po,to) > 0, the Ricci curvature
at (po, to) is strictly positive, contrary to our assumption. O

Proposition 1.6 (cf. S. Brendle [6, Prop. 6.6]). Let (M,g(t)), t € (0,T], be a complete
solution to the Ricci flow, which possibly has unbounded curvature. Assume that (M, g(t))
is weakly PIC2 and strictly PIC. Suppose that there ezists a point (po,to) in space-time such
that the curvature tensor at (po,to) lies on the boundary of the PIC2 cone. Then, for each
t < to, the universal cover of (M, g(t)) splits off a line.

Corollary 1.7 (cf. S. Brendle [6, Cor. 6.7]). Let (M,g(t)),t € (—o0,T], be a complete,
nonflat ancient solution to the Ricci flow with bounded curvature. Moreover, we assume that
(M, g(t)) is weakly PIC2 and satisfies R — 0S id ® id € PIC for some uniform constant
0 > 0. Suppose that there exists a point (po,to) in space-time with the property that the
curvature tensor at (po,to) lies on the boundary of the PIC2 cone. Then, for eacht < tq, the

universal cover of (M, g(t)) is isometric to a family of shrinking cylinders S*™! x R.

Let us recall some results due to Perelman:

Proposition 1.8 (cf. S. Brendle [6, Prop. 6.8]). Assume that (M, g) is a complete noncom-
pact manifold that is weakly PIC2. Fiz a pointp € M and let p; be a sequence of points such
that d(p, p;) — 0o. Moreover, suppose that \; is a sequence of positive real numbers satisfy-
ing \jd(p,p;)* — oo. If the rescaled manifolds (M, \;g,p;) converge in the Cheeger-Gromov
sense (cf. [10]) to a smooth limit, then the limit splits off a line.

Proposition 1.9 (cf. S. Brendle [6, Prop. 6.9]). Let (M,g) be a complete noncompact
Riemannian manifold that is weakly PIC2. Then (M,g) does not contain a sequence of

necks with radii converging to 0.

As a consequence, we have the following property:

Proposition 1.10. Suppose that (M, g(t)),t € (—o0,0], is a complete ancient solution to
the Ricci flow that is k-noncollapsed on all scales, is weakly PIC2, and satisfies R — 6.5 id
@ id € PIC for some uniform constant @ > 0. Moreover, suppose that (M, g(t)) satisfies the
Harnack inequality

0S4+ 2(VS,v) + 2Ric(v,v) >0

for every tangent vector v. Then (M, g(t)) has bounded curvature.

Proof. Since (M, g(t)) satisfies the Harnack inequality, it suffices to show that (M, ¢(0)) has
bounded curvature. We argue by contradiction, say that (M, g(0)) has unbounded curvature.
By the strict maximum principle, 3 a real number 6 > 0 such that the scalar curvature S(t)
of (M, g(t)) is strictly positive for ¢ € (—6,0]. Consequently, (M,g(t)) is strictly PIC for

t € (—0,0]. We distinguish the following two cases:
6



Case 1:

Case 2:

Suppose that (M, g(0)) is strictly PIC2. In this case, M is diffeomorphic to R™ by
the soul theorem (cf. [11]). By a standard point-picking argument, there exists a
sequence of points z; € M such that Q; = S(z;,0) > j* and

sup S(z,0) <4Q);.
1
2€By(0)(;,2iQ; ?)

Since (M, g(t)) satisfies the Harnack inequality, we derive

sup S(x,t) <4Q;.
(2.0)€ By oy (5,25Q; ) x[-42Q;1,0]

Now, Shi’s interior derivative estimate (cf. [26]) implies that there are bounds for
all the derivatives of curvature on By (xj,jQ;%) X [—jQQj_l, 0]. Dilating the flow
(M, g(t)) around the point (z;,0) by the factor @);, the noncollapsing assumption
and the curvature derivative estimates show that, after passing to a subsequence,
the rescaled flows converge in the Cheeger-Gromov sense (cf. [10]) to a smooth non-
flat ancient solution (M, ¢g>°(t)),t € (—00,0]. The limit (M, g>(t)) is complete,
has bounded curvature, is weakly PIC2, and satisfies R — 65 id (® id € PIC. By
Proposition 1.8, the manifold (M, ¢>(0)) splits off a line. By Corollary 1.7, uni-
versal cover of (M, g>(t)) is isometric to a family of shrinking cylinders S"~! x R.
Therefore, (M, g>(0)) is isometric to a quotient (S"~!/T") x R. If T is nontrivial,
then a result of Hamilton implies that M contains a nontrivial incompressible (n—1)
-dimensional space form S"~!/T" (cf. [5, Th. A.2]), which is impossible since M is
diffeomorphic to R”. Hence, I' is trivial, and (M, ¢*°(0)) is isometric to a standard
cylinder S"~! x R. Consequently, (M, g(0)) contains a sequence of necks with radii
converging to 0, which contradicts Proposition 1.9.

Suppose finally that (M, g(0)) is not strictly PIC2. By Proposition 1.6, the universal
cover of (M, g(t)) is isometric to a product (X, gx(t)) x R for each ¢t € (=6, 0]. Note
that (X, gx(t)),t € (—=0,0], is a complete solution to the Ricci flow of dimension
n — 1, which is k-noncollapsed on all scales, weakly PIC2, and uniformly PIC1. By
assumption, (X, gx(0)) has unbounded curvature. Again, point-picking argument
leads to a sequence of points z; € X such that Q; == S(z;,0) > j* and

sup S(x,0) < 4Q;.
mEBgX(D)(a:]-QjQ;%)
As in Case 1, the Harnack inequality and Shi’s interior derivative estimate (cf. [26])
give bounds for all the derivatives of curvature on By, (o)(2;,jQ; *) x [—j?Q; ", 0].
Dilating the manifold (X, gx(0)) around the point z; by the factor (); and passing
to the limit as j — oo, we obtain a smooth nonflat limit that is uniformly PIC1
and that must split off a line by Proposition 1.8. By the similar argument in Case
1, this is a contradiction.
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Theorem 1.11 (cf. S. Brendle [6, Th. 6.18]). Given € > 0 and 6 > 0, we can find large
positive constants Cy = C(n,0,¢) and Cy = Cy(n, 8,¢) with the following property: Suppose
that (M, g(t)) is a noncompact ancient k-solution satisfying R — S id ® id € PIC that
is not locally isometric to a family of shrinking cylinders. Then, for each point (x¢,ty) in
space-time, we can find a neighborhood B of xy satisfying

Byt (o, C’fIS(xo,to)_%) C B C Byty)(wo, Cls(xo,to)_%)
and
Cy 1S (o, tg) < S(x,tg) < CoS(x0,ty) Yz € B.
Moreover, B satisfies one of the following conditions:

e B is an e-neck with center at xg.
e B is an e-cap in the sense of Definition mentioned above.

In particular, (M, g(to)) is ko-noncollapsed for some universal constant kg = ko(n,0).

A key point is that the constants C'; and C5 in Theorem 1.11 do not depend on k.

Theorem 1.12 (cf. G. Perelman [23]; B. L. Chen, X. P. Zhu [12]; S. Brendle [6, Th.
6.19]). Fiz 0 > 0. We can find a constant kg = ko(n,0) such that the following holds:
Suppose that (M, g(t)) is an ancient k-solution for some k > 0, which in addition satisfies
R—05id ®id € PIC. Then either (M, g(t)) is ko-noncollapsed for all t; or (M,g(t)) is a
metric quotient of the round sphere S™; or (M, g(t)) is a noncompact metric quotient of the
standard cylinder S" 1 x R.

Theorem 1.13 (cf. G. Perelman [25,§1.5]). Given ¢ > 0 and 6 > 0, there exist positive
constants Cy = C1(n,0,¢) and Cy = Cy(n,0,¢) such that the following holds: Assume that
(M, g(t)) is an ancient k-solution satisfying R — 0S1id @ id € PIC. Then, for each point
(z0,to) in space-time, there exists a neighborhood B of xg such that By, (o, C7 S (o, to)"2) C

B C Bg(to)(xl)?ClS(antO)ii) and 02_15(-770,t0) S S(ﬂ?,to) S CQS(l’Q,to) fOT‘ all € B. Fi-
nally, B satisfies one of the following conditions:

e B is an e-neck with center at x.

e BB is an e-cap.

e B is a closed manifold diffeomorphic to S"/T.

e B is an e-quotient neck of the form (S"~! x [—-L, L])/T.

Proof. If M is noncompact, the assertion follows from Theorem 1.11. Hence, it suffices to
consider the case when M is compact. As usual, it is enough to consider the case ty = 0. Sup-
pose that the assertion is false. Then we can find a sequence of compact ancient x;-solutions

(M) gl)(#)) satisfying R — 6S id @ id € PIC and a sequence of points z; € MY with
8



the following property: There does not exist a neighborhood B of z; with the property that
Byonoy (5,585, 0)3) € B € By (a5,78(3,0)), j78(25,0) < 8(2,0) < jS(z;,0)
for all x € B, and such that B is either an e-neck with center at x;; or an e-cap; or a
closed manifold diffeomorphic to S"/I'; or an e-quotient neck. By scaling, we may assume
S(x;,0) =1 for each j.

The noncollapsing assumption implies that (1), gU)(¢)) cannot be isometric to a com-
pact quotient of the standard cylinder. By Corollary 1.7, (M), ¢\ (t)) is strictly PIC2.
Clearly, (MW, gl (t)) cannot be isometric to a quotient of a round sphere. By Theorem
1.12, (MW, gU)(t)) is ko-noncollapsed for some uniform constant o that is independent of
7.

We now apply the compactness theorem for ancient xq-solutions to the sequence (M), g (t), ;).
Consequently, after passing to a subsequence if necessary, the sequence (M), gU)(t), z;) will
converge in the Cheeger-Gromov sense (cf. [10]) to an ancient kg-solution satisfying R — 6.5
id ® id € PIC. Let us denote this limiting ancient xg-solution by (M, ¢g*(t)), and let x
denote the limit of the sequence x;. There are two possibilities:

Case 1: We first consider the case that M is compact. In this case, the diameter of
(MY, ¢(0)) has a uniform upper bound independent of j. Therefore, if j is
sufficiently large, then BY) := MU) is a neighborhood of the point x; satisfying
Bg(j)(o)(xj,j_l) C BUY C B0y (25, J) and j71 < S(x,0) < j for all x € BY. Since
(MW gl)(t)) is strictly PIC2, results in [8] imply that BY) = MU) is diffeomorphic
to S™/I". This contradicts our choice of z;.

Case 2: We now consider the case that M is noncompact. If (M, ¢g>(t)) is isometric to
a noncompact quotient of the standard cylinder, then, for j large enough, the point
x; lies at the center of an e-neck or it lies on an e-quotient neck. This contradicts
our choice of z;. Consequently, (M, ¢>(¢)) is not isometric to a quotient of the
standard cylinder. At this point, we apply Theorem 1.11 to (M, g*(t)). and with
e replaced by §). Therefore, we can find a neighborhood B> C M of the point
Too satisfying Bye(o)(Teo, C1') € B® C Byo(0)(Too, C1) and Cy' < S(z,0) < Cy
for all x € B*. Furthermore, B> is either an $-neck with center at z,, or an
s-cap. Hence, if we choose j sufficiently large, then we can find a neighborhood
BW C MW of the point x; satisfying By oy, (2C1)7) C BU) C B0y (x5,2C1)
and (2Cy)~' < S(z,0) < 2C, for all z € BY). Furthermore, BY) is either an e-neck

with center at z; or an e-cap. This contradicts our choice of x;.

0

For the purpose of the surgery construction, we will need the following refinement of
Theorem 1.13:



Corollary 1.14 (cf. G. Perelman [25,8§1.5]). Given € > 0 and 6 > 0, there exist positive
constants Cy = C1(n,0,¢) and Cy = Cy(n,0,¢) such that the following holds: Assume that
(M, g(t)) is an ancient k-solution satisfying R — 0S1id @ id € PIC. Then, for each point
(z0,to) in space-time, there exists a neighborhood B of zy such that By, (o, C1 'S (20, t)"2) C
B C By (0, C1S(20,10)"2) and Cy1S(x0,t0) < S(z,to) < C2S(wo, to) for all x € B. Fi-

nally, B satisfies one of the following conditions:

e B is a strong e-neck with center at x.

e BB is an e-cap.

e B is a closed manifold diffeomorphic to S"/T.

e B is an e-quotient neck of the form (S"~! x [-L, L])/T.

Proof. Given € > 0, 3 a positive real number £ < &, depending only on n, 8, such that,
if (xg,to) lies at the center of an &-neck, then (zg,%;) lies at the center of a strong e-neck.

Hence, the assertion follows from Theorem 1.13. O

2. The elliptic type estimate

In this section, we establish a crucial elliptic type estimate of scalar curvature, which plays
a role in the Canonical Neighborhood and the surgery procedure. Starting from a key result

of Perelman’s first paper:

Theorem 2.1 (cf. G. Perelman [23, Cor. 11.6]; S. Brendle [6, Th. 6.12]). Given a pos-
itive real number w > 0, we can find positive constants B = B(w,n) and C = C(w,n)
such that the following holds: Let (M,g(t)),t € [0,T], be a solution to the Ricci flow
that is weakly PIC2. Suppose that the ball Byry(xo,70) is compactly contained in M, and
7o "v0l gy (By(ty (0, m0)) > w for each t € [0,T]. Then S(z,t) < Cry*+ Bt~' for allt € (0,T]
and all x € Byy)(wo, %7"0).

Note that Perelman imposes the stronger assumption (M, ¢g(t)) has nonnegative curvature
operator. However, his proof works under the weaker assumption that (M, g(t)) is weakly
PIC2. One main ingredient in Perelman’s work is the trace Harnack inequality (see Theorem
1.3). The proof also relies on the fact that a solution to the Ricci flow that has evolved for
some positive time cannot contain an open set that is isometric to a piece of a nonflat cone.
This argument relies on the strict maximum principle and works if the solution is weakly
PIC2 (see Proposition 1.5).

One of the main tools in Perelman’s theory is the long-range curvature estimate for ancient

k-solutions in dimension 3. In the next step, we verify that this estimate holds in our

situation.

Theorem 2.2 (G. Perelman [23, §11.7]; H. D. Cao, X. P. Zhu [13, Th. 6.4.3]). Given x > 0,

there exists a positive function w : [0,00) — (0,00), depending on n and k with the following
10



property: Let (M, g(t)) be a an ancient k-solution. Then

S(l‘, t) S S(yv t)w<S(y7 t)dg(t) (I7 y)2)

for all points x,y € M and all t.

Proof. The proof is essentially the same as in Section 11.7 in Perelman’s paper [23] (see
also [12]). We sketch the argument for the convenience of the reader. Let us fix a point
y € M. By rescaling, we can arrange that S(y,0) = 1. For abbreviation, let A = {x €
M|S(x,0)dy)(y,z)*> > 1} We distinguish two cases:

Case 1: Suppose that A = (). In this case, we can find a point z € M such that sup,.,,; S(z,0) =
S(z,0). Using the Harnack inequality (cf. Theorem 1.3), we obtain

sup S(z,t) < S(2,0) Vt e (—o0,0].
zeM

Shi’s derivative estimates (cf. [26]) leads to 9,5(z,t) < C'(n)S(z,0)* Vt € [-S(z,0)71,0].
Moreover, dgo)(y,2) < S(z, 0)_% since A = (). Hence, we can find a small positive
constant 3, depending only on n, such that for all t € [-3S5(z,0)7%,0],

N[

1
S(z,t) > 55(2,0) and  dy)(y,2) <25(2,0) 2.

If we apply the Harnack inequality (cf. Corollary 1.4) with ¢ = —3S5(z,0)~!, then

we obtain
1
§S<Z7 0) S S(Zu t)

=0 )5(y,0)

< exp(

< exp( )S(y,0)

—t)S(z,0)
)

Putting these facts together, we conclude that sup,,; S(z,0) < 2 exp(%).

IS e

= exp(

Case 2: Suppose now that A # (). In this case, we choose a point z € A that has minimal
distance from y with respect to the metric g(0). Notice that S(z,0) = dy)(y, 2) >
since z lies on the boundary of A. Let p be the mid-point of the minimizing geodesic

in (M, g(0)) joining y and z. Note that By (p, 1dg0)(y, 2)) N A =0, then

sup S(x,0) < 16d,()(y, 2) >
CEEBQ(O) (pzidg(()) (y?z))

By the Harnack inequality (cf. Theorem 1.3),
sup S(x,t) < 16dg.0)(y, 2)™% VYt e (—o00,0].

@€ By (1) (P, 1dg(0) (452))
11



The noncollapsing assumption gives
1 1 .
voly(o) (By(o) (s 7 dy(0)(y: 2))) 2 w7 dg(o)(y, 2))" V't & (—00,0],
which implies
—n 1 _ n
(47) 7" volge) (Bg) (p, 4r)) > n(1—6r Ydyo)(y, 2))" VYt € (—o0,0] and r > dy)(y, 2).
Applying Theorem 2.1 with zy = p, rq = 4r, and w = m(%r‘ldg(o)(y, 2))", we
obtain

sup S(-Tv 0) S dg(O) (y7 Z)_2w(dg(0) (y7 Z)_lr) vVr Z dg((]) (y7 2)7
xEBg(O)(p,r)

where w : [1,00) — [0, 00) is a positive and increasing function that may depend on
n and . In particular, if we put 7 = dg)(y, 2) and apply the Harnack inequality
(cf. Theorem 1.3), then

sup Sz, t) < dyoy(y, 2) *w(l) Vte (—o0,0]
IGBQ(O)(pvdg(O)(yﬂz))

By Shi’s derivative estimates (cf. [26]),
0iS(2,t) < C(n, K)dyo)(y, 2) ™" Vit € [=dy)(y, 2)*,0].

Moreover, S(z,0) = dy)(y, z) 2 by our choice of z. Therefore, there exists a small
positive constant /3, depending only on n and &, such that S(z,t) > %dg(o) (y,2)2
and dy)(y, 2) < 2dy0)(y, 2) for all t € [—Bdy0)(y, 2)?,0]. If we apply the Harnack
inequality (cf. Corollary 1.4) with ¢t = —S3dy)(y, 2)?, then

1 .
§dg(0)(yaz> ? < S<Z>t)

< exp( B0 )

(—21)
2d 2
< exp( 2202y g, )
(—1)
2
= exp(=).
( 5)
It finally leads to Vr > 0,
sup  S(x,0) < sup S(x,0)
TE€By(0)(y,r) z€Bgy (o) (psr+dg(0) (¥,2))

S dg(O) (y> Z)_Qw(dg(O) (y> Z)_1T + 1)
< Qe%w(\@e%r +1)

12



The following immediately results from Theorem 2.2, the Harnack inequality (cf. Theorem
1.3) and the local derivative estimate of Shi (cf. [26]). In fact, Shi’s derivative estimates
shows that we can bound the m-th covariant derivative of the Riemann curvature tensor by
a constant times S™~ at each point in space-time.

Corollary 2.3. Given k > 0, we can find a large positive constant n = n(n, k) with the
following property: Let (M, g(t)) be an ancient k-solution. Then |VS| < 1nS2 and 0,5 <
nS?% at each point in space-time.

Now, we state the main result of this section:

Corollary 2.4. Fix 0 > 0. We can find a constant n = n(n,0) such that the following holds:
Suppose that (M, g(t)) is an ancient k-solution for some k > 0, which in addition satisfies

R—0Sid®id € PIC. Then |VS| < nS? and |8,5| < 1S? at each point in space-time.

Proof. If (M, g(t)) is a metric quotient of S™ or S"~! x R, the assertion is trivial. Otherwise,
Theorem 1.12 implies that (M, g(t)) is an ancient kg-solution, where xy depends only on n
and 0. Hence, the assertion follows from Corollary 2.3. 0J

3. A Canonical Neighborhood Theorem for Ricci flows starting from initial

metrics with positive isotropic curvature

In this section, we consider a solution of the Ricci flow starting from a compact manifold
of dimension n > 12 with positive isotropic curvature. Our goal is to establish an analogue

of Perelman’s Canonical Neighborhood Theorem. We begin with a definition:

Definition. Assume that f : [0,00) — [0, 00) is a concave and increasing function satisfying
limg o ! (88) = 0, and 0 is a positive real number. We say that a Riemannian manifold has
(f,0)-pinched curvature if R+ f(S5) id ® id € PIC2 and R — 6S id ® id € PIC.

If (M, go) is a compact manifold of dimension n > 12 with positive isotropic curvature,
then Corollary 1.2 implies that the subsequent solution to the Ricci flow has (f, #)-pinched
curvature for some suitable choice of f and 6.

Theorem 3.1. Let (M, go) be a compact manifold with positive isotropic curvature of di-
mension n > 12, which does not contain any nontrivial incompressible (n — 1)-dimensional
space forms. Let g(t),t € [0,T), denote the solution to the Ricci flow with initial metric go.
Given a small number € > 0 and a large number Ay, we can find a positive number 7 with
the following property: If (xg,to) is a point in space-time with Q = S(xg,to) > 772, then
the parabolic neighborhood B,y (o, AOQ_%)X [to — AoQ 1, to] is, after scaling by the factor
Q, é-close to the corresponding subset of an ancient k-solution satisfying R — 05 id ® id €

PIC.
13



Proof. By Corollary 1.2, the flow (M, g(t)) has (f,#)-pinched curvature for some function f
satisfying lim,_, @ = 0 and some constant # > 0. Let us fix a small number ¢ > 0, and
let C; = C1(n,0,¢) and Cy = Cy(n, 0, ¢) denote the constants in Corollary 1.14. It suffices
to prove the assertion when Ag > 8C; and £ is much smaller than €. To do that, we argue
by contradiction. If the assertion is false, then we can find a sequence of points (z;,¢;) in

space-time with the following properties:

(i) Q= S(x;,t;) = j°
(i) After dilating by the factor @;, the parabolic neighborhood

By, (25, AoQ; ?) x [t; — AgQ; ', 1]

is not £-close to the corresponding subset of any ancient s-solution satisfying R — 65
id ® id € PIC.

By a point-picking argument, we can arrange that (z;, ;) satisfies the following condition:

(iii) If (,t) is a point in space-time such that ¢ < ¢; and Q = S(z,1) > 4Q);, then the
p~arabolic neighborhood By (Z, AgQ2) x [{ — AgQ 1, 1] is, after dilating by the factor
@, é-close to the corresponding subset of an ancient k-solution satisfying R — 6.5 id ®

id € PIC.

The detail construction is followed below. Suppose NOT, set (z;,,t;,) = (x;,t;), then we
can pick (z;,,t;) € M x [tj(l—l) — Ay S(xj(lfl),tj(lfl))*l,tjafl)] s.t. @ = S(zj,t5,) > 4Q;, but
the parabolic neighborhood is not é-close to the corresponding subset of ancient x-solution
satisfying 2 — 6.5 id @ id € PIC and we have S(z;,,t;,) > 4 S(x;,_,,,j,_,,), for each [ € N.

Since the solution is smooth, but
S(xjwtjz) 2 4S(xj<z—1)7tj<z—1)) > 2 4! S(xj7 tj)?
and

-1
i > t > b, > tj( — Ao S<xj<zf1)’tj<zf1))

(I-1) 1—-1)

-1
1 _
> i —AoZﬁS(%‘atj) '>0
i=1
So, to avoid the scalar curvature blowing up, this process must terminate after finite
number of steps and the last one fits.

Our strategy is to rescale the flow (M, g(t)) around the point (x;,t;) by the factor Q;. We
will show that the rescaled flows converge to an ancient s-solution satistying R — 6.5 id ® id

€ PIC. To that end, we proceed in several steps:

Step 1: We first establish a pointwise curvature derivative estimate. By Corollary 2.4, we
can find a large constant 7, depending only on n and 6, such that |[VS| <nS 3 and

|%S | < 1S?% on every ancient r-solution. Using property (iii) above, we conclude
14



Step 2:

Step 3:

that |[V.S] < 2752 and |25 < 2nS? for each point (z,t) in space-time satisfying
t <t;and S(z,t) > 4Q;.

We next prove bounds for the higher order covariant derivatives of the curvature
tensor. Suppose that (z,¢) is a point in space-time satisfying S(z,t) + Q; < o
The pointwise curvature derivative estimate in Step 1 implies that S < 8r;? in the
parabolic neighborhood P(z,t, -2~ 1007 10;}) Usmg Shi’s interior derivative estimates
(cf. [26]), we conclude |V™R| < C(n,m,n)ry™ ? at the point (z,t).

We next prove a long-range curvature estimate. Given any p > 0, we define

M(p) = lim sup sup Qj_lS(x, t)
j—00 _1
J_) TE€By(1;)(25,0Q; %)

For now, we have M(p) < 8 for 0 < p < 100n’ because we can integrate the scalar
curvature over the segment from (z;, ;) and use the result of Step 1. We claim that

M(p) < oo for all p > 0. Suppose this is false. Let
pr=sup{p>0:M(p) < 0} <0

Clearly, p* > . By definition of p*, we have an upper bound for the curvature

100

_1
in the geodesic ball By, (z;, pQ; *) for each p < p*. By Step 2, we obtain bounds for

the covariant derivatives of the curvature tensor in the geodesic ball By, (x5, pQ; )
for each p < p*. Moreover, Perelman’s noncollapsing estimate gives a lower bound
for the volume. We rescale around (x;,t;) by the factor (); and pass to the limit as
j — oo. In the limit, we obtain an incomplete manifold (B>, ¢*°) that is weakly

PIC2. Clearly, p* > —=—, so B> # (). Note that S is smooth, so M(p*) = oco. By

100177
definition of p*, we can find a sequence of points y; such that

Q Aoy (xj,y;) = p* and  Q;'S(y;,t;) — o0

1
For each j, we can find a unit speed geodesic v; : [0, p;Q; *] — (M, g(t;)) such

1
that 7;(0) = z; and v;(p;Q; *) = y;. Let 7o : [0, p*) = (B>, ¢™) denote the limit
of ;. Using the pointwise curvature derivative estimate in Step 1, we obtain

Sy (e(5)) = lim Q;1S(35(sQ %), 5) > (n(p" = )2 > 100

if s € [,0* - 10077’p )

Let us consider a real number 5 € [p* — *) such that 8Cin(p* — 5) < 5.

10072 P

We claim that yj(EQ;%) lies at the center of a 2e-neck if j is sufficiently large
(depending on § ). Observe that if j is sufficiently large, it follows from property (iii)
and Corollary 1.14 that the point (7j(§Q;%), t;) has a Canonical Neighborhood that
is either a 2e-neck; or a 2e-cap; or a closed manifold diffeomorphic to S™/T'; or a 2e-

quotient neck. Thus we want to rule out the last three candidates. Before that, we
15



need two more observations. Recall that (Corollary 1.14) the Canonical Neighbor-
1

1

hood is contained in a geodesic ball around ’yj(EQj_a) of radius 2C} S(fyj(EQj_%), ;)" 2,
and the scalar curvature is at most 2CyS (’yj(EQ;%), t;) at each point in the Canonical
Neighborhood. Hence, we get:
e The Canonical Neighborhood does not contain the point y;, provided that j is
sufficiently large.: Since M(S) < oo, we can compare two limits

lim sup Q;ls(vj(EQ;%),tj) <oo and lim Qj_lS(yj,tj) = 0

Jj—00 j—o0

and obtain
lim S(5(5Q; %), 1) S (5, 15) = oo

consequently if j is sufficiently large, S(y;,t;) > 4025(%-(5@;%),15]-), which
is larger than maximum of scalar curvature on the Canonical Neighborhood.
Hence, it does not contain the point y;.

e The Canonical Neighborhood does not contain the point z;, provided that j is
sufficiently large.: First, observe that

8C18y (7100(5)) 2 < 8Cun(p* — 5) < 5,
and

Sy (0o(5)) = lim Q;S(3(5Q; %), ;)
This implies if j is sufficiently large,

ACS(15(5Q; %), )% < 8C Sy (Yo0(5)) ™

<50,

[N
N

_1 1
It means that dy;)(7;(5Q; *), r;) = 3Q; * larger than radius of the Canonical

Neighborhood. He]nce, it does not contain the point z;.

In particular, if 7 is sufficiently large, then the Canonical Neighborhood of (vj(EQ;%), t)
cannot be a closed manifold diffeomorphic to S"*/T. Moreover, if the Canonical
Neighborhood of (vj(EQ;%), t;) is a 2e-cap, then the geodesic v; must enter and exit
this 2e-cap, but this is impossible since v; minimizes length. Finally, if the Canonical
Neighborhood of (wj(§Qj_%),tj) is a quotient neck, then Theorem A.1 in [5] implies
that M contains a nontrivial incompressible (n—1)-dimensional space form, contrary
to our assumption. To summarize, if j is sufficiently large (depending on 5), then the
point (yj(EQ;%), t;) has a Canonical Neighborhood that is a 2e-neck. In particular,
if j is Suflﬁciently large (depending on 5), then we have |V.S| < C(n)e S? at the point
(7(8Q; 2),t5).

3
2

Passing to the limit as j — oo, we conclude that |[V.Sge| < C(n)e Sk at the point

gOC
Yoo (8). Integrating this estimate along Vo gives Sy=(70(5)) > (C(n)e(p* — 5)) 72
16



Step 4:

Step 5:

Moreover, since ('yj(EQ;%), t;) lies at the center of a 2e-neck for j sufficiently large,
the point v (5) must lie on a C'(n)e-neck in (B>, g*°).

As in the Perelman’s paper (cf. [22,§12.1]), there is a sequence of rescalings that

converges to a piece of a nonflat metric cone in the limit. Using the pointwise curva-
ture derivative estimate established in Step 1, we can extend the metric backwards in
time. This gives a locally defined solution to the Ricci flow that is weakly PIC2 and
that, at the final time, is a piece of nonflat metric cone. This contradicts Proposition
1.5.
We now rescale the manifold (M, g(¢;)) around the point x; by the factor @);. By
Step 3, we have uniform bounds for the curvature at bounded distance. Using
the curvature derivative estimate in Step 1 together with Shi’s interior derivative
estimates (cf. [26]), we conclude that the covariant derivatives of the curvature tensor
are bounded at bounded distance. Combining this with Perelman’s noncollapsing
estimate, we conclude that (after passing to a subsequence) the rescaled manifolds
converge in the Cheeger-Gromov sense (cf. [10]) to a complete smooth limit manifold
(M=, g*>). Since (M,g(t;)) has (f,6)-pinched curvature, the curvature tensor of
(M, g>=) is weakly PIC2 and satisfies R — 05 id ® id € PIC. Using property (iii)
and Corollary 1.14, we conclude that every point in (M, ¢*) with scalar curvature
greater than 4 (since we normalize the curvature) has a Canonical Neighborhood that
is either a 2e-neck; or a 2e-cap; or a 2e-quotient neck. Note that the last possibility
cannot occur; indeed, if (M, g*°) contains a quotient neck, then (M, g(t;)) contains
a quotient neck for j sufficiently large, and Theorem A.1 in [5] then implies that M
contains a nontrivial incompressible (n — 1)-dimensional space form, contrary to our
assumption.

We claim that the limit manifold (M, ¢*°) has bounded curvature. Indeed, if
there is a sequence of points in (M, ¢>°) with curvature going to infinity, then
(M, g>) contains a sequence of necks with radii converging to 0, contradicting
Proposition 1.9. Thus, (M, ¢*°) has bounded curvature.

We now extend the limit (M, g°°) backwards in time. By Step 4, the scalar curva-
ture of (M, ¢>) is bounded from above by a constant A > 4. Using the pointwise
curvature derivative estimate in Step 1, we conclude that

lim sup sup Qj_ls(a:, t) <2A

j—}OO 7% 1 —1
(x’t)EBg(tj)(xijQj )X[tj_mQj ’tj}

for each A > 1. Hence, if we put 7, := then we can extend (M, g*)

1
T 200mA
backwards in time to a complete solution (M, g>(t)) of the Ricci flow that is

defined for ¢ € [r, 0] and satisfies Ay := sup;e,, o SUPpsee Sygoory < 2A In the next

step, we put = 1 — Using the pointwise curvature derivative estimate

1
200nA; °
in Step 1, we can extend the solution (M ¢*>),t € [r1,0] backwards in time to
17



Step 6:

a solution (M, g>®(t)),t € [r2,0]. Moreover, Ay 1= Sup,c(, o] SUPpzee Sgoo(r) < 2A1.
Continuing this process, we can extend the solution backwards in time to the interval

— 1 N
[Tm, 0], where Tm+1 ‘= Tm — m and Am+1 = supte[TmH’O] Sup p oo Sgoo(t) < 2Am
1
T 200mA

we obtain a complete, smooth limit flow (M, g*(t)) that is defined on the interval
(7*,0] and that has bounded curvature for each t € (7%, 0]. Since (M, ¢(t)) has (f, 0)-
pinched curvature, the curvature tensor of the limit flow (M, g*(t)) is weakly PIC2
and satisfies R — 0S5 id ® id € PIC.

We claim that 7 = —oo. To prove this, we argue by contradiction. Suppose

Let 7" = lim,,—oo T < . Using a standard diagonal sequence argument,

7% > —o00. Clearly, lim,, o0 (T — Timy1) = 0, hence lim,, o A, = 0.
By the Harnack inequality (cf. Theorem 1.3), the function ¢ — (t — 7)Sgec () ()
is monotone increasing at each point x € M. Since Syeo(g)(z) < A for all x € M,

we obtain

_T*
t—71*

for all z € M and all t € (7%,0]. Using Lemma 8.3(b) in [23], we conclude that

A

Sgw(t) (z) <

d
0< ——dg=(z,y) < C(n)

for all z,y € M and all t € (7%,0]. Integrating over ¢ gives
dyee0) (2. y) < dyo(n)(,y) < o) (2, y) + C(n) (=77 VA

for all z,y € M and all t € (7%,0].

By the maximum principle,
inf Sgeo(ry < If Sgoe(o) < 1

for all t € (7*,0]. Hence, we can find a point yo, € M such that Sge()(yes) < 4 for
t=rT1%+ m € (7%,0]. Using the pointwise curvature derivative estimate in Step 1,
we obtain Sgeo()(Yoo) < 8 for all t € (77, 7% + m]. In particular, Sgee(r,,)(Yoo) < 8

if m is sufficiently large. Arguing as in Step 3 , we can show that

lim sup sup Sgoo(
Mm—00  Byoo(Tim) (Yoo, A)

) < OO

for every A > 1.

Consequently, a subsequence of the manifolds (M, g°°(7,,), Yoo) converges in the
Cheeger-Gromov sense (cf. [10]) to a complete, smooth limit. If this limit manifold
has unbounded curvature, then (by property (iii) above) it contains a sequence of
necks with radii converging to 0, contradicting Proposition 1.9. Therefore, a sub-

sequence of the manifolds (M, g*(7,n), Yso) converges in the Cheeger-Gromov (cf.
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[10]) sense to a complete, smooth limit with bounded curvature. Consequently, we
can find a constant A* > A (independent of A) such that
lim inf sup Sgoo(r) < AT

Mmoo Bgoo(Tm) (Yoo, 4)

for every A > 1. Using the distance estimate, we obtain By (0)(Yoo; A) C Bgoo(r,,) (Yoo, A+
C(n)(—7*)v/A). Putting these facts together, we conclude that
liminf — sup = Syeo(s,) <A
m—0o0
Bg0o(0) (Yoo ,A)
for every A > 1. Hence, for each A > 1, we can find a large integer m (depending

on A) such that 7, € (7%, 7" + and

;]
1000nA*

sup  Sgeo(r) < 2A%.
Bg00(0) (Yoo, A)

Using the pointwise derivative estimate in Step 1, we obtain

sup sup Sgor) < 4N

tG(T*,T*-ﬁ-W] BgOO(O)(yomA)
for every A > 1. Since A* is independent of A, we conclude that

sup sup Sgee(ry < 4A™.
tE(T*,T*‘FW] Mee
Therefore, the flow (M, ¢g>(t)),t € (7%, 0], has bounded curvature. This contra-
dicts the fact that lim,,_,. A,, = co. Thus, 7" = —o0.

To summarize, if we dilate the flow (M, ¢(¢)) around the point (z;,t;) by the factor Q;,
then (after passing to a subsequence), the rescaled flows converge in the Cheeger-Gromov
sense (cf. [10]) to an ancient s-solution (M, g*>(t)), t € (—o0, 0], satisfying R — 0S id ®
id € PIC. Here, x depends only on the initial data. This contradicts statement (ii). This
completes the proof of Theorem 3.1. O

Finally, by combining Theorem 3.1 with Corollary 1.14, we can draw the following con-
clusion:

Corollary 3.2. Let (M, go) be a compact manifold with positive isotropic curvature of di-
mension n > 12, which does not contain any nontrivial incompressible (n — 1)-dimensional
space forms. Let g(t),t € [0,T), denote the solution to the Ricci flow with initial metric go.
Given any € > 0, there exists a positive number 7 with the following property: If (xg,to) is a
point in space-time with Q = S(xg,ty) > 772, then we can find a neighborhood B of xo such
that
By (0, (2C1) 7S (0, t0)"2) C B C Bypay) (w0, 2C1 (0, 1) "2)

and

(202)715(370,150) < S(l’,to) < 2025(.%0,150)
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for all x € B. Furthermore, B satisfies one of the following conditions:

(1) B is a strong 2e-neck with center at x.
(2) B is a 2e-cap.
(3) B is a closed manifold diffeomorphic to S™/T.

Here, C1 = Ci(n,0,¢) and Cy = Cy(n,0,¢) are the constants appearing in Corollary 1.14.
Finally, we have |VS| < 2752 and |25 |< 2nS? at the point (o, to), where 1 is a constant
that depends only on n and 6.

4. The behavior of the flow at the first singular time

Throughout this section, we fix a compact initial manifold (M, g) of dimension n > 12
that has positive isotropic curvature and does not contain any nontrivial incompressible
(n — 1)-dimensional space forms. Let (M, g(t)) be the solution of the Ricci flow with initial
metric go, and let [0,7") denote the maximal time interval on which the solution is defined.
Note that T' < m By Theorem 1.1, we can find a continuous family of closed,
convex, O(n)-invariant sets {F; : t € [0, T]} such that the family {F; : ¢ € [0,T]} is invariant
under the Hamilton ODE 4R = Q(R); the curvature tensor of (M, go) lies in the set Fo;
and

F,c{R:R—0Sid®id € PIC}N{R: R+ f(S)id ®id € PIC2}

for all t € [0, T]. Here, f is a concave and increasing function satisfying limg_, @ =0, and
f and N are positive numbers. Note that f,0, and N depend only on the initial data. By
Hamilton’s PDE-ODE principle, the curvature tensor of (M, g(t)) lies in the set F; for each
te[0,7).

By Corollary 3.2, every point in space-time where the scalar curvature is sufficiently large
admits a Canonical Neighborhood that is either a 2e-neck; or a 2e-cap; or a closed manifold
diffeomorphic to S”/I". Let p be a small positive number with the property that every
point with S > ip‘z satisfies the conclusion of the Canonical Neighborhood Theorem. In
particular, we have [VS| < 2757 and |2 S| < 27 S? whenever S > 1p~2. We define

Q:={z e M :limsup S(x,t) < co}.
t—=T

The pointwise curvature derivative estimate implies that €2 is an open subset of M. Using
the pointwise curvature derivative estimate together with Shi’s interior estimates (cf. [26]),
we conclude the metrics g(t) converge to a smooth metric g(7") on Q. Following Perelman’s
paper, we consider the set

Q, ={r e M :limsupS(x,t) <p?}={r€Q:9(T)<p?}

t—T

We distinguish two cases:
20



Case 1: Suppose that Q, = (). Using the inequality |%S| < 2782, we obtain inf e S(x,t) >
%p*Q if ¢ is sufficiently close to T'. Hence, if t is sufficiently close to T', then every
point in (M, g(t)) admits a Canonical Neighborhood that is either a 2e-neck; or a
2e-cap; or a closed manifold diffeomorphic to S*/T.

Case 2: Suppose now that €, # (. Pick any 2e-neck C cl(Q2\ ©,). Choose a point z on
one side of the boundary of the neck. Suppose that z € Q\ ©,, then there exists
another 2e-cap, or 2e-neck adjacent to the initial neck. In the latter case, we can
take the point on the second boundary of the second 2e-neck and continue. We will
stop this process only when we get a 2e-cap, or we get a point in {2,. Otherwise, we
get an infinite many 2e-necks, which produces a 2e-horn. The same procedure can
be repeated on the other boundary of the initial 2e-neck.

The upshot is that every point in Q \ €2, lies either

(i) on 2e-tube with boundary in €2, (from adjoining finite many necks on both side); or

(ii) on a 2e-cap with boundary in Q, (from adjoining finite many necks on one side and a
cap on one side at the end); or

(iii) on a closed manifold diffeomorphic to S™/I' (from adjoining a cap on both side at the
end); or

(iv) on a 2e-horn (from adjoining infinite many necks on one side and finite many on the
other side)

(v) on a double 2e-horn (from adjoining infinite many necks on both sides)

(vi) on a capped 2e-horn (from adjoining infinite many necks on one side and a cap on the
other side at the end).

Following Perelman, we perform surgery on (iv). We leave unchanged all the (i), and all
(ii). We discard all the others, i.e. (iii), (v), and (vi), because we still can capture those
information when we want to know the diffeomorphic type of M. The reason for (v) and (vi)
is that, slightly before the surgery time 7', double 2e-horns and 2e-horns are still 2e-tubes
and capped 2e-tubes.

Proposition 4.1. The pre-surgery manifold M 1is diffeomorphic to a connected sum of the
post-surgery manifold with a finite collection of standard spaces, each of which is a quotient

of S™ or "1 x R by standard isometries.

Proof. Suppose first that , = (). In this case, M is diffeomorphic to either a quotient of S"
by standard isometries; or a tube with caps attached on both sides; or an S*~!-bundle over
St with a fiberwise round metric. In the second case, Definition of caps ensures that M is
diffeomorphic to S™. To handle the third case, we note that that there are two S*~!-bundles
over S with a fiberwise round metric. One of them is orientable, the other one is not. Both
are diffeomorphic to quotients of S"~! x R by standard isometries. To summarize, M is

diffeomorphic to a quotient of S or a quotient of S*~! x R by standard isometries.
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Suppose next that 2, # (0. In this case, we can recover the pre-surgery manifold M from
the post-surgery manifold as follows. We first reinstate the components that were discarded
after surgery. More precisely, we form a disjoint union of the post-surgery manifold and a
finite collection of standard spaces, each of which is a quotient of S” or S*~! x R by standard
isometries. In the next step, we reverse the surgery by gluing in finitely many handles of
the form S"~! x I. Note that, as we glue in these handles, the attaching maps are nearly
isometric. Thus, the pre-surgery manifold is diffeomorphic to a connected sum of the post-
surgery manifold with finitely many quotients of S™ and S"~! x R. This completes the proof
of Proposition 4.1. O

In the remainder of this section, we show that the surgery procedure preserves our curva-

ture pinching estimates, provided that the surgery parameters are sufficiently fine.

Proposition 4.2. Suppose that the curvature tensor of a d-neck lies in the set F; prior to
surgery. If 6 is sufficiently small and the curvature of the neck is sufficiently large, then the
curvature tensor of the surgically modified manifold lies in the set F;. Moreover, the scalar

curvature s pointwise increasing under surgery.

Proof. Suppose that the scalar curvature of the neck is close to h=2, where h is small. Let
us rescale by the factor h™! so that the scalar curvature of the neck is close to 1 after
rescaling. Let us, therefore, assume that ¢ is a Riemannian metric on S"~! x [-10, 10]
that is close to the round metric with scalar curvature 1, and that has curvature in the
set h2F;. We first recall the definition of the surgically modified metric §. To that end, let
= denote the height function on S"! x [—10,10], and let ¢(z) = e = for z € (0, =] In
the region S"~! x [—10, 0], the metric is unchanged under surgery, i.e., § = g. In the region

§"71x(0, 55], we change the metric conformally by g = e*#g. In the region "' X (55, 15, we
define g = e 2?(x(2)g + (1 — x(2))g), where g denotes the standard metric on the cylinder
and x : (55,75) — [0,1] is a smooth cutoff function satisfying x(z) = 1 for z € [, %]

and x(z) = 0 for z € [55, 15]. In particular, the surgically modified metric § is rotationally
symmetric for z € [15, 1—10] Hence, we may extend ¢ by gluing in a rotationally symmetric

cap.

We now analyze the curvature of the surgically modified metric g. It suffices to consider
the case when z > 0 is small. In this region, § = e ?#g. Let {ei,...,e,} denote a local
orthonormal frame with respect to the metric g. If we put é; = e¥e;, then {é1,...,é,} is
an orthonormal frame with respect to the metric g. We will express geometric quantities
associated with the metric g relative to the frame {ej, ..., e,}, while geometric quantities
associated with g will be expressed in terms of {é,...,é,}. With this understood, the

curvature tensor after surgery is related to the curvature tensor before surgery by the formula

. 1
R=e*R+e*(Vip+do®@dp— §|dg0]21d) ® id.
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This implies
R—R—ze*(dz®dz) ®id| < 2% =

for z > 0 sufficiently small. Consequently, S(R) > S(R) if z > 0 is sufficiently small. Since
the metric ¢ is close to the cylindrical metric, we obtain
1
|R—§(id—22®z)®id] <1,
hence

~ 1 1
IR—(1—z% )R~ 52_46_;id O id|

- 1
<|R-—R- z_4e_%(dz ® dz) ®id| + e :|R - §(id —22® 2) ®id|

<z 7% :
for z > 0 sufficiently small. Therefore, we may write
R=(1- z’4e’%)R 2=,

where |S — %id ®id| < 1 for z > 0 sufficiently small. Consequently, S € h%F; if z > 0 is
sufficiently small. Moreover, R € h?F; in view of our assumption. Since JF; is a convex set,
we conclude that R € h2F, if z > 0 is sufficiently small. This easily implies that R € h2F,
for all z € (0, 10). O

5. The standard solution

We recall some basic facts concerning the so-called standard solution in this section. The
standard solution is used to model the evolution of a cap that is glued in during a surgery
procedure. More precisely, suppose that (S"™! x R,g(t)),t < 0, is a family of shrinking
cylinders, normalized so that Sy = ? for t < 0. Suppose that we perform surgery at
time ¢ = 0, i.e., we remove a half-cylinder and glue in a cap that is rotationally symmetric
and has positive curvature. This gives a rotationally symmetric metric g(0) on R™. The
standard solution is obtained by evolving the manifold (R, g(0)) under the Ricci flow.

The following results were proved by Perelman [25] in dimension 3 and were extended to
higher dimensions in [12].

Theorem 5.1 (cf. G. Perelman [25,§2]; B. L. Chen, X. P. Zhu [12, Th. A.1]). There exists
a complete solution (R™, g(t)),t € [0, 25%), to the Ricci flow with the following properties:

(1) The initial manifold (R™, g(0)) is isometric to a standard cylinder with scalar curvature
1 outside of a compact set, and this compact set is isometric to the cap used in the
surgery procedure.

(it) For each t € [0,%5F), the manifold (R™, g(t)) is rotationally symmetric.
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(iti) For each t € [0,251), the manifold (R", g(t)) is asymptotic to a cylinder with scalar
curvature 17;% at infinity.

n—1

(iv) The scalar curvature is bounded from below by Ko 1

Kom(1— 25 where Ky,q 1s a positive
n—1

constant that depends only on n.
(v) For eacht € [0,251), the manifold (R™, g(t)) is weakly PIC2 and satisfies R — 0S'id @
id € PIC for some constant 8 > 0 that depends only on n.
(vi) The flow (R™, g(t)) is k-noncollapsed for some constant k > 0 that depends only on n.
(vii) There exists a function w : [0,00) — (0, 00) such that

S(IL’, t) S S(ya t)w(S(y, t)dg(t)(xv y)Q)

for all points z,y and all t € [0, "T_l)

Proof. The statements (i), (ii), (iii), (iv), (vi) and (vii) are established in [12, App. A].
Moreover, it is shown in [12] that (R™, g(¢)) has nonnegative curvature operator. Hence, it
remains to show that R — 6S5id () id € PIC.

Observe that the initial manifold (R", ¢(0)) is uniformly PIC. Moreover, on the initial
manifold (R", g(0)), the sum of the two smallest eigenvalues of the Ricci tensor has a lower
bound, a small multiple of the scalar curvature. Hence, 3 a cone C such that the curvature
tensor of (R™, g(0)) lies in it (cf. S. Brendle [6. Sec.5]). By Hamilton’s PDE-ODE principle
([14, Th. 12.34]), the curvature tensor of (R™, g(t)) lies in C for each ¢ > 0. Consequently,
the curvature tensor of R — 0Sid ® id € PIC. O

It turns out that the standard solution satisfies a Canonical Neighborhood Property:

Theorem 5.2 (cf. G. Perelman [25]; B. L. Chen, X. P. Zhu [12, Cor. A.2]). Given a small
number € > 0 and a large number Ag > 0, Jov € [0, 25+) with the following property: If (zo, to)
is a point on the standard solution such that ty € [, ”T_l), then the parabolic neighborhood
P(zxq, to, AOS(ZEO,tO)_%, —AoS(xo,to)Y) is, after scaling by the factor S(zg,to), E-close to the
corresponding subset of a noncompact ancient ko-solution satisfying R — 0Sid (M) id € PIC.

Proof. Suppose not. Then 3 a sequence of points (z;,¢;) on the standard solution such that
t; — "T_l and the parabolic neighborhood P(mo,to,AOS(xo,to)_%, —ApS (g, t9)~") is not &-
close to the corresponding subset of a noncompact ancient kg-solution satisfying R —60Sid d
id € PIC.

Dilating the solution around the point (x;,¢;) by the factor S(z;,t;), property (vii) in
Theorem 5.1 and the Harnack inequality (cf. Theorem 1.3) shows that the rescaled flows
converge to a complete, noncompact ancient solution (M, ¢*(t)). The limiting ancient
solution (M, g>(t)) is weakly PIC2 and satisfies R — 6Sid (® id € PIC. Moreover, the

limiting ancient solution is kg-noncollapsed.
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By Theorem 1.3, the standard solution satisfies the Harnack inequality
0S + 2(VS,v) + 2Ric(v,v) + %S >0
for t € (0, 25+). Consequently, the limiting ancient solution (M, g>(t)) satisfies
S +2(VS,v) + 2Ric(v,v) > 0.

By Brendle’s previous work (cf. S. Brendle [6, Prop 6.11]), (M, ¢*°(t)) has bounded curva-
ture. Thus, (M, g*°(t)) is a noncompact ancient kg-solution satisfying R—60Sid@®id € PIC,
which contradicts the assumption. O

Corollary 5.3 (cf. G. Perelman [25]; B. L. Chen, X. P. Zhu [12, Cor. A.2]). Given ¢ > 0,
3 positive constants C; = C1(n,e) and Cy = Co(n, €) such that the following holds: For each

point (xg,ty) on the standard solution, there exists a neighborhood B of xy such that
Byto) (0, C7 1S (0, t0)2) € B C Bypuo) (0, C1.5 (o, 1) ?)
and
OQ_IS(ZL'o,to) S S(ZE,to) S CQS(IQ,to) Vz e B.

Moreover, B is either a strong e-neck with center at xo or a 4e-cap. Finally, |VS| < 775%
and |0;S| <nS? in B.

Proof. If ty is sufficiently close to "T_l (depending on ¢), this follows from Theorems 5.2
together with 1.12. If ¢y is bounded away from ”T_l, this follows from the fact that the
standard solution is asymptotic to a cylinder at infinity. 0

Finally, we state a lemma that will be needed later.

Lemma 5.4. Given a € [0,%52) and | > 0, there exists a large number A = A(w, 1) with
the following property: Suppose that t; € [0,a] and v is a space-time curve on the stan-
dard solution (parametrized by the interval [0,t1]) such that v(0) lies on the cap at time
0, and fotl |’y’(t)|§(t)dt < I. Then the curve «y is contained in the parabolic neighborhood

P(7(0),0,4,t,).

R
Proof. By [! 7' (t)[2ydt < 1 and Hélder’s inequality, we obtain [ 7 (t) g dt < azlz. Then
A =100a212 is what we want. O

6. A priori estimates for Ricci flow with surgery

We give the definition of Ricci flow with surgery in this section. Moreover, we discuss
how Perelman’s noncollapsing estimate and the Canonical Neighborhood Theorem can be
extended to Ricci flow with surgery. In the follwing, we fix a compact initial manifold of

dimension n > 12 that has positive isotropic curvature and does not contain any nontrivial
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incompressible (n — 1)-dimensional space forms. Let {F|t € [0,7]} be a family of con-
vex, closed, O(n)-invariant sets such that the family {F;|t € [0,7]} is invariant under the
Hamilton ODE 45 = Q(S); the curvature tensor of (M, go) lies in Fy; and

dt
F; C{R|R—0Sid ® id € PIC}
N{R|R+ f(S)id ® id € PIC2}

f(s) 0

S =

for all t € [0,T], where f is a concave and increasing function satisfying limg
and € and N are positive numbers.

The key is that having fixed 6, we can find a universal constant x such that the conclusion
of Theorem 1.12 holds. Moreover, we fix a constant 7 such that the conclusions of Corollary
2.4 and Corollary 5.3 hold. In other words, we have |VS| < 1S2 and 8,5 < 152 on any

ancient x-solution, and the same inequalities hold on the standard solution.

Let us choose a small positive number € > 0. Then we fix constants C; = C(n,0,¢) and
Cy = Cy(n, 0, ¢) such that the conclusions of Corollaries 1.14 and 5.3 hold.

Definition. A Ricci flow with surgery on the intcrval [0,7) consists of the following data:

e A decomposition of [0, T') into a disjoint union of finitely many subintervals [t; , ), 0 <
k <. That is to say, t; =0, =T and t, =t} , for 1 <k <1

e A collection of smooth Ricci flows (M®), g*)(¢)), defined on t € [t; ,¢]) and become
singular as t — ¢} for 0 <k <[ —1.

e Positive numbers e, 7,9, h such that § < e and h < dr. These are referred to as the
surgery parameters.

For each 0 < k <1 —1, let Q® = {z € M®|lim SUPy_ ¢+ S(x,t) < co}. We assume that
the following conditions are satisfied:

e The manifold (M, g(0(0)) is isometric to the given initial manifold (M, go).

e The manifold (M®, g (¢,)) is obtained from (M®*=Y g*k=Y(#f ) by performing
surgery on finitely many necks. For each neck on which we perform surgery, we can
find a point (zo, ) at the center of that neck such that S(z,ty) = h~2; moreover, the
parabolic neighborhood P(x, tg, ~th, —d~th?) is surgery-free and is a strong d-neck.

e After each surgery, we discard all double 4¢-horns and all capped 4e-horns. Moreover,
we remove all connected components that are diffeomorphic to S"/T.

e Bach flow (M®) g(*)(#)) satisfies the Canonical Neighborhood Property with accuracy
4e on all scales less than 7. In other words, if (2, ) is an arbitrary point in space-
time satisfying S(xg,to) > r~2, then 3 a neighborhood B of x( such that

Bg(t()) ([Eo, (801)_15(1’0, to)_%) C B C Bg(to)(an 8015(m0,t0)_%)

and

(8C) 'S (wo, to) < S(x,ty) < 8CyS(wo,ty) Vi € B.
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Moreover, B is either a strong 4e-neck with center at xy or a 4e-cap.
e If (z9,1p) is an arbitrary point in space-time satisfying S(zg,ty) > r~2, then |V S| <
4nS3 and |9,S| < 41S? at (xo, to).

Note that the manifold M®* may have multiple connected components. In the following,
we will write the surgically modified solution simply as ¢(t). However, it is important to
remember that the underlying manifold changes across surgery times.

In the first step, we prove an upper bound for the length of the time interval on which the
solution is defined.

Proposition 6.1. Suppose that we have a Ricci flow with surgery starting from (M, go) that

is defined on [0,T). Then T < g——"—+- YIS EIOR

Proof. Note that the function

n
t—
2inf e S(x,t)

+1

is monotone decreasing under smooth Ricci flow by the maximum principle. Also, this
function is monotone decreasing across surgery times by Proposition 4.2. Therefore, this

function is monotone decreasing under Ricci flow with surgery. U

Proposition 6.2. Let f, 6 be as above, and let g(t) be a Ricci flow with surgery starting
from (M, go). Then (M, qg(t)) has (f,0)-pinched curvature.

Proof. By Theorem 1.1 and Hamilton’s PDE-ODE principle (cf. [15, Th. 3| or [14, Th.
10.16]), the property that the curvature tensor of g(t) lies in F; is preserved by the Ricci
flow. By Proposition 4.2, the property that the curvature tensor lies in JF; is preserved under
surgery. Therefore, the property that the curvature tensor of g(t) lies in F; is preserved
under Ricci flow with surgery. O

Proposition 6.3. Let g(t) be a Ricci flow with surgery, and let e,r,0, h denote the surgery
parameters. Choose (xq,tg) to be a point in space-time and let ro be a positive real number
such thatty > 12 and S(z,t) < ry?V (x,t) € P(xo,to, 70, —72). Then [V™R| < C(n,m)ry™ >
at the point (xo,to).

Proof. If the parabolic neighborhood P(xo, o, %, —%) is surgery-free, this follows from the
classical Shi estimate (cf. [26]). Then suppose that the parabolic neighborhood P(z, to, 22, —%)
does contain surgeries. At each point modified by surgery, the scalar curvature is at least
1h=2. Consequently, 1h=2 < rg®. The classical Shi estimate (cf. [26]) implies |[V™R| <
C(n,m)h~™=2 < C(n,m)r;™ 2 on each strong neck on which we perform surgery. More-
over, [V"R| < C(n,m)h~""2 < C(n,m)r;™ ? at each point modified by surgery. The

assertion now follows from Theorem 3.29 in [22]. O
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Proposition 6.4 (cf. G. Perelman [25, Lemma 4.5]). Fiz ¢ > 0 small, a € [0,%52), and
A > 1. Then 36(a, A) > 0 with the following property: Suppose that we have a Ricci flow
with surgery with parameters e,1,6, h, where § < 6. Let Ty € [0,T) be a surgery time, and
let zo be a point that lies on a gluing cap at time Ty. Let Ty = min{T, Ty + ah®}. Then one

of the following statements holds:

(i) The flow is defined on the parabolic neighborhood P(x, Ty, Ah, Ty — Ty). Furthermore,
after dilating the flow by h=2 and shifting time Ty to 0, P(xq, Ty, Ah, T, — Tp) is A~1-
close to the corresponding subset of the standard solution.

(i1) There exists a surgery time t* € (Ty, T1) such that the flow is defined on the parabolic
neighborhood P(xq, Ty, Ah,tt — Ty). Furthermore, after dilating by the factor h™2,
P(xg, Ty, Ah, t+ —Tp) is A~ -close to the corresponding subset of the standard solution.
Finally, for each point x € Byr,)(xo, Ah), the flow exists exactly until time t*.

Proof. Same as the proof of Lemma 4.5 in Perelman’s paper [25]. We omit the details. [

As in Perelman’s work [25], it is crucial to establish a noncollapsing estimate in the presence

of surgeries.

Definition. Given a Ricci flow with surgery, the flow is said to be x-noncollapsed on scales
less than p if the following holds: If (z,?y) is a point in space-time, rq is a positive number
such that o < p and S(z,t) < 152V (z,t) € P(wo,to, 70, —72) for which the flow is defined,
then volyy) (By(to)(T0,70)) > KTg.

As in Perelman’s work [25], the noncollapsing estimate for Ricci flow with surgery will
follow from the monotonicity formula for the reduced volume.

Definition. Given a Ricci flow with surgery, a curve in space-time is said to be admissible if
it stays in the region unaffected by surgery. A curve in space-time is called barely admissible

if it is on the boundary of the set of admissible curves.

Lemma 6.5 (cf. G. Perelman [25, Lemma 5.3]). Fize,r, L. Then there exists a real number
5(r,L) > 0 such that the following holds: Given a Ricci flow with surgery with parameters
g, 7,6, h, where § < 6, let (xq,ty) be a point in space-time such that S(xo,ty) < r~2, and let
Ty < tog be a surgery time. Fiz vy to be a barely admissible curve, which is parametrized by
the interval [Ty, to], such that y(to) = xg, and ¥(Ty) lies on the boundary of a surgical cap at

time Ty. Then

/TO Vo — t(S(1(t),8) + |V (1) %) )dt > L.

47]5'%
4

7"_2

Proof. We argue by contradiction. Recall that we have the key estimate |V.S

| <
and |9;S| < 4nS? whenever S > r=2. Since S(zg,to) < r72, it follows that S <
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in P(xo,

assumptions we need and suppose that

to, ﬁ, —%). Let v be a barely admissible curve in space-time satisfying the

/TO Vo = HS(Y(t), 1) + |7/ (£) 2 dt < L.

Then LZO_T 1Y [gpydt < (QL)%T% for 7 > 0 follows from Hélder’s inequality and the positivity
of the scalar curvature. Hence, we can find a real number 7(r, L) € (0, %) such that

is contained in the parabolic neighborhood P(z, , which implies

2
T T
7} [to—T,to] to; 07 10077)

S(y(t),t) <4r? Vi€ [ty — T, to).
Having fixed 7, we define real numbers « € [0, "T_l) and [ > 0 by the relations

L log(1 - 227)| = L

4Kstnd n—1

l Y
where Kg,q is a positive constant appering in the standard solution, which depends only on
dimension n. Having chosen « and [, we choose a large constant A so that the conclusion of
Lemma 5.4 holds. Having fixed o and A, we choose ¢ so that the conclusion of Proposition

6.4 holds. Moreover, by choosing § small enough, we can settle that Kynad? < %.

Assume that § < § in the following. Let Ty € [Ty, Ty +h?] denote the largest number with
the property that 7|[To ) 18 contained in the parabolic neighborhood P(v(Ty), Ty, Ah, ah?).
By Proposition 6.4, the parabolic neighborhood P(v(Tp), Ty, Ah, Ty — Tp) is close to the

corresponding subset of the standard solution. Since h < dr, we conclude that

1
S(v(t),t) > > >8r 2 Vtelly Ty.
(’Y( )’ ) N 2Kstnd<h2 - Q(t_T0)> B 2[(S‘cnd(SQT2 = < [ 0 1]

Since S(v(t),t) < 4r2Vt € [ty — T, to], the intervals [Ty, T1] and [to — 7, to] are disjoint. That
is to say, T1 < to — 7. We distinguish two cases:

Case 1: Suppose that T} < Ty + ah?. Then 7}[% ] lies in the the parabolic neighborhood
P(y(Ty), Ty, Ah, ah?). Since P(y(Ty), Ty, Ah, Ty — Typ) is close to the corresponding
subset of the standard solution, combining Lemma 5.4 and the fact that [ |+/(¢) |§(t)dt

is invariant under scaling shows that

Ty l
| @iz

To



It follows that

Lo [ Vi iSO 1) + Y () )t

To
T
>V [ Y (O)wdt ’
To
[
> 5\/F

which contradicts to the choice of [.
Case 2: Suppose that Ty = Ty + ah®. Then

L>7f¢%?ﬂﬂwmw+WVﬁwMt

> 7 [ S,

To
VI ! |
>NT dt
To 2Kstnd(h'2 - %)
(n—1)/T 201
= IV 1 pe(1 — 2
e tog(1 - =)

which contradicts to the choice of a.

O

Proposition 6.6 (cf. G. Perelman [25, Lemma 5.2]). Fiz a small number € > 0. Then
there exists a positive number k and a positive function S() with the following property:
Given a Ricci flow with surgery with parameters €,7,6, h, where 6 < 5(T), then the flow is
k-noncollapsed on all scales less than €.

Note that the constant x in the noncollapsing estimate may depend on the initial data,
but it is independent of the surgery parameters ¢, , 9, h.

Proof. Let (xq,ty) be a point in space-time and consider a positive number ry < ¢ so that
S(x,t) <1y ¥V (w,t) € P(x0, 0,70, —7¢) for which the flow is defined. It suffices to show that
v0ly(10)(Byto) (%0, 70)) > ki for some uniform constant £ > 0. We disuss the following three

cases:

Case 1. Suppose that S(xg,ty) > r~2. Then Canonical Neighborhood Assumption leads to
the desired result.

Case 2. Suppose that the parabolic neighborhood P(xg, o, 5, —%) contains points modified
by surgery. Say (x,t) to be one of such point. Then }lh_Q < S(w,t) < rp? i <
2h. It implies that voly,)( By (7, 155)) = K1y for some uniform constant & > 0.
Therefore voly(q)(By(to) (€0, 70)) = v0lg(to) (Ba(ro) (%, 7)) = v0lg(ro)(Byeo) (% 755)) =

KTy
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Case 3. Suppose that S(z,tg) < 72 and the parabolic neighborhood P(zo, %o, %2, —%) is
surgery-free. First notice that ¢y has upper bound by Proposition 6.1. Also, by
Lemma 6.5, there exists a positive function & (+) such that the following holds: Sup-
pose that the surgery parameters satisfy § < 5 (r), Ty <ty is a surgery time and =y is
a barely admissible curve parametrized by the interval [T}, to] such that v(ty) = o,

and v(Tp) lies on the boundary of a surgical cap at time Tj. Then

/T ' Vo — LS (v(t),t) + [V (0) %) )dt > 8nv/to.

Thus, if & < §(r), then every barely admissible curve has reduced length greater
than 2n.

In the following, we assume that 6 < 6(r). For t < ty, we denote by £(z,1)
the reduced distance from (xg, %), i.e., the infimum of the reduced length over all
admissible curves joining (z, t) and (z, to). Let us claim that inf, {(z,t) < 5Vt < 1o,
which is clearly true if ¢ is sufficiently close to to. Now, if /(x,t) < 2n for some point
(x,t) in space-time, then the reduced length is attained by a strictly admissible

curve. Hence, a work of Perelmann (cf. [23, §7]) shows that

(-2

ol > Al + 5

to —t
whenever ¢ < 2n. The disired result follows from the maximum principle.

In particular, there exists a point y € M such that ¢(y,s) < 4. Therefore, we can
find a radius p > 0 such that sup,cp_ () ¢(x,0) < n. Note that p depends only
on € and the initial data (M, go), but not on the surgery parameters. Hence, for
each point & € Byo)(y, p), the reduced distance is attained by a strictly admissible
curve, and this curve must be an £-geodesic.

Given a tangent vector v at (z9,%o), let 7,(t) = Ly, exp,,(v) be the L-geodesic
satisfying lim; 4, /o — t7,(t) = v. Notice that 7,(¢) may not be defined on the
entire interval [0, ¢y) due to the presence of surgeries.

Let V := {v € (T, M, g(to))| 7o is defined on [0,%,),, has minimal £-length, v,(0) €
Byoy(y, p)}. From aforementioned discussion, the map Loy, exp,, : V — By)(y, p)
is onto. For each t € [0, %)), we define

V() = / (to — 1) B 00 1 (1),
y

where J,(t) = det(DL;4, exp,, ), denotes the Jacobian determinant of the £- expo-
nential map, and the integration is with respect to the standard Lebesgue measure
on the tangent space (1,,M,g(tg)). For each tangent vector v € V, Perelman’s
Jacobian comparison theorem (cf. [23, §7]) implies that the function ¢ — (¢y —

)~z ®D ] (1) is monotone increasing. Moreover, limy_q, (to—t)"2e =@ J (1) =
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e~ l'P vy € V. The monotonicity property for the Jacobian determinant implies
that the function ¢ — V'(¢) is monotone increasing.
First, we estimate the reduced volume from below in terms of the initial data.

Since {(x,0) < n for all points © € By (y, p), there exists a uniform lower bound
for V(0):

V(O) /Vt 2 —é (7 (0 O)J (O)

> / t(;%e’ax’o)dvolg(o) (x)-
By (0)(y:p)

> taie_nUOZg(O)(Bg(O)(ya p))
Next, we estimate the reduced volume from above. By assumption, S < 7y 2
2
in the surgery-free parabolic neighborhood P(zo,to, %', —0). Shi’s interior deriv-

4

ative (cf. [26]) estimates shows that [VR| < C(n)ry® and |V2R| < C(n)ry* in
2

P(zo,to, 2, ;‘é) Using the L-geodesic equation, we conclude that there exists a

small positive constant p(n), depending only on dimension, with the following prop-
erty: if £ € [to — pu(n)rd, o) and |v] < 32ﬁ’ then v/tg — |7, (t)]g0) < 16\/T—507—t and
Yo(t) € Byty) (w0, =) C Bysy) (w0, 2) V't € [, to), which leads to

Iio—t
V(0) <V(?)
</ (to — D)3 e=0oDD 1, (D)

fev|ivl< o)
+ / (to — f)—%e—e(%(f)f)(]v(f)

foev|ivl> 52
< / (to — )2 J,(f) + / oneloP

fev|ivl< o) foev|iv> 52

-3 r n_—|v
S (to — t_) 2U0lg(t)(Bg(tO)(:L’0, ZO)> +/ 2 e | ‘2
{vEV’|v|>32\/7}

for all ¢ € [tg — u(n)r, to).
Now, putting the aforementioned estimates together gives

-z To -5 _-n n_—|v|?
(to = £)™ 2 v0lg() (By(to) (o, Z)) > by * € "volg(0)(By(o)(y, p)) —/ 2"l
fwev|ivfz 2=}
for all € [ty — u(n)rd, to). Finally, we select t € [to — u(n)r2, to) such that ty — ¢
is a fixed, small multiple of 72, and the quantity is a small, but fixed, multiple of ,

and the quantity

n

-5 —n n_—|v|?
ty e vl (B (0:0)) — | e

fwev|iolz g 2=)

32



has a positive lower bound. Such choice of ¢ gives the desired lower bound for
To "volg(ty) (Bg(te) (7, 52)).
O

We now state the main result of this section. This result guarantees that, for a suit-
able choice of ¢, 7,0, every Ricci flow with surgery with parameters ¢, 7, d, h will satisfy the

Canonical Neighborhood Property with accuracy 2¢ on all scales less than 27.

Theorem 6.7 (cf. G. Perelman [25,85])). Fiz a small number € > 0. There ezists positive
numbers 7 and & with the following property: Given a Ricci flow with surgery with parameters
5,?’,5, h which is defined on some interval [0,T), suppose that (xg,ty) is an arbitrary point
in space-time satisfying S(xo, to) > (27)72. Then 3 a neighborhood B of xo such that

By(te) (0, (2C1) 1S (w0, t0) %) C B C Byy) (0, 2C1.S (o, o) ~?)
and
(202)_15(1'0,250) S S(ZE,to) S 2025(1E0,t0) Vx e B.
Moreover, B is either a strong 2e-neck with center at xo or a 2e-cap. Finally, |VS| < 2775%
and |0,S| < 2nS? at (g, to).
Proof. Assuming the opposite, suppose that there exists a sequence of Ricci flows with
surgery MY and a sequence of points (z;,t;) in space-time with the following properties:

(i) The flow MU is defined on the time interval [0,7;) and has surgery parameters
e, 75, h;, 05, where 7; < jl and 5j < min{4(7;), %} Here, §(-) is the function introduced
in Proposition 6.6.

(i) Q= S(x;,t;) = (275)7%

(iii) The point (z;,t;) does not satisfy the conclusion of Theorem 6.7.
Note that the Property (iii) means that at least one of the following statements is true:
(1) There does not exist a neighborhood B of z so that
By(ty) (w0, (2C1) 7S (w0, t0) %) € B C Bygyy) (w0, 2C1S (o, t) %)
and
(2C5) 1S (w0, to) < S(x,t) < 2C2S(xo,t0) Va € B,

and such that B is either a strong 2e-neck with center at zy or a 2e-cap.
(2) |VS| > 2152 at (z;,t;).
(3) |6tS| > 27’]52 at (l‘j,tj).

The proof will contain several steps:
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Step 1.

Step 2.

Step 3.

By definition, we have |V.S| < 475% and |9,5| < 4152 for each point (z, ) in space-
time satisfying S(z,t) > 4Q; > fj_Q. Moreover, by Proposition 6.6, the flow M) ig
r-noncollapsed on scales less than € for some uniform constant x that may depend
on the initial data, but it is independent of j.

Suppose that (g, o) is a point in space-time satisfying S(xo,t) + Q; < 75 °. Then
the pointwise curvature derivative estimate show that S < 8ry? in the parabolic
neighborhood P (o, o, 158, _1&2))77)‘ And |V™R| < C(n,m,n)r;™ 2 at the point
(z0,10) follows from Proposition 6.3. Furthermore, volyuy) (B, (%0, 70)) > K for

some uniform constant s that is independent of j due to Proposition 6.6.
The goal is to establish a long-range curvature estimate. Given any p > 0, we set
M(p) = lim sup sup Q;'S(x,t)).
1

Jj—r00 -3
Z’eBg(tj)(xjaij )

The pointwise curvature derivative estimate implies that M(p) < 16 for 0 < p < 10077

We claim that M(p) < oo for all p > 0. Suppose not, say
p* = sup{p > 0[M(p) < o0} < 0.

Note that 3 an upper bound for the curvature in the geodesic ball By, (7}, ij_%)
YV p < p* by the definition of p*. As a result of Step 2, we derive upper bounds for all
the covariant derivatives of the curvature tensor in the geodesic ball By,(;, pQ;%)
Vp < p*. Also, the noncollapsing estimate in Step 2 gives a lower bound for the
volume. Rescaling around (z;,t;) by the factor @); and passing to the limit as
Jj — 00, we obtain an incomplete manifold (B>, g°°) which is weakly PIC2 (cf. [22
Th. 5.6]).
According to the definition of p*, 3 a sequence of points y; such that

Q dget;y(xj,9;) — p*  and Q;lS(yj,tj) — 00.

Let v; : 1[O piQ ] (M, g(t;)) be a unit-speed geodesic such that v,(0) = x; and

Yi(piQ; ) = yj, and let 7o : [0,p") — (B>, ¢>) denote the limit of ;. Since
VS| < 4752, we have

: —1 -3 * -2 * *
Sgoo (Voo(8)) = Jlg{)lo Q7 S(v(sQ;?),t5) = (2n(p* —5))" = > 100 Vs € [p* — map )-
Consider a real number 5 € [p* — ﬁ?,p*) such that 64Cin(p* —35) < 5. We

claim that 'yj(EQj_%) lies at the center of a strong 4e-neck if j is sufficiently large
(depending on 3). Indeed, if j is sufficiently large, then the Canonical Neighborhood
Assumption implies that the point (fyj(EQj_%),tj) has a Canonical Neighborhood
that is either a strong 4e-neck or a 4e-cap. Moreover, the Canonical Neighborhood

1 1
is contained in a geodesic ball around 7;(5Q); *) of radius 8C15(7;(5Q; *), tj)_%, and
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Step 4.

the scalar curvature is at most 8CyS (’yj(EQ;%),tj) at each point in the Canonical
Neighborhood. Since M(5) < oo, we derive limjﬁoo(S(’yj(EQj_%), ) 1S (y;, t5) = oo.
Consequently, S(y;,t;) > 16C2S (yj(EQ;%),tj) if j is sufficiently large. It follows
that the Canonical Neighborhood does not contain the point y; if j is sufficiently
large. Next, observe that 32C1 Sy (700 (5)) "2 < 64Cin(p* — 5) < 5, which implies
that 16015(7]»(562;%),75]»)_% < EQ;% if j is sufficiently large. Hence, if j is suffi-
ciently large, then the Canonical Neighborhood does not contain the point z;. If
the Canonical Neighborhood of (yj(EQj_%), t;) is a 4e-cap, then the geodesic y; must
enter and exit this 4e-cap, which is impossible since v; minimizes length. That is
to say, if j is sufficiently large (depending on §), then the point ('yj(EQ;%),tj) has
a Canonical Neighborhood that is a strong 4e-neck. In particular, if j is sufficiently
large (depending on s ), then

IVS| < C(n)eS? at the point (7j(§Q;%),tj).

Passing to the limit as j — oo, we conclude that |V.Sge| < C(n)ESg%oo at the point
Yoo (8). Integrating this estimate along V. gives Sy=(7(5)) > (C(n)e(p* — 5)) 2.
Moreover, since (yj(EQ;%),tj) lies at the center of a strong 4e-neck for sufficiently
large j, the point v, ($) must lie on a strong C'(n)e-neck in (B>, ¢*).

As in [23,812.1], there is a sequence of rescalings that converges to a piece of a

nonflat metric cone in the limit. Let us fix a point on this metric cone. In view of
the preceding discussion, this point must lie on a strong C(n)e-neck. This gives a
locally defined solution to the Ricci flow that is weakly PIC2 and that, at the final
time, is a piece of nonflat metric cone, which contradicts Proposition 1.5.
Now, we dilate the manifold (M, g(¢;)) around the point z; by the factor ;. By Step
3, we have uniform bounds for the curvature at bounded distance. The result in Step
2 shows that there exists bounds for all the covariant derivatives of the curvature
tensor at bounded distance. Using these estimates together with the noncollapsing
estimate in Step 2, we conclude that the rescaled manifolds converge in the Cheeger-
Gromov sense (cf. [10]) to a complete limit manifold (M, ¢>). Since (M, g(t;))
has (f,#)-pinched curvature, the curvature tensor of (M, ¢*) is weakly PIC2 and
satisfies R — #Sid @ id € PIC. By the Canonical Neighborhood Assumption, we
conclude that every point in (M®°, ¢*°) with scalar curvature greater than 4 has a
neighborhood that is either a strong 8s-neck or a 8s-cap.

We claim that (M, ¢*°) has bounded curvature. Indeed, if there is a sequence
of points in (M, ¢*) with curvature going to infinity, then (M, ¢>) contains
a sequence of necks with radii converging to 0, which contradicts Proposition 1.9.

Therefore (M, ¢g*°) has bounded curvature.
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Step 5. We now extend the limit (M, g°°) backwards in time. By Step 4, the scalar curva-
ture of (M, ¢g*°) is bounded from above by a constant A > 4. We claim that, given
any A > 1, the parabolic neighborhood

1

P(QT]','[Z]‘,AQ;E, 10077A

Q")
is surgery-free if j is sufficiently large.

_1
To prove the claim, fix A > 1 and suppose that P(z;,t;, AQ, ?, —mQ;l) con-
1

tains points modified by surgery. Let s; € [0, T009A

] be the largest number such

_1
that P(z;,t;, AQ; *, —szj_l) is surgery-free. If j is sufficiently large, the pointwise

curvature derivative estimate gives

sup S <2AQ;.

_1
P(r]’tijQ] 2 a_szj_l)

Since the scalar curvature is greater than %hj_Q at each point modified by surgery,
we deduce that %h;Q < 2AQ); if j is sufficiently large. In particular, szj_l < ﬁh?
if j is sufficiently large. Since d; — 0, Proposition 6.4 implies that the parabolic
neighborhood P(z;,t;, AQ;%, —szj’l) is, after dilating by the factor h;, arbitrarily
close to a piece of the standard solution when j is sufficiently large. Also, Corollary
5.3 shows that (z;,t;) lies on a 2e-neck or a 2e-cap when j is sufficiently large.
If (x;,t;) lies on an 2e-neck, then this neck is actually a strong 2e-neck, since we
are assuming that each Sj—neck on which we perform surgery has a large backward
parabolic neighborhood that is surgery-free. Moreover, Corollary 5.3 implies that
VS| < 2752 and |8,5] < 21S? at the point (z;,t;). Therefore, the point (z;,;)
satisfies the conclusion of Theorem 6.7, which contradicts property (iii). Thus, given
any A > 1, the parabolic neighborhood P(z;,1;, AQ;%, —ﬁ@;l) is surgery-free if
7 is sufficiently large.
Let 7 = —m.
backwards in time to a complete solution (M°, ¢g*°(t)) that is defined for ¢ € [ry, 0]

and satisfies Ay = sup;¢|

In view of the preceding discussion, we may extend (M, g*)

71,0] SUP Ao Sgoory < 2A.

Repeating this process, suppose that we can extend (M, ¢*°) backwards in time
to a complete solution (M, ¢g>(t)) that is defined for ¢ € [r,,0], and satisfies
A, = SUDye(r,., 0] SUP proo Sgeo(ry < 200. Let Tpqq = Ty — m. The goal is to show
that the solution (M, ¢>(t)) can be extended backward to the interval [7,,41,0],
and A1 = SUPyeqr,, ., 0] SUP oo Sgoo(r) < 20

If it is not possible, then 3 a number A > 1 with the property that P(z;,t;, AQ;

_1
100nAm,

NI

) (Tm_
)Q;l) contains points modified by surgery for sufficiently large j. Let s; €
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Step 6.

Step 7.

_1
0, To0n A oo ) be the largest number such that P(x;,t;, AQ, *, (T — 55)Q5 1) is surgery-
free. If 7 is sufficiently large. the pointwise curvature derivative estimate gives

sup S <2A,Q;.

_1
P(2,t;,AQ; 2 (tm—5;)Q; ")

Select a, € [0, %51) so that % 8\, (100717Am Tim). 1f (5 —Tm)Q > apmh’
for sufficiently large 7 , then Proposition 6.4 together with the lower bound for the

scalar curvature on the standard solution (cf. Theorem 5.1) implies

«
P($]7tj AQ (Tm 8]) ;1) stnd n—1
Qi .
> (sj = Tm)” Qj
2Kstnd(1 — ?Tni) ! " !

for sufficiently large j, which is impossible. Consequently, (s; — Tm)Qj_l < amh? for
sufficiently large j. Since 9; — 0, Proposition 6.4 implies that the parabolic neighbor-
hood P(z;,t;, AQ 2 (T S])Qj_l) is, after dilating by the factor h;, arbitrarily close
to a piece of the standard solution when j is sufficiently large. Also, Corollary 5.3
shows that (x;,t;) lies on a 2e-neck or a 2e-cap when j is sufficiently large. If (z;,¢;)
lies on an 2e-neck, then this neck is actually a strong 2e-neck, since we are assuming
that each Sj—neck on which we perform surgery has a large backward parabolic neigh-
borhood that is surgery-free. Moreover, Corollary 5.3 implies that |VS| < 2nS 3 and
10,S] < 2nS? at the point (z;,t;). Therefore, the point (z;, ¢;) satisfies the conclusion
of Theorem 6.7, which contradicts property (iii). Thus, the flow (M>,¢>(¢)) can

be extended backward to the interval [7,,.1, 0], where 7,11 = 7, — m, and we
have A1 = Supsepr,, 0] SUP Moo Sgoo(r) < 24,
Now, let 7 = lim,, 00 Ty < — 100n o0k - Standard diagonal sequence argument leads to

a complete, smooth limit flow (M, g>(t)) that is defined on the interval (7%, 0] and
that has bounded curvature for each ¢ € (7%,0]. The goal is show that 7" = —ococ.
Suppose not, then lim,, oo (7 — Timy1) = 0, hence lim,, o A,;, = 00. Arguing as in
Step 6 in the proof of Theorem 7.1, we can show that the limit flow (M, g*(t)),t €
(7*,0] has bounded curvature, which contradicts the fact that lim,, .o, A,, = oc.
Hence, 7 = —o0.

As a consequence of Step 6, if we dilate the flow (M, g(¢)) around the point (z;,t;)
by the factor ();, then , after passing to a subsequence, the rescaled flows converge
to an ancient solution that is complete, has bounded curvature, is weakly PIC2, and
satisfies R — 0Sid ® id € PIC. By Proposition 6.6, the limiting ancient solution is

r-noncollapsed for some x > 0 that depends only on the initial data.
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By Corollary 1.14, the point (x;,t;) has a Canonical Neighborhood that is either
a strong 2e-neck with center at x;; or a 2e-cap; or a closed manifold diffeomorphic to
S"/T’; or a quotient neck. Recall that we have discarded all connected components
that are diffeomorphic to S”/I". Hence, the Canonical Neighborhood of (z;,t;) can-
not be a closed manifold diffeomorphic to S*/I". If the Canonical Neighborhood of
(z;,t;) is a quotient neck, then Theorem A.1 in [5] implies that the underlying man-
ifold contains a nontrivial incompressible (n — 1)-dimensional space form, contrary
to our assumption. Consequently, the point (z;,?;) has a Canonical Neighborhood
that is either a strong 2e-neck with center at z; or a 2e-cap.

Finally, Corollary 2.4 implies that |V.S| < 2752 and |9,5| < 2752 at (xj,t;). In
summary, we have shown that the point (z;,t;) satisfies the conclusion of Theorem
10.7, which contradicts property (iii).

O

7. Global existence of surgically modified flows

As previous sections, fix a compact initial manifold (M, go) of dimension n > 12 that
has positive isotropic curvature and does not contain any nontrivial incompressible (n — 1)-
dimensional space forms. In this section, the goal is to show that there exists a Ricci flow
with surgery starting from (M, go), which exists globally and becomes extinct in finite time.
We begin by finalizing our choice of the surgery parameters. As usual, we fix a small number
e > 0. Having chosen e, we choose numbers f’,g such that the conclusion of Theorem 6.7
holds. Having chosen ¢, 7, h) , we choose h so that the following holds:

Proposition 7.1 (cf. G. Perelman [25, Lemma 4.3]). Given e, 7,8, we can find a small
number h € (O,Sf) with the following property: Suppose that we have a Ricci flow with
surgery with parameters s,f,g,h that is defined on the time interval [0,T) and goes sin-
gular at time T. Let x be a point that lies in an 4e-horn in (M, g(T)) and has curvature
S(z,T) = h™2. Then the parabolic neighborhood P(x,T,6 *h, —6~'h2) is surgery-free. More-
over, P(z,T,0 *h, —0~*h?) is a strong d-neck.

Proof. Suppose not. Then 3 a sequence of positive numbers h; — 0, a sequence of Ricci
flows with surgery M) and a sequence of points x; with the following properties:

(i) The flow M) has surgery parameters ¢, 7, h;, 6. Tt is defined on the time interval [0, T;)
and goes singular as ¢t — Tj.
(ii) The point (x;,7}) lies on an 4e-horn and S(z;,T7) = h;>.
(iii) The parabolic neighborhood P(z;, T}, 6~ 'h;, —5‘1h§) contains points modified by surgery,

or it is not a strong d-neck.
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Note that from the definition of Ricci flows with surgery, we have estimate |V S| < 4nS 3
whenever S > 772, Since h; — 0, it follows that inf IGBQ(Tﬂ(x].,Ah].)S(:E, T;) > (1 —|-277A)—2hj—2.
In particular, if j is sufficiently large (depending on A), then

inf S(z,T;) > 10(67) 2.

wGBg(Tj)((tj,Ah]‘)

We claim that for each A > 1, 3 a constant Q(A), which depends on A, but not on j,
any) S, Tj) < Q(A)hj_2 if j is sufficiently large. Suppose that such

constant Q(A) does not exist, then 3 a sequence of points (y;,7}), lying on the same horn

such that sup, Bycr) (@),
as (x;,T}), such that the blow-up limit around (y;,7;) is a piece of nonflat metric cone.
Since the flow MU) satisfies the Canonical Neighborhood Assumption with accuracy 4e, the
point (y;,T;) either lies on a strong 4e-neck or on a 4e-cap. The second case can easily be
ruled out (cf. Claim 2 in Theorem 12.1 in [23]), so (y;, ;) must lie on a strong 4e-neck. In
particular, there exists a small parabolic neighborhood of (y;,T}) that is surgery-free. Due
to Proposition 6.2, the blow-up limit around (y;, T;) is weakly PIC2. Hence, Proposition 1.5
implies that the limit cannot be a piece of a nonflat metric cone, which proves the claim.

In particular, if 5 is sufficiently large, which depends on A, then the distance of the point
x; from either end of the horn is at least Ah;. Now, fix a number A > 1. Since the
point (x;,7T}) lies on a 4e-horn, no point in Byr,)(7;, Ah;) can lie on a 4e-cap. Hence, the
Canonical Neighborhood Assumption implies that every point in By, (z;, Ah;) lies on a
strong 4e-neck. Like before, Shi’s estimate (cf. [26]) leads to bounds for all the covariant
derivatives of the curvature tensor in Byr,)(z;, %Ahj). Note that these bounds may depend
on A, but are independent of j. Passing to the limit, we sending 7 — oo first and A — oo
second. In the limit, we obtain a complete manifold with two ends that, by Proposition 6.2,
is uniformly PIC and weakly PIC2. By the Cheeger-Gromoll splitting theorem (cf. [10]), the
limit is isometric to a product X x R; moreover, the cross-section X is compact and is nearly
isometric to S*~'. Since every point in By, (z;, Ah;) lies on a strong 4e-neck, we conclude
that, for each A > 1, the parabolic neighborhood P(z;, T}, Ah;, —%?) is surgery-free if j is
sufficiently large (depending on A). After rescaling and passing to the limit, we obtain a
solution to the Ricci flow that is defined on the time interval [—3,0] and that splits off a
line. Now, if j is sufficiently large (depending on A), then no point in P(x;, T}, Ah;, —%JQ)
can lie on a 4e-cap. Hence, if j is sufficiently large, then every point in the parabolic
neighborhood P(x;, T}, Ah;, —hé) lies on a strong 4e-neck. This allows us to extend the limit
solution backward in time to the interval [—1,0]. Repeating this argument, we can extend
the limit solution backwards in time, so that it is defined on [—1,0], [-2,0], [-2,0], etc. To
summarize, we produce a limit solution that is ancient, uniformly PIC, weakly PIC2, and
splits as a product of a line with a manifold diffeomorphic to S*~!. By the work of Brendle,

Huisken and Sinestrari (cf. [7]), the limiting solution is a family of standard cylinders.
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Therefore, if j is sufficiently large, then the parabolic neighborhood P(x;, T}, 'h;, —S_Ihg)
is surgery-free, and P(z;, T}, 5*1hj, —5*1h?) is a 6-neck, which contradicts (iii). O

We are now able to prove the main result of this section:

Theorem 7.2. Fix a small number ¢ > 0. Let f’,g be chosen as described at the beginning
of this section, and let h be chosen as in Proposition 7.1. Then there exists a Ricci flow
with surgery with parameters €,f’,(§, h, which is defined on some finite time interval [0,T)

and becomes extinct ast — T.

Proof. Evolve the initial metric gy by smooth Ricci flow until the flow becomes singular for
the first time. It follows from Theorem 6.7 and a standard continuity argument that the
flow satisfies the Canonical Neighborhood Property with accuracy 2e on all scales less than
27, up until the first singular time. At the first singular time, we perform finitely many
surgeries on d-necks that have curvature level h=2. The existence of such necks is ensured by
Proposition 7.1. After performing surgery, we restart the flow and continue until the second
singular time. Again, Theorem 6.7 and a standard continuity argument, we conclude that
the flow with surgery satisfies the Canonical Neighborhood Property with accuracy 2¢ on all
scales less than 27, up until the second singular time. Consequently, Proposition 7.1 ensures
that, at the second singular time, we can again find d-necks on which to perform surgery.
After performing surgery, we continue the flow until the third singular time. Theorem 6.7
also guarantees that the flow with surgery satisfies the Canonical Neighborhood Property
with accuracy 2¢ on all scales less than 27, up until the third singular time. We can now

perform surgery again and repeat the process.

Since each surgery reduces the volume by at least ¢(n)h™, we have an upper bound for the
number of surgeries. By Proposition 6.1, the flow with surgery must become extinct by time

# at last. The conclusion of Theorem 7.2 follows. O
infgepr S(x,0)

Corollary 7.3. The manifold M is diffeomorphic to a connected sum of finitely many spaces,

each of which is a quotient of S™ or S"! x R by standard isometries.

Proof. Combining Theorem 7.2 with Proposition 4.1 leads to the desired result. U
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