D-module Final Report I

Hung Chiang
June 13, 2017

0.1 Borel-Weil-Bott Theorem

Let G / k be a connected semi-simple algebraic group, T be a maximal torus of G, B be a Borel subgroup of G containing T, N be the unipotent part of B, and X be the flag variety G / B. We thus has a choice of positive roots Δ^{+}, simple roots $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$, and Weyl vector $\rho=\frac{\alpha_{1}+\cdots+\alpha_{l}}{2}$. Let P be the weight lattice. For each $\lambda \in L=\operatorname{Hom}_{k}\left(B / N, k^{*}\right)$, we have a equivariant G-line bundle $\mathcal{L}(\lambda)$ on X ([HTT] p.255). Set

$$
\begin{gathered}
P_{\text {sing }}=\left\{\lambda \in P \mid \exists \alpha \in \Delta,\left\langle\lambda-\rho, \alpha^{\vee}\right\rangle=0\right\}, \\
P_{\text {reg }}=P-P_{\text {sing }} .
\end{gathered}
$$

Define a shifted action of W on P by

$$
w \star \lambda=w(\lambda-\rho)+\rho .
$$

Theorem 1 (Borel-Weil-Bott, ${ }^{[H T T]}$ 9.11.2.). Assume $\lambda \in L \subset P$.
(i) If $\left\langle\lambda, \alpha^{\vee}\right\rangle \leq 0$ for all $\alpha \in \Delta^{+}$, then $\mathcal{L}(\lambda)$ is generated by global sections. That is, the natural morphism

$$
\mathcal{O}_{X} \otimes_{k} \Gamma(X, \mathcal{L}(\lambda)) \rightarrow \mathcal{L}(\lambda)
$$

is surjective.
(ii) $\mathcal{L}(\lambda)$ is ample if and only if $\left\langle\lambda, \alpha^{\vee}\right\rangle<0$ for all $\alpha \in \Delta^{+}$.
(iii) Assume $\operatorname{char}(k)=0$.
(a) If $\lambda \in P_{\text {sing }}$, then $H^{i}(X, \mathcal{L}(\lambda))=0$ for all $i \geq 0$.
(b) Let $\lambda \in P_{\text {reg }}$ and take $w \in W$ such that $w \star \lambda \in-P^{+}$. Then

$$
H^{i}(X, \mathcal{L}(\lambda))= \begin{cases}L^{-}(w \star \lambda) & \text { if } i=l(w) \\ 0 & \text { otherwise }\end{cases}
$$

0.2 Berlinson-Bernstein Theorems

From now on we assume $k=\mathbb{C}$. For every smooth variety Y and locally free \mathcal{O}_{Y}-module of finite rank \mathcal{V}, we consider the sheaf of diffenertial operators on \mathcal{V}, $D_{Y}^{\mathcal{V}} \subset \mathscr{E}^{n} d_{\mathbb{C}_{Y}}(\mathcal{V}) . \quad D_{Y}^{\mathcal{V}}$ is isomorphic to $\mathcal{V} \otimes_{\mathcal{O}_{Y}} D_{Y} \otimes_{\mathcal{O}_{Y}} \mathcal{V}^{*}$. There's a natural filtration

$$
\begin{gathered}
F_{p}\left(D_{Y}^{\mathcal{V}}\right)=0 \text { for all } p<0, \\
F_{p}\left(D_{Y}^{\mathcal{V}}\right)=\left\{P \mid f P-P f \in F_{p-1}\left(D_{Y}^{\mathcal{V}}\right) \forall f \in \mathcal{O}_{Y}\right\} \text { for all } p \geq 0 .
\end{gathered}
$$

Assume K is alinear algebraic group acting on Y and \mathcal{V} is a K-equivlent vector bundle. There is a natural morphism $\partial: U(\mathfrak{k})$ to $\Gamma\left(Y, D_{Y}^{\mathcal{V}}\right)$. Let $a \in \mathfrak{k}$, then ∂_{a} is defined by

$$
\left(\partial_{a} s\right)(y)=\left.\frac{d}{d t}(\exp (t a) s(\exp (-t a) y))\right|_{t=0}(s \in \mathcal{V}, y \in Y)
$$

Here exp is the exponential map w.r.t right invariant vector fields. Algebraically, let $\varphi: p_{2}^{*} \mathcal{V} \cong \sigma^{*} \mathcal{V}$, then ∂_{a} is determined by

$$
\phi\left((a \otimes 1) \cdot \varphi^{-1}\left(\sigma^{*} s\right)\right)=\sigma^{*}\left(\partial_{a} s\right)
$$

Here a is regarded as right invariant vector fields on K acting on $k[K]\left({ }^{[H T T}\right]$ Equation 11.1.7).

Consider X. Let $D_{\lambda}:=D_{X}^{\mathcal{L}(\lambda+\rho)}$. We have $\Phi_{\lambda}: U(\mathfrak{g}) \rightarrow \Gamma\left(X, D_{\lambda}\right)$.
Definition 1. Let \mathfrak{z} be the center of $U(\mathfrak{g})=U(\mathfrak{h}) \oplus\left(\mathfrak{n}^{-} U(\mathfrak{g})+U(\mathfrak{g}) \mathfrak{n}\right)\left({ }^{[\text {HTT }]}\right.$ Equation 9.4.7). Let p be the projection from $U(\mathfrak{g})$ to $U(\mathfrak{h}) . f$ be the automorphism of $U(\mathfrak{h})$ defined by $f(h)=h-\rho(h) 1$ for $h \in \mathfrak{h}$. For each $\lambda \in \mathfrak{h}^{*}$, define the central character

$$
\chi_{\lambda}(z)=(f \circ p(z))(\lambda) \text { for all } z \in \mathfrak{z} .
$$

Proposition 1 (${ }^{[H T T]}$ Theorem 11.2.2). Let $\lambda \in L$. Then $\Phi_{\lambda}: U(\mathfrak{g}) \rightarrow \Gamma\left(X, D_{\lambda}\right)$ is surjective. Let \mathfrak{z} be the center of $U(\mathfrak{g})$. Then $\Phi_{\lambda}(z)=\chi_{\lambda}(z)$ for all $z \in \mathfrak{z}$. Moreover, $\operatorname{ker}\left(\Phi_{\lambda}\right)=U(\mathfrak{g})\left(\operatorname{ker}\left(\chi_{\lambda}\right)\right)$.

We assume the proposition.

Let $\operatorname{Mod}_{q c}\left(D_{\lambda}\right)$ be the abelian category of D_{λ}-modules which are quasi-coherent over \mathcal{O}_{X} and $\operatorname{Mod}(\mathfrak{g})$ be the categoriy of $U(\mathfrak{g})$-modules. We have additive functors

$$
\begin{gathered}
\Gamma(X, \cdot): \operatorname{Mod}_{q c}\left(D_{\lambda}\right) \rightarrow \operatorname{Mod}(\mathfrak{g}), \\
D_{\lambda} \otimes_{U(\mathfrak{g})}(\cdot): \operatorname{Mod}(\mathfrak{g}) \rightarrow \operatorname{Mod}_{q c}\left(D_{\lambda}\right) .
\end{gathered}
$$

We have adjointness

$$
\operatorname{Hom}_{D_{\lambda}}\left(D_{\lambda} \otimes_{U(\mathfrak{g})} M, \mathcal{N}\right) \cong \operatorname{Hom}_{U(\mathfrak{g})}(M, \Gamma(X, \mathcal{N}))
$$

Let $\operatorname{Mod}(\mathfrak{g}, \chi)$ be the category of $U(\mathfrak{g})$-modules with central character χ and $\operatorname{Mod}_{f}(\mathfrak{g}, \chi)$ be the full subcategory of $\operatorname{Mod}(\mathfrak{g}, \chi)$ of finitely generated $U(\mathfrak{g})$-modules. The proposition shows that $\operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right) \cong \operatorname{Mod}\left(\Gamma\left(X, D_{\lambda}\right)\right)$.

Theorem $2\left({ }^{[\mathrm{HTT}]}\right.$ Theorem 11.2.3\& 11.2.4). Let $\lambda \in L$.

1. Suppose

$$
\begin{equation*}
\left\langle\lambda, \alpha^{\vee}\right\rangle \leq 0 \text { for all } \alpha \in \Delta^{+} . \tag{1}
\end{equation*}
$$

That is, $\lambda \in-P^{+}$. Then for all $\mathcal{M} \in \operatorname{Mod}_{q c}\left(D_{\lambda}\right)$ we have $H^{k}(X, \mathcal{M})=0$ for all $k>0$.
2. Suppose

$$
\begin{equation*}
\left\langle\lambda, \alpha^{\vee}\right\rangle<0 \text { for all } \alpha \in \Delta^{+} . \tag{2}
\end{equation*}
$$

Then for all $\mathcal{M} \in \operatorname{Mod}_{q c}\left(D_{\lambda}\right)$, the natural morphism

$$
D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}) \rightarrow \mathcal{M}
$$

is surjective.

Proof. For $v \in-P^{+}$, Borel-Weil-Bott theorem says $\Gamma(X, \mathcal{L}(v))=H^{0}(X, \mathcal{L}(v))=$ $L^{-}(v)$ and $p_{v}: \mathcal{O}_{X} \otimes_{\mathbb{C}} L^{-}(v) \rightarrow \mathcal{L}(v)$ is surjective. Since $\mathscr{H} o_{\mathcal{O}_{X}}\left(\mathcal{L}(v), \mathcal{O}_{X}\right)=$ $\mathcal{L}(-v)$ and $\operatorname{Hom}_{\mathbb{C}}\left(L^{-}(v), \mathbb{C}\right)=L^{+}(-v)$, we have $\mathcal{L}(-v) \hookrightarrow \mathcal{O}_{X} \otimes_{\mathbb{C}} L^{+}(-v)$. Apply $\mathcal{L}(v) \otimes_{\mathcal{O}_{X}}(\cdot)$, we have $i_{v}: \mathcal{O}_{X} \hookrightarrow \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)$. Since $\mathcal{L}(v)$ is a line bundle, $\operatorname{ker}\left(p_{v}\right)$ is a direct summand of $\mathcal{O}_{X} \otimes_{\mathbb{C}} L^{-}(v)$ as an \mathcal{O}_{X}-module locally. Therefore, $\operatorname{im}\left(i_{v}\right)$ is a direct summand of $\mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)$ as an \mathcal{O}_{X}-module locally.

Let $\lambda \in L$ and \mathcal{M} be a D_{λ}-module. Apply $\mathcal{M} \otimes_{\mathcal{O}_{X}}(\cdot)$, we get

$$
\begin{aligned}
& \overline{p_{v}}: \mathcal{M} \otimes_{\mathbb{C}} L^{-}(v) \rightarrow \mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v), \\
& \overline{i_{v}}: \mathcal{M} \hookrightarrow \mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v) .
\end{aligned}
$$

Proposition 2 (${ }^{[\mathrm{HTT}]}$ Proposition 11.4.1). (i) If λ satisfies (2), then $\operatorname{ker}\left(\overline{p_{v}}\right)$ is a direct summand of $\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v)$ as a sheaf of abelian groups.
(ii) If λ satisfies (1), then $\operatorname{im}\left(\overline{i_{v}}\right)$ is a direct summand of $\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)$ as a sheaf of abelian groups.

Suppose λ satisfies (1). For all $\mathcal{M} \in \operatorname{Mod}_{q c}\left(D_{\lambda}\right)$,

$$
H^{k}(X, \mathcal{M})=\underset{\longrightarrow}{\lim } H^{k}(X, \mathcal{N})
$$

where \mathcal{N} runs over all coherent \mathcal{O}_{X}-submodule of \mathcal{M}. It suffices to prove that the natural map $H^{k}(X, \mathcal{N}) \rightarrow H^{k}(X, \mathcal{M})$ is the zero map. Fix \mathcal{N}. Borel-WeilBott theorem says $\mathcal{L}(v)$ is ample if and only if v satisfies (2). Hence there is a $v \in L \cap-P^{+}$such that $H^{k}\left(X, \mathcal{N} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v)\right)=0$ for all $k>0$. For this v, consider the commutative diagram

$\bar{i}_{v_{*}}$ is injective. On the other hand, $H^{k}\left(X, \mathcal{N} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)\right)=H^{k}\left(X, \mathcal{N} \otimes_{\mathcal{O}_{X}}\right.$ $\mathcal{L}(v)) \otimes_{\mathbb{C}} L^{+}(-v)=0$ for all $k>0$. So $H^{k}(X, \mathcal{N}) \rightarrow H^{k}(X, \mathcal{M})$ is the zero map.

Suppose λ satisfies (2). For given $\mathcal{M} \in \operatorname{Mod}_{q c}\left(D_{\lambda}\right)$, set \mathcal{M}^{\prime} be the image of $D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}) \rightarrow \mathcal{M}$ and $\mathcal{M}^{\prime \prime}$ be the cokernel of it. If $\mathcal{M}^{\prime \prime} \neq 0$, let $\mathcal{N} \subset \mathcal{M}^{\prime \prime}$ be a nonzero coherent \mathcal{O}_{X}-submodule. There is a $v \in L \cap-P^{+}$such that $\mathcal{N} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v)$ is generated by global sections. In this case, $\Gamma\left(X, \mathcal{N} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v)\right) \neq 0$, neither is $\Gamma\left(X, \mathcal{M}^{\prime \prime} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v)\right)$ On the other hand,

$$
\overline{p_{v_{*}}}: \Gamma\left(X, \mathcal{M}^{\prime \prime}\right) \otimes_{\mathbb{C}} L^{-}(v)=\Gamma\left(X, \mathcal{M}^{\prime \prime} \otimes_{\mathbb{C}} L^{-}(v)\right) \rightarrow \Gamma\left(X, \mathcal{M}^{\prime \prime} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v)\right)
$$

is surjective. So $\Gamma\left(X, \mathcal{M}^{\prime \prime}\right) \neq 0$. Consider the exact sequence

$$
0 \rightarrow \Gamma\left(X, \mathcal{M}^{\prime}\right) \rightarrow \Gamma(X, \mathcal{M}) \rightarrow \Gamma\left(X, \mathcal{M}^{\prime \prime}\right) \rightarrow 0
$$

By definition, $\Gamma(X, \mathcal{M})=\Gamma\left(X, D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M})\right) \rightarrow \Gamma\left(X, \mathcal{M}^{\prime}\right)$. So $\Gamma\left(X, \mathcal{M}^{\prime}\right)=$ $\Gamma(X, \mathcal{M})$ and hence $\Gamma\left(X, \mathcal{M}^{\prime \prime}\right)=0$. So $\mathcal{M}^{\prime \prime}$ must be 0 . The isomorphism $\Gamma(X, \mathcal{M})=$ $\Gamma\left(X, D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M})\right)$ is proved in the proof of Corollary 1.

0.3 Equivalences of Categories

For $\lambda \in L$ satisfying (1), we denote $\operatorname{Mod}_{q c}^{e}\left(D_{\lambda}\right)$ the full subcategory of $\operatorname{Mod}_{q c}\left(D_{\lambda}\right)$ consisting of objects \mathcal{M} satisfying that
(a) $D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}) \rightarrow \mathcal{M}$ is surjective.
(b) For all nonzero subobject $\mathcal{N} \subset \mathcal{M}$ in $\operatorname{Mod}_{q c}\left(D_{\lambda}\right)$, we have $\Gamma(X, \mathcal{N}) \neq 0$.

Set $\operatorname{Mod}_{c}^{e}\left(D_{\lambda}\right)=\operatorname{Mod}_{q c}^{e}\left(D_{\lambda}\right) \cap \operatorname{Mod}_{c}\left(D_{\lambda}\right)$.
Corollary 1. $\Gamma(X, \cdot)$ induces equivlences of categories

$$
\operatorname{Mod}_{q c}^{e}\left(D_{\lambda}\right) \cong \operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right), \quad \operatorname{Mod}_{c}^{e}\left(D_{\lambda}\right) \cong \operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{\lambda}\right)
$$

Proof. We first prove that $M \rightarrow \Gamma\left(X, D_{\lambda} \otimes_{U(\mathfrak{g})} M\right)$ is an isomorphism for all $M \in$ $\operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right)$. For given $M \in \operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right)$, consider an exact sequence

$$
\Gamma\left(X, D_{\lambda}\right)^{\oplus I} \rightarrow \Gamma\left(X, D_{\lambda}\right)^{\oplus J} \rightarrow M \rightarrow 0
$$

From Theorem 2.1, $\Gamma(X, \cdot): \operatorname{Mod}_{q c}\left(D_{\lambda}\right) \rightarrow \operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right)$ is an exact functor. So $\Gamma\left(X, D_{\lambda} \otimes_{U(\mathfrak{g})}(\cdot)\right)$ is right exact. We have an commutative diagram with exact rows

So $M \cong \Gamma\left(X, D_{\lambda} \otimes_{U(\mathfrak{g})} M\right)$.
Now we show that $\Gamma(X, \cdot): \operatorname{Mod}_{q c}^{e}\left(D_{\lambda}\right) \rightarrow \operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right)$ is fully faithful. That is, for all $\mathcal{M}_{1}, \mathcal{M}_{2} \in \operatorname{Mod}_{q c}^{e}\left(D_{\lambda}\right)$,

$$
\Gamma: \operatorname{Hom}_{D_{\lambda}}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right) \rightarrow \operatorname{Hom}_{U(\mathfrak{g})}\left(\Gamma\left(X, \mathcal{M}_{1}\right), \Gamma\left(X, \mathcal{M}_{2}\right)\right)
$$

is an isomorphism. Since $D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma\left(X, \mathcal{M}_{1}\right) \rightarrow \mathcal{M}_{1}$ is surjective, we have

$$
\begin{aligned}
\operatorname{Hom}_{D_{\lambda}}\left(\mathcal{M}_{1}, \mathcal{M}_{2}\right) & \hookrightarrow \operatorname{Hom}_{D_{\lambda}}\left(D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma\left(X, \mathcal{M}_{1}\right), \mathcal{M}_{2}\right) \\
& \cong \operatorname{Hom}_{U(\mathfrak{g})}\left(\Gamma\left(X, \mathcal{M}_{1}\right), \Gamma\left(X, \mathcal{M}_{2}\right)\right)
\end{aligned}
$$

Assume $\phi \in \operatorname{Hom}_{U(\mathfrak{g})}\left(\Gamma\left(X, \mathcal{M}_{1}\right), \Gamma\left(X, \mathcal{M}_{2}\right)\right)$. Let \mathcal{K}_{1} be the kernel of $D_{\lambda} \otimes_{U(\mathfrak{g})}$ $\Gamma\left(X, \mathcal{M}_{1}\right) \rightarrow \mathcal{M}_{1}$. Apply the exact functor $\Gamma(X, \cdot)$ on the exact sequenct

$$
0 \rightarrow \mathcal{K}_{1} \rightarrow D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma\left(X, \mathcal{M}_{1}\right) \rightarrow \mathcal{M}_{1} \rightarrow 0
$$

and we get the exact sequence

$$
0 \rightarrow \Gamma\left(X, \mathcal{K}_{1}\right) \rightarrow \Gamma\left(X, \mathcal{M}_{1}\right) \rightarrow \Gamma\left(X, \mathcal{M}_{1}\right) \rightarrow 0
$$

So $\Gamma\left(X, \mathcal{K}_{1}\right)=0$. Let \mathcal{K}_{2} be the image of

$$
\mathcal{K}_{1} \longrightarrow D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma\left(X, \mathcal{M}_{1}\right) \xrightarrow{1 \otimes \phi} D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma\left(X, \mathcal{M}_{2}\right) \longrightarrow \mathcal{M}_{2}
$$

Since $\Gamma(X, \cdot)$ is exact and $\Gamma\left(X, \mathcal{K}_{1}\right)=0, \Gamma\left(X, \mathcal{K}_{2}\right)=0$. So $\mathcal{K}_{2}=0$. hence we obtain $\psi: \mathcal{M}_{1} \cong D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma\left(X, \mathcal{M}_{1}\right) / \mathcal{K}_{1} \rightarrow \mathcal{M}_{2}$ with $\Gamma(\psi)=\phi$.

Next, we prove that $\Gamma(X, \cdot): \operatorname{Mod}_{q c}^{e}\left(D_{\lambda}\right) \rightarrow \operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right)$ is essentially surjective. Given $M \in \operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right)$. Let \mathcal{L} be a maximal element of the set of subobjects \mathcal{K} of $D_{\lambda} \otimes_{U(\mathfrak{g})} M$ in $\operatorname{Mod}_{q c}\left(D_{\lambda}\right)$ satisfying that $\Gamma(X, \mathcal{K})=0$. Set $\mathcal{M}=D_{\lambda} \otimes_{U(\mathfrak{g})} M / \mathcal{L}$. Then $\Gamma(X, \mathcal{M})=\Gamma\left(X, D_{\lambda} \otimes_{U(\mathfrak{g})} M\right) / \Gamma(X, \mathcal{L})=M . D_{\lambda} \otimes_{U(\mathfrak{g})} M \rightarrow \mathcal{M}$ is surjective. For all $\mathcal{N} \subset \mathcal{M}$, the maximality of \mathcal{L} shows that $\Gamma(X, \mathcal{N}) \neq 0$. So $\mathcal{M} \in \operatorname{Mod}_{q c}^{e}\left(D_{\lambda}\right)$.

Finally, we have to show that $\operatorname{Mod}_{c}^{e}\left(D_{\lambda}\right)$ and $\operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{\lambda}\right)$ correspond to each other. Let $M \in \operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{\lambda}\right) . \Gamma\left(X, D_{\lambda}\right)$ is left-noetherian. There is an exact sequence

$$
\Gamma\left(X, D_{\lambda}\right)^{\oplus I} \rightarrow \Gamma\left(X, D_{\lambda}\right)^{\oplus J} \rightarrow M \rightarrow 0
$$

with $|I|,|J|<\infty$. Apply the right exact functor $D_{\lambda} \otimes_{U(\mathfrak{g})}(\cdot)$ on it and we get the exact sequence

$$
D_{\lambda}^{\oplus I} \rightarrow D_{\lambda}^{\oplus J} \rightarrow D_{\lambda} \otimes_{U_{\mathfrak{g}}} M \rightarrow 0
$$

We get $D_{\lambda} \otimes_{U_{\mathfrak{g}}} M \in \operatorname{Mod}_{c}^{e}\left(D_{\lambda}\right)$ and hence $\mathcal{M}=D_{\lambda} \otimes_{U_{\mathfrak{g}}} M / \mathcal{L}$.

Conversely, let $\mathcal{M} \in \operatorname{Mod}_{c}^{e}\left(D_{\lambda}\right)$. Since $D_{\lambda} \otimes_{U_{\mathfrak{g}}} \Gamma(X, \mathcal{M}) \rightarrow \mathcal{M}$ is surjective, \mathcal{M} is locally generated by finitely many global sections. Since X is quasi-compact, \mathcal{M} is globally generated by finitely many global sections. We have an exact sequence

$$
D_{\lambda}^{\oplus I} \rightarrow \mathcal{M} \rightarrow 0
$$

where $|I|<\infty$. Apply $\Gamma(X, \cdot)$ on it and we get the exact sequence

$$
\Gamma\left(X, D_{\lambda}\right)^{\oplus I} \rightarrow \Gamma(X, \mathcal{M}) \rightarrow 0
$$

Hence $\Gamma(X, \mathcal{M})$ is an finitely generated $U(\mathfrak{g})$-module.
Suppose λ satisfies (2). Then $\operatorname{Mod}_{q c}\left(D_{\lambda}\right)=\operatorname{Mod}_{q c}^{e}\left(D_{\lambda}\right)$. In this case, we have Corollary 2. $\Gamma(X, \cdot)$ induces equivlences of categories

$$
\operatorname{Mod}_{q c}\left(D_{\lambda}\right) \cong \operatorname{Mod}\left(\mathfrak{g}, \chi_{\lambda}\right), \quad \operatorname{Mod}_{c}\left(D_{\lambda}\right) \cong \operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{\lambda}\right)
$$

Let K be a closed subgroup of G. We consider K-equivariant \mathfrak{g}-modules. That is, a \mathfrak{g}-module with a K-action satisfying that
\mathfrak{k}-actions obtained from the \mathfrak{g}-action and the K-action coincide.

$$
k \cdot(a \cdot m)=\operatorname{Ad}(k)(a) \cdot(k \cdot m) \text { for all } k \in K, a \in \mathfrak{g}, \text { and } m \in M
$$

We denote the full subcategory consisting of K-equivariant objects of $\operatorname{Mod}(\mathfrak{g}, \chi)$ and $\operatorname{Mod}_{f}(\mathfrak{g}, \chi)$ by $\operatorname{Mod}(\mathfrak{g}, \chi, K)$ and $\operatorname{Mod}_{f}(\mathfrak{g}, \chi, K)$, respectively.

We also introduce K-equivariant D-modules. Let K acts on Y. Consider morphisms $p_{2}: K \times Y \rightarrow Y, \sigma: K \times Y \rightarrow Y, m: K \times K \rightarrow K$ defined by $p_{2}(k, y)=y$, $\sigma(k, y)=k y, m\left(k_{1}, k_{2}\right)=k_{1}, k_{2}$. A K-equivariant D_{Y}-module is a D_{Y}-module \mathcal{M} with a isomorphism of $D_{K \times Y}$-modules

$$
\varphi: p_{2}^{*} \mathcal{M} \cong \sigma^{*} \mathcal{M}
$$

satisfying the cocycle condition.
We consider categories $\operatorname{Mod}_{q c}\left(D_{Y}, K\right)$ and $\operatorname{Mod}_{c}\left(D_{Y}, K\right)$. For $\lambda=-\rho$, we have $\operatorname{Mod}\left(\mathfrak{g}, \chi_{-\rho}\right) \cong \operatorname{Mod}_{q c}\left(D_{X}\right)$ and $\operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{-\rho}\right) \cong \operatorname{Mod}_{q c}\left(D_{X}\right)$.

Theorem 3. For any closed subgroup $K \leq G$, we have $\operatorname{Mod}\left(\mathfrak{g}, \chi_{-\rho}, K\right) \cong \operatorname{Mod}_{q c}\left(D_{X}, K\right)$ and $\operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{-\rho}, K\right) \cong \operatorname{Mod}_{q c}\left(D_{X}, K\right)$.

Proof. What we have to prove is K-equivariances defined on $\operatorname{Mod}\left(\mathfrak{g}, \chi_{-\rho}\right)$ and $\operatorname{Mod}_{q c}\left(D_{X}\right)$ coincide.

Consider $\mathcal{M} \in \operatorname{Mod}_{q c}\left(D_{X}\right)$. K, X and $K \times X$ are all D-affine. So $D_{K \times X^{-}}$ modules are $\Gamma\left(K \times X, D_{K \times X}\right)=\Gamma\left(K, D_{K}\right) \otimes_{\mathbb{C}} \Gamma\left(X, D_{X}\right)$-modules. Since $\Gamma\left(K, D_{K}\right) \cong$ $\Gamma\left(K, \mathcal{O}_{K}\right) \otimes_{\mathbb{C}} U(\mathfrak{k})$ and $\Gamma\left(X, D_{X}\right) \cong U(\mathfrak{g}) / U(\mathfrak{g}) \operatorname{ker}\left(\chi_{-\rho}\right), D_{K \times X}$-module structures are determined by actions of $\Gamma\left(K, \mathcal{O}_{K}\right) \otimes 1, \mathfrak{k} \otimes 1$ and $1 \otimes \overline{\mathfrak{g}}$.
$\Gamma\left(K \times X, p_{2}^{*} \mathcal{M}\right) \cong \Gamma\left(K, \mathcal{O}_{K}\right) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M})$. For $\sigma^{*} \mathcal{M}$, consider isomorphisms $\epsilon_{1}: K \times X \rightarrow K \times X, \epsilon_{2}: K \times X \rightarrow K \times X$ defined by $\epsilon_{1}(k, x)=(k, k x)$, $\epsilon_{2}(k, x)=\left(k, k^{-1} x\right) . \epsilon_{1}=\epsilon_{2}^{-1}$ and $\sigma=p_{2} \circ \epsilon_{1}$. So

$$
\begin{aligned}
\Gamma\left(K \times X, \sigma^{*} \mathcal{M}\right) & \cong \Gamma\left(K \times X, \epsilon_{1}^{*} p_{2}^{*} \mathcal{M}\right) \cong \Gamma\left(K \times X,\left(\epsilon_{2}\right)_{*} p_{2}^{*} \mathcal{M}\right) \\
& \cong \Gamma\left(K \times X, p_{2}^{*} \mathcal{M}\right) \cong \Gamma\left(K, \mathcal{O}_{K}\right) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M})
\end{aligned}
$$

For given $h \in \Gamma\left(X, \mathcal{O}_{X}\right)$ and $m \in \Gamma(X, \mathcal{M})$, the element $h \otimes m \in \Gamma\left(K, \mathcal{O}_{K}\right) \otimes_{\mathbb{C}}$ $\Gamma(X, \mathcal{M})$ corresponds to the global section $h \circ p_{1} \otimes p_{2}^{-1} m$ of $p_{2}^{*} \mathcal{M}=\mathcal{O}_{K \times X} \otimes_{p_{2}^{-1}} \mathcal{O}_{X}$ $p_{2}^{-1} \mathcal{M}$ and the global section $h \circ p_{1} \otimes \sigma^{-1} m:(k, x) \mapsto\left(k, h(k) k^{-1} \cdot m(k x)\right)$ of $\sigma^{*} \mathcal{M}=\mathcal{O}_{K \times X} \otimes_{\sigma^{-1}} \mathcal{O}_{X} \sigma^{-1} \mathcal{M}$. The $\Gamma\left(K, D_{K}\right) \otimes_{\mathbb{C}} \Gamma\left(X, D_{X}\right)$-action on $p_{2}^{*} \mathcal{M}$. is

$$
\begin{cases}(f \otimes 1) \cdot(h \otimes m)=f h \otimes m & \text { for all } f \in \Gamma\left(K, \mathcal{O}_{K}\right), \\ (a \otimes 1) \cdot(h \otimes m)=a \cdot h \otimes m & \text { for all } a \in \mathfrak{k}, \\ (1 \otimes \bar{p}) \cdot(h \otimes m)=h \otimes \bar{p} \cdot m & \text { for all } p \in \mathfrak{g} .\end{cases}
$$

Consider the $\Gamma\left(K, D_{K}\right) \otimes_{\mathbb{C}} \Gamma\left(X, D_{X}\right)$-action on $\sigma^{*} \mathcal{M} .(f \otimes 1) \cdot(h \otimes m)=f h \otimes m$ for all $f \in \Gamma\left(K, \mathcal{O}_{K}\right) .(a \otimes 1) \cdot(h \otimes m)=a \cdot h \otimes m-h \otimes \bar{a} \cdot m$ for all $a \in \mathfrak{k}$. Finally, $\left.\frac{d}{d t} \exp (t p) k^{-1} m(k \exp (-t p) x)\right|_{t=0}=\left.\frac{d}{d t} k^{-1} \exp (t \operatorname{Ad}(k)(p)) m(\exp (t \operatorname{Ad}(k)(p)) k x)\right|_{t=0}$. Let $\operatorname{Ad}(k)(p)=\sum_{i} h_{i}(k) p_{i}$. We have $(1 \otimes \bar{p}) \cdot(h \otimes m)=\sum_{i} h h_{i} \otimes \overline{p_{i}} \cdot m$ for all $p \in \mathfrak{g}$.

The K-equivariance of \mathcal{M} is equivlent to an $\Gamma\left(K, D_{K}\right) \otimes_{\mathbb{C}} \Gamma\left(X, D_{X}\right)$-module isomorphism from $\Gamma\left(K, \mathcal{O}_{K}\right) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M}) \cong \Gamma\left(K \times X, p_{2}^{*} \mathcal{M}\right)$ to $\Gamma\left(K \times X, \sigma^{*} \mathcal{M}\right) \cong$ $\Gamma\left(K, \mathcal{O}_{K}\right) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M})$ satisfying the cocycle condition. Since $\Gamma\left(K, \mathcal{O}_{K}\right)$-actions on both sides are the same, the condition is a \mathbb{C}-module homomorphism

$$
\widetilde{\varphi}: \Gamma(X, \mathcal{M})=1 \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M}) \rightarrow \Gamma\left(K, \mathcal{O}_{K}\right) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M})
$$

satisfying the cocycle condition and

$$
\begin{align*}
& \widetilde{\varphi}((a \otimes 1) \cdot(1 \otimes m))=(a \otimes 1) \cdot \widetilde{\varphi}(1 \otimes m) \text { for all } a \in \mathfrak{k}, m \in \Gamma(X, \mathcal{M}) \tag{5}\\
& \widetilde{\varphi}((1 \otimes \bar{p}) \cdot(1 \otimes m))=(1 \otimes \bar{p}) \cdot \widetilde{\varphi}(1 \otimes m) \text { for all } p \in \mathfrak{g}, m \in \Gamma(X, \mathcal{M}) \tag{6}
\end{align*}
$$

Let $\widetilde{\varphi}(m)=\sum_{j} g_{j} \otimes m_{j}$. The cocycle condition is equivlent to a K-representation structure of $\Gamma(X, \mathcal{M})$. (5) is

$$
0=\sum_{j} a \cdot g_{j} \otimes m_{j}-\bar{a} \cdot m
$$

$a: m \mapsto \sum_{j} a \cdot g_{j} \otimes m_{j}$ is the \mathfrak{k}-action obtained from the K-action while $a: m \mapsto \bar{a} \cdot m$ is the \mathfrak{k}-action obtained from the \mathfrak{g}-action. So (5) is (3).
(6) is

$$
\sum_{j} g_{j} \otimes \bar{p} \cdot m_{j}=\sum_{i, j} h_{i} g_{j} \otimes \overline{p_{i}} \cdot m_{j}
$$

which is (4).
Theorem 4. Let Y be a smooth variety and K be a linear algebraic group action on Y. Suppose there are only finitely many K-orbits in Y. Then $\operatorname{Mod}_{c}\left(D_{Y}, K\right) \cong$ $\operatorname{Mod}_{r h}\left(D_{Y}, K\right)$. Moreover, the simple objects in $\operatorname{Mod}_{c}\left(D_{Y}, K\right)$ is parametrized by $\Upsilon(Y, K)$, the set of pairs (O, L), where $O \subset Y$ is an irreducible K-orbit and L is a K-equivariant local system on $O^{a n}$.

Proof. We use induction on the number of K-orbits of Y. Suppose Y is a homogeneous K-space. Then $Y \cong K / K^{\prime}$ for some $K^{\prime} \leq K$. Consider morphisms $\sigma: K \times Y \rightarrow Y$ the natural action, $p_{2}: K \times Y \rightarrow Y$ the second projection, $l: K \rightarrow \operatorname{Spec} \mathbb{C}, \pi: K \rightarrow Y$ the quotient map, $j: \operatorname{Spec}(\mathbb{C}) \rightarrow K, j(x)=K^{\prime}$ and $i: K \rightarrow K \times Y, i(k):=\left(k^{-1}, k K^{\prime}\right)$. Then for any $\mathcal{M} \in \operatorname{Mod}_{c}\left(D_{Y}, K\right)$, we have

$$
\begin{aligned}
\pi^{*} \mathcal{M} & =\left(p_{2} \circ i\right)^{*} \mathcal{M}=i^{*} p_{2}^{*} \mathcal{M} \cong i^{*} \sigma^{*} \mathcal{M}=(\sigma \circ i)^{*} \mathcal{M} \\
& =(j \circ l)^{*} \mathcal{M}=l^{*} j^{*} \mathcal{M}=\mathcal{O}_{X} \otimes_{\mathbb{C}}\left(j^{*} \mathcal{M}\right)
\end{aligned}
$$

$j^{*} \mathcal{M}$ is a finite dimensional \mathbb{C}-vector space, so $\pi^{*} \mathcal{M} \in \operatorname{Mod}_{r h}\left(D_{K}\right)$. Since π is smooth, $\mathcal{M} \in \operatorname{Mod}_{r h}\left(D_{Y}\right)$.

Now consider the general case. Let O be a closed K-orbit of Y and $Y^{\prime}=Y-O$. Suppose $i: O \hookrightarrow Y$ and $j: \hookrightarrow Y$. Then we have the distinguish triagle

$$
\int_{i} i^{\dagger} \mathcal{M} \longrightarrow \mathcal{M} \longrightarrow \int_{j} j^{\dagger} \mathcal{M} \xrightarrow{+1} .
$$

We have $i^{\dagger} \mathcal{M} \in D_{c}^{b}\left(D_{O}\right)$ and $j^{\dagger} \mathcal{M} \in D_{c}^{b}\left(D_{Y^{\prime}}\right)$. By induction hypothesis, $i^{\dagger} \mathcal{M} \in$ $D_{r h}^{b}\left(D_{O}\right)$ and $j^{\dagger} \mathcal{M} \in D_{r h}^{b}\left(D_{Y^{\prime}}\right)$. We conclude that $\int_{i} i^{\dagger} \mathcal{M}, \int_{j} j^{\dagger} \mathcal{M} \in D_{r h}^{b}\left(D_{Y}\right)$ and hence $\mathcal{M} \in \operatorname{Mod}_{r h}\left(D_{Y}\right)$.

By Riemann-Hilbert correspondence, $\operatorname{Mod}_{r h}\left(D_{Y}, K\right) \cong \operatorname{Perv}\left(\mathbb{C}_{Y}, K\right)$, which is parametrized by $\Upsilon(Y, K)$.

In particular, B has only finite orbits in X. We conclude that simple objects in $\operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{-\rho}, B\right)$ are parametrized by $\Upsilon(X, B)$.

Bibliography

[HTT] R. Hotta, K. Takeuchi, T. Tanisaki, D-modules, Perverse Sheaves, and Representation Theory.
[S] T.A. Springer, Linear Algebraic Groups

D-module Final Report II

Hung Chiang

June 26, 2017

Proposition 1 (${ }^{[\mathrm{HTT}]}$ Proposition 9.4.5, proved in $\left.{ }^{[\mathrm{HC]}]}\right) . \quad \chi_{\lambda}=\chi_{\mu}$ if and only if λ and μ are in the same W-orbit.

$$
\begin{align*}
& \left\langle\lambda, \alpha^{\vee}\right\rangle \leq 0 \text { for all } \alpha \in \Delta^{+} . \tag{1}\\
& \left\langle\lambda, \alpha^{\vee}\right\rangle<0 \text { for all } \alpha \in \Delta^{+} . \tag{2}
\end{align*}
$$

For $v \in-P^{+}$, Borel-Weil-Bott theorem says $\Gamma(X, \mathcal{L}(v))=H^{0}(X, \mathcal{L}(v))=L^{-}(v)$ and $p_{v}: \mathcal{O}_{X} \otimes_{\mathbb{C}} L^{-}(v) \rightarrow \mathcal{L}(v)$ is surjective. Since $\mathscr{H} o m_{\mathcal{O}_{X}}\left(\mathcal{L}(v), \mathcal{O}_{X}\right)=\mathcal{L}(-v)$ and $\operatorname{Hom}_{\mathbb{C}}\left(L^{-}(v), \mathbb{C}\right)=L^{+}(-v)$, we have $\mathcal{L}(-v) \hookrightarrow \mathcal{O}_{X} \otimes_{\mathbb{C}} L^{+}(-v)$. Apply $\mathcal{L}(v) \otimes_{\mathcal{O}_{X}}(\cdot)$, we have $i_{v}: \mathcal{O}_{X} \hookrightarrow \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)$. Since $\mathcal{L}(v)$ is a line bundle, $\operatorname{ker}\left(p_{v}\right)$ is a direct summand of $\mathcal{O}_{X} \otimes_{\mathbb{C}} L^{-}(v)$ as an \mathcal{O}_{X}-module locally. Therefore, $\operatorname{im}\left(i_{v}\right)$ is a direct summand of $\mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)$ as an \mathcal{O}_{X}-module locally.

Let $\lambda \in L$ and \mathcal{M} be a D_{λ}-module. Apply $\mathcal{M} \otimes_{\mathcal{O}_{X}}(\cdot)$, we get

$$
\begin{aligned}
& \overline{p_{v}}: \mathcal{M} \otimes_{\mathbb{C}} L^{-}(v) \rightarrow \mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v), \\
& \overline{i_{v}}: \mathcal{M} \hookrightarrow \mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v) .
\end{aligned}
$$

Proposition $2\left({ }^{[H T T]}\right.$ Proposition 11.4.1). (i) If λ satisfies (2), then $\operatorname{ker}\left(\overline{p_{v}}\right)$ is a direct summand of $\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v)$ as a sheaf of abelian groups.
(ii) If λ satisfies (1), then im $\left(\overline{i_{v}}\right)$ is a direct summand of $\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)$ as a sheaf of abelian groups.

Proof. Let

$$
L^{-}(v)=L^{1} \supset L^{2} \supset \cdots \supset L^{r}=0
$$

be a filtration of B-modules of $L^{-}(v)$ satisfying that L^{i} / L^{i+1} is the character μ_{i} of $B, \mu_{1}=v$, and $\mu_{i}<\mu_{j}$ only if $i<j$. Then we obtain corresponding filtrations

$$
\begin{aligned}
\mathcal{O}_{X} \otimes_{\mathbb{C}} L^{-}(v) & =\mathcal{V}^{1} \supset \mathcal{V}^{2} \supset \cdots \supset \mathcal{V}^{r}=0 \\
\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v) & =\overline{\mathcal{V}}^{1} \supset \overline{\mathcal{V}}^{2} \supset \cdots \supset \overline{\mathcal{V}}^{r}=0
\end{aligned}
$$

and

$$
\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)=\overline{\mathcal{W}}^{r} \supset \overline{\mathcal{W}}^{r-1} \supset \cdots \supset \overline{\mathcal{W}}^{1}=0
$$

The corresponding composition factors are

$$
\overline{\mathcal{V}}^{i} / \overline{\mathcal{V}}^{i+1} \cong \mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}\left(\mu_{i}\right), \quad \overline{\mathcal{W}}^{i+1} / \overline{\mathcal{W}}^{i} \cong \mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}\left(v-\mu_{i}\right)
$$

Since $\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(\mu)$ is a $D_{\lambda+\mu}$-module, the action of \mathfrak{z} on it is $\chi_{\lambda+\mu}$. So we have

$$
\prod_{i=1}^{r-1}\left(z-\chi_{\lambda+\mu_{i}}\right)\left(\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v)\right)=0
$$

and

$$
\prod_{i=1}^{r-1}\left(z-\chi_{\lambda+v-\mu_{i}}\right)\left(\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)\right)=0
$$

Seen as sheaves of abelian groups, $\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v)$ and $\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)$ are equipped with locally finite \mathfrak{z}-actions and thus have decompositions into χ-primary parts:

$$
\begin{aligned}
\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v) & =\bigoplus_{\chi}\left(\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v)\right)_{\chi} \\
\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v) & =\bigoplus_{\chi}\left(\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)\right)_{\chi}
\end{aligned}
$$

The morphisms $\overline{p_{v}}$ and $\overline{i_{v}}$ are $\overline{\mathcal{V}}^{1} \rightarrow \overline{\mathcal{V}}^{1} / \overline{\mathcal{V}}^{2}$ and $\overline{\mathcal{W}}^{2} \rightarrow \overline{\mathcal{W}}^{r}$, respectively. It suffices to prove that
(i) If λ satisfies (2), then $\operatorname{ker}\left(\overline{p_{v}}\right)=\left(\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v)\right)_{\chi_{\lambda+v}}$. That is, $\chi_{\lambda+\mu_{i}}=\chi_{\lambda+v} \Leftrightarrow$ $i=1$.
(ii) If λ satisfies (1), then $\operatorname{im}\left(\overline{i_{v}}\right)=\left(\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)\right)_{\chi_{\lambda}}$. That is, $\chi_{\lambda+v-\mu_{i}}=$ $\chi_{\lambda} \Leftrightarrow i=1$.

Suppose λ satisfies (2). If $\chi_{\lambda+\mu_{i}}=\chi_{\lambda+v}$, then there is a $w \in W$ such that $w\left(\lambda+\mu_{i}\right)=$ $\lambda+v$. That is, $(w(\lambda)-\lambda)+\left(w\left(\mu_{i}\right)-v\right)=0$. Since $\langle\lambda, \alpha\rangle<0$ for all $\alpha \in \Delta^{+}$, $w(\lambda)-\lambda \geq 0$ and the equality holds if and only if $w=$ id. Since $w\left(\mu_{i}\right)$ is a weight of $L^{-}(v), w\left(\mu_{i}\right) \geq v$. So $w=$ id and thus $\mu_{i}=v$. That is, $i=1$.

Suppose λ satisfies (1). If $\chi_{\lambda+v-\mu_{i}}=\chi_{\lambda}$, then there is a $w \in W$ such that $w(\lambda)=\lambda+v-\mu_{i}$. That is, $(w(\lambda)-\lambda)+\left(\mu_{i}-v\right)=0$. Since $\langle\lambda, \alpha\rangle \leq 0$ for all $\alpha \in \Delta^{+}, w(\lambda) \geq \lambda$. Also, $\mu_{i} \geq v$. So $\mu_{i}=v$ and thus $i=1$.

Theorem 1 (${ }^{[H T T]}$ Theorem 11.6.1). Let Y be a smooth variety and K be a linear algebraic group action on Y. Suppose there are only finitely many K-orbits in Y. Then $\operatorname{Mod}_{c}\left(D_{Y}, K\right) \cong \operatorname{Mod}_{r h}\left(D_{Y}, K\right)$. Moreover, the simple objects in $\operatorname{Mod}_{c}\left(D_{Y}, K\right)$ is parametrized by $\Upsilon(Y, K)$, the set of pairs (O, L), where $O \subset Y$ is an irreducible K-orbit and L is a K-equivariant local system on $O^{a n}$.

Proof. We use induction on the number of K-orbits of Y. Suppose Y is a homogeneous K-space. Then $Y \cong K / K^{\prime}$ for some $K^{\prime} \leq K$. Consider morphisms $\sigma: K \times Y \rightarrow Y$ the natural action, $p_{2}: K \times Y \rightarrow Y$ the second projection, $l: K \rightarrow \operatorname{Spec} \mathbb{C}, \pi: K \rightarrow Y$ the quotient map, $j: \operatorname{Spec}(\mathbb{C}) \rightarrow K, j(x)=K^{\prime}$ and $i: K \rightarrow K \times Y, i(k):=\left(k^{-1}, k K^{\prime}\right)$. Then for any $\mathcal{M} \in \operatorname{Mod}_{c}\left(D_{Y}, K\right)$, we have

$$
\begin{aligned}
\pi^{*} \mathcal{M} & =\left(p_{2} \circ i\right)^{*} \mathcal{M}=i^{*} p_{2}^{*} \mathcal{M} \cong i^{*} \sigma^{*} \mathcal{M}=(\sigma \circ i)^{*} \mathcal{M} \\
& =(j \circ l)^{*} \mathcal{M}=l^{*} j^{*} \mathcal{M}=\mathcal{O}_{X} \otimes_{\mathbb{C}}\left(j^{*} \mathcal{M}\right)
\end{aligned}
$$

$j^{*} \mathcal{M}$ is a finite dimensional \mathbb{C}-vector space, so $\pi^{*} \mathcal{M} \in \operatorname{Mod}_{r h}\left(D_{K}\right)$. Since π is smooth, $\mathcal{M} \in \operatorname{Mod}_{r h}\left(D_{Y}\right)$.

Now consider the general case. Let O be a closed K-orbit of Y and $Y^{\prime}=Y-O$. Suppose $i: O \hookrightarrow Y$ and $j: \hookrightarrow Y$. Then we have the distinguish triagle

$$
\int_{i} i^{\dagger} \mathcal{M} \longrightarrow \mathcal{M} \longrightarrow \int_{j} j^{\dagger} \mathcal{M} \xrightarrow{+1} .
$$

We have $i^{\dagger} \mathcal{M} \in D_{c}^{b}\left(D_{O}\right)$ and $j^{\dagger} \mathcal{M} \in D_{c}^{b}\left(D_{Y^{\prime}}\right)$. By induction hypothesis, $i^{\dagger} \mathcal{M} \in$ $D_{r h}^{b}\left(D_{O}\right)$ and $j^{\dagger} \mathcal{M} \in D_{r h}^{b}\left(D_{Y^{\prime}}\right)$. We conclude that $\int_{i} i^{\dagger} \mathcal{M}, \int_{j} j^{\dagger} \mathcal{M} \in D_{r h}^{b}\left(D_{Y}\right)$ and hence $\mathcal{M} \in \operatorname{Mod}_{r h}\left(D_{Y}\right)$.

By Riemann-Hilbert correspondence, $\operatorname{Mod}_{r h}\left(D_{Y}, K\right) \cong \operatorname{Perv}\left(\mathbb{C}_{Y}, K\right)$, which is parametrized by $\Upsilon(Y, K)$.

In particular, B has only finite orbits in X. We conclude that simple objects in $\operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{-\rho}, B\right)$ are parametrized by $\Upsilon(X, B)$.

0.1 Highest Weight Module

Definition 1. Let $\lambda \in \mathfrak{h}^{*}$ and M be a \mathfrak{g}-module. If there exists $0 \neq m \in M$ such that $m \in M_{\lambda}, \mathfrak{n} m=0$, and $M=U(\mathfrak{g}) m$, then M is called a highest weight module
with highest weight $\lambda . m$ is called a highest weight vector.

In this case, $M=U\left(\mathfrak{n}^{-}\right) m$ and $M=\bigoplus_{\mu \leq \lambda} M_{\mu} . \quad M_{\lambda}=\mathbb{C} m$. Since M is generated by m, M is the quotiend $U(\mathfrak{g}) / N$ as a $U(\mathfrak{g})$-module. The relation contains at least \mathfrak{n} and $h-\lambda(h)$ for all $h \in \mathfrak{h}$.

Definition 2. The Verma module is defined as

$$
M(\lambda):=U(\mathfrak{g}) /\left(U(\mathfrak{g}) \mathfrak{n}+\sum_{h \in \mathfrak{h}} U(\mathfrak{g})(h-\lambda(h) 1)\right) .
$$

$M(\lambda)$ is the unique maximal highest weight module. If M be a highest weight module, there is a unique surjective homomorphism $f: M(\lambda) \rightarrow M$ such that $f(\overline{1})=m$.

Lemma $1\left({ }^{[H T T]}\right.$ Lemma 12.1.3). $M(\lambda)$ is a free $U\left(\mathfrak{n}^{-}\right)$-module. In particular, we compute that

$$
\begin{aligned}
\operatorname{ch}(M(\lambda)) & =\sum_{\mu} \operatorname{dim}\left(M(\lambda)_{\mu}\right) e^{\mu}=\sum_{\beta \leq 0} \operatorname{dim}\left(U\left(\mathfrak{n}^{-}\right)_{\beta}\right) e^{\lambda+\beta} \\
& =e^{\lambda} \prod_{\beta \in \Delta^{+}}\left(1+e^{-\beta}+e^{-2 \beta}+\cdots\right) \\
& =\frac{e^{\lambda}}{\prod_{\beta \in \Delta^{+}}\left(1-e^{-\beta}\right)} .
\end{aligned}
$$

Proof. Let $I=\left(U(\mathfrak{g}) \mathfrak{n}+\sum_{h \in \mathfrak{h}} U(\mathfrak{g})(h-\lambda(h) 1)\right)$. We want to prove that $U(\mathfrak{g})=$ $U\left(\mathfrak{n}^{-}\right) \oplus I$. By $P B W$ theorem, we have a canonical isomorphism

$$
U\left(\mathfrak{n}^{-}\right) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n}) \cong U(\mathfrak{g}) .
$$

So we have

$$
\begin{aligned}
\left.\sum_{h \in \mathfrak{h}} U(\mathfrak{g})(h-\lambda(h) 1)\right) & \left.=\sum_{h \in \mathfrak{h}} U\left(\mathfrak{n}^{-}\right) U(\mathfrak{h}) U(\mathfrak{n})(h-\lambda(h) 1)\right) \\
& \left.=\sum_{h \in \mathfrak{h}} U\left(\mathfrak{n}^{-}\right) U(\mathfrak{h})(\mathbb{C}+U(\mathfrak{n}) \mathfrak{n})(h-\lambda(h) 1)\right) \\
& \left.\subset U\left(\mathfrak{n}^{-}\right)\left(\sum_{h \in \mathfrak{h}} U(\mathfrak{h})(h-\lambda(h) 1)\right)\right)+U(\mathfrak{g}) \mathfrak{n} .
\end{aligned}
$$

So $\left.I=U\left(\mathfrak{n}^{-}\right)\left(\sum_{h \in \mathfrak{h}} U(\mathfrak{h})(h-\lambda(h) 1)\right)\right)+U(\mathfrak{g}) \mathfrak{n}$. Finally we have the isomorphism

$$
\begin{aligned}
U(\mathfrak{g}) & =U\left(\mathfrak{n}^{-}\right) U(\mathfrak{h}) U(\mathfrak{n}) \\
& =U\left(\mathfrak{n}^{-}\right) U(\mathfrak{h})(\mathbb{C} \oplus U(\mathfrak{n}) \mathfrak{n}) \\
& =U\left(\mathfrak{n}^{-}\right) U(\mathfrak{h}) \oplus U(\mathfrak{g}) \mathfrak{n} \\
& \left.=U\left(\mathfrak{n}^{-}\right)\left(\mathbb{C} \oplus \sum_{h \in \mathfrak{h}} U(\mathfrak{h})(h-\lambda(h) 1)\right)\right) \oplus U(\mathfrak{g}) \mathfrak{n} \\
& =U\left(\mathfrak{n}^{-}\right) \oplus I
\end{aligned}
$$

Lemma $2\left({ }^{[H T T]}\right.$ Lemma 12.1.4). There is a unique maximal proper $U(\mathfrak{g})$-submodule $N \subset M(\lambda)$.

Proof. Any proper $U(\mathfrak{g})$-submodule of $M(\lambda)$ is a weight module whose weights $<\lambda$. So the sum of them is also a proper $U(\mathfrak{g})$-submodule.

Define $L(\lambda)=M(\lambda) / N . L(\lambda)$ is the minimal highest weight module.
Problem 1. Compute $\operatorname{ch}(L(\lambda))$.

Example 1. If $\lambda \in \Delta^{+}$, then $L(\lambda)=L^{+}(\lambda)$. Weyl's character formula says

$$
\begin{aligned}
\operatorname{ch}(L(\lambda)) & =\frac{\sum_{w \in W}(-1)^{l(w)} w^{w(\lambda+\rho)-\rho}}{\prod_{\beta \in \Delta^{+}}\left(1-e^{-\beta}\right)} \\
& =\sum_{w \in W}(-1)^{l(w)} \operatorname{ch}(M(w(\lambda+\rho)-\rho)) .
\end{aligned}
$$

Lemma 3 (${ }^{[\mathrm{HTT}]}$ Lemma 12.1.6). For $z \in \mathfrak{z}, z m=\chi_{\lambda+\rho}(z) m$.

Proof. We decompose z into $u+v$ where $z \in U(\mathfrak{h})$ and $v \in \mathfrak{n}^{-} U(\mathfrak{g})+U(\mathfrak{g}) \mathfrak{n}$. Then $z m=u m=\lambda(u) m=\chi_{\lambda+\rho}(z) m$.

Proposition 3 (${ }^{[\mathrm{HTT}]}$ Proposition 12.1.7). Let M be a highest weight module with highest weight λ. The M has a decomposition series with finite length and each composition factor of it has the form $L(\mu)$ where $\mu \leq \lambda$ and $\mu+\rho \in W(\lambda+\rho)$.

Proof. If M is simple then we are done. If M is not simple, then we take a nonzero proper submodule $N \subset M$. Let μ be a maximal weight of N and $0 \neq n \in N_{\mu}$, then $U(\mathfrak{g}) m \subset N$ is a highest weight module with highest weight $\mu . \chi_{\mu+\rho}(z) n=z n=$ $\chi_{\lambda+\rho}(z) n$ for all $z \in \mathfrak{z}$. So $\chi_{\mu+\rho}=\chi_{\lambda+\rho}$. We have $\mu<\lambda$ and $\mu+\rho \in W(\lambda+\rho)$. Replace M by N and repeat the process. We can repeat only finitely many times and obtain a simple $U(\mathfrak{g})$-module N_{1}, which is a highest weight module with highest weight $\mu_{1} . N_{1} \cong L\left(\mu_{1}\right)$. Replace M by M / N_{1} and repeat the process. We obtain a sequence

$$
0=N_{0} \subset N_{1} \subset N_{2} \subset \cdots,
$$

the composition factors of which have the form $L(\mu)$ for some $\mu \leq \lambda$ and $\mu+\rho \in$ $W(\lambda+\rho)$. Since $|W(\lambda+\rho)|<\infty$ and $L(\mu)$ can occur no more than $\operatorname{dim}\left(M_{\mu}\right)$ times, the sequence is finite.

Fix a equivlence class $\Lambda=W(\lambda+\rho)-\rho$. Let $a_{\mu \lambda}$ the the multiplicity of $L(\mu)$ appearing in the deconposition series of $M(\lambda)$. We have $a_{\mu \lambda} \neq 0$ only if $\mu \sim \lambda$ and $\mu \leq \lambda . a_{\lambda \lambda}=1$. Let $\left(b_{\mu \lambda}\right)$ be the inverse matrix of $\left(a_{\mu \lambda}\right)$. Then $b_{\mu \lambda} \in \mathbb{Z}$ and

$$
\begin{aligned}
& \operatorname{ch}(M(\lambda))=\sum_{\mu \in \Lambda} a_{\mu \lambda} \operatorname{ch}(L(\mu)) . \\
& \operatorname{ch}(L(\lambda))=\sum_{\mu \in \Lambda} b_{\mu \lambda} \operatorname{ch}(M(\mu)) .
\end{aligned}
$$

It suffices to compute $b_{\mu \lambda}$.

0.2 Kazhdan-Lusztig Conjecture

The problem is answered when $\Lambda=W(-\rho)-\rho$. In this case, $\Lambda \subset P$. We are considering objects $M(-w(\rho)-\rho), L(-w \rho-\rho) \in \operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{\rho}, B\right)=\operatorname{Mod}_{r h}\left(D_{X}, B\right)$. Every object in $\operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{\rho}, B\right)$ has a composition series of finite length, which is proved similarly as in the proof above. We consider the Grothdieck group $K\left(\operatorname{Mod}_{f}\left(\mathfrak{g}, \chi_{\rho}, B\right)\right)$. We have

$$
\begin{aligned}
& {[L(-w \rho-\rho)]=\sum_{y \in W} b_{y w}[M(-y \rho-\rho)] .} \\
& {[M(-w \rho-\rho)]=\sum_{y \in W} a_{y w}[L(-y \rho-\rho)] .}
\end{aligned}
$$

We want to compute $b_{y w}$.
Definition 3. The Hecke algebra $H(W)$ is the $\mathbb{Z}\left[q^{1}, q^{-1}\right]$ algebra which is freely generated by $\left\{T_{w} \mid w \in W\right\}$ as a $\mathbb{Z}\left[q^{1}, q^{-1}\right]$-module with multiplicative relations

$$
\begin{aligned}
T_{y} T_{w} & =T_{y w}, & & \text { if } l(y w)=l(y)+l(w) . \\
\left(T_{s}+1\right)\left(T_{s}-q\right) & =0, & & \text { if } s \in W .
\end{aligned}
$$

Proposition 4 (${ }^{[\mathrm{HTT}]}$ Proposition 12.2.3). There exists a unique family $\left\{P_{y, w}(q)\right\}$ of polynomials in $\mathbb{Z}[q]$ satisfying the following conditions:

$$
\begin{gathered}
P_{y, w}(q)=0 \text { if } y \not \leq w, \\
P_{w, w}(q)=1, \\
\operatorname{deg}\left(P_{y, w}(q)\right) \leq \frac{l(w)-l(y)-1}{2} \text { if } y<w, \\
\sum_{y \leq w} P_{y, w}(q) T_{y}=q^{l(w)} \sum_{y \leq w} P_{y, w}\left(q^{-1}\right) T_{y^{-1}}^{-1} .
\end{gathered}
$$

Conjecture 1 (Kazhdan-Lusztig).

$$
b_{y, w}=(-1)^{l(w)-l(y)} P_{y, w}(1) .
$$

Definition 4. For each $w \in W$ we define

$$
X_{w}=B w B / B
$$

Here w is seen as an element in $W=N_{G}(H) / H$. The Schubert variety is defined as $\overline{X_{w}}$.

Proposition 5 ([НTт] ${ }^{[\mathrm{HT}}$ Theorem 9.9.4, 9.9.5). $\quad X$ is the disjoint union of $\left\{X_{w} \mid w \in\right.$ $W\}$. Each X_{w} is isomorphic to $\mathbb{C}^{l(w)} \cdot \overline{X_{w}}=\coprod_{y \leq w} X_{w}$.

We denote by $\operatorname{IC}\left(\mathbb{C}_{X_{w}}\right)$ the intersection complex on $\overline{X_{w}}$ and set

$$
\mathbb{C}_{X_{w}}^{\pi}=I C\left(\mathbb{C}_{X_{w}}\right)\left[-\operatorname{dim}\left(X_{w}\right)\right]
$$

We'll show that the Kazhdan-Lusztig conjecture is reduced the theorem below.

Theorem 2 (Kazhdan-Lusztig, ${ }^{[H T T]}$ Theorem 12.2.5). For any $y, w \in W$, we have

$$
\sum_{i} \operatorname{dim}\left(H^{i}\left(\mathbb{C}_{X_{w}}^{\pi}\right)_{y B}\right) q^{i / 2}=P_{y, w}(q)
$$

In particular, We have $H^{i}\left(\mathbb{C}_{X_{w}}^{\pi}\right)_{y B}=0$ for all odd i and

$$
\sum_{j}(-1)^{j} \operatorname{dim}\left(H^{j}\left(\mathbb{C}_{X_{w}}^{\pi}\right)_{y B}\right)=P_{y, w}(1)
$$

Let $\mathcal{M}_{w}=D_{X} \otimes_{U(\mathfrak{g})} M(-w(\rho)-\rho), \mathcal{L}_{w}=D_{X} \otimes_{U(\mathfrak{g})} L(-w(\rho)-\rho)$, and

$$
\mathcal{N}_{w}=\int_{i_{w}} \mathcal{O}_{X_{w}}=\left(i_{w}\right)_{*}\left(D_{X \leftarrow X_{w}} \otimes_{D_{X_{w}}} \mathcal{O}_{X_{w}}\right)
$$

$\mathcal{N}_{w} \in \operatorname{Mod}_{c}\left(D_{X}, B\right)=\operatorname{Mod}_{r h}\left(D_{X}, B\right)$.
Lemma $4\left({ }^{[H T T]}\right.$ Lemma 12.3.1). Let $w \in W$. Then
(i) $\operatorname{ch}\left(\Gamma\left(X, \mathcal{N}_{w}\right)\right)=\operatorname{ch}(M(-w(\rho)-\rho))$. In particular, $\left[\mathcal{M}_{w}\right]=\left[\mathcal{N}_{w}\right]$ in $K\left(\operatorname{Mod}_{r h}\left(D_{X}, B\right)\right)$.
(ii) The only D_{X} submodule of \mathcal{N}_{w} whose support is contained in $\overline{X_{w}}-X_{w}$ is 0 .

Proof. Define two subalgebras of \mathfrak{g} :

$$
\mathfrak{n}_{1}=\bigoplus_{\alpha \in \Delta^{+} \cap w\left(\Delta^{+}\right)} \mathfrak{g}_{-\alpha}, \quad \mathfrak{n}_{2}=\bigoplus_{\alpha \in \Delta^{+} \cap-w\left(\Delta^{+}\right)} \mathfrak{g}_{\alpha}
$$

Let the corresponding unipotent subgroup of G be N_{1} and N_{2} respectively. Define a morphism $\varphi: N_{1} \times N_{2} \rightarrow X$ by

$$
\varphi\left(n_{1}, n_{2}\right)=n_{1} n_{2} w B / B
$$

Then φ is an open embedding. $\varphi\left(\{e\} \times N_{2}\right)=X_{w}$. Let $V=\operatorname{im}(\varphi)$, we have the commutative diagram

So

$$
\begin{aligned}
\Gamma\left(X, \mathcal{N}_{w}\right) & =\Gamma\left(X,\left(i_{w}\right)_{*}\left(D_{X \leftarrow X_{w}} \otimes_{D_{X_{w}}} \mathcal{O}_{X_{w}}\right)\right) \\
& =\Gamma\left(X_{w}, D_{X \leftarrow X_{w}} \otimes_{D_{X_{w}}} \mathcal{O}_{X_{w}}\right) \\
& =\Gamma\left(X_{w}, D_{V \leftarrow X_{w}} \otimes_{D_{X_{w}}} \mathcal{O}_{X_{w}}\right) \\
& \cong \Gamma\left(N_{2}, D_{N_{1} \times N_{2} \leftarrow N_{2}} \otimes_{D_{N_{2}}} \mathcal{O}_{N_{2}}\right) .
\end{aligned}
$$

$$
D_{N_{1} \times N_{2} \leftarrow N_{2}} \cong\left(D_{N_{1} \times\{e\}} \otimes_{\mathcal{O}_{N_{1} \times\{e\}}} \mathbb{C}\right) \otimes_{\mathbb{C}}\left(\Omega_{N_{1} \times\{e\}}^{\otimes-1} \otimes_{\mathcal{O}_{N_{1} \times\{e\}}} \mathbb{C}\right) \otimes_{\mathbb{C}} \otimes_{\mathbb{C}} \Gamma\left(N_{2}, \mathcal{N}_{2}\right)
$$

First, $D_{N_{1}}=U\left(\mathfrak{n}_{1}\right) \otimes_{\mathbb{C}} \mathcal{O}_{X}$, so $D_{N_{1} \times e} \otimes_{\mathcal{O}_{N_{1} \times\{e\}}} \mathbb{C} \cong U\left(\mathfrak{n}_{1}\right)$. Second,

$$
\Omega_{N_{1} \times\{e\}}^{\otimes-1} \otimes_{\mathcal{O}_{N_{1} \times\{e\}}} \mathbb{C} \cong \wedge^{\operatorname{dim}\left(\mathfrak{n}_{1}\right)}\left(\mathfrak{n}_{1} \otimes_{\mathbb{C}} \mathcal{O}_{X}\right) \otimes_{\mathcal{O}_{X}} \mathbb{C}=\wedge^{\operatorname{dim}\left(\mathfrak{n}_{1}\right)} \mathfrak{n}_{1}
$$

Finally, the exponential map gives the isomorphism $\mathfrak{n}_{2} \cong N_{2}$. Therefore, $\Gamma\left(N_{2}, \mathcal{N}_{2}\right) \cong$ $\Gamma\left(\mathfrak{n}_{2}, \mathcal{O}_{\mathfrak{n}_{2}}\right)=S\left(\mathfrak{n}_{2}^{*}\right)$.

$$
\operatorname{ch}\left(\Gamma\left(X, \mathcal{N}_{w}\right)\right)=\operatorname{ch}\left(U\left(\mathfrak{n}_{1}\right)\right) \operatorname{ch}\left(\wedge^{\operatorname{dim}\left(\mathfrak{n}_{1}\right)} \mathfrak{n}_{1}\right) \operatorname{ch}\left(S\left(\mathfrak{n}_{2}^{*}\right)\right) .
$$

We compute that

$$
\begin{aligned}
\operatorname{ch}\left(U\left(\mathfrak{n}_{1}\right)\right)= & \prod_{\alpha \in \Delta^{+} \cap w\left(\Delta^{+}\right)}\left(1+e^{-\alpha}+e^{-2 \alpha}+\cdots\right)=\prod_{\alpha \in \Delta^{+} \cap w\left(\Delta^{+}\right)} \frac{1}{1-e^{-\alpha}}, \\
& \operatorname{ch}\left(\wedge^{\operatorname{dim}\left(\mathfrak{n}_{1}\right)}\right)=e^{\sum_{\alpha \in \Delta^{+} \cap w\left(\Delta^{+}\right)-\alpha}}=e^{-w(\rho)-\rho},
\end{aligned}
$$

and

$$
\operatorname{ch}\left(S\left(\mathfrak{n}_{2}^{*}\right)\right)=\prod_{\alpha \in \Delta^{+} \cap-w\left(\Delta^{+}\right)}\left(1+e^{-\alpha}+e^{-2 \alpha}+\cdots\right)=\prod_{\alpha \in \Delta^{+} \cap-w\left(\Delta^{+}\right)} \frac{1}{1-e^{-\alpha}} .
$$

So

$$
\operatorname{ch}\left(\Gamma\left(X, \mathcal{N}_{w}\right)\right)=\frac{e^{-w(\rho)-\rho}}{\prod_{\alpha \in \Delta^{+}}\left(1-e^{-\alpha}\right)}=\operatorname{ch}(M(-w(\rho)-\rho)) .
$$

Set $Z=X-V$ and $j: V \rightarrow X$ be the open embedding, we have a distinguished traingle

$$
R \Gamma_{Z}\left(\mathcal{N}_{w}\right) \longrightarrow \mathcal{N}_{w} \longrightarrow j_{*}\left(\mathcal{N}_{w}\right) \xrightarrow{+1} .
$$

By definition, $\mathcal{N}_{w} \rightarrow j_{*}\left(\mathcal{N}_{w}\right)$ is an isomorphism, so $R \Gamma_{Z}\left(\mathcal{N}_{w}\right)=0$. So $\Gamma_{Z}\left(\mathcal{N}_{w}\right)$. Hence the only D_{X} submodule of \mathcal{N}_{w} whose support is contained in Z is 0 . Since $\overline{X_{w}}-X_{w} \subset Z$, the assertion follows.

Let $\mathcal{L}\left(X_{w}, \mathcal{O}_{X_{w}}\right)$ be the minimal extension of the $D_{X_{w}}$-module $X_{w} . \mathcal{L}\left(X_{w}, \mathcal{O}_{X_{w}}\right) \in$ $\operatorname{Mod}_{r h}\left(D_{X}, B\right)$.

Proposition $6\left({ }^{[H T T]}\right.$ Lemma 12.3.2). Let $w \in W$. Then we have
(i)

$$
\mathcal{L}_{w}=\mathcal{L}\left(X_{w}, \mathcal{O}_{X_{w}}\right) .
$$

(ii)

$$
\mathcal{M}_{w}=\mathbb{D}\left(\mathcal{N}_{w}\right) .
$$

Proof. Since $X_{w}^{a n}$ is simply connected, simple objects in $\operatorname{Mod}_{r h}\left(D_{X}, B\right)$ is given by $\left\{\mathcal{L}\left(X_{w}, \mathcal{O}_{X_{w}}\right) \mid y \in W\right\}$. On the other hand, simple objects in $\operatorname{Mod}_{f}\left(\mathfrak{g}, B, \chi_{-\rho}\right)$ is given by $\{\mathcal{L}(-w(\rho)-\rho)\}$. So for each $w \in W$, there is a $y \in W$ such that $\mathcal{L}_{w}=\mathcal{L}\left(X_{y}, \mathcal{O}_{X_{y}}\right)$. For this $y, \mathcal{L}\left(X_{y}, \mathcal{O}_{X_{y}}\right)$ is a composition factor of \mathcal{M}_{w} and hence one of \mathcal{N}_{w}. Since \mathcal{N}_{w} is supported on $\overline{X_{w}}=\coprod_{w^{\prime} \leq w} X_{w^{\prime}}, y \leq w$. The induction on Bruhat order gives the equality.

Since $\left\{\mathcal{L}\left(X_{w}, \mathcal{O}_{X_{w}}\right) \mid y \in W\right\}$ are self dual, for all $\mathcal{M} \in \operatorname{Mod}_{r h}\left(D_{X}, B\right)$, the composition factors of \mathcal{M} and those of $\mathbb{D}(\mathcal{M})$ coincide. In particular, we get

$$
\operatorname{ch}\left(\mathbb{D}\left(\mathcal{N}_{w}\right)\right)=\operatorname{ch}\left(\mathcal{N}_{w}\right)=\operatorname{ch}(M(-w(\rho)-\rho))
$$

$U(\mathfrak{g}) \Gamma\left(X, \mathbb{D}\left(\mathcal{N}_{w}\right)\right)_{-w(\rho)-\rho}$ is a highest weight module with highest weight $\left.-w(\rho)-\rho\right)$. Thus we have an exact sequence

$$
M(-w(\rho)-\rho) \rightarrow \Gamma\left(X, \mathbb{D}\left(\mathcal{N}_{w}\right)\right) \rightarrow N \rightarrow 0
$$

Tensoring D_{X} over $U(\mathfrak{g})$ and we get

$$
\mathcal{M}_{w} \rightarrow \mathbb{D}\left(\mathcal{N}_{w}\right) \rightarrow \mathcal{N} \rightarrow 0
$$

Taking dual and we get

$$
0 \rightarrow \mathbb{D}(\mathcal{N}) \rightarrow \mathcal{N}_{w} \rightarrow \mathbb{D}\left(\mathcal{M}_{w}\right)
$$

\mathcal{L}_{w} isn't in the set of composition factors of $\mathbb{D}(\mathcal{N})$, so the support of $\mathbb{D}(\mathcal{N})$ is in $\overline{X_{w}}-X_{w}$. We get $\mathbb{D}(\mathcal{N})=0, \mathcal{N}=0$, and $N=0$. So we have a surjective homomorphism $M(-w(\rho)-\rho) \rightarrow \Gamma\left(X, \mathbb{D}\left(\mathcal{N}_{w}\right)\right)$. The injectivity follows from that $\operatorname{ch}\left(\mathcal{N}_{w}\right)=\operatorname{ch}(M(-w(\rho)-\rho))$.

Corollary 1 (${ }^{[H T T]}$ Corollary 12.3.3). The Riemann-Hilbert correspondence gives

$$
D R_{X}\left(\mathcal{M}_{w}\right)=\mathbb{C}_{X_{w}}\left[\operatorname{dim}\left(X_{w}\right)\right]
$$

and

$$
D R_{X}\left(\mathcal{L}_{w}\right)=\mathbb{C}_{X_{w}}^{\pi}\left[\operatorname{dim}\left(X_{w}\right)\right] .
$$

To prove the conjecture, it suffices to prove that

$$
\left[\mathcal{L}_{w}\right]=\sum_{y \leq w}(-1)^{l(w)-l(y)} P_{y, w}(1)\left[\mathcal{M}_{w}\right]
$$

in $K\left(\operatorname{Mod}_{r h}\left(D_{X}, B\right)\right.$. We define a \mathbb{Z}-module homomorphism $\varphi: K\left(\operatorname{Mod}_{r h}\left(D_{X}, B\right) \rightarrow\right.$ $\mathbb{Z}[W]$ given by

$$
\varphi([\mathcal{M}])=\sum_{y \in W}\left(\sum_{i}(-1)^{i} \operatorname{dim}\left(H^{i}\left(D R_{X}(\mathcal{M})\right)_{y B}\right)\right) y
$$

Form the corollary above, we have $\varphi\left(\left[\mathcal{M}_{w}\right]\right)=(-1)^{l(w)} m$, so φ is an isomorphism. Assume the Kazhdan-Lusztig theorem and we get

$$
\begin{aligned}
\varphi\left(\left[\mathcal{L}_{w}\right]\right) & =\sum_{y \in W}\left(\sum_{i}(-1)^{i} \operatorname{dim}\left(H^{i}\left(D R_{X}\left(\mathcal{L}_{w}\right)\right)_{y B}\right)\right) y \\
& \left.=\sum_{y \in W}\left(\sum_{i}(-1)^{i} \operatorname{dim}\left(H^{i}\left(\mathbb{C}_{X_{w}}^{\pi}\left[\operatorname{dim}\left(X_{w}\right)\right]\right)\right)_{y B}\right)\right) y \\
& =(-1)^{l(w)} \sum_{y \in W} P_{y, w}(1) y \\
& =(-1)^{l(w)-l(y)} P_{y, w}(1) \varphi\left(\left[\mathcal{M}_{w}\right]\right) .
\end{aligned}
$$

0.3 Sketch of the Proof of Kazhdan-Lusztig Theorem

Let ΔG be the diagonal group of $G \times G$ and act diagonally on $X \times X . \Delta G$ - orbits of $X \times X$ has a natural bijection to $\left\{X_{w}\right\}$ given by

$$
Z_{w}:=\Delta G(e B, w B) \leftrightarrow X_{w}
$$

Let $p_{k}: X \times X \rightarrow X, i_{k}: X \rightarrow X \times X(k=1,2)$ be given by $p_{1}(a, b)=a, p_{2}(a, b)=b$, $i_{1}(b)=(e B, b), i_{2}(a)=(a, e B)$.

Proposition $7\left({ }^{[\mathrm{HTT}]}\right.$ Proposition 13.1.2). $\quad i_{k}(k=1,2)$ induce equivlences of categories:

$$
i_{k}^{*}: \operatorname{Mod}_{c}\left(D_{X \times X}, \Delta G\right) \cong \operatorname{Mod}_{c}\left(D_{X}, B\right)
$$

Since $X \times X$ has only finite ΔG-orbits, $\operatorname{Mod}_{c}\left(D_{X \times X}, \Delta G\right)=\operatorname{Mod}_{r h}\left(D_{X \times X}, \Delta G\right)$. For $w \in W$, consider the embedding $j_{w}: Z_{w} \rightarrow X \times X$ and set

$$
\widetilde{\mathcal{N}}_{w}=\int_{j_{w}} \mathcal{O}_{Z_{w}}, \quad \widetilde{\mathcal{M}}_{w}=\mathbb{D}\left(\widetilde{\mathcal{N}}_{w}\right), \quad \widetilde{\mathcal{L}}_{w}=\mathcal{L}\left(Z_{w}, \mathcal{O}_{Z_{w}}\right)
$$

They are in $\operatorname{Mod}_{c}\left(D_{X \times X}, \Delta G\right)$. Moreover,

$$
\begin{array}{cll}
i_{1}^{*}\left(\widetilde{\mathcal{N}}_{w}\right)=\mathcal{N}_{w}, & i_{1}^{*}\left(\widetilde{\mathcal{M}}_{w}\right)=\mathcal{M}_{w}, & i_{1}^{*}\left(\widetilde{\mathcal{L}}_{w}\right)=\mathcal{L}_{w}, \\
i_{2}^{*}\left(\widetilde{\mathcal{N}}_{w}\right)=\mathcal{N}_{w^{-1}}, & i_{2}^{*}\left(\widetilde{\mathcal{M}}_{w}\right)=\mathcal{M}_{w^{-1}}, & i_{2}^{*}\left(\widetilde{\mathcal{L}}_{w}\right)=\mathcal{L}_{w^{-1}} .
\end{array}
$$

Proposition 8 ([HTT] Proposition 13.1.5). Let $p_{13}: X \times X \times X \rightarrow X \times X$ and $r: X \times X \times X \rightarrow X \times X \times X \times X$ be given by $p_{13}(a, b, c)=(a, c)$ and $r(a, b, c)=$ (a, b, b, c). Then $K\left(\operatorname{Mod}_{c}\left(D_{X \times X}, \Delta G\right)\right)$ has a ring structure given by

$$
[\widetilde{\mathcal{M}}] \cdot[\widetilde{\mathcal{N}}]=\sum_{k}(-1)^{k} H^{k}\left(\int_{p_{13}} r^{*}(\widetilde{\mathcal{M}} \boxtimes \widetilde{\mathcal{N}})\right)
$$

and $K\left(\operatorname{Mod}_{c}\left(D_{X \times X}, \Delta G\right)\right)$ is isomorphic to $\mathbb{Z}[W]$ by the correspondence $\widetilde{\mathcal{M}}_{w} \leftrightarrow$ $(-1)^{l(w)} w$.

We should consider the categories of Hodge modules (${ }^{[H T T]}$ 8.3) to relate the objects and the Hecke algebra $H(W)$. We need the categories $S H(n), S H(n)^{p}$, and $\operatorname{MHM}(Y)$. An object in $\operatorname{MHM}(Y)$ is a tuple (\mathcal{M}, F, K, W), where $\mathcal{M} \in$ $\operatorname{Mod}_{r h}\left(D_{Y}\right), F$ is a good filtration of $\mathcal{M}, K \in \operatorname{Perv}(Y) / \mathbb{Q}$ such that $D R_{Y}(\mathcal{M})=$ $\mathbb{C} \otimes_{\mathbb{Q}} K$, and W is an increasing filtration of the tuple (\mathcal{M}, F, K).

Consider $R=K(M H M(p t))=K\left(S H M^{p}\right)\left({ }^{[H T T]}(\mathrm{m} 12), \mathrm{p} .224\right) . R=\bigoplus_{n \in \mathbb{Z}} R_{n}$ where $R_{n}=K\left(S H(n)^{p}\right)$. The unit is \mathbb{Q}^{H}. The morphism $q^{n} \mapsto\left[\mathbb{Q}^{H}[-n]\right]$ gives R a $\mathbb{Z}\left[q, q^{-1}\right]$-algebra structure $q \in R_{2}$.

Consider the category $K(M H M(X \times X, \Delta G))$. It has a ring structure

$$
\left[\mathcal{V}_{1}\right] \cdot\left[\mathcal{V}_{1}\right]=(-1)^{\operatorname{dim}(X)} \sum_{j}(-1)^{j}\left[H^{j}\left(p_{13!} r^{\star}\left(\mathcal{V}_{1} \boxtimes \mathcal{V}_{2}\right)\right)\right]
$$

(${ }^{[H T T]}$ Equation 13.2.7.)
The tensor product

$$
M H M(p t) \times M H M(X \times X, \Delta G) \rightarrow M H M(X \times X, \Delta G)
$$

gives $K(M H M(X \times X, \Delta G))$ a R-algebra structure.
For $w \in W$ we set

$$
\begin{gathered}
\overline{\mathcal{N}}_{w}^{H}=\left(j_{w}\right)_{\star}\left(\mathbb{Q}_{Z_{w}}^{H}\left[\operatorname{dim}\left(Z_{w}\right)\right]\right), \quad \overline{\mathcal{M}}_{w}^{H}=\left(j_{w}\right)!\left(\mathbb{Q}_{Z_{w}}^{H}\left[\operatorname{dim}\left(Z_{w}\right)\right]\right), \\
\overline{\mathcal{L}}_{w}^{H}=\left(j_{w}\right)!\star\left(\mathbb{Q}_{Z_{w}}^{H}\left[\operatorname{dim}\left(Z_{w}\right)\right]\right)=I C_{\bar{Z}_{w}}^{H} \in M H M(X \times X, \Delta G) .
\end{gathered}
$$

The underlying D-modules are $\overline{\mathcal{N}}_{w}, \overline{\mathcal{M}}_{w}, \overline{\mathcal{L}}_{w}$, respectively. In $^{[H T T]}$ they defined a R-algebra isomorphism

$$
F: K(M H M(X \times X, \Delta G)) \rightarrow R \otimes_{\mathbb{Z}\left[g, g^{-1}\right]} H(W)
$$

by $F\left(\left[\overline{\mathcal{M}}_{w}^{H}\right]\right)=(-1)^{l(w)} T_{w}\left({ }^{[\text {HTT }]}\right.$ Theorem 13.2.8) and for each $w \in W$ a R module homomorphism $F_{w}: K(M H M(X \times X, \Delta G)) \rightarrow R$ given by $F(m)=$ $\sum_{w \in W}(-1)^{l(w)} F_{w}(m) T_{w}\left({ }^{[H T T]}\right.$ Equation 13.2.26). The morphisms $\left\{F_{w}\right\}$ satisfying that

$$
\sum_{k}(-1)^{k}\left[H^{k}\left(j_{w}^{\star}(\mathcal{V})\right)\right]=F_{w}([V])\left[Q_{Z_{w}}^{H}\left[\operatorname{dim}\left(Z_{w}\right)\right]\right]
$$

(${ }^{[\text {HTT] }]}$ Equation 13.2.25). Next, they defined

$$
C_{w}^{\prime}=(-1)^{l(w)} F\left(\left[\overline{\mathcal{L}}_{w}^{H}\right]\right)=\sum_{y \leq w} P_{y, w}^{\prime} T_{y} \quad\left(P_{y, w}^{\prime} \in R\right)
$$

(${ }^{[H T T]}$ Equation 13.2.34). Put $m=\left[\left[\overline{\mathcal{L}}_{w}^{H}\right]\right]$ in ${ }^{[\mathrm{HTT}]}$ Equation 13.2.26 and get

$$
(-1)^{l(w)-l(y)} \sum_{k}(-1)^{k}\left[H^{k}\left(j_{w}^{\star}\left(\overline{\mathcal{L}}_{w}^{H}\right)\right)\right]=P_{y, w}^{\prime}\left[Q_{Z_{w}}^{H}\left[\operatorname{dim}\left(Z_{w}\right)\right]\right]
$$

(${ }^{[H T T]}$ Equation 13.2.38). Comparing the weight and relations ${ }^{[H T T]}$ Equation 13.2.35, 13.2.36, 13.2.37 of $\left\{P_{y, w}^{\prime}\right\}$, they proved $P_{y, w}^{\prime}=P_{y, w}(q)$ and thus $C_{w}^{\prime}=C_{w}:=$ $\sum_{y \leq w} P_{y, w}(q) T_{y}$.
Proposition $9\left({ }^{[H T T]}\right.$ Proposition 13.2.9). If $y \leq w, H^{k}\left(j_{w}^{\star}\left(\overline{\mathcal{L}}_{w}^{H}\right)\right)$ has pure weight $\operatorname{dim}\left(Z_{w}\right)+k$.

With this proposition, they can write $H^{k}\left(j_{w}^{\star}\left(\overline{\mathcal{L}}_{w}^{H}\right)\right)=N_{k} \otimes \mathbb{Q}_{Z_{y}}^{H}\left[\operatorname{dim}\left(Z_{y}\right)\right]$ where $Z_{y} \in S H(k+l(w)-l(y))^{p} .{ }^{[H T T]}$ Equation 13.2.38 gives

$$
\sum_{k}(-1)^{l(w)+l(y)-k}\left[N_{k}\right]=P_{y, w}:=c_{y, w, j} q^{j}
$$

Since $q \in R_{2}$, we have $\left[N_{k}\right]=0$ if $k+l(w)-l(y)$ is odd and $\left[N_{k}\right]=c_{y, w, j} q^{j}$ if $k+l(w)-l(y)=2 j$. Thus $\operatorname{dim}\left(H^{k}\left(j_{w}^{\star}\left(\overline{\mathcal{L}}_{w}^{H}\right)\right)\right)=c_{y, w, j}$ if $k+l(w)-l(y)=2 j$ and 0 if $k+l(w)-l(y)=2 j$ is odd. Kazhdan-Lusztig theorem follows.

Bibliography

[HTT] R. Hotta, K. Takeuchi, T. Tanisaki, D-modules, Perverse Sheaves, and Representation Theory.
[S] T.A. Springer, Linear Algebraic Groups
[HC] Harish-Chandra, On Some Applications of the Universal Enveloping Algebra of a Semisimple Lie Algebra. Transactions of the American Mathematical Society, Vol. 70, No. 1 (Jan., 1951), pp. 28-96.

