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0.1 Borel-Weil-Bott Theorem

Let G/k be a connected semi-simple algebraic group, 7' be a maximal torus of G,
B be a Borel subgroup of G containing 7', N be the unipotent part of B, and X

be the flag variety G/B. We thus has a choice of positive roots AT, simple roots

(o R 6
2

For each A € L = Homy(B/N, k*), we have a equivariant G-line bundle £(\) on X

(HTT] b 255). Set

II =A{ay, - ,q}, and Weyl vector p = . Let P be the weight lattice.

Ping={N€ P |Ja e A (XA—p,a’) =0},
Preg = P — Pying.
Define a shifted action of W on P by
wk A =w(A—p)+p.
Theorem 1 (Borel-Weil-Bott, 1T 9.11.2.).  Assume A\ € L C P.

(i) If (A, ") <0 for all @ € AT, then L£(\) is generated by global sections. That

is, the natural morphism
Ox @, (X, LX) = L(N)
is surjective.
(ii) £()) is ample if and only if (A\,a") < 0 for all « € A*.
(iii) Assume char(k) = 0.

(a) If X\ € Pypg, then HY(X, L(\)) =0 for all i > 0.

(b) Let A € Py, and take w € W such that wk A € —P*. Then

, L~ A ifi=1
Hix £ = R )
0 otherwise.



0.2 Berlinson-Bernstein Theorems

From now on we assume k = C. For every smooth variety Y and locally free
Oy-module of finite rank ), we consider the sheaf of diffenertial operators on V,
DY C &nde, (V). DY is isomorphic to V ®0, Dy ®e, V*. There’s a natural
filtration

F,(DY) =0 for all p < 0,

F,(Dy)={P| fP— Pf € F, (Dy)Vf € Oy} for all p > 0.

Assume K is alinear algebraic group acting on Y and V is a K-equivlent vector
bundle. There is a natural morphism 0 : U(£) to I'(Y, DY). Let a € ¢, then 9, is
defined by

(0u8)(y) = %(exp(ta)s(exp(—ta)y))\tzo (seV,yeY).

Here exp is the exponential map w.r.t right invariant vector fields. Algebraically, let

©:p3V = o*V, then 0, is determined by

$(a@1)- ¢ (0"s)) = 07(0as)

Here a is regarded as right invariant vector fields on K acting on k[K](MT™ Equation
11.1.7).
Consider X. Let Dy := D). We have @, : U(g) — I'(X, Dy).

Definition 1. Let 3 be the center of U(g) = U(h) & (n~U(g) + U(g)n)(HTT
Equation 9.4.7). Let p be the projection from U(g) to U(h). f be the automorphism
of U(h) defined by f(h) = h — p(h)1 for h € h. For each A € h*, define the central

character

xXa(2) = (f o p(2))(A) for all z € 5.

Proposition 1 (T Theorem 11.2.2). Let A € L. Then ®, : U(g) — I'(X, D,) is
surjective. Let 3 be the center of U(g). Then ®,(z) = xa(2) for all z € 3. Moreover,

ker(®y) = Ul(g)(ker(x»))-

We assume the proposition.



Let Mod,.(D,) be the abelian category of Dy-modules which are quasi-coherent
over Ox and Mod(g) be the categoriy of U(g)-modules. We have additive functors

I'(X,-) : Mod,(Dy) — Mod(g),

Dy ®ug) () : Mod(g) — Mod,.(D5).

We have adjointness
Homp, (D) ®u(g) M, N) = Homy(g) (M, T(X,N)).

Let Mod(g, x) be the category of U(g)-modules with central character x and Mod(g, x)
be the full subcategory of Mod(g, x) of finitely generated U(g)-modules. The propo-
sition shows that Mod(g, x) = Mod(I'(X, D,)).

Theorem 2 (M7 Theorem 11.2.3 & 11.2.4). Let A € L.

1. Suppose
(A, )y <0 foralla € AT, (1)

That is, A € —PT. Then for all M € Mod,.(D,) we have H*(X, M) = 0 for all
k> 0.

2. Suppose
(A, ") <0 for all @ € AT, (2)

Then for all M € Mod,.(D,), the natural morphism
D, Ru(g) F(X, M) - M

is surjective.

Proof. For v € —P", Borel-Weil-Bott theorem says I'(X, L(v)) = H°(X,L(v)) =
L=(v) and p, : Ox ®c L™ (v) — L(v) is surjective. Since . ome, (L(v),Ox) =
L(—v) and Homc¢ (L™ (v),C) = L*(—v), we have L(—v) — Ox ®c L*T(—v). Apply
L(v) ®oy (+), we have i, : Ox — L(v) ®c L*(—v). Since L(v) is a line bundle,
ker(p,) is a direct summand of Ox ®¢ L~ (v) as an Ox-module locally. Therefore,

im(i,) is a direct summand of L(v) ®c LT (—v) as an Ox-module locally.



Let A € L and M be a Dy-module. Apply M ®p, (-), we get
Do M®&c L™ (v) » M®o, L(v),
iy M= M®o, L(v) &c LT (—v).
Proposition 2 (M7 Proposition 11.4.1). (i) If X satisfies (2), then ker(py) is

a direct summand of M ®¢ L~ (v) as a sheaf of abelian groups.

(ii) If X satisfies (1), then im(i,) is a direct summand of M ®o, L(v) @¢c L*(—v)

as a sheaf of abelian groups.

Suppose A satisfies (1). For all M € Mod,.(D.),
HY (X, M) = lim H*(X, N)

where N runs over all coherent Ox-submodule of M. It suffices to prove that
the natural map H*(X,N) — H¥(X, M) is the zero map. Fix N. Borel-Weil-
Bott theorem says L(v) is ample if and only if v satisfies (2). Hence there is a
v € LN —P7F such that H*(X, N ®o, L(v)) = 0 for all k¥ > 0. For this v, consider

the commutative diagram

H*(X, N) s H*(X, M)

| ;

HY X, N @0, L(v) ®c LT(—v)) —— H*(X, M ®0, L(v) ®c L*(-v)).

iy is injective. On the other hand, H*(X, N ®0, L(v) ®c LT (—v)) = H¥(X, N ®0,
L(v)) ®c Lt (—v) =0 for all k > 0. So H*(X,N) — H*(X, M) is the zero map.

Suppose A satisfies (2). For given M € Mod,.(D,), set M’ be the image of
D) ®u(g) I'(X, M) = M and M” be the cokernel of it. If M” # 0, let N' C M” be
a nonzero coherent O x-submodule. There is a v € LN —P* such that N ®o, L(v)
is generated by global sections. In this case, ['(X,N ®o, L(v)) # 0, neither is
['(X, M" ®0, L(v)) On the other hand,

Do (X, M") @c L™ (v) =T'(X,M" ®¢c L™ (v)) = I'(X,M" ®0, L(v))
is surjective. So I'(X, M") # 0. Consider the exact sequence
0 — D(X, M) = (X, M) — (X, M") = 0.
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By definition, (X, M) = I'(X, Dy ®y(g [(X, M)) — (X, M’). So D(X, M') =
I'(X, M) and hence I'(X, M") = 0. So M” must be 0. The isomorphism I'(X, M) =
I'(X, Dy ®uq) I'(X, M)) is proved in the proof of Corollary 1. ]

0.3 Equivalences of Categories

For A € L satisfying (1), we denote Mody (D) the full subcategory of Mod.(Dy)
consisting of objects M satisfying that

(a) Dy ®uy(g) I'(X, M) = M is surjective.
(b) For all nonzero subobject N' C M in Mod,.(D,), we have I'(X, ) # 0.
Set Modg (D) = Modg, (D) N Mod.(Dy).

Corollary 1. TI'(X,-) induces equivlences of categories

Modflc(D,\) =~ Mod(g, x»), Mod:(Dy) = Modf(g, x»)-

Proof. We first prove that M — I'(X, Dy ®y(g) M) is an isomorphism for all M €
Mod(g, x»). For given M € Mod(g, x»), consider an exact sequence

(X, D)% = (X, D)% — M — 0.

From Theorem 2.1, I'(X,-) : Mod,(D,) — Mod(g, x») is an exact functor. So

I'(X, Dy ®u(g) (+)) is right exact. We have an commutative diagram with exact rows

(X, D)% —— T'(X, Dy)®/ > M > 0
lid lid l
(X, D)% —— T(X, D)% —— T(X, D)\ Qug M) —— 0.

So M = F(X, D)\ ®U(g) M)
Now we show that I'(X,-) : Mod;,.(Dy) — Mod(g, x») is fully faithful. That is,
for all My, My € Mod;,(D.),

I' : Homp, (My, My) — Homy ) (I'(X, M;), (X, M3))



is an isomorphism. Since Dy ®(q) ['(X, M) = M is surjective, we have

Homp, (M1, M3) — Homp, (Dy ®y(q) I'(X, M1), M)
= Homy () (I'(X, My), T'(X, My)).

Assume ¢ € Homyg)(I'(X, My),I'(X, Mz)). Let K; be the kernel of Dy ®y(q
['(X, M;) — M. Apply the exact functor I'(X, -) on the exact sequenct

00— K, — D, ®U(g) F(X,Ml) —M; =0
and we get the exact sequence
0— DX, K) - T'(X, M) = T(X,M;) = 0.

So I'(X, K1) = 0. Let Ky be the image of

Ky — Dy ®y(g) T(X, M) —25 Dy @y T(X, My) —— M.

Since I'(X, -) is exact and ['(X, K1) = 0, ['(X, Ks) = 0. So Ky = 0. hence we obtain
Y My = D) ®pg) (X, M) /Ky = M; with T'(¢) = ¢.

Next, we prove that I'(X, -) : Modg (D) — Mod(g, x») is essentially surjective.
Given M € Mod(g, x»). Let £ be a maximal element of the set of subobjects I of
D) ®u(g) M in Mod,.(Dy) satisfying that ['(X,KC) = 0. Set M = Dy @y M/L.
Then I'( X, M) = I'(X, D) ®ug) M)/T'(X, L) = M. Dy ®yg) M — M is surjective.
For all N C M, the maximality of £ shows that I'(X, ) # 0. So M € Mod;, (D).

Finally, we have to show that Mod:(D,) and Mod;(g, x») correspond to each
other. Let M € Mods(g, x»). I'(X, D)) is left-noetherian. There is an exact se-
quence

(X, D))® = T(X, D)% = M =0

with |I],]J]| < co. Apply the right exact functor D) ®y(g) (-) on it and we get the
exact sequence

D¢' — DY’ — Dy @y, M — 0.

We get Dy ®y, M € Mod;(D,) and hence M = Dy ®y, M/L.



Conversely, let M € Mod;(D,). Since D) ®y, I'(X, M) — M is surjective, M
is locally generated by finitely many global sections. Since X is quasi-compact, M

is globally generated by finitely many global sections. We have an exact sequence
D' — M =0
where |I]| < co. Apply I'(X, -) on it and we get the exact sequence
I(X,D)% = T(X,M) =0
Hence I'(X, M) is an finitely generated U(g)-module. O
Suppose A satisfies (2). Then Modg.(Dy) = Mod;,.(Dy). In this case, we have

Corollary 2. T'(X, ") induces equivlences of categories

MOqu(D)\) = MOd(gu X)\>7 MOdC(D)\> = MOdf(Q? X)\)

Let K be a closed subgroup of G. We consider K-equivariant g-modules. That

is, a g-module with a K-action satisfying that
t-actions obtained from the g-action and the K-action coincide. (3)

k-(a-m)=Ad(k)(a) - (k-m)forallk € K, a € g, and m € M. (4)

We denote the full subcategory consisting of K-equivariant objects of Mod(g, x) and
Mod(g, x) by Mod(g, x, K) and Mod(g, x, K), respectively.

We also introduce K-equivariant D-modules. Let K acts on Y. Consider mor-
phisms po: KXY =Y, 0: KXY =Y, m: K x K — K defined by py(k,y) =y,
o(k,y) = ky, m(ky,ke) = k1,ks. A K-equivariant Dy-module is a Dy-module M

with a isomorphism of Dy y-modules
p M=o M

satisfying the cocycle condition.
We consider categories Mod,.(Dy, K) and Mod.(Dy, K). For A = —p, we have
Mod(g, x—,) = Mod,(Dx) and Mod (g, x—,) = Mod,(Dx).



Theorem 3. For any closed subgroup K < G, we have Mod(g, x—,, K) = Mod,.(Dx, K)
and Mod (g, x—p, i) = Mod,.(Dx, K).

Proof. What we have to prove is K-equivariances defined on Mod(g, x_,) and
Mod,.(Dx) coincide.

Consider M € Mod,.(Dx). K, X and K x X are all D-affine. So Dy x-
modules are I'(K' x X, Dk« x) = I'(K, Dg)®cI'(X, Dx)-modules. Since I'(K, Dg) =
I'(K,Ok) ®@c U(t) and I'(X, Dx) = U(g)/U(g) ker(x_,), Dxxx-module structures
are determined by actions of ['(K,Ok) ® 1, t® 1 and 1 ® g.

'K x X,ppM) 2 T'(K,Ok) @c I'(X, M). For 6*M, consider isomorphisms
&1 : KxX - KxX, e : KxX — K xX defined by ¢ (k,z) = (k,kz),

er(k,x) = (k,k™'2). e, =€,  and 0 = py o €1. So
'K x X,0°M) 2T(K x X,eipsM) 2 T(K x X, (&).psM)
~ T(K x X, psM) = T (K, Ox) @c T(X, M).

For given h € I'(X,0x) and m € I'(X, M), the element h @ m € I'(K,Og) ®c

I'(X, M) corresponds to the global section h o p; ® py'm of psM = Ok x Dprlog

py "M and the global section hop; ® o~ 'm : (k,x) — (k,h(k)k™! - m(kx)) of

0*M = Ok yx Qp-10, 0 M. The I'(K, D) @c I'(X, Dx)-action on psM. is
(f®l)-(h®@m)=fhem forall fe'(K,Ok),
(a®1l)-(h@m)=a-h®@m forall a€t,
(1®p)-(h®@m)=h®p-m forallpeg.

Consider the I'(K, Dg) ®c I'(X, Dx)-action on oM. (f®1)-(h®@m)= fh®@m

forall f e I'(K,0k). (a®1)-(h®@m)=a-h@m—h®a-m for all a € £. Finally,

% exp(tp)k~'m(k exp(—tp)z)|imo = %k_l exp(t Ad(k)(p))m(exp(t Ad(k)(p))kz)|i=o-

Let Ad(k)(p) = >, hi(k)p;. We have (1®p)-(h®@m) =), hh; ®p;-m for all p € g.

The K-equivariance of M is equivlent to an I'(K, Dg) ®c I'(X, Dx)-module
isomorphism from I'(K, Ok ) ®@c ['(X, M) = T'(K x X,piM) to I'(K x X, 0" M) =
(K, Ok) ®c I'(X, M) satisfying the cocycle condition. Since I'(K, Ok )-actions on

both sides are the same, the condition is a C-module homomorphism
o:NX,M)=1®c (X,M) = TI'(K,Ok) ®@cI'(X, M)
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satisfying the cocycle condition and
P((a®l)-(1em))=(a®1)-p(l@m)forallact, me'(X,M). (5)

2(1®p)-(1@m))=(1p)-p(1®@m) forallpe g, mel(X,M). (6

Let o(m) = >_; g; ® m;. The cocycle condition is equivlent to a K-representation

structure of T'(X, M). (5) is

O:Za~gj®mj—d~m.

j

a:m Zj a-g; ®m; is the £-action obtained from the K-action while a : m +— @-m
is the t-action obtained from the g-action. So (5) is (3).

(6) is
Zgj Qp-mj = Zhigj @ pi - my;,
j i.j

which is (4). N
Theorem 4. Let Y be a smooth variety and K be a linear algebraic group action
on Y. Suppose there are only finitely many K-orbits in Y. Then Mod.(Dy, K) =
Mod,,(Dy, K). Moreover, the simple objects in Mod.(Dy, K) is parametrized by
Y(Y, K), the set of pairs (O, L), where O C Y is an irreducible K-orbit and L is a

K-equivariant local system on O,

Proof. We use induction on the number of K-orbits of Y. Suppose Y is a ho-
mogeneous K-space. Then Y = K/K' for some K’ < K. Consider morphisms
o : K xY — Y the natural action, p, : K x Y — Y the second projection,
[ : K — SpecC, 7 : K — Y the quotient map, j : Spec(C) — K, j(zx) = K’ and
i: K — KxY,i(k):= (k' kK’). Then for any M € Mod.(Dy, K), we have

TM = (peoi)’ M =i"psM = i*c*"M = (0 0i)*" M
= (o) M=0Uj"M=0x ®c (j*M).

J*M is a finite dimensional C-vector space, so 7™M € Mod,,(Dg). Since 7 is

smooth, M € Mod,;(Dy).



Now consider the general case. Let O be a closed K-orbit of Y and Y’ =Y —O.
Suppose i : O — Y and j :— Y. Then we have the distinguish triagle

[ it M y M >fjjT/\/l+—1>.

We have i'tM € Db%(Dp) and jTM € D’(Dy/). By induction hypothesis, i'fM €
D}, (Do) and jiM € D, (Dyr). We conclude that [ ifM, [, jiM € DY, (Dy) and
hence M € Mod,;(Dy).

By Riemann-Hilbert correspondence, Mod,,(Dy, K) = Perv(Cy, K), which is
parametrized by V(Y K). ]

In particular, B has only finite orbits in X. We conclude that simple objects
in Mod(g, x—,, B) are parametrized by Y(X, B).

10
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[HTT) HC]
( )-

Proposition 1 Proposition 9.4.5, proved in! X» = X, if and only if X

and p are in the same W-orbit.

(A, a¥) <0 for all « € AT, (1)

(N, )y <0 foralla € AT, (2)
For v € —P*, Borel-Weil-Bott theorem says I'(X, L(v)) = HY(X,L(v)) = L™ (v)
and p, : Ox ®c L~ (v) — L(v) is surjective. Since S ome, (L(v),Ox) = L(—v) and
Homc (L™ (v),C) = L*(—v), we have L(—v) < Ox ®@c L*(—v). Apply L(v)®o, (-),
we have i, : Ox < L(v) ®c LT (—v). Since L(v) is a line bundle, ker(p,) is a direct
summand of Ox ®c¢ L~ (v) as an Ox-module locally. Therefore, im(i,) is a direct

summand of L(v) @c L*(—v) as an Ox-module locally.

Let A € L and M be a Dy-module. Apply M ®p, (-), we get
Do: M®c L™ (v) » M®o, L(v),

iyt M= M ®oy L(v) ¢ LT (—v).
Proposition 2 (T Proposition 11.4.1). (i) If X satisfies (2), then ker(p,) is

a direct summand of M ®¢ L~ (v) as a sheaf of abelian groups.

(ii) If X satisfies (1), then im(i,) is a direct summand of M ®o, L(v) @¢c L*(—v)

as a sheaf of abelian groups.

Proof. Let
L (v)=L'>2L*>--->L" =0

be a filtration of B-modules of L™ (v) satisfying that L‘/L""! is the character p; of
B, p1 = v, and p; < p; only if ¢ < j. Then we obtain corresponding filtrations
Ox®@c L (v)=V'D2V* > ...V =0,

7

M®CL‘(U):VIDV2D---DV =0,

and
T -1 Ewi!

M®@o, L) @c LT (—v) =W DW D---D>W =0.

1



The corresponding composition factors are

i+l

Vi/vi+1 = M ®OX L(/'LZ>7 W /WZ = M ®0X £(U — ,uz)

Since M ®o, L(i) is a Dy, ,-module, the action of 3 on it is xx4,. So we have

r—1

16— xren) M ®c L™ (0)) =0

i=1

and
r—1

[Tz = Xatr) (M @0y L) @ LF(~0)) = 0.

i=1
Seen as sheaves of abelian groups, M ®¢ L™ (v) and M ®o, L(v) ®c LT (—v) are

equipped with locally finite 3-actions and thus have decompositions into y-primary

parts:
M®c L™ (v) = PM @c L™ (v))y,
M ®o, L(v) &c LT(—v) = PHM @0, L(v) &c LT(—0))y.

The morphisms p, and i, are vy / V and W — W', respectively. It suffices

to prove that

(i) If X\ satisfies (2), then ker(p,) = (M ®c L™(v))x,,,- That is, Xatu = Xo4o &
1= 1.

(ii) If A satisfies (1), then im(i,) = (M®o, L(v)R@c LT (=v))y,. That is, Xatv—p =

X\ &i=1.

Suppose A satisfies (2). If x4, = Xo+v, then there is a w € W such that w(A+p;) =
A+ v. That is, (w(A) — A) + (w(p;) —v) = 0. Since (\,a) < 0 for all « € A™T,
w(A) — A > 0 and the equality holds if and only if w = id. Since w(u;) is a weight
of L™ (v), w(u;) > v. So w = id and thus p; = v. That is, ¢ = 1.

Suppose A satisfies (1). If xajv—p, = X, then there is a w € W such that
w(A) = A+ v — ;. That is, (w(A) — A) + (u; —v) = 0. Since (A, ) < 0 for all
a € AT w(A) > A Also, u; > v. So p; = v and thus i = 1. O



Theorem 1 (™™ Theorem 11.6.1). Let Y be a smooth variety and K be a linear
algebraic group action on Y. Suppose there are only finitely many K-orbits in Y.
Then Mod..(Dy, K) = Mod,,(Dy, K). Moreover, the simple objects in Mod,.(Dy, K)
is parametrized by Y(Y, K), the set of pairs (O, L), where O C Y is an irreducible

K-orbit and L is a K-equivariant local system on O".

Proof. We use induction on the number of K-orbits of Y. Suppose Y is a ho-
mogeneous K-space. Then YV = K/K' for some K’ < K. Consider morphisms
o : K xY — Y the natural action, p, : K XY — Y the second projection,
[ : K — SpecC, 7 : K — Y the quotient map, j : Spec(C) — K, j(z) = K’ and
i: K — KxY,i(k):=(k7',kK'). Then for any M € Mod.(Dy, K), we have

M= (pyoi) M =i"p;M =i"0c" M = (0 01)*M
=(Jol) M=10"jM=0Ox ®c (j°M).
j*M is a finite dimensional C-vector space, so 7*M € Mod,,(Dg). Since 7 is
smooth, M € Mod,,(Dy).

Now consider the general case. Let O be a closed K-orbit of Y and Y’ =Y —O.
Suppose i : O — Y and j :— Y. Then we have the distinguish triagle

[t M y M > [iTM

We have it M € D%(Do) and j'M € DP(Dy+). By induction hypothesis, it M €
D}, (Do) and jiM € D}, (Dyr). We conclude that [ ifM, [, jiM € DY, (Dy) and
hence M € Mod,;(Dy).

By Riemann-Hilbert correspondence, Mod,(Dy, K) = Perv(Cy, K), which is
parametrized by Y (Y, K). O

In particular, B has only finite orbits in X. We conclude that simple objects
in Mod(g, x—,, B) are parametrized by Y(X, B).

0.1 Highest Weight Module

Definition 1. Let A € h* and M be a g-module. If there exists 0 = m € M such
that m € My, nm =0, and M = U(g)m, then M is called a highest weight module

3



with highest weight A\. m is called a highest weight vector.

In this case, M = U™ )m and M = P, M,. M, = Cm. Since M is
generated by m, M is the quotiend U(g)/N as a U(g)-module. The relation contains
at least n and h — A(h) for all h € b.

Definition 2. The Verma module is defined as

M(X) = U(9)/(U(gn + ) _U(g)(h = A(h)1)).

heb

M () is the unique maximal highest weight module. If M be a highest weight

module, there is a unique surjective homomorphism f : M(A) — M such that
(1) =m.
Lemma 1 (™% Lemma 12.1.3). M()) is a free U(n~)-module. In particular, we

compute that

ch(M(N) =) dim(M(N),)e* = dim(U(n")g)e*”
M B<0
= H (1+eP4e?4..0)
BeA+

eA

- H66A+ (L—e¥)

Proof. Let I = (U(g)n + >_,c, U(g)(h — A(h)1)). We want to prove that U(g) =

U(n~) @ I. By PBW theorem, we have a canonical isomorphism
UnT)@U(h) @Um)=U(g).

So we have

Y U@)(h= A1) = U@)HUMUm)(h = A(h)1))

heh heb
=Y U@ )UB)CHU(m)n)(h — A(h)1))
heb
cU(n") <Z Uh)(h — A(h)l))) + U(g)n.
heh



So I =U(n) (zhEh U(h)(h — A(h)l))) + U(g)n. Finally we have the isomorphism

O

Lemma 2 ("7 Lemma 12.1.4). There is a unique maximal proper U (g)-submodule

N C M()).

Proof. Any proper U(g)-submodule of M ()) is a weight module whose weights < A.
So the sum of them is also a proper U(g)-submodule. O

Define L(A\) = M (X\)/N. L(\) is the minimal highest weight module.

Problem 1. Compute ch(L())).

Example 1. If A € AT then L(\) = LT (\). Weyl’s character formula says

Ewew(_l)l(w)ww(/\ﬂ)—p
[Isen+(1—e7?)

= (=1)'™ ch(M(w(X + p) — p)).

weWw

ch(L(})) =

Lemma 3 (T Lemma 12.1.6). For z € 3, zm = xay,(2)m.

Proof. We decompose z into u+ v where z € U(h) and v € n~U(g) + U(g)n. Then

zm = um = Au)m = xap,(2)m. O

Proposition 3 (MM Proposition 12.1.7). Let M be a highest weight module
with highest weight A. The M has a decomposition series with finite length and
each composition factor of it has the form L(u) where up < A and p+p € W(A+p).



Proof. If M is simple then we are done. If M is not simple, then we take a nonzero
proper submodule N C M. Let ;i be a maximal weight of N and 0 # n € N,, then
U(g)m C N is a highest weight module with highest weight . x,4,(2)n = 2n =
Xatp(2)n for all z € 3. So xutp = Xo4p- We have pp < X and p+p € W(A+ p).
Replace M by N and repeat the process. We can repeat only finitely many times
and obtain a simple U(g)-module Ny, which is a highest weight module with highest
weight 1. Ny = L(pq). Replace M by M /N; and repeat the process. We obtain a
sequence

O:N()CN1CNQC"',

the composition factors of which have the form L(u) for some p < A and p+ p €
W (A4 p). Since [W(A+p)| < oo and L(p) can occur no more than dim(M,,) times,

the sequence is finite. O

Fix a equivlence class A = W(A + p) — p. Let a, the the multiplicity of L(u)
appearing in the deconposition series of M (). We have a,) # 0 only if u ~ A and
<A ax = 1. Let (b,y) be the inverse matrix of (a,y). Then b, € Z and

N) =3 a ch(L(1))

HEA

) =3 burch(M(1)

HEA

It suffices to compute b,,.

0.2 Kazhdan-Lusztig Conjecture

The problem is answered when A = W (—p) —p. In this case, A C P. We are consid-
ering objects M (—w(p) — p), L(—wp— p) € Mod(g, x,, B) = Mod,;,(Dx, B). Every
object in Mody(g, x,, B) has a composition series of finite length, which is proved
similarly as in the proof above. We consider the Grothdieck group K (Mod(g, x,, B)).
We have

[L(—wp—p)] = > byu[M(~yp— p)].
yeWw

[M(=wp —p)] = > ayu[L(—=yp — p)]-

yeWw
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We want to compute by,,.

Definition 3. The Hecke algebra H(W) is the Z[q', ¢~'] algebra which is freely
generated by {7, | w € W} as a Z[¢', ¢~']-module with multiplicative relations

TyTw = Tyw, if l(yw) = I(y) + l(w).

(Ts+1)(Ts — q) =0, if seW.

Proposition 4 (1T Proposition 12.2.3). There exists a unique family {P,.,(¢)}

of polynomials in Z[q] satisfying the following conditions:
Pyw(q) =0if y £ w,

wa,w(Q) - ]-7

aca(P, () < W]

Z Py,w(q>Ty = ql(w) Z Py,w(qil)Tyf_ll.

y<w y<w

if y < w,

Conjecture 1 (Kazhdan-Lusztig).

Definition 4. For each w € W we define
X, = BwB/B.

Here w is seen as an element in W = Ng(H)/H. The Schubert variety is defined as

Xu.

Proposition 5 ("7 Theorem 9.9.4, 9.9.5). X is the disjoint union of {X,, | w €
W}. Each X, is isomorphic to C'). X, = ][, .., X

y<w W
We denote by IC(Cy,) the intersection complex on X,, and set
C%, = IC(Cx,)[— dim(X,,)].

We'll show that the Kazhdan-Lusztig conjecture is reduced the theorem below.



Theorem 2 (Kazhdan-Lusztig, HT" Theorem 12.2.5). For any y, w € W, we have
> dim(H'(CY, ),6)a"” = Pyula).
In particular, We have H'(C%,_ ), = 0 for all odd 7 and

Z(_l)j dim(Hj(Cgfw)yB) = Pyﬂﬂ(l)'

J
Let My, = Dx ®u(g) M(—w(p) — p), Lo = Dx Qu(g) L(—w(p) — p), and
Ny = / Ox, = (iw):(Dxex, ®py, Ox,)-
N, € Mod.(Dy, B) = ModT:(DX, B).
Lemma 4 (U Lemma 12.3.1). Let w € W. Then

(i) ch(I'(X,Ny)) = ch(M(—w(p)—p)). In particular, [M,] = [N,] in K(Mod,,(Dx, B)).

(i) The only Dy submodule of A,, whose support is contained in X,, — X, is 0.

Proof. Define two subalgebras of g:

n = @ J—a; Ny = @ Ja-

aeATNw(AT) acATN—w(AT)

Let the corresponding unipotent subgroup of G be N; and N, respectively. Define
a morphism ¢ : Ny x N, — X by

o(ny,n2) = ninowB/B.

Then ¢ is an open embedding. ¢({e} x N2) = X,,. Let V = im(y), we have the

commutative diagram

Ny X Ny LA /i s X
N2:{€}XN2—>XU,

S0
L(X,N,) =T (X, (iw)s (Dxex, @y, Ox,))
=I'(Xu, Dxcx, ®py, Ox.,)
=I'(Xu, Dvex, ®py, Ox,)

g]'—‘(‘Z\&? DN1 X No<4—No ®DN2 ONQ)



DyiscNgen, = (DN1><{€} ®0N1x{e} C) Qc (ng\)h_i{e} ®0N1x{e} C) ®Oc ®CF(N2’N2)'
First, Dy, = U(ny) ®c Ox, 80 Dy, e DO, w1} C = U(ny). Second,
Q%h_i{e} ®0N1x{e} C= /\dim(nl)(nl Q®c OX) ®ox C= /\dim(nl)nl'

[a-d

Finally, the exponential map gives the isomorphism n, & Ny. Therefore, I'(Na, N>)
[(ng, On,) = S(nd).

ch(I'(X, Ny)) = ch(U(ny)) ch(/\dim("l)nl) ch(S(n})).
We compute that

1
ca@m)= J[ (+evre™ro= [ —=
aeA+tnw(At) aEATNw(AT) c

Ch(/\dim(m)) _ ezaeA+mw(A+) —a _ —~w(p)=p

I

and

— e :
acATN—w(AT) acATN—w(AT)

So
e_w(p) —-p

e = O wlo) =)

Set Z =X —V and j : V — X be the open embedding, we have a distinguished

ch(T'(X,Ny)) =

traingle

RT(N,,) y N, > (N —E

By definition, N,, — j.(N,) is an isomorphism, so R['z(N,,) = 0. So I'z(N,).
Hence the only Dy submodule of N,, whose support is contained in Z is 0. Since

X, — X, C Z, the assertion follows. O

Let £(X,, Ox,,) be the minimal extension of the Dx, -module X,,. £(X,,Ox,) €
Mod, (D, B).

Proposition 6 (™) Lemma 12.3.2). Let w € W. Then we have
(1)
;Cw - E(Xw, OXw)

9



(i)

Proof. Since X" is simply connected, simple objects in Mod,,(Dx, B) is given
by {£L(Xu,Ox,) | y € W}. On the other hand, simple objects in Mod¢(g, B, x—,)
is given by {L(—w(p) — p)}. So for each w € W, there is a y € W such that
L, = L(X,,0Ox,). For this y, £L(X,, Ox,) is a composition factor of M,, and hence
one of N,,. Since N,, is supported on X, = Hw'gw X, y < w. The induction on
Bruhat order gives the equality.

Since {L£(Xy,O0x,) | y € W} are self dual, for all M € Mod,,(Dx, B), the

composition factors of M and those of (M) coincide. In particular, we get
ch(D(Ny)) = ch(Ny) = ch(M(=w(p) = p))-

U(g)T(X, D(Ny))—w(p)—p is @ highest weight module with highest weight —w(p) —p).

Thus we have an exact sequence
M(—w(p) — p) = I'(X,D(N,)) = N = 0.
Tensoring Dx over U(g) and we get
My — DWN,) = N — 0.
Taking dual and we get
0—DW)—= N, = D(M,)

L, isn’t in the set of composition factors of D(N'), so the support of D(N) is in
Xy — Xy We get DIN) = 0, N = 0, and N = 0. So we have a surjective
homomorphism M (—w(p) — p) = I'(X,D(N,)). The injectivity follows from that
ch(Ny) = ch(M(=w(p) — p)). 0

Corollary 1 (™1 Corollary 12.3.3). The Riemann-Hilbert correspondence gives
DRx(Mw) = (CXw [dlm(Xw)]

and

DRy (L) = C%_ [dim(X,,)].

10



To prove the conjecture, it suffices to prove that

[Lo] =) (1) B, ,(1)[M,]

y<w

in K(Mod,(Dx, B). We define a Z-module homomorphism ¢ : K(Mod,,(Dx, B) —
Z[W] given by

p(IM) =) (Z(_lydim(Hi(DRX(M))yB)> Y-

Form the corollary above, we have p([M,]) = (=1)"")m, so ¢ is an isomorphism.

Assume the Kazhdan-Lusztig theorem and we get

P(lLal) =) (Z(—l)i dim(Hi(DRx(Ew))yB)> y

yew 7

= <Z(_1)idim<Hi((C7er [dim(Xw)]))yB)) y

yew i

:(_1)l(w) Z Pyw(l)y

yeWw

=(=1)" P, (1) ([Mau)).

0.3 Sketch of the Proof of Kazhdan-Lusztig The-
orem

Let AG be the diagonal group of G x G and act diagonally on X x X. AG- orbits
of X x X has a natural bijection to {X,} given by

Zy = AG(eB,wB) <> X,

Let pr : XxX — X, i : X - X xX(k=1,2) be given by p;(a,b) = a, p2(a,b) =,
i1(b) = (eB,b), iz(a) = (a,eB).
Proposition 7 (1T Proposition 13.1.2). ix(k = 1,2) induce equivlences of cat-

egories:

Z;; : 1\/[Odc(DX><X7 AG) = 1\/10(16(DX7 B)

11



Since X x X has only finite AG-orbits, Mod.(Dx«x, AG) = Mod,;(Dxxx, AG).
For w € W, consider the embedding j,, : Z, — X x X and set

X/’w - / OZwa Mw = D(Nw)v Ew - ‘C(Zw’ozw)‘
Jw
They are in Mod.(Dxxx, AG). Moreover,
TN = Noy (M) = Muy, i1(La) = Lu,

i3(Nw) = N, i5(Ma) = Moy, i3(L4) = Ly,

Proposition 8 (T Proposition 13.1.5). Let p13 : X x X x X — X x X and
r: X x X xX — X xXxX x X be given by pi3(a,b,c) = (a,c) and r(a,b,c) =
(a,b,b,c). Then K(Mod.(Dxxx,AG)) has a ring structure given by

RED SEIR ( /

and K(Mod.(Dxxx,AG)) is isomorphic to Z[W] by the correspondence //\/tvw YRS
(—1) @)y,

r*(/\7&/\7)>

13

We should consider the categories of Hodge modules (T 8.3) to relate the
objects and the Hecke algebra H(WW). We need the categories SH(n), SH(n)?,
and MHM(Y). An object in MHM(Y) is a tuple (M, F, K,W), where M €
Mod,(Dy), F is a good filtration of M, K € Perv(Y)/Q such that DRy (M) =
C®gK, and W is an increasing filtration of the tuple (M, F, K).

Consider R = K(MHM (pt)) = K(SHM?) (W11 (m12), p.224). R =@, ., R
where R, = K(SH(n)?). The unit is Q. The morphism ¢" + [Q"[—n]] gives R a
Zlq,q ']-algebra structure q € R.

Consider the category K(MHM (X x X, AG)). It has a ring structure

Vil - V] = (=)0 Y (1Y [H (prar* (Vi R V)]

J
(ITTT] Equation 13.2.7.)

The tensor product

MHM(pt) x MHM(X x X,AG) = MHM(X x X, AG)

12



gives K(MHM (X x X,AG)) a R-algebra structure.

For w € W we set

H

No =(jw)%(QF. [dim(Z,)]), M, = (ju)(QF, [dim(Z,)]),

L,y =(juw)(QF, [dim(Z,)]) = ICIE € MHM(X x X, AG).

The underlying D-modules are N, M, L, respectively. InMTT they defined a

R-algebra isomorphism
F:KMHM(X x X,AG)) = R®gq 1 HW)

by F(ML]) = (=1)!®T, (MTT Theorem 13.2.8) and for each w € W a R-
module homomorphism F, : K(MHM(X x X,AG)) — R given by F(m) =
> wew (D F,(m)T,, (M7 Equation 13.2.26). The morphisms {F,} satisfying
that

Y CDMHMGE O] = Fu(VDIQZ, [dim(Z,)]]

k
(ITT] Equation 13.2.25). Next, they defined

C,=(-)'“F(L,) =S F,T, (P, €R)

y<w

(MTT) Equation 13.2.34). Put m = [[£..]] in™TT Equation 13.2.26 and get

(=)D N (DM GE(L,)] = Py, [QF, [dim(Z,)]

k
(IMTT] Equation 13.2.38). Comparing the weight and relations ™™™ Equation 13.2.35,
13.2.36, 13.2.37 of {F, ,}, they proved F,, = P,.(q) and thus C}, = C,, :=
> y<w Pow(@) Ty
Proposition 9 (17T Proposition 13.2.9). If y < w, Hk(];;(Zf)) has pure weight
dim(Z,) + k.

With this proposition, they can write H*(jX* (Zf)) =N ® ng [dim(Z,)] where

Z, € SH(k + l(w) — I(y))P. BT Equation 13.2.38 gives

S (1) HOEN] = P,y = eyl
k
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Since ¢ € Ry, we have [Ni] = 0 if k + I(w) — I(y) is odd and [Ni] = ¢,;¢° if
k+1l(w)—1(y) =2j. Thus dlm(Hk(j$(Zg))) = Cywj if k+1(w) —I(y) =25 and 0
if £+ l(w) —I(y) = 2j is odd. Kazhdan-Lusztig theorem follows.
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