D-module Final Report I

Hung Chiang

June 13, 2017

0.1 Borel-Weil-Bott Theorem

Let G/k be a connected semi-simple algebraic group, T be a maximal torus of G, B be a Borel subgroup of G containing T, N be the unipotent part of B, and Xbe the flag variety G/B. We thus has a choice of positive roots Δ^+ , simple roots $\Pi = \{\alpha_1, \dots, \alpha_l\}$, and Weyl vector $\rho = \frac{\alpha_1 + \dots + \alpha_l}{2}$. Let P be the weight lattice. For each $\lambda \in L = \operatorname{Hom}_k(B/N, k^*)$, we have a equivariant G-line bundle $\mathcal{L}(\lambda)$ on X(^[HTT] p.255). Set

$$P_{sing} = \{ \lambda \in P \mid \exists \alpha \in \Delta, \langle \lambda - \rho, \alpha^{\vee} \rangle = 0 \},$$
$$P_{reg} = P - P_{sing}.$$

Define a shifted action of W on P by

$$w \bigstar \lambda = w(\lambda - \rho) + \rho.$$

Theorem 1 (Borel-Weil-Bott, ^[HTT] 9.11.2.). Assume $\lambda \in L \subset P$.

(i) If ⟨λ, α[∨]⟩ ≤ 0 for all α ∈ Δ⁺, then L(λ) is generated by global sections. That is, the natural morphism

$$\mathcal{O}_X \otimes_k \Gamma(X, \mathcal{L}(\lambda)) \to \mathcal{L}(\lambda)$$

is surjective.

- (ii) $\mathcal{L}(\lambda)$ is ample if and only if $\langle \lambda, \alpha^{\vee} \rangle < 0$ for all $\alpha \in \Delta^+$.
- (iii) Assume char(k) = 0.
 - (a) If $\lambda \in P_{sing}$, then $H^i(X, \mathcal{L}(\lambda)) = 0$ for all $i \ge 0$.
 - (b) Let $\lambda \in P_{reg}$ and take $w \in W$ such that $w \bigstar \lambda \in -P^+$. Then

$$H^{i}(X, \mathcal{L}(\lambda)) = \begin{cases} L^{-}(w \bigstar \lambda) & \text{if } i = l(w), \\ 0 & \text{otherwise.} \end{cases}$$

0.2 Berlinson-Bernstein Theorems

From now on we assume $k = \mathbb{C}$. For every smooth variety Y and locally free \mathcal{O}_Y -module of finite rank \mathcal{V} , we consider the sheaf of differential operators on \mathcal{V} , $D_Y^{\mathcal{V}} \subset \mathscr{E}nd_{\mathbb{C}_Y}(\mathcal{V})$. $D_Y^{\mathcal{V}}$ is isomorphic to $\mathcal{V} \otimes_{\mathcal{O}_Y} D_Y \otimes_{\mathcal{O}_Y} \mathcal{V}^*$. There's a natural filtration

$$F_p(D_Y^{\mathcal{V}}) = 0 \text{ for all } p < 0,$$

$$F_p(D_Y^{\mathcal{V}}) = \{P \mid fP - Pf \in F_{p-1}(D_Y^{\mathcal{V}}) \forall f \in \mathcal{O}_Y\} \text{ for all } p \ge 0.$$

Assume K is alinear algebraic group acting on Y and \mathcal{V} is a K-equivlent vector bundle. There is a natural morphism $\partial : U(\mathfrak{k})$ to $\Gamma(Y, D_Y^{\mathcal{V}})$. Let $a \in \mathfrak{k}$, then ∂_a is defined by

$$(\partial_a s)(y) = \frac{d}{dt} (\exp(ta)s(\exp(-ta)y))|_{t=0} \ (s \in \mathcal{V}, y \in Y).$$

Here exp is the exponential map w.r.t right invariant vector fields. Algebraically, let $\varphi: p_2^* \mathcal{V} \cong \sigma^* \mathcal{V}$, then ∂_a is determined by

$$\phi((a \otimes 1) \cdot \varphi^{-1}(\sigma^* s)) = \sigma^*(\partial_a s)$$

Here a is regarded as right invariant vector fields on K acting on $k[K](^{[HTT]}$ Equation 11.1.7).

Consider X. Let $D_{\lambda} := D_X^{\mathcal{L}(\lambda+\rho)}$. We have $\Phi_{\lambda} : U(\mathfrak{g}) \to \Gamma(X, D_{\lambda})$.

Definition 1. Let \mathfrak{z} be the center of $U(\mathfrak{g}) = U(\mathfrak{h}) \oplus (\mathfrak{n}^- U(\mathfrak{g}) + U(\mathfrak{g})\mathfrak{n})(^{[\text{HTT}]}$ Equation 9.4.7). Let p be the projection from $U(\mathfrak{g})$ to $U(\mathfrak{h})$. f be the automorphism of $U(\mathfrak{h})$ defined by $f(h) = h - \rho(h)1$ for $h \in \mathfrak{h}$. For each $\lambda \in \mathfrak{h}^*$, define the central character

$$\chi_{\lambda}(z) = (f \circ p(z))(\lambda) \text{ for all } z \in \mathfrak{z}.$$

Proposition 1 (^[HTT] Theorem 11.2.2). Let $\lambda \in L$. Then $\Phi_{\lambda} : U(\mathfrak{g}) \to \Gamma(X, D_{\lambda})$ is surjective. Let \mathfrak{z} be the center of $U(\mathfrak{g})$. Then $\Phi_{\lambda}(z) = \chi_{\lambda}(z)$ for all $z \in \mathfrak{z}$. Moreover, $\ker(\Phi_{\lambda}) = U(\mathfrak{g})(\ker(\chi_{\lambda})).$

We assume the proposition.

Let $\operatorname{Mod}_{qc}(D_{\lambda})$ be the abelian category of D_{λ} -modules which are quasi-coherent over \mathcal{O}_X and $\operatorname{Mod}(\mathfrak{g})$ be the category of $U(\mathfrak{g})$ -modules. We have additive functors

$$\Gamma(X, \cdot) : \operatorname{Mod}_{qc}(D_{\lambda}) \to \operatorname{Mod}(\mathfrak{g}),$$

$$D_{\lambda} \otimes_{U(\mathfrak{g})} (\cdot) : \operatorname{Mod}(\mathfrak{g}) \to \operatorname{Mod}_{qc}(D_{\lambda}).$$

We have adjointness

$$\operatorname{Hom}_{D_{\lambda}}(D_{\lambda} \otimes_{U(\mathfrak{g})} M, \mathcal{N}) \cong \operatorname{Hom}_{U(\mathfrak{g})}(M, \Gamma(X, \mathcal{N})).$$

Let $\operatorname{Mod}(\mathfrak{g}, \chi)$ be the category of $U(\mathfrak{g})$ -modules with central character χ and $\operatorname{Mod}_f(\mathfrak{g}, \chi)$ be the full subcategory of $\operatorname{Mod}(\mathfrak{g}, \chi)$ of finitely generated $U(\mathfrak{g})$ -modules. The proposition shows that $\operatorname{Mod}(\mathfrak{g}, \chi_{\lambda}) \cong \operatorname{Mod}(\Gamma(X, D_{\lambda}))$.

Theorem 2 (^[HTT] Theorem 11.2.3 & 11.2.4). Let $\lambda \in L$.

1. Suppose

$$\langle \lambda, \alpha^{\vee} \rangle \le 0 \text{ for all } \alpha \in \Delta^+.$$
 (1)

That is, $\lambda \in -P^+$. Then for all $\mathcal{M} \in \operatorname{Mod}_{qc}(D_\lambda)$ we have $H^k(X, \mathcal{M}) = 0$ for all k > 0.

2. Suppose

$$\langle \lambda, \alpha^{\vee} \rangle < 0 \text{ for all } \alpha \in \Delta^+.$$
 (2)

Then for all $\mathcal{M} \in \operatorname{Mod}_{qc}(D_{\lambda})$, the natural morphism

$$D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}) \to \mathcal{M}$$

is surjective.

Proof. For $v \in -P^+$, Borel-Weil-Bott theorem says $\Gamma(X, \mathcal{L}(v)) = H^0(X, \mathcal{L}(v)) = L^-(v)$ and $p_v : \mathcal{O}_X \otimes_{\mathbb{C}} L^-(v) \to \mathcal{L}(v)$ is surjective. Since $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{L}(v), \mathcal{O}_X) = \mathcal{L}(-v)$ and $\operatorname{Hom}_{\mathbb{C}}(L^-(v), \mathbb{C}) = L^+(-v)$, we have $\mathcal{L}(-v) \hookrightarrow \mathcal{O}_X \otimes_{\mathbb{C}} L^+(-v)$. Apply $\mathcal{L}(v) \otimes_{\mathcal{O}_X} (\cdot)$, we have $i_v : \mathcal{O}_X \hookrightarrow \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v)$. Since $\mathcal{L}(v)$ is a line bundle, $\operatorname{ker}(p_v)$ is a direct summand of $\mathcal{O}_X \otimes_{\mathbb{C}} L^-(v)$ as an \mathcal{O}_X -module locally. Therefore, $\operatorname{im}(i_v)$ is a direct summand of $\mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v)$ as an \mathcal{O}_X -module locally.

Let $\lambda \in L$ and \mathcal{M} be a D_{λ} -module. Apply $\mathcal{M} \otimes_{\mathcal{O}_X} (\cdot)$, we get

$$\overline{p_v}: \mathcal{M} \otimes_{\mathbb{C}} L^-(v) \twoheadrightarrow \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v),$$
$$\overline{i_v}: \mathcal{M} \hookrightarrow \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v).$$

- **Proposition 2** (^[HTT] Proposition 11.4.1). (i) If λ satisfies (2), then ker($\overline{p_v}$) is a direct summand of $\mathcal{M} \otimes_{\mathbb{C}} L^-(v)$ as a sheaf of abelian groups.
 - (ii) If λ satisfies (1), then $\operatorname{im}(\overline{i_v})$ is a direct summand of $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v)$ as a sheaf of abelian groups.

Suppose λ satisfies (1). For all $\mathcal{M} \in \operatorname{Mod}_{qc}(D_{\lambda})$,

$$H^k(X, \mathcal{M}) = \lim H^k(X, \mathcal{N})$$

where \mathcal{N} runs over all coherent \mathcal{O}_X -submodule of \mathcal{M} . It suffices to prove that the natural map $H^k(X, \mathcal{N}) \to H^k(X, \mathcal{M})$ is the zero map. Fix \mathcal{N} . Borel-Weil-Bott theorem says $\mathcal{L}(v)$ is ample if and only if v satisfies (2). Hence there is a $v \in L \cap -P^+$ such that $H^k(X, \mathcal{N} \otimes_{\mathcal{O}_X} \mathcal{L}(v)) = 0$ for all k > 0. For this v, consider the commutative diagram

 $\overline{i_{v_*}}$ is injective. On the other hand, $H^k(X, \mathcal{N} \otimes_{\mathcal{O}_X} \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v)) = H^k(X, \mathcal{N} \otimes_{\mathcal{O}_X} \mathcal{L}(v)) \otimes_{\mathbb{C}} L^+(-v) = 0$ for all k > 0. So $H^k(X, \mathcal{N}) \to H^k(X, \mathcal{M})$ is the zero map.

Suppose λ satisfies (2). For given $\mathcal{M} \in \operatorname{Mod}_{qc}(D_{\lambda})$, set \mathcal{M}' be the image of $D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}) \to \mathcal{M}$ and \mathcal{M}'' be the cokernel of it. If $\mathcal{M}'' \neq 0$, let $\mathcal{N} \subset \mathcal{M}''$ be a nonzero coherent \mathcal{O}_X -submodule. There is a $v \in L \cap -P^+$ such that $\mathcal{N} \otimes_{\mathcal{O}_X} \mathcal{L}(v)$ is generated by global sections. In this case, $\Gamma(X, \mathcal{N} \otimes_{\mathcal{O}_X} \mathcal{L}(v)) \neq 0$, neither is $\Gamma(X, \mathcal{M}'' \otimes_{\mathcal{O}_X} \mathcal{L}(v))$ On the other hand,

$$\overline{p_v}_*: \Gamma(X, \mathcal{M}'') \otimes_{\mathbb{C}} L^-(v) = \Gamma(X, \mathcal{M}'' \otimes_{\mathbb{C}} L^-(v)) \to \Gamma(X, \mathcal{M}'' \otimes_{\mathcal{O}_X} \mathcal{L}(v))$$

is surjective. So $\Gamma(X, \mathcal{M}') \neq 0$. Consider the exact sequence

$$0 \to \Gamma(X, \mathcal{M}') \to \Gamma(X, \mathcal{M}) \to \Gamma(X, \mathcal{M}'') \to 0.$$

By definition, $\Gamma(X, \mathcal{M}) = \Gamma(X, D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M})) \twoheadrightarrow \Gamma(X, \mathcal{M}')$. So $\Gamma(X, \mathcal{M}') = \Gamma(X, \mathcal{M})$ and hence $\Gamma(X, \mathcal{M}'') = 0$. So \mathcal{M}'' must be 0. The isomorphism $\Gamma(X, \mathcal{M}) = \Gamma(X, D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}))$ is proved in the proof of Corollary 1.

0.3 Equivalences of Categories

For $\lambda \in L$ satisfying (1), we denote $\operatorname{Mod}_{qc}^{e}(D_{\lambda})$ the full subcategory of $\operatorname{Mod}_{qc}(D_{\lambda})$ consisting of objects \mathcal{M} satisfying that

(a) $D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}) \to \mathcal{M}$ is surjective.

(b) For all nonzero subobject $\mathcal{N} \subset \mathcal{M}$ in $\operatorname{Mod}_{qc}(D_{\lambda})$, we have $\Gamma(X, \mathcal{N}) \neq 0$.

Set $\operatorname{Mod}_{c}^{e}(D_{\lambda}) = \operatorname{Mod}_{ac}^{e}(D_{\lambda}) \cap \operatorname{Mod}_{c}(D_{\lambda}).$

Corollary 1. $\Gamma(X, \cdot)$ induces equivlences of categories

$$\operatorname{Mod}_{ac}^{e}(D_{\lambda}) \cong \operatorname{Mod}(\mathfrak{g}, \chi_{\lambda}), \qquad \operatorname{Mod}_{c}^{e}(D_{\lambda}) \cong \operatorname{Mod}_{f}(\mathfrak{g}, \chi_{\lambda}).$$

Proof. We first prove that $M \to \Gamma(X, D_{\lambda} \otimes_{U(\mathfrak{g})} M)$ is an isomorphism for all $M \in Mod(\mathfrak{g}, \chi_{\lambda})$. For given $M \in Mod(\mathfrak{g}, \chi_{\lambda})$, consider an exact sequence

$$\Gamma(X, D_{\lambda})^{\oplus I} \to \Gamma(X, D_{\lambda})^{\oplus J} \to M \to 0.$$

From Theorem 2.1, $\Gamma(X, \cdot)$: $\operatorname{Mod}_{qc}(D_{\lambda}) \to \operatorname{Mod}(\mathfrak{g}, \chi_{\lambda})$ is an exact functor. So $\Gamma(X, D_{\lambda} \otimes_{U(\mathfrak{g})} (\cdot))$ is right exact. We have an commutative diagram with exact rows

$$\begin{split} \Gamma(X, D_{\lambda})^{\oplus I} & \longrightarrow & \Gamma(X, D_{\lambda})^{\oplus J} & \longrightarrow & M & \longrightarrow & 0 \\ & & \downarrow^{\mathrm{id}} & & \downarrow^{\mathrm{id}} & & \downarrow \\ \Gamma(X, D_{\lambda})^{\oplus I} & \longrightarrow & \Gamma(X, D_{\lambda})^{\oplus J} & \longrightarrow & \Gamma(X, D_{\lambda} \otimes_{U(\mathfrak{g})} M) & \longrightarrow & 0. \end{split}$$

So $M \cong \Gamma(X, D_{\lambda} \otimes_{U(\mathfrak{g})} M)$.

Now we show that $\Gamma(X, \cdot) : \operatorname{Mod}_{qc}^{e}(D_{\lambda}) \to \operatorname{Mod}(\mathfrak{g}, \chi_{\lambda})$ is fully faithful. That is, for all $\mathcal{M}_{1}, \mathcal{M}_{2} \in \operatorname{Mod}_{qc}^{e}(D_{\lambda})$,

$$\Gamma : \operatorname{Hom}_{D_{\lambda}}(\mathcal{M}_{1}, \mathcal{M}_{2}) \to \operatorname{Hom}_{U(\mathfrak{g})}(\Gamma(X, \mathcal{M}_{1}), \Gamma(X, \mathcal{M}_{2}))$$

is an isomorphism. Since $D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}_1) \to \mathcal{M}_1$ is surjective, we have

$$\operatorname{Hom}_{D_{\lambda}}(\mathcal{M}_{1}, \mathcal{M}_{2}) \hookrightarrow \operatorname{Hom}_{D_{\lambda}}(D_{\lambda} \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}_{1}), \mathcal{M}_{2})$$
$$\cong \operatorname{Hom}_{U(\mathfrak{g})}(\Gamma(X, \mathcal{M}_{1}), \Gamma(X, \mathcal{M}_{2})).$$

Assume $\phi \in \operatorname{Hom}_{U(\mathfrak{g})}(\Gamma(X, \mathcal{M}_1), \Gamma(X, \mathcal{M}_2))$. Let \mathcal{K}_1 be the kernel of $D_{\lambda} \otimes_{U(\mathfrak{g})}$ $\Gamma(X, \mathcal{M}_1) \to \mathcal{M}_1$. Apply the exact functor $\Gamma(X, \cdot)$ on the exact sequenct

$$0 \to \mathcal{K}_1 \to D_\lambda \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}_1) \to \mathcal{M}_1 \to 0$$

and we get the exact sequence

$$0 \to \Gamma(X, \mathcal{K}_1) \to \Gamma(X, \mathcal{M}_1) \to \Gamma(X, \mathcal{M}_1) \to 0.$$

So $\Gamma(X, \mathcal{K}_1) = 0$. Let \mathcal{K}_2 be the image of

$$\mathcal{K}_1 \longrightarrow D_\lambda \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}_1) \xrightarrow{1 \otimes \phi} D_\lambda \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}_2) \longrightarrow \mathcal{M}_2.$$

Since $\Gamma(X, \cdot)$ is exact and $\Gamma(X, \mathcal{K}_1) = 0$, $\Gamma(X, \mathcal{K}_2) = 0$. So $\mathcal{K}_2 = 0$. hence we obtain $\psi : \mathcal{M}_1 \cong D_\lambda \otimes_{U(\mathfrak{g})} \Gamma(X, \mathcal{M}_1) / \mathcal{K}_1 \to \mathcal{M}_2$ with $\Gamma(\psi) = \phi$.

Next, we prove that $\Gamma(X, \cdot) : \operatorname{Mod}_{qc}^{e}(D_{\lambda}) \to \operatorname{Mod}(\mathfrak{g}, \chi_{\lambda})$ is essentially surjective. Given $M \in \operatorname{Mod}(\mathfrak{g}, \chi_{\lambda})$. Let \mathcal{L} be a maximal element of the set of subobjects \mathcal{K} of $D_{\lambda} \otimes_{U(\mathfrak{g})} M$ in $\operatorname{Mod}_{qc}(D_{\lambda})$ satisfying that $\Gamma(X, \mathcal{K}) = 0$. Set $\mathcal{M} = D_{\lambda} \otimes_{U(\mathfrak{g})} M/\mathcal{L}$. Then $\Gamma(X, \mathcal{M}) = \Gamma(X, D_{\lambda} \otimes_{U(\mathfrak{g})} M)/\Gamma(X, \mathcal{L}) = M$. $D_{\lambda} \otimes_{U(\mathfrak{g})} M \to \mathcal{M}$ is surjective. For all $\mathcal{N} \subset \mathcal{M}$, the maximality of \mathcal{L} shows that $\Gamma(X, \mathcal{N}) \neq 0$. So $\mathcal{M} \in \operatorname{Mod}_{qc}^{e}(D_{\lambda})$.

Finally, we have to show that $\operatorname{Mod}_c^e(D_\lambda)$ and $\operatorname{Mod}_f(\mathfrak{g},\chi_\lambda)$ correspond to each other. Let $M \in \operatorname{Mod}_f(\mathfrak{g},\chi_\lambda)$. $\Gamma(X,D_\lambda)$ is left-noetherian. There is an exact sequence

$$\Gamma(X, D_{\lambda})^{\oplus I} \to \Gamma(X, D_{\lambda})^{\oplus J} \to M \to 0$$

with $|I|, |J| < \infty$. Apply the right exact functor $D_{\lambda} \otimes_{U(\mathfrak{g})} (\cdot)$ on it and we get the exact sequence

$$D_{\lambda}^{\oplus I} \to D_{\lambda}^{\oplus J} \to D_{\lambda} \otimes_{U_{\mathfrak{g}}} M \to 0.$$

We get $D_{\lambda} \otimes_{U_{\mathfrak{g}}} M \in \operatorname{Mod}_{c}^{e}(D_{\lambda})$ and hence $\mathcal{M} = D_{\lambda} \otimes_{U_{\mathfrak{g}}} M/\mathcal{L}$.

Conversely, let $\mathcal{M} \in \operatorname{Mod}_c^e(D_\lambda)$. Since $D_\lambda \otimes_{U_{\mathfrak{g}}} \Gamma(X, \mathcal{M}) \to \mathcal{M}$ is surjective, \mathcal{M} is locally generated by finitely many global sections. Since X is quasi-compact, \mathcal{M} is globally generated by finitely many global sections. We have an exact sequence

$$D_{\lambda}^{\oplus I} \to \mathcal{M} \to 0$$

where $|I| < \infty$. Apply $\Gamma(X, \cdot)$ on it and we get the exact sequence

$$\Gamma(X, D_{\lambda})^{\oplus I} \to \Gamma(X, \mathcal{M}) \to 0$$

Hence $\Gamma(X, \mathcal{M})$ is an finitely generated $U(\mathfrak{g})$ -module.

Suppose λ satisfies (2). Then $\operatorname{Mod}_{qc}(D_{\lambda}) = \operatorname{Mod}_{qc}^{e}(D_{\lambda})$. In this case, we have Corollary 2. $\Gamma(X, \cdot)$ induces equivlences of categories

$$\operatorname{Mod}_{qc}(D_{\lambda}) \cong \operatorname{Mod}(\mathfrak{g}, \chi_{\lambda}), \qquad \operatorname{Mod}_{c}(D_{\lambda}) \cong \operatorname{Mod}_{f}(\mathfrak{g}, \chi_{\lambda}).$$

Let K be a closed subgroup of G. We consider K-equivariant \mathfrak{g} -modules. That is, a \mathfrak{g} -module with a K-action satisfying that

 \mathfrak{k} -actions obtained from the \mathfrak{g} -action and the K-action coincide. (3)

$$k \cdot (a \cdot m) = \operatorname{Ad}(k)(a) \cdot (k \cdot m) \text{ for all } k \in K, \ a \in \mathfrak{g}, \text{ and } m \in M.$$
(4)

We denote the full subcategory consisting of K-equivariant objects of $Mod(\mathfrak{g}, \chi)$ and $Mod_f(\mathfrak{g}, \chi)$ by $Mod(\mathfrak{g}, \chi, K)$ and $Mod_f(\mathfrak{g}, \chi, K)$, respectively.

We also introduce K-equivariant D-modules. Let K acts on Y. Consider morphisms $p_2: K \times Y \to Y$, $\sigma: K \times Y \to Y$, $m: K \times K \to K$ defined by $p_2(k, y) = y$, $\sigma(k, y) = ky$, $m(k_1, k_2) = k_1, k_2$. A K-equivariant D_Y -module is a D_Y -module \mathcal{M} with a isomorphism of $D_{K \times Y}$ -modules

$$\varphi: p_2^*\mathcal{M} \cong \sigma^*\mathcal{M}$$

satisfying the cocycle condition.

We consider categories $\operatorname{Mod}_{qc}(D_Y, K)$ and $\operatorname{Mod}_c(D_Y, K)$. For $\lambda = -\rho$, we have $\operatorname{Mod}(\mathfrak{g}, \chi_{-\rho}) \cong \operatorname{Mod}_{qc}(D_X)$ and $\operatorname{Mod}_f(\mathfrak{g}, \chi_{-\rho}) \cong \operatorname{Mod}_{qc}(D_X)$. **Theorem 3.** For any closed subgroup $K \leq G$, we have $\operatorname{Mod}(\mathfrak{g}, \chi_{-\rho}, K) \cong \operatorname{Mod}_{qc}(D_X, K)$ and $\operatorname{Mod}_f(\mathfrak{g}, \chi_{-\rho}, K) \cong \operatorname{Mod}_{qc}(D_X, K)$.

Proof. What we have to prove is K-equivariances defined on $\operatorname{Mod}(\mathfrak{g}, \chi_{-\rho})$ and $\operatorname{Mod}_{ac}(D_X)$ coincide.

Consider $\mathcal{M} \in \operatorname{Mod}_{qc}(D_X)$. K, X and $K \times X$ are all D-affine. So $D_{K \times X}$ modules are $\Gamma(K \times X, D_{K \times X}) = \Gamma(K, D_K) \otimes_{\mathbb{C}} \Gamma(X, D_X)$ -modules. Since $\Gamma(K, D_K) \cong$ $\Gamma(K, \mathcal{O}_K) \otimes_{\mathbb{C}} U(\mathfrak{k})$ and $\Gamma(X, D_X) \cong U(\mathfrak{g})/U(\mathfrak{g}) \operatorname{ker}(\chi_{-\rho}), D_{K \times X}$ -module structures are determined by actions of $\Gamma(K, \mathcal{O}_K) \otimes 1, \mathfrak{k} \otimes 1$ and $1 \otimes \overline{\mathfrak{g}}$.

 $\Gamma(K \times X, p_2^* \mathcal{M}) \cong \Gamma(K, \mathcal{O}_K) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M}).$ For $\sigma^* \mathcal{M}$, consider isomorphisms $\epsilon_1 : K \times X \to K \times X, \ \epsilon_2 : K \times X \to K \times X$ defined by $\epsilon_1(k, x) = (k, kx),$ $\epsilon_2(k, x) = (k, k^{-1}x). \ \epsilon_1 = \epsilon_2^{-1} \text{ and } \sigma = p_2 \circ \epsilon_1.$ So

$$\Gamma(K \times X, \sigma^* \mathcal{M}) \cong \Gamma(K \times X, \epsilon_1^* p_2^* \mathcal{M}) \cong \Gamma(K \times X, (\epsilon_2)_* p_2^* \mathcal{M})$$
$$\cong \Gamma(K \times X, p_2^* \mathcal{M}) \cong \Gamma(K, \mathcal{O}_K) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M}).$$

For given $h \in \Gamma(X, \mathcal{O}_X)$ and $m \in \Gamma(X, \mathcal{M})$, the element $h \otimes m \in \Gamma(K, \mathcal{O}_K) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M})$ corresponds to the global section $h \circ p_1 \otimes p_2^{-1}m$ of $p_2^*\mathcal{M} = \mathcal{O}_{K \times X} \otimes_{p_2^{-1}\mathcal{O}_X} p_2^{-1}\mathcal{M}$ and the global section $h \circ p_1 \otimes \sigma^{-1}m : (k, x) \mapsto (k, h(k)k^{-1} \cdot m(kx))$ of $\sigma^*\mathcal{M} = \mathcal{O}_{K \times X} \otimes_{\sigma^{-1}\mathcal{O}_X} \sigma^{-1}\mathcal{M}$. The $\Gamma(K, D_K) \otimes_{\mathbb{C}} \Gamma(X, D_X)$ -action on $p_2^*\mathcal{M}$. is

$$\begin{cases} (f \otimes 1) \cdot (h \otimes m) = fh \otimes m & \text{for all } f \in \Gamma(K, \mathcal{O}_K), \\ (a \otimes 1) \cdot (h \otimes m) = a \cdot h \otimes m & \text{for all } a \in \mathfrak{k}, \\ (1 \otimes \overline{p}) \cdot (h \otimes m) = h \otimes \overline{p} \cdot m & \text{for all } p \in \mathfrak{g}. \end{cases}$$

Consider the $\Gamma(K, D_K) \otimes_{\mathbb{C}} \Gamma(X, D_X)$ -action on $\sigma^* \mathcal{M}$. $(f \otimes 1) \cdot (h \otimes m) = fh \otimes m$ for all $f \in \Gamma(K, \mathcal{O}_K)$. $(a \otimes 1) \cdot (h \otimes m) = a \cdot h \otimes m - h \otimes \overline{a} \cdot m$ for all $a \in \mathfrak{k}$. Finally, $\frac{d}{dt} \exp(tp) k^{-1} m (k \exp(-tp)x)|_{t=0} = \frac{d}{dt} k^{-1} \exp(t \operatorname{Ad}(k)(p)) m (\exp(t \operatorname{Ad}(k)(p))kx)|_{t=0}.$ Let $\operatorname{Ad}(k)(p) = \sum_i h_i(k) p_i$. We have $(1 \otimes \overline{p}) \cdot (h \otimes m) = \sum_i hh_i \otimes \overline{p_i} \cdot m$ for all $p \in \mathfrak{g}$.

The K-equivariance of \mathcal{M} is equivlent to an $\Gamma(K, D_K) \otimes_{\mathbb{C}} \Gamma(X, D_X)$ -module isomorphism from $\Gamma(K, \mathcal{O}_K) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M}) \cong \Gamma(K \times X, p_2^* \mathcal{M})$ to $\Gamma(K \times X, \sigma^* \mathcal{M}) \cong$ $\Gamma(K, \mathcal{O}_K) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M})$ satisfying the cocycle condition. Since $\Gamma(K, \mathcal{O}_K)$ -actions on both sides are the same, the condition is a \mathbb{C} -module homomorphism

$$\widetilde{\varphi}: \Gamma(X, \mathcal{M}) = 1 \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M}) \to \Gamma(K, \mathcal{O}_K) \otimes_{\mathbb{C}} \Gamma(X, \mathcal{M})$$

satisfying the cocycle condition and

$$\widetilde{\varphi}((a \otimes 1) \cdot (1 \otimes m)) = (a \otimes 1) \cdot \widetilde{\varphi}(1 \otimes m) \text{ for all } a \in \mathfrak{k}, \ m \in \Gamma(X, \mathcal{M}).$$
(5)

$$\widetilde{\varphi}((1\otimes\overline{p})\cdot(1\otimes m)) = (1\otimes\overline{p})\cdot\widetilde{\varphi}(1\otimes m) \text{ for all } p\in\mathfrak{g}, \ m\in\Gamma(X,\mathcal{M}).$$
(6)

Let $\widetilde{\varphi}(m) = \sum_{j} g_{j} \otimes m_{j}$. The cocycle condition is equivlent to a *K*-representation structure of $\Gamma(X, \mathcal{M})$. (5) is

$$0 = \sum_{j} a \cdot g_j \otimes m_j - \overline{a} \cdot m.$$

 $a: m \mapsto \sum_j a \cdot g_j \otimes m_j$ is the \mathfrak{k} -action obtained from the K-action while $a: m \mapsto \overline{a} \cdot m$ is the \mathfrak{k} -action obtained from the \mathfrak{g} -action. So (5) is (3).

(6) is

$$\sum_{j} g_{j} \otimes \overline{p} \cdot m_{j} = \sum_{i,j} h_{i} g_{j} \otimes \overline{p_{i}} \cdot m_{j},$$

which is (4).

Theorem 4. Let Y be a smooth variety and K be a linear algebraic group action on Y. Suppose there are only finitely many K-orbits in Y. Then $\operatorname{Mod}_c(D_Y, K) \cong$ $\operatorname{Mod}_{rh}(D_Y, K)$. Moreover, the simple objects in $\operatorname{Mod}_c(D_Y, K)$ is parametrized by $\Upsilon(Y, K)$, the set of pairs (O, L), where $O \subset Y$ is an irreducible K-orbit and L is a K-equivariant local system on O^{an} .

Proof. We use induction on the number of K-orbits of Y. Suppose Y is a homogeneous K-space. Then $Y \cong K/K'$ for some $K' \leq K$. Consider morphisms $\sigma : K \times Y \to Y$ the natural action, $p_2 : K \times Y \to Y$ the second projection, $l : K \to \operatorname{Spec} \mathbb{C}, \pi : K \to Y$ the quotient map, $j : \operatorname{Spec}(\mathbb{C}) \to K, j(x) = K'$ and $i : K \to K \times Y, i(k) := (k^{-1}, kK')$. Then for any $\mathcal{M} \in \operatorname{Mod}_c(D_Y, K)$, we have

$$\pi^* \mathcal{M} = (p_2 \circ i)^* \mathcal{M} = i^* p_2^* \mathcal{M} \cong i^* \sigma^* \mathcal{M} = (\sigma \circ i)^* \mathcal{M}$$
$$= (j \circ l)^* \mathcal{M} = l^* j^* \mathcal{M} = \mathcal{O}_X \otimes_{\mathbb{C}} (j^* \mathcal{M}).$$

 $j^*\mathcal{M}$ is a finite dimensional \mathbb{C} -vector space, so $\pi^*\mathcal{M} \in \operatorname{Mod}_{rh}(D_K)$. Since π is smooth, $\mathcal{M} \in \operatorname{Mod}_{rh}(D_Y)$.

Now consider the general case. Let O be a closed K-orbit of Y and Y' = Y - O. Suppose $i : O \hookrightarrow Y$ and $j : \hookrightarrow Y$. Then we have the distinguish triagle

$$\int_i i^{\dagger} \mathcal{M} \longrightarrow \mathcal{M} \longrightarrow \int_j j^{\dagger} \mathcal{M} \xrightarrow{+1} \mathcal{M}$$

We have $i^{\dagger}\mathcal{M} \in D_{c}^{b}(D_{O})$ and $j^{\dagger}\mathcal{M} \in D_{c}^{b}(D_{Y'})$. By induction hypothesis, $i^{\dagger}\mathcal{M} \in D_{rh}^{b}(D_{O})$ and $j^{\dagger}\mathcal{M} \in D_{rh}^{b}(D_{Y'})$. We conclude that $\int_{i} i^{\dagger}\mathcal{M}, \int_{j} j^{\dagger}\mathcal{M} \in D_{rh}^{b}(D_{Y})$ and hence $\mathcal{M} \in \operatorname{Mod}_{rh}(D_{Y})$.

By Riemann-Hilbert correspondence, $\operatorname{Mod}_{rh}(D_Y, K) \cong \operatorname{Perv}(\mathbb{C}_Y, K)$, which is parametrized by $\Upsilon(Y, K)$.

In particular, *B* has only finite orbits in *X*. We conclude that simple objects in $\operatorname{Mod}_f(\mathfrak{g}, \chi_{-\rho}, B)$ are parametrized by $\Upsilon(X, B)$.

Bibliography

- [HTT] R. Hotta, K. Takeuchi, T. Tanisaki, D-modules, Perverse Sheaves, and Representation Theory.
- [S] T.A. Springer, *Linear Algebraic Groups*

D-module Final Report II

Hung Chiang

June 26, 2017

Proposition 1 (^[HTT] Proposition 9.4.5, proved in^[HC]). $\chi_{\lambda} = \chi_{\mu}$ if and only if λ and μ are in the same *W*-orbit.

$$\langle \lambda, \alpha^{\vee} \rangle \le 0 \text{ for all } \alpha \in \Delta^+.$$
 (1)

$$\langle \lambda, \alpha^{\vee} \rangle < 0 \text{ for all } \alpha \in \Delta^+.$$
 (2)

For $v \in -P^+$, Borel-Weil-Bott theorem says $\Gamma(X, \mathcal{L}(v)) = H^0(X, \mathcal{L}(v)) = L^-(v)$ and $p_v : \mathcal{O}_X \otimes_{\mathbb{C}} L^-(v) \to \mathcal{L}(v)$ is surjective. Since $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{L}(v), \mathcal{O}_X) = \mathcal{L}(-v)$ and $\operatorname{Hom}_{\mathbb{C}}(L^-(v), \mathbb{C}) = L^+(-v)$, we have $\mathcal{L}(-v) \hookrightarrow \mathcal{O}_X \otimes_{\mathbb{C}} L^+(-v)$. Apply $\mathcal{L}(v) \otimes_{\mathcal{O}_X} (\cdot)$, we have $i_v : \mathcal{O}_X \hookrightarrow \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v)$. Since $\mathcal{L}(v)$ is a line bundle, $\operatorname{ker}(p_v)$ is a direct summand of $\mathcal{O}_X \otimes_{\mathbb{C}} L^-(v)$ as an \mathcal{O}_X -module locally. Therefore, $\operatorname{im}(i_v)$ is a direct summand of $\mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v)$ as an \mathcal{O}_X -module locally.

Let $\lambda \in L$ and \mathcal{M} be a D_{λ} -module. Apply $\mathcal{M} \otimes_{\mathcal{O}_X} (\cdot)$, we get

$$\overline{p_v}: \mathcal{M} \otimes_{\mathbb{C}} L^-(v) \twoheadrightarrow \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v),$$
$$\overline{i_v}: \mathcal{M} \hookrightarrow \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v).$$

Proposition 2 (^[HTT] Proposition 11.4.1). (i) If λ satisfies (2), then ker($\overline{p_v}$) is a direct summand of $\mathcal{M} \otimes_{\mathbb{C}} L^-(v)$ as a sheaf of abelian groups.

(ii) If λ satisfies (1), then $\operatorname{im}(\overline{i_v})$ is a direct summand of $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v)$ as a sheaf of abelian groups.

Proof. Let

$$L^{-}(v) = L^{1} \supset L^{2} \supset \dots \supset L^{r} = 0$$

be a filtration of *B*-modules of $L^{-}(v)$ satisfying that L^{i}/L^{i+1} is the character μ_{i} of $B, \mu_{1} = v$, and $\mu_{i} < \mu_{j}$ only if i < j. Then we obtain corresponding filtrations

$$\mathcal{O}_X \otimes_{\mathbb{C}} L^-(v) = \mathcal{V}^1 \supset \mathcal{V}^2 \supset \cdots \supset \mathcal{V}^r = 0,$$

 $\mathcal{M} \otimes_{\mathbb{C}} L^-(v) = \overline{\mathcal{V}}^1 \supset \overline{\mathcal{V}}^2 \supset \cdots \supset \overline{\mathcal{V}}^r = 0,$

and

$$\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v) = \overline{\mathcal{W}}^r \supset \overline{\mathcal{W}}^{r-1} \supset \cdots \supset \overline{\mathcal{W}}^1 = 0.$$

The corresponding composition factors are

$$\overline{\mathcal{V}}^i/\overline{\mathcal{V}}^{i+1} \cong \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(\mu_i), \qquad \overline{\mathcal{W}}^{i+1}/\overline{\mathcal{W}}^i \cong \mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v-\mu_i).$$

Since $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(\mu)$ is a $D_{\lambda+\mu}$ -module, the action of \mathfrak{z} on it is $\chi_{\lambda+\mu}$. So we have

$$\prod_{i=1}^{r-1} (z - \chi_{\lambda + \mu_i}) (\mathcal{M} \otimes_{\mathbb{C}} L^-(v)) = 0$$

and

$$\prod_{i=1}^{r-1} (z - \chi_{\lambda + v - \mu_i}) (\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v)) = 0.$$

Seen as sheaves of abelian groups, $\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v)$ and $\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v)$ are equipped with locally finite \mathfrak{z} -actions and thus have decompositions into χ -primary parts:

$$\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v) = \bigoplus_{\chi} (\mathcal{M} \otimes_{\mathbb{C}} L^{-}(v))_{\chi},$$
$$\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v) = \bigoplus_{\chi} (\mathcal{M} \otimes_{\mathcal{O}_{X}} \mathcal{L}(v) \otimes_{\mathbb{C}} L^{+}(-v))_{\chi}$$

The morphisms $\overline{p_v}$ and $\overline{i_v}$ are $\overline{\mathcal{V}}^1 \to \overline{\mathcal{V}}^1/\overline{\mathcal{V}}^2$ and $\overline{\mathcal{W}}^2 \to \overline{\mathcal{W}}^r$, respectively. It suffices to prove that

- (i) If λ satisfies (2), then $\ker(\overline{p_v}) = (\mathcal{M} \otimes_{\mathbb{C}} L^-(v))_{\chi_{\lambda+v}}$. That is, $\chi_{\lambda+\mu_i} = \chi_{\lambda+v} \Leftrightarrow i = 1$.
- (ii) If λ satisfies (1), then $\operatorname{im}(\overline{i_v}) = (\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{L}(v) \otimes_{\mathbb{C}} L^+(-v))_{\chi_{\lambda}}$. That is, $\chi_{\lambda+v-\mu_i} = \chi_{\lambda} \Leftrightarrow i = 1$.

Suppose λ satisfies (2). If $\chi_{\lambda+\mu_i} = \chi_{\lambda+\nu}$, then there is a $w \in W$ such that $w(\lambda+\mu_i) = \lambda + v$. That is, $(w(\lambda) - \lambda) + (w(\mu_i) - v) = 0$. Since $\langle \lambda, \alpha \rangle < 0$ for all $\alpha \in \Delta^+$, $w(\lambda) - \lambda \ge 0$ and the equality holds if and only if w = id. Since $w(\mu_i)$ is a weight of $L^-(v), w(\mu_i) \ge v$. So w = id and thus $\mu_i = v$. That is, i = 1.

Suppose λ satisfies (1). If $\chi_{\lambda+v-\mu_i} = \chi_{\lambda}$, then there is a $w \in W$ such that $w(\lambda) = \lambda + v - \mu_i$. That is, $(w(\lambda) - \lambda) + (\mu_i - v) = 0$. Since $\langle \lambda, \alpha \rangle \leq 0$ for all $\alpha \in \Delta^+$, $w(\lambda) \geq \lambda$. Also, $\mu_i \geq v$. So $\mu_i = v$ and thus i = 1.

Theorem 1 (^[HTT] Theorem 11.6.1). Let Y be a smooth variety and K be a linear algebraic group action on Y. Suppose there are only finitely many K-orbits in Y. Then $\operatorname{Mod}_c(D_Y, K) \cong \operatorname{Mod}_{rh}(D_Y, K)$. Moreover, the simple objects in $\operatorname{Mod}_c(D_Y, K)$ is parametrized by $\Upsilon(Y, K)$, the set of pairs (O, L), where $O \subset Y$ is an irreducible K-orbit and L is a K-equivariant local system on O^{an} .

Proof. We use induction on the number of K-orbits of Y. Suppose Y is a homogeneous K-space. Then $Y \cong K/K'$ for some $K' \leq K$. Consider morphisms $\sigma : K \times Y \to Y$ the natural action, $p_2 : K \times Y \to Y$ the second projection, $l : K \to \operatorname{Spec} \mathbb{C}, \pi : K \to Y$ the quotient map, $j : \operatorname{Spec}(\mathbb{C}) \to K, j(x) = K'$ and $i : K \to K \times Y, i(k) := (k^{-1}, kK')$. Then for any $\mathcal{M} \in \operatorname{Mod}_c(D_Y, K)$, we have

$$\pi^* \mathcal{M} = (p_2 \circ i)^* \mathcal{M} = i^* p_2^* \mathcal{M} \cong i^* \sigma^* \mathcal{M} = (\sigma \circ i)^* \mathcal{M}$$
$$= (j \circ l)^* \mathcal{M} = l^* j^* \mathcal{M} = \mathcal{O}_X \otimes_{\mathbb{C}} (j^* \mathcal{M}).$$

 $j^*\mathcal{M}$ is a finite dimensional \mathbb{C} -vector space, so $\pi^*\mathcal{M} \in \operatorname{Mod}_{rh}(D_K)$. Since π is smooth, $\mathcal{M} \in \operatorname{Mod}_{rh}(D_Y)$.

Now consider the general case. Let O be a closed K-orbit of Y and Y' = Y - O. Suppose $i : O \hookrightarrow Y$ and $j : \hookrightarrow Y$. Then we have the distinguish triagle

$$\int_i i^{\dagger} \mathcal{M} \longrightarrow \mathcal{M} \longrightarrow \int_j j^{\dagger} \mathcal{M} \stackrel{+1}{\longrightarrow} .$$

We have $i^{\dagger}\mathcal{M} \in D^{b}_{c}(D_{O})$ and $j^{\dagger}\mathcal{M} \in D^{b}_{c}(D_{Y'})$. By induction hypothesis, $i^{\dagger}\mathcal{M} \in D^{b}_{rh}(D_{O})$ and $j^{\dagger}\mathcal{M} \in D^{b}_{rh}(D_{Y'})$. We conclude that $\int_{i} i^{\dagger}\mathcal{M}, \int_{j} j^{\dagger}\mathcal{M} \in D^{b}_{rh}(D_{Y})$ and hence $\mathcal{M} \in \operatorname{Mod}_{rh}(D_{Y})$.

By Riemann-Hilbert correspondence, $\operatorname{Mod}_{rh}(D_Y, K) \cong \operatorname{Perv}(\mathbb{C}_Y, K)$, which is parametrized by $\Upsilon(Y, K)$.

In particular, B has only finite orbits in X. We conclude that simple objects in $Mod_f(\mathfrak{g}, \chi_{-\rho}, B)$ are parametrized by $\Upsilon(X, B)$.

0.1 Highest Weight Module

Definition 1. Let $\lambda \in \mathfrak{h}^*$ and M be a \mathfrak{g} -module. If there exists $0 \neq m \in M$ such that $m \in M_{\lambda}$, $\mathfrak{n}m = 0$, and $M = U(\mathfrak{g})m$, then M is called a highest weight module

with highest weight λ . *m* is called a highest weight vector.

In this case, $M = U(\mathfrak{n}^-)m$ and $M = \bigoplus_{\mu \leq \lambda} M_{\mu}$. $M_{\lambda} = \mathbb{C} m$. Since M is generated by m, M is the quotiend $U(\mathfrak{g})/N$ as a $U(\mathfrak{g})$ -module. The relation contains at least \mathfrak{n} and $h - \lambda(h)$ for all $h \in \mathfrak{h}$.

Definition 2. The Verma module is defined as

$$M(\lambda) := U(\mathfrak{g})/(U(\mathfrak{g})\mathfrak{n} + \sum_{h \in \mathfrak{h}} U(\mathfrak{g})(h - \lambda(h)1)).$$

 $M(\lambda)$ is the unique maximal highest weight module. If M be a highest weight module, there is a unique surjective homomorphism $f : M(\lambda) \to M$ such that $f(\bar{1}) = m$.

Lemma 1 (^[HTT] Lemma 12.1.3). $M(\lambda)$ is a free $U(\mathfrak{n}^-)$ -module. In particular, we compute that

$$ch(M(\lambda)) = \sum_{\mu} \dim(M(\lambda)_{\mu})e^{\mu} = \sum_{\beta \le 0} \dim(U(\mathfrak{n}^{-})_{\beta})e^{\lambda+\beta}$$
$$= e^{\lambda} \prod_{\beta \in \Delta^{+}} (1 + e^{-\beta} + e^{-2\beta} + \cdots)$$
$$= \frac{e^{\lambda}}{\prod_{\beta \in \Delta^{+}} (1 - e^{-\beta})}.$$

Proof. Let $I = (U(\mathfrak{g})\mathfrak{n} + \sum_{h \in \mathfrak{h}} U(\mathfrak{g})(h - \lambda(h)1))$. We want to prove that $U(\mathfrak{g}) = U(\mathfrak{n}^-) \oplus I$. By *PBW* theorem, we have a canonical isomorphism

$$U(\mathfrak{n}^{-}) \otimes U(\mathfrak{h}) \otimes U(\mathfrak{n}) \cong U(\mathfrak{g}).$$

So we have

$$\begin{split} \sum_{h \in \mathfrak{h}} U(\mathfrak{g})(h - \lambda(h)1)) &= \sum_{h \in \mathfrak{h}} U(\mathfrak{n}^{-})U(\mathfrak{h})U(\mathfrak{n})(h - \lambda(h)1)) \\ &= \sum_{h \in \mathfrak{h}} U(\mathfrak{n}^{-})U(\mathfrak{h})(\mathbb{C} + U(\mathfrak{n})\mathfrak{n})(h - \lambda(h)1)) \\ &\subset U(\mathfrak{n}^{-})\left(\sum_{h \in \mathfrak{h}} U(\mathfrak{h})(h - \lambda(h)1))\right) + U(\mathfrak{g})\mathfrak{n}. \end{split}$$

So
$$I = U(\mathfrak{n}^{-}) \left(\sum_{h \in \mathfrak{h}} U(\mathfrak{h})(h - \lambda(h)1) \right) + U(\mathfrak{g})\mathfrak{n}$$
. Finally we have the isomorphism

$$\begin{aligned} U(\mathfrak{g}) &= U(\mathfrak{n}^{-})U(\mathfrak{h})U(\mathfrak{n}) \\ &= U(\mathfrak{n}^{-})U(\mathfrak{h})(\mathbb{C} \oplus U(\mathfrak{n})\mathfrak{n}) \\ &= U(\mathfrak{n}^{-})U(\mathfrak{h}) \oplus U(\mathfrak{g})\mathfrak{n} \\ &= U(\mathfrak{n}^{-}) \left(\mathbb{C} \oplus \sum_{h \in \mathfrak{h}} U(\mathfrak{h})(h - \lambda(h)1) \right) \right) \oplus U(\mathfrak{g})\mathfrak{n} \\ &= U(\mathfrak{n}^{-}) \oplus I. \end{aligned}$$

Lemma 2 (^[HTT] Lemma 12.1.4). There is a unique maximal proper $U(\mathfrak{g})$ -submodule $N \subset M(\lambda)$.

Proof. Any proper $U(\mathfrak{g})$ -submodule of $M(\lambda)$ is a weight module whose weights $< \lambda$. So the sum of them is also a proper $U(\mathfrak{g})$ -submodule.

Define $L(\lambda) = M(\lambda)/N$. $L(\lambda)$ is the minimal highest weight module.

Problem 1. Compute $ch(L(\lambda))$.

Example 1. If $\lambda \in \Delta^+$, then $L(\lambda) = L^+(\lambda)$. Weyl's character formula says

$$\operatorname{ch}(L(\lambda)) = \frac{\sum_{w \in W} (-1)^{l(w)} w^{w(\lambda+\rho)-\rho}}{\prod_{\beta \in \Delta^+} (1-e^{-\beta})}$$
$$= \sum_{w \in W} (-1)^{l(w)} \operatorname{ch}(M(w(\lambda+\rho)-\rho)).$$

Lemma 3 (^[HTT] Lemma 12.1.6). For $z \in \mathfrak{z}$, $zm = \chi_{\lambda+\rho}(z)m$.

Proof. We decompose z into u + v where $z \in U(\mathfrak{h})$ and $v \in \mathfrak{n}^{-}U(\mathfrak{g}) + U(\mathfrak{g})\mathfrak{n}$. Then $zm = um = \lambda(u)m = \chi_{\lambda+\rho}(z)m$.

Proposition 3 (^[HTT] Proposition 12.1.7). Let M be a highest weight module with highest weight λ . The M has a decomposition series with finite length and each composition factor of it has the form $L(\mu)$ where $\mu \leq \lambda$ and $\mu + \rho \in W(\lambda + \rho)$. **Proof.** If M is simple then we are done. If M is not simple, then we take a nonzero proper submodule $N \subset M$. Let μ be a maximal weight of N and $0 \neq n \in N_{\mu}$, then $U(\mathfrak{g})m \subset N$ is a highest weight module with highest weight μ . $\chi_{\mu+\rho}(z)n = zn =$ $\chi_{\lambda+\rho}(z)n$ for all $z \in \mathfrak{z}$. So $\chi_{\mu+\rho} = \chi_{\lambda+\rho}$. We have $\mu < \lambda$ and $\mu + \rho \in W(\lambda + \rho)$. Replace M by N and repeat the process. We can repeat only finitely many times and obtain a simple $U(\mathfrak{g})$ -module N_1 , which is a highest weight module with highest weight μ_1 . $N_1 \cong L(\mu_1)$. Replace M by M/N_1 and repeat the process. We obtain a sequence

$$0 = N_0 \subset N_1 \subset N_2 \subset \cdots,$$

the composition factors of which have the form $L(\mu)$ for some $\mu \leq \lambda$ and $\mu + \rho \in W(\lambda + \rho)$. Since $|W(\lambda + \rho)| < \infty$ and $L(\mu)$ can occur no more than dim (M_{μ}) times, the sequence is finite.

Fix a equivlence class $\Lambda = W(\lambda + \rho) - \rho$. Let $a_{\mu\lambda}$ the the multiplicity of $L(\mu)$ appearing in the decomposition series of $M(\lambda)$. We have $a_{\mu\lambda} \neq 0$ only if $\mu \sim \lambda$ and $\mu \leq \lambda$. $a_{\lambda\lambda} = 1$. Let $(b_{\mu\lambda})$ be the inverse matrix of $(a_{\mu\lambda})$. Then $b_{\mu\lambda} \in \mathbb{Z}$ and

$$\operatorname{ch}(M(\lambda)) = \sum_{\mu \in \Lambda} a_{\mu\lambda} \operatorname{ch}(L(\mu)).$$
$$\operatorname{ch}(L(\lambda)) = \sum_{\mu \in \Lambda} b_{\mu\lambda} \operatorname{ch}(M(\mu)).$$

It suffices to compute $b_{\mu\lambda}$.

0.2 Kazhdan-Lusztig Conjecture

The problem is answered when $\Lambda = W(-\rho) - \rho$. In this case, $\Lambda \subset P$. We are considering objects $M(-w(\rho) - \rho)$, $L(-w\rho - \rho) \in \operatorname{Mod}_f(\mathfrak{g}, \chi_{\rho}, B) = \operatorname{Mod}_{rh}(D_X, B)$. Every object in $Mod_f(\mathfrak{g}, \chi_{\rho}, B)$ has a composition series of finite length, which is proved similarly as in the proof above. We consider the Grothdieck group $K(\operatorname{Mod}_f(\mathfrak{g}, \chi_{\rho}, B))$. We have

$$[L(-w\rho - \rho)] = \sum_{y \in W} b_{yw}[M(-y\rho - \rho)].$$
$$[M(-w\rho - \rho)] = \sum_{y \in W} a_{yw}[L(-y\rho - \rho)].$$

We want to compute b_{yw} .

Definition 3. The Hecke algebra H(W) is the $\mathbb{Z}[q^1, q^{-1}]$ algebra which is freely generated by $\{T_w \mid w \in W\}$ as a $\mathbb{Z}[q^1, q^{-1}]$ -module with multiplicative relations

$$T_y T_w = T_{yw}, \qquad \text{if } l(yw) = l(y) + l(w).$$

$$(T_s + 1)(T_s - q) = 0, \qquad \text{if } s \in W.$$

Proposition 4 (^[HTT] Proposition 12.2.3). There exists a unique family $\{P_{y,w}(q)\}$ of polynomials in $\mathbb{Z}[q]$ satisfying the following conditions:

$$P_{y,w}(q) = 0$$
 if $y \not\leq w$,

$$P_{w,w}(q) = 1,$$

$$\deg(P_{y,w}(q)) \le \frac{l(w) - l(y) - 1}{2} \text{ if } y < w,$$

$$\sum_{y \le w} P_{y,w}(q)T_y = q^{l(w)} \sum_{y \le w} P_{y,w}(q^{-1})T_{y^{-1}}^{-1}.$$

Conjecture 1 (Kazhdan-Lusztig).

$$b_{y,w} = (-1)^{l(w)-l(y)} P_{y,w}(1).$$

Definition 4. For each $w \in W$ we define

$$X_w = BwB/B.$$

Here w is seen as an element in $W = N_G(H)/H$. The Schubert variety is defined as $\overline{X_w}$.

Proposition 5 (^[HTT] Theorem 9.9.4, 9.9.5). X is the disjoint union of $\{X_w \mid w \in W\}$. Each X_w is isomorphic to $\mathbb{C}^{l(w)}$. $\overline{X_w} = \coprod_{y \leq w} X_w$.

We denote by $IC(\mathbb{C}_{X_w})$ the intersection complex on $\overline{X_w}$ and set

$$\mathbb{C}_{X_w}^{\pi} = IC(\mathbb{C}_{X_w})[-\dim(X_w)].$$

We'll show that the Kazhdan-Lusztig conjecture is reduced the theorem below.

Theorem 2 (Kazhdan-Lusztig,^[HTT] Theorem 12.2.5). For any $y, w \in W$, we have

$$\sum_{i} \dim(H^{i}(\mathbb{C}^{\pi}_{X_{w}})_{yB})q^{i/2} = P_{y,w}(q).$$

In particular, We have $H^i(\mathbb{C}^{\pi}_{X_w})_{yB} = 0$ for all odd i and

$$\sum_{j} (-1)^{j} \dim(H^{j}(\mathbb{C}^{\pi}_{X_{w}})_{yB}) = P_{y,w}(1).$$

Let
$$\mathcal{M}_w = D_X \otimes_{U(\mathfrak{g})} M(-w(\rho) - \rho), \ \mathcal{L}_w = D_X \otimes_{U(\mathfrak{g})} L(-w(\rho) - \rho), \ \text{and}$$
$$\mathcal{N}_w = \int_{i_w} \mathcal{O}_{X_w} = (i_w)_* (D_{X \leftarrow X_w} \otimes_{D_{X_w}} \mathcal{O}_{X_w}).$$

 $\mathcal{N}_w \in \operatorname{Mod}_c(D_X, B) = \operatorname{Mod}_{rh}(D_X, B).$

Lemma 4 (^[HTT] Lemma 12.3.1). Let $w \in W$. Then

- (i) $\operatorname{ch}(\Gamma(X, \mathcal{N}_w)) = \operatorname{ch}(M(-w(\rho) \rho))$. In particular, $[\mathcal{M}_w] = [\mathcal{N}_w]$ in $K(\operatorname{Mod}_{rh}(D_X, B))$.
- (ii) The only D_X submodule of \mathcal{N}_w whose support is contained in $\overline{X_w} X_w$ is 0.

Proof. Define two subalgebras of \mathfrak{g} :

$$\mathfrak{n}_1 = \bigoplus_{\alpha \in \Delta^+ \cap w(\Delta^+)} \mathfrak{g}_{-\alpha}, \qquad \mathfrak{n}_2 = \bigoplus_{\alpha \in \Delta^+ \cap -w(\Delta^+)} \mathfrak{g}_{\alpha}.$$

Let the corresponding unipotent subgroup of G be N_1 and N_2 respectively. Define a morphism $\varphi: N_1 \times N_2 \to X$ by

$$\varphi(n_1, n_2) = n_1 n_2 w B / B.$$

Then φ is an open embedding. $\varphi(\{e\} \times N_2) = X_w$. Let $V = \operatorname{im}(\varphi)$, we have the commutative diagram

So

$$\Gamma(X, \mathcal{N}_w) = \Gamma\left(X, (i_w)_* \left(D_{X \leftarrow X_w} \otimes_{D_{X_w}} \mathcal{O}_{X_w}\right)\right)$$
$$= \Gamma(X_w, D_{X \leftarrow X_w} \otimes_{D_{X_w}} \mathcal{O}_{X_w})$$
$$= \Gamma(X_w, D_{V \leftarrow X_w} \otimes_{D_{X_w}} \mathcal{O}_{X_w})$$
$$\cong \Gamma(N_2, D_{N_1 \times N_2 \leftarrow N_2} \otimes_{D_{N_2}} \mathcal{O}_{N_2}).$$

$$D_{N_1 \times N_2 \leftarrow N_2} \cong \left(D_{N_1 \times \{e\}} \otimes_{\mathcal{O}_{N_1 \times \{e\}}} \mathbb{C} \right) \otimes_{\mathbb{C}} \left(\Omega_{N_1 \times \{e\}}^{\otimes -1} \otimes_{\mathcal{O}_{N_1 \times \{e\}}} \mathbb{C} \right) \otimes_{\mathbb{C}} \otimes_{\mathbb{C}} \Gamma(N_2, \mathcal{N}_2).$$

First, $D_{N_1} = U(\mathfrak{n}_1) \otimes_{\mathbb{C}} \mathcal{O}_X$, so $D_{N_1 \times e} \otimes_{\mathcal{O}_{N_1 \times \{e\}}} \mathbb{C} \cong U(\mathfrak{n}_1)$. Second,

$$\Omega_{N_1 \times \{e\}}^{\otimes -1} \otimes_{\mathcal{O}_{N_1 \times \{e\}}} \mathbb{C} \cong \wedge^{\dim(\mathfrak{n}_1)}(\mathfrak{n}_1 \otimes_{\mathbb{C}} \mathcal{O}_X) \otimes_{\mathcal{O}_X} \mathbb{C} = \wedge^{\dim(\mathfrak{n}_1)}\mathfrak{n}_1$$

Finally, the exponential map gives the isomorphism $\mathfrak{n}_2 \cong N_2$. Therefore, $\Gamma(N_2, \mathcal{N}_2) \cong$ $\Gamma(\mathfrak{n}_2, \mathcal{O}_{\mathfrak{n}_2}) = S(\mathfrak{n}_2^*).$

$$\operatorname{ch}(\Gamma(X,\mathcal{N}_w)) = \operatorname{ch}(U(\mathfrak{n}_1)) \operatorname{ch}(\wedge^{\dim(\mathfrak{n}_1)}\mathfrak{n}_1) \operatorname{ch}(S(\mathfrak{n}_2^*)).$$

We compute that

$$\operatorname{ch}(U(\mathfrak{n}_{1})) = \prod_{\alpha \in \Delta^{+} \cap w(\Delta^{+})} (1 + e^{-\alpha} + e^{-2\alpha} + \cdots) = \prod_{\alpha \in \Delta^{+} \cap w(\Delta^{+})} \frac{1}{1 - e^{-\alpha}},$$
$$\operatorname{ch}(\wedge^{\dim(\mathfrak{n}_{1})}) = e^{\sum_{\alpha \in \Delta^{+} \cap w(\Delta^{+})} - \alpha} = e^{-w(\rho) - \rho},$$

and

$$\operatorname{ch}(S(\mathfrak{n}_2^*)) = \prod_{\alpha \in \Delta^+ \cap -w(\Delta^+)} (1 + e^{-\alpha} + e^{-2\alpha} + \cdots) = \prod_{\alpha \in \Delta^+ \cap -w(\Delta^+)} \frac{1}{1 - e^{-\alpha}}.$$

 So

$$\operatorname{ch}(\Gamma(X,\mathcal{N}_w)) = \frac{e^{-w(\rho)-\rho}}{\prod_{\alpha\in\Delta^+}(1-e^{-\alpha})} = \operatorname{ch}(M(-w(\rho)-\rho)).$$

Set Z = X - V and $j : V \to X$ be the open embedding, we have a distinguished traingle

$$R\Gamma_Z(\mathcal{N}_w) \longrightarrow \mathcal{N}_w \longrightarrow j_*(\mathcal{N}_w) \stackrel{+1}{\longrightarrow} .$$

By definition, $\mathcal{N}_w \to j_*(\mathcal{N}_w)$ is an isomorphism, so $R\Gamma_Z(\mathcal{N}_w) = 0$. So $\Gamma_Z(\mathcal{N}_w)$. Hence the only D_X submodule of \mathcal{N}_w whose support is contained in Z is 0. Since $\overline{X_w} - X_w \subset Z$, the assertion follows.

Let $\mathcal{L}(X_w, \mathcal{O}_{X_w})$ be the minimal extension of the D_{X_w} -module X_w . $\mathcal{L}(X_w, \mathcal{O}_{X_w}) \in Mod_{rh}(D_X, B)$.

Proposition 6 (^[HTT] Lemma 12.3.2). Let $w \in W$. Then we have

(i)

$$\mathcal{L}_w = \mathcal{L}(X_w, \mathcal{O}_{X_w}).$$

$$\mathcal{M}_w = \mathbb{D}(\mathcal{N}_w).$$

Proof. Since X_w^{an} is simply connected, simple objects in $\operatorname{Mod}_{rh}(D_X, B)$ is given by $\{\mathcal{L}(X_w, \mathcal{O}_{X_w}) \mid y \in W\}$. On the other hand, simple objects in $\operatorname{Mod}_f(\mathfrak{g}, B, \chi_{-\rho})$ is given by $\{\mathcal{L}(-w(\rho) - \rho)\}$. So for each $w \in W$, there is a $y \in W$ such that $\mathcal{L}_w = \mathcal{L}(X_y, \mathcal{O}_{X_y})$. For this $y, \mathcal{L}(X_y, \mathcal{O}_{X_y})$ is a composition factor of \mathcal{M}_w and hence one of \mathcal{N}_w . Since \mathcal{N}_w is supported on $\overline{X_w} = \coprod_{w' \leq w} X_{w'}, y \leq w$. The induction on Bruhat order gives the equality.

Since $\{\mathcal{L}(X_w, \mathcal{O}_{X_w}) \mid y \in W\}$ are self dual, for all $\mathcal{M} \in \operatorname{Mod}_{rh}(D_X, B)$, the composition factors of \mathcal{M} and those of $\mathbb{D}(\mathcal{M})$ coincide. In particular, we get

$$\operatorname{ch}(\mathbb{D}(\mathcal{N}_w)) = \operatorname{ch}(\mathcal{N}_w) = \operatorname{ch}(M(-w(\rho) - \rho))$$

 $U(\mathfrak{g})\Gamma(X,\mathbb{D}(\mathcal{N}_w))_{-w(\rho)-\rho}$ is a highest weight module with highest weight $-w(\rho)-\rho$). Thus we have an exact sequence

$$M(-w(\rho) - \rho) \to \Gamma(X, \mathbb{D}(\mathcal{N}_w)) \to N \to 0.$$

Tensoring D_X over $U(\mathfrak{g})$ and we get

$$\mathcal{M}_w \to \mathbb{D}(\mathcal{N}_w) \to \mathcal{N} \to 0.$$

Taking dual and we get

$$0 \to \mathbb{D}(\mathcal{N}) \to \mathcal{N}_w \to \mathbb{D}(\mathcal{M}_w)$$

 \mathcal{L}_w isn't in the set of composition factors of $\mathbb{D}(\mathcal{N})$, so the support of $\mathbb{D}(\mathcal{N})$ is in $\overline{X_w} - X_w$. We get $\mathbb{D}(\mathcal{N}) = 0$, $\mathcal{N} = 0$, and N = 0. So we have a surjective homomorphism $M(-w(\rho) - \rho) \to \Gamma(X, \mathbb{D}(\mathcal{N}_w))$. The injectivity follows from that $\operatorname{ch}(\mathcal{N}_w) = \operatorname{ch}(M(-w(\rho) - \rho))$.

Corollary 1 (^[HTT] Corollary 12.3.3). The Riemann-Hilbert correspondence gives

$$DR_X(\mathcal{M}_w) = \mathbb{C}_{X_w}[\dim(X_w)]$$

and

$$DR_X(\mathcal{L}_w) = \mathbb{C}^{\pi}_{X_w}[\dim(X_w)].$$

To prove the conjecture, it suffices to prove that

$$[\mathcal{L}_w] = \sum_{y \le w} (-1)^{l(w) - l(y)} P_{y,w}(1) [\mathcal{M}_w]$$

in $K(\operatorname{Mod}_{rh}(D_X, B))$. We define a \mathbb{Z} -module homomorphism $\varphi : K(\operatorname{Mod}_{rh}(D_X, B) \to \mathbb{Z}[W]$ given by

$$\varphi([\mathcal{M}]) = \sum_{y \in W} \left(\sum_{i} (-1)^{i} \dim(H^{i}(DR_{X}(\mathcal{M}))_{yB}) \right) y.$$

Form the corollary above, we have $\varphi([\mathcal{M}_w]) = (-1)^{l(w)}m$, so φ is an isomorphism. Assume the Kazhdan-Lusztig theorem and we get

$$\varphi([\mathcal{L}_w]) = \sum_{y \in W} \left(\sum_i (-1)^i \dim(H^i(DR_X(\mathcal{L}_w))_{yB}) \right) y$$
$$= \sum_{y \in W} \left(\sum_i (-1)^i \dim(H^i(\mathbb{C}_{X_w}^{\pi}[\dim(X_w)]))_{yB}) \right) y$$
$$= (-1)^{l(w)} \sum_{y \in W} P_{y,w}(1) y$$
$$= (-1)^{l(w)-l(y)} P_{y,w}(1) \varphi([\mathcal{M}_w]).$$

0.3 Sketch of the Proof of Kazhdan-Lusztig Theorem

Let ΔG be the diagonal group of $G \times G$ and act diagonally on $X \times X$. ΔG - orbits of $X \times X$ has a natural bijection to $\{X_w\}$ given by

$$Z_w := \Delta G(eB, wB) \leftrightarrow X_w$$

Let $p_k : X \times X \to X$, $i_k : X \to X \times X (k = 1, 2)$ be given by $p_1(a, b) = a$, $p_2(a, b) = b$, $i_1(b) = (eB, b), i_2(a) = (a, eB).$

Proposition 7 (^[HTT] Proposition 13.1.2). $i_k(k = 1, 2)$ induce equivlences of categories:

$$i_k^*$$
: Mod_c $(D_{X \times X}, \Delta G) \cong Mod_c(D_X, B).$

Since $X \times X$ has only finite ΔG -orbits, $\operatorname{Mod}_c(D_{X \times X}, \Delta G) = \operatorname{Mod}_{rh}(D_{X \times X}, \Delta G)$. For $w \in W$, consider the embedding $j_w : Z_w \to X \times X$ and set

$$\widetilde{\mathcal{N}}_w = \int_{j_w} \mathcal{O}_{Z_w}, \qquad \widetilde{\mathcal{M}}_w = \mathbb{D}(\widetilde{\mathcal{N}}_w), \qquad \widetilde{\mathcal{L}}_w = \mathcal{L}(Z_w, \mathcal{O}_{Z_w}).$$

They are in $\operatorname{Mod}_c(D_{X \times X}, \Delta G)$. Moreover,

$$i_1^*(\widetilde{\mathcal{N}}_w) = \mathcal{N}_w, \qquad i_1^*(\widetilde{\mathcal{M}}_w) = \mathcal{M}_w,, \qquad i_1^*(\widetilde{\mathcal{L}}_w) = \mathcal{L}_w,$$
$$i_2^*(\widetilde{\mathcal{N}}_w) = \mathcal{N}_{w^{-1}}, \qquad i_2^*(\widetilde{\mathcal{M}}_w) = \mathcal{M}_{w^{-1}}, \qquad i_2^*(\widetilde{\mathcal{L}}_w) = \mathcal{L}_{w^{-1}}.$$

Proposition 8 (^[HTT] Proposition 13.1.5). Let $p_{13} : X \times X \times X \to X \times X$ and $r : X \times X \times X \to X \times X \times X \times X \times X$ be given by $p_{13}(a, b, c) = (a, c)$ and r(a, b, c) = (a, b, b, c). Then $K(\operatorname{Mod}_c(D_{X \times X}, \Delta G))$ has a ring structure given by

$$[\widetilde{\mathcal{M}}] \cdot [\widetilde{\mathcal{N}}] = \sum_{k} (-1)^{k} H^{k} \left(\int_{p_{13}} r^{*}(\widetilde{\mathcal{M}} \boxtimes \widetilde{\mathcal{N}}) \right)$$

and $K(\operatorname{Mod}_c(D_{X\times X}, \Delta G))$ is isomorphic to $\mathbb{Z}[W]$ by the correspondence $\widetilde{\mathcal{M}}_w \leftrightarrow (-1)^{l(w)}w$.

We should consider the categories of Hodge modules (^[HTT] 8.3) to relate the objects and the Hecke algebra H(W). We need the categories SH(n), $SH(n)^p$, and MHM(Y). An object in MHM(Y) is a tuple (\mathcal{M}, F, K, W) , where $\mathcal{M} \in$ $Mod_{rh}(D_Y)$, F is a good filtration of \mathcal{M} , $K \in Perv(Y)/\mathbb{Q}$ such that $DR_Y(\mathcal{M}) =$ $\mathbb{C} \otimes_{\mathbb{Q}} K$, and W is an increasing filtration of the tuple (\mathcal{M}, F, K) .

Consider $R = K(MHM(pt)) = K(SHM^p)$ (^[HTT] (m12), p.224). $R = \bigoplus_{n \in \mathbb{Z}} R_n$ where $R_n = K(SH(n)^p)$. The unit is \mathbb{Q}^H . The morphism $q^n \mapsto [\mathbb{Q}^H[-n]]$ gives R a $\mathbb{Z}[q, q^{-1}]$ -algebra structure $q \in R_2$.

Consider the category $K(MHM(X \times X, \Delta G))$. It has a ring structure

$$[\mathcal{V}_1] \cdot [\mathcal{V}_1] = (-1)^{\dim(X)} \sum_j (-1)^j [H^j(p_{13!} r^{\bigstar}(\mathcal{V}_1 \boxtimes \mathcal{V}_2))]$$

 $(^{[HTT]}$ Equation 13.2.7.)

The tensor product

$$MHM(pt) \times MHM(X \times X, \Delta G) \to MHM(X \times X, \Delta G)$$

gives $K(MHM(X \times X, \Delta G))$ a *R*-algebra structure.

For $w \in W$ we set

$$\overline{\mathcal{N}}_{w}^{H} = (j_{w})_{\bigstar} (\mathbb{Q}_{Z_{w}}^{H}[\dim(Z_{w})]), \quad \overline{\mathcal{M}}_{w}^{H} = (j_{w})_{!} (\mathbb{Q}_{Z_{w}}^{H}[\dim(Z_{w})]),$$
$$\overline{\mathcal{L}}_{w}^{H} = (j_{w})_{!\bigstar} (\mathbb{Q}_{Z_{w}}^{H}[\dim(Z_{w})]) = IC_{\overline{Z}_{w}}^{H} \in MHM(X \times X, \Delta G).$$

The underlying *D*-modules are $\overline{\mathcal{N}}_w, \overline{\mathcal{M}}_w, \overline{\mathcal{L}}_w$, respectively. In^[HTT] they defined a *R*-algebra isomorphism

$$F: K(MHM(X \times X, \Delta G)) \to R \otimes_{\mathbb{Z}[g, g^{-1}]} H(W)$$

by $F([\overline{\mathcal{M}}_w^H]) = (-1)^{l(w)} T_w$ (^[HTT] Theorem 13.2.8) and for each $w \in W$ a *R*module homomorphism F_w : $K(MHM(X \times X, \Delta G)) \to R$ given by $F(m) = \sum_{w \in W} (-1)^{l(w)} F_w(m) T_w$ (^[HTT] Equation 13.2.26). The morphisms $\{F_w\}$ satisfying that

$$\sum_{k} (-1)^{k} [H^{k}(j_{w}^{\bigstar}(\mathcal{V}))] = F_{w}([V])[Q_{Z_{w}}^{H}[\dim(Z_{w})]]$$

($^{[HTT]}$ Equation 13.2.25). Next, they defined

$$C'_{w} = (-1)^{l(w)} F([\overline{\mathcal{L}}_{w}^{H}]) = \sum_{y \le w} P'_{y,w} T_{y} \qquad (P'_{y,w} \in R)$$

(^[HTT] Equation 13.2.34). Put $m = [[\overline{\mathcal{L}}_w^H]]$ in ^[HTT] Equation 13.2.26 and get

$$(-1)^{l(w)-l(y)} \sum_{k} (-1)^{k} [H^{k}(j_{w}^{\bigstar}(\overline{\mathcal{L}}_{w}^{H}))] = P_{y,w}'[Q_{Z_{w}}^{H}[\dim(Z_{w})]]$$

(^[HTT] Equation 13.2.38). Comparing the weight and relations^[HTT] Equation 13.2.35, 13.2.36, 13.2.37 of $\{P'_{y,w}\}$, they proved $P'_{y,w} = P_{y,w}(q)$ and thus $C'_w = C_w := \sum_{y \leq w} P_{y,w}(q)T_y$.

Proposition 9 (^[HTT] Proposition 13.2.9). If $y \le w$, $H^k(j_w^{\bigstar}(\overline{\mathcal{L}}_w^H))$ has pure weight $\dim(Z_w) + k$.

With this proposition, they can write $H^k(j_w^{\bigstar}(\overline{\mathcal{L}}_w^H)) = N_k \otimes \mathbb{Q}_{Z_y}^H[\dim(Z_y)]$ where $Z_y \in SH(k+l(w)-l(y))^p$.^[HTT] Equation 13.2.38 gives

$$\sum_{k} (-1)^{l(w)+l(y)-k} [N_k] = P_{y,w} := c_{y,w,j} q^j.$$

Since $q \in R_2$, we have $[N_k] = 0$ if k + l(w) - l(y) is odd and $[N_k] = c_{y,w,j}q^j$ if k + l(w) - l(y) = 2j. Thus dim $(H^k(j_w^{\bigstar}(\overline{\mathcal{L}}_w^H))) = c_{y,w,j}$ if k + l(w) - l(y) = 2j and 0 if k + l(w) - l(y) = 2j is odd. Kazhdan-Lusztig theorem follows.

Bibliography

- [HTT] R. Hotta, K. Takeuchi, T. Tanisaki, D-modules, Perverse Sheaves, and Representation Theory.
- [S] T.A. Springer, Linear Algebraic Groups
- [HC] Harish-Chandra, On Some Applications of the Universal Enveloping Algebra of a Semisimple Lie Algebra. Transactions of the American Mathematical Society, Vol. 70, No. 1 (Jan., 1951), pp. 28-96.