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0.1 Borel-Weil-Bott Theorem

Let G/k be a connected semi-simple algebraic group, T be a maximal torus of G,

B be a Borel subgroup of G containing T , N be the unipotent part of B, and X

be the flag variety G/B. We thus has a choice of positive roots ∆+, simple roots

Π = {α1, · · · , αl}, and Weyl vector ρ =
α1 + · · ·+ αl

2
. Let P be the weight lattice.

For each λ ∈ L = Homk(B/N, k∗), we have a equivariant G-line bundle L(λ) on X

( [HTT] p.255). Set

Psing = {λ ∈ P | ∃α ∈ ∆, ⟨λ− ρ, α∨⟩ = 0},

Preg = P − Psing.

Define a shifted action of W on P by

w⋆λ = w(λ− ρ) + ρ.

Theorem 1 (Borel-Weil-Bott, [HTT] 9.11.2.). Assume λ ∈ L ⊂ P .

(i) If ⟨λ, α∨⟩ ≤ 0 for all α ∈ ∆+, then L(λ) is generated by global sections. That

is, the natural morphism

OX ⊗k Γ(X,L(λ)) → L(λ)

is surjective.

(ii) L(λ) is ample if and only if ⟨λ, α∨⟩ < 0 for all α ∈ ∆+.

(iii) Assume char(k) = 0.

(a) If λ ∈ Psing, then H i(X,L(λ)) = 0 for all i ≥ 0.

(b) Let λ ∈ Preg and take w ∈ W such that w⋆λ ∈ −P+. Then

H i(X,L(λ)) =

 L−(w⋆λ) if i = l(w),

0 otherwise.
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0.2 Berlinson-Bernstein Theorems

From now on we assume k = C. For every smooth variety Y and locally free

OY -module of finite rank V , we consider the sheaf of diffenertial operators on V ,

DVY ⊂ E ndCY
(V). DVY is isomorphic to V ⊗OY

DY ⊗OY
V∗. There’s a natural

filtration

Fp(D
V
Y ) = 0 for all p < 0,

Fp(D
V
Y ) = {P | fP − Pf ∈ Fp−1(D

V
Y )∀f ∈ OY } for all p ≥ 0.

Assume K is alinear algebraic group acting on Y and V is a K-equivlent vector

bundle. There is a natural morphism ∂ : U(k) to Γ(Y,DVY ). Let a ∈ k, then ∂a is

defined by

(∂as)(y) =
d

dt
(exp(ta)s(exp(−ta)y))|t=0 (s ∈ V , y ∈ Y ).

Here exp is the exponential map w.r.t right invariant vector fields. Algebraically, let

φ : p∗2V ∼= σ∗V , then ∂a is determined by

ϕ((a⊗ 1) · φ−1(σ∗s)) = σ∗(∂as)

Here a is regarded as right invariant vector fields on K acting on k[K]( [HTT] Equation

11.1.7).

Consider X. Let Dλ := D
L(λ+ρ)
X . We have Φλ : U(g) → Γ(X,Dλ).

Definition 1. Let z be the center of U(g) = U(h) ⊕ (n−U(g) + U(g)n)( [HTT]

Equation 9.4.7). Let p be the projection from U(g) to U(h). f be the automorphism

of U(h) defined by f(h) = h − ρ(h)1 for h ∈ h. For each λ ∈ h∗, define the central

character

χλ(z) = (f ◦ p(z))(λ) for all z ∈ z.

Proposition 1 ( [HTT] Theorem 11.2.2). Let λ ∈ L. Then Φλ : U(g) → Γ(X,Dλ) is

surjective. Let z be the center of U(g). Then Φλ(z) = χλ(z) for all z ∈ z. Moreover,

ker(Φλ) = U(g)(ker(χλ)).

We assume the proposition.
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Let Modqc(Dλ) be the abelian category of Dλ-modules which are quasi-coherent

over OX and Mod(g) be the categoriy of U(g)-modules. We have additive functors

Γ(X, ·) : Modqc(Dλ) → Mod(g),

Dλ ⊗U(g) (·) : Mod(g) → Modqc(Dλ).

We have adjointness

HomDλ
(Dλ ⊗U(g) M,N ) ∼= HomU(g)(M,Γ(X,N )).

Let Mod(g, χ) be the category of U(g)-modules with central character χ and Modf (g, χ)

be the full subcategory of Mod(g, χ) of finitely generated U(g)-modules. The propo-

sition shows that Mod(g, χλ) ∼= Mod(Γ(X,Dλ)).

Theorem 2 ( [HTT] Theorem 11.2.3 & 11.2.4). Let λ ∈ L.

1. Suppose

⟨λ, α∨⟩ ≤ 0 for all α ∈ ∆+. (1)

That is, λ ∈ −P+. Then for all M ∈ Modqc(Dλ) we have Hk(X,M) = 0 for all

k > 0.

2. Suppose

⟨λ, α∨⟩ < 0 for all α ∈ ∆+. (2)

Then for all M ∈ Modqc(Dλ), the natural morphism

Dλ ⊗U(g) Γ(X,M) → M

is surjective.

Proof. For v ∈ −P+, Borel-Weil-Bott theorem says Γ(X,L(v)) = H0(X,L(v)) =

L−(v) and pv : OX ⊗C L
−(v) → L(v) is surjective. Since H omOX

(L(v),OX) =

L(−v) and HomC(L
−(v),C) = L+(−v), we have L(−v) ↪→ OX ⊗C L

+(−v). Apply

L(v) ⊗OX
(·), we have iv : OX ↪→ L(v) ⊗C L

+(−v). Since L(v) is a line bundle,

ker(pv) is a direct summand of OX ⊗C L
−(v) as an OX-module locally. Therefore,

im(iv) is a direct summand of L(v)⊗C L
+(−v) as an OX-module locally.
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Let λ ∈ L and M be a Dλ-module. Apply M⊗OX
(·), we get

pv : M⊗C L
−(v) ↠ M⊗OX

L(v),

iv : M ↪→ M⊗OX
L(v)⊗C L

+(−v).

Proposition 2 ( [HTT] Proposition 11.4.1). (i) If λ satisfies (2), then ker(pv) is

a direct summand of M⊗C L
−(v) as a sheaf of abelian groups.

(ii) If λ satisfies (1), then im(iv) is a direct summand of M⊗OX
L(v)⊗C L

+(−v)

as a sheaf of abelian groups.

Suppose λ satisfies (1). For all M ∈ Modqc(Dλ),

Hk(X,M) = lim−→Hk(X,N )

where N runs over all coherent OX-submodule of M. It suffices to prove that

the natural map Hk(X,N ) → Hk(X,M) is the zero map. Fix N . Borel-Weil-

Bott theorem says L(v) is ample if and only if v satisfies (2). Hence there is a

v ∈ L ∩ −P+ such that Hk(X,N ⊗OX
L(v)) = 0 for all k > 0. For this v, consider

the commutative diagram

Hk(X,N ) Hk(X,M)

Hk(X,N ⊗OX
L(v)⊗C L

+(−v)) Hk(X,M⊗OX
L(v)⊗C L

+(−v)).

iv∗

iv∗ is injective. On the other hand, Hk(X,N ⊗OX
L(v)⊗CL

+(−v)) = Hk(X,N ⊗OX

L(v))⊗C L
+(−v) = 0 for all k > 0. So Hk(X,N ) → Hk(X,M) is the zero map.

Suppose λ satisfies (2). For given M ∈ Modqc(Dλ), set M′ be the image of

Dλ ⊗U(g) Γ(X,M) → M and M′′ be the cokernel of it. If M′′ ̸= 0, let N ⊂ M′′ be

a nonzero coherent OX-submodule. There is a v ∈ L∩−P+ such that N ⊗OX
L(v)

is generated by global sections. In this case, Γ(X,N ⊗OX
L(v)) ̸= 0, neither is

Γ(X,M′′ ⊗OX
L(v)) On the other hand,

pv∗ : Γ(X,M′′)⊗C L
−(v) = Γ(X,M′′ ⊗C L

−(v)) → Γ(X,M′′ ⊗OX
L(v))

is surjective. So Γ(X,M′′) ̸= 0. Consider the exact sequence

0 → Γ(X,M′) → Γ(X,M) → Γ(X,M′′) → 0.
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By definition, Γ(X,M) = Γ(X,Dλ ⊗U(g) Γ(X,M)) ↠ Γ(X,M′). So Γ(X,M′) =

Γ(X,M) and hence Γ(X,M′′) = 0. So M′′ must be 0. The isomorphism Γ(X,M) =

Γ(X,Dλ ⊗U(g) Γ(X,M)) is proved in the proof of Corollary 1.

0.3 Equivalences of Categories

For λ ∈ L satisfying (1), we denote Mode
qc(Dλ) the full subcategory of Modqc(Dλ)

consisting of objects M satisfying that

(a) Dλ ⊗U(g) Γ(X,M) → M is surjective.

(b) For all nonzero subobject N ⊂ M in Modqc(Dλ), we have Γ(X,N ) ̸= 0.

Set Mode
c(Dλ) = Mode

qc(Dλ) ∩ Modc(Dλ).

Corollary 1. Γ(X, ·) induces equivlences of categories

Mode
qc(Dλ) ∼= Mod(g, χλ), Mode

c(Dλ) ∼= Modf (g, χλ).

Proof. We first prove that M → Γ(X,Dλ ⊗U(g) M) is an isomorphism for all M ∈

Mod(g, χλ). For given M ∈ Mod(g, χλ), consider an exact sequence

Γ(X,Dλ)
⊕I → Γ(X,Dλ)

⊕J →M → 0.

From Theorem 2.1, Γ(X, ·) : Modqc(Dλ) → Mod(g, χλ) is an exact functor. So

Γ(X,Dλ⊗U(g) (·)) is right exact. We have an commutative diagram with exact rows

Γ(X,Dλ)
⊕I Γ(X,Dλ)

⊕J M 0

Γ(X,Dλ)
⊕I Γ(X,Dλ)

⊕J Γ(X,Dλ ⊗U(g) M) 0.

id id

So M ∼= Γ(X,Dλ ⊗U(g) M).

Now we show that Γ(X, ·) : Mode
qc(Dλ) → Mod(g, χλ) is fully faithful. That is,

for all M1,M2 ∈ Mode
qc(Dλ),

Γ : HomDλ
(M1,M2) → HomU(g)(Γ(X,M1),Γ(X,M2))
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is an isomorphism. Since Dλ ⊗U(g) Γ(X,M1) → M1 is surjective, we have

HomDλ
(M1,M2) ↪→ HomDλ

(Dλ ⊗U(g) Γ(X,M1),M2)

∼= HomU(g)(Γ(X,M1),Γ(X,M2)).

Assume ϕ ∈ HomU(g)(Γ(X,M1),Γ(X,M2)). Let K1 be the kernel of Dλ ⊗U(g)

Γ(X,M1) → M1. Apply the exact functor Γ(X, ·) on the exact sequenct

0 → K1 → Dλ ⊗U(g) Γ(X,M1) → M1 → 0

and we get the exact sequence

0 → Γ(X,K1) → Γ(X,M1) → Γ(X,M1) → 0.

So Γ(X,K1) = 0. Let K2 be the image of

K1 Dλ ⊗U(g) Γ(X,M1) Dλ ⊗U(g) Γ(X,M2) M2.
1⊗ϕ

Since Γ(X, ·) is exact and Γ(X,K1) = 0, Γ(X,K2) = 0. So K2 = 0. hence we obtain

ψ : M1
∼= Dλ ⊗U(g) Γ(X,M1)/K1 → M2 with Γ(ψ) = ϕ.

Next, we prove that Γ(X, ·) : Mode
qc(Dλ) → Mod(g, χλ) is essentially surjective.

Given M ∈ Mod(g, χλ). Let L be a maximal element of the set of subobjects K of

Dλ ⊗U(g) M in Modqc(Dλ) satisfying that Γ(X,K) = 0. Set M = Dλ ⊗U(g) M/L.

Then Γ(X,M) = Γ(X,Dλ ⊗U(g)M)/Γ(X,L) =M . Dλ ⊗U(g)M → M is surjective.

For all N ⊂ M, the maximality of L shows that Γ(X,N ) ̸= 0. So M ∈ Mode
qc(Dλ).

Finally, we have to show that Mode
c(Dλ) and Modf (g, χλ) correspond to each

other. Let M ∈ Modf (g, χλ). Γ(X,Dλ) is left-noetherian. There is an exact se-

quence

Γ(X,Dλ)
⊕I → Γ(X,Dλ)

⊕J →M → 0

with |I|, |J | < ∞. Apply the right exact functor Dλ ⊗U(g) (·) on it and we get the

exact sequence

D⊕Iλ → D⊕Jλ → Dλ ⊗Ug M → 0.

We get Dλ ⊗Ug M ∈ Mode
c(Dλ) and hence M = Dλ ⊗Ug M/L.
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Conversely, let M ∈ Mode
c(Dλ). Since Dλ ⊗Ug Γ(X,M) → M is surjective, M

is locally generated by finitely many global sections. Since X is quasi-compact, M

is globally generated by finitely many global sections. We have an exact sequence

D⊕Iλ → M → 0

where |I| <∞. Apply Γ(X, ·) on it and we get the exact sequence

Γ(X,Dλ)
⊕I → Γ(X,M) → 0

Hence Γ(X,M) is an finitely generated U(g)-module.

Suppose λ satisfies (2). Then Modqc(Dλ) = Mode
qc(Dλ). In this case, we have

Corollary 2. Γ(X, ·) induces equivlences of categories

Modqc(Dλ) ∼= Mod(g, χλ), Modc(Dλ) ∼= Modf (g, χλ).

Let K be a closed subgroup of G. We consider K-equivariant g-modules. That

is, a g-module with a K-action satisfying that

k-actions obtained from the g-action and the K-action coincide. (3)

k · (a ·m) = Ad(k)(a) · (k ·m) for all k ∈ K, a ∈ g, and m ∈M . (4)

We denote the full subcategory consisting of K-equivariant objects of Mod(g, χ) and

Modf (g, χ) by Mod(g, χ,K) and Modf (g, χ,K), respectively.

We also introduce K-equivariant D-modules. Let K acts on Y . Consider mor-

phisms p2 : K × Y → Y , σ : K × Y → Y , m : K ×K → K defined by p2(k, y) = y,

σ(k, y) = ky, m(k1, k2) = k1, k2. A K-equivariant DY -module is a DY -module M

with a isomorphism of DK×Y -modules

φ : p∗2M ∼= σ∗M

satisfying the cocycle condition.

We consider categories Modqc(DY , K) and Modc(DY , K). For λ = −ρ, we have

Mod(g, χ−ρ) ∼= Modqc(DX) and Modf (g, χ−ρ) ∼= Modqc(DX).
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Theorem 3. For any closed subgroupK ≤ G, we have Mod(g, χ−ρ, K) ∼= Modqc(DX , K)

and Modf (g, χ−ρ, K) ∼= Modqc(DX , K).

Proof. What we have to prove is K-equivariances defined on Mod(g, χ−ρ) and

Modqc(DX) coincide.

Consider M ∈ Modqc(DX). K, X and K × X are all D-affine. So DK×X-

modules are Γ(K×X,DK×X) = Γ(K,DK)⊗CΓ(X,DX)-modules. Since Γ(K,DK) ∼=

Γ(K,OK) ⊗C U(k) and Γ(X,DX) ∼= U(g)/U(g) ker(χ−ρ), DK×X-module structures

are determined by actions of Γ(K,OK)⊗ 1, k⊗ 1 and 1⊗ g.

Γ(K × X, p∗2M) ∼= Γ(K,OK) ⊗C Γ(X,M). For σ∗M, consider isomorphisms

ϵ1 : K × X → K × X, ϵ2 : K × X → K × X defined by ϵ1(k, x) = (k, kx),

ϵ2(k, x) = (k, k−1x). ϵ1 = ϵ−12 and σ = p2 ◦ ϵ1. So

Γ(K ×X, σ∗M) ∼= Γ(K ×X, ϵ∗1p
∗
2M) ∼= Γ(K ×X, (ϵ2)∗p

∗
2M)

∼= Γ(K ×X, p∗2M) ∼= Γ(K,OK)⊗C Γ(X,M).

For given h ∈ Γ(X,OX) and m ∈ Γ(X,M), the element h ⊗ m ∈ Γ(K,OK) ⊗C

Γ(X,M) corresponds to the global section h ◦ p1 ⊗ p−12 m of p∗2M = OK×X ⊗p−1
2 OX

p−12 M and the global section h ◦ p1 ⊗ σ−1m : (k, x) 7→ (k, h(k)k−1 · m(kx)) of

σ∗M = OK×X ⊗σ−1OX
σ−1M. The Γ(K,DK)⊗C Γ(X,DX)-action on p∗2M. is

(f ⊗ 1) · (h⊗m) = fh⊗m for all f ∈ Γ(K,OK),

(a⊗ 1) · (h⊗m) = a · h⊗m for all a ∈ k,

(1⊗ p) · (h⊗m) = h⊗ p ·m for all p ∈ g.

Consider the Γ(K,DK) ⊗C Γ(X,DX)-action on σ∗M. (f ⊗ 1) · (h ⊗m) = fh ⊗m

for all f ∈ Γ(K,OK). (a⊗ 1) · (h⊗m) = a · h⊗m− h⊗ a ·m for all a ∈ k. Finally,
d

dt
exp(tp)k−1m(k exp(−tp)x)|t=0 =

d

dt
k−1 exp(tAd(k)(p))m(exp(tAd(k)(p))kx)|t=0.

Let Ad(k)(p) =
∑

i hi(k)pi. We have (1⊗p) · (h⊗m) =
∑

i hhi⊗pi ·m for all p ∈ g.

The K-equivariance of M is equivlent to an Γ(K,DK) ⊗C Γ(X,DX)-module

isomorphism from Γ(K,OK)⊗C Γ(X,M) ∼= Γ(K ×X, p∗2M) to Γ(K ×X, σ∗M) ∼=

Γ(K,OK)⊗C Γ(X,M) satisfying the cocycle condition. Since Γ(K,OK)-actions on

both sides are the same, the condition is a C-module homomorphism

φ̃ : Γ(X,M) = 1⊗C Γ(X,M) → Γ(K,OK)⊗C Γ(X,M)
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satisfying the cocycle condition and

φ̃((a⊗ 1) · (1⊗m)) = (a⊗ 1) · φ̃(1⊗m) for all a ∈ k, m ∈ Γ(X,M). (5)

φ̃((1⊗ p) · (1⊗m)) = (1⊗ p) · φ̃(1⊗m) for all p ∈ g, m ∈ Γ(X,M). (6)

Let φ̃(m) =
∑

j gj ⊗mj. The cocycle condition is equivlent to a K-representation

structure of Γ(X,M). (5) is

0 =
∑
j

a · gj ⊗mj − a ·m.

a : m 7→
∑

j a·gj⊗mj is the k-action obtained from the K-action while a : m 7→ a·m

is the k-action obtained from the g-action. So (5) is (3).

(6) is ∑
j

gj ⊗ p ·mj =
∑
i,j

higj ⊗ pi ·mj,

which is (4).

Theorem 4. Let Y be a smooth variety and K be a linear algebraic group action

on Y . Suppose there are only finitely many K-orbits in Y . Then Modc(DY , K) ∼=

Modrh(DY , K). Moreover, the simple objects in Modc(DY , K) is parametrized by

Υ(Y,K), the set of pairs (O,L), where O ⊂ Y is an irreducible K-orbit and L is a

K-equivariant local system on Oan.

Proof. We use induction on the number of K-orbits of Y . Suppose Y is a ho-

mogeneous K-space. Then Y ∼= K/K ′ for some K ′ ≤ K. Consider morphisms

σ : K × Y → Y the natural action, p2 : K × Y → Y the second projection,

l : K → SpecC, π : K → Y the quotient map, j : Spec(C) → K, j(x) = K ′ and

i : K → K × Y , i(k) := (k−1, kK ′). Then for any M ∈ Modc(DY , K), we have

π∗M = (p2 ◦ i)∗M = i∗p∗2M ∼= i∗σ∗M = (σ ◦ i)∗M

= (j ◦ l)∗M = l∗j∗M = OX ⊗C (j∗M).

j∗M is a finite dimensional C-vector space, so π∗M ∈ Modrh(DK). Since π is

smooth, M ∈ Modrh(DY ).

9



Now consider the general case. Let O be a closed K-orbit of Y and Y ′ = Y −O.

Suppose i : O ↪→ Y and j :↪→ Y . Then we have the distinguish triagle

∫
i
i†M M

∫
j
j†M .

+1

We have i†M ∈ Db
c(DO) and j†M ∈ Db

c(DY ′). By induction hypothesis, i†M ∈

Db
rh(DO) and j†M ∈ Db

rh(DY ′). We conclude that
∫
i
i†M,

∫
j
j†M ∈ Db

rh(DY ) and

hence M ∈ Modrh(DY ).

By Riemann-Hilbert correspondence, Modrh(DY , K) ∼= Perv(CY , K), which is

parametrized by Υ(Y,K).

In particular, B has only finite orbits in X. We conclude that simple objects

in Modf (g, χ−ρ, B) are parametrized by Υ(X,B).
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Proposition 1 ( [HTT] Proposition 9.4.5, proved in [HC]). χλ = χµ if and only if λ

and µ are in the same W -orbit.

⟨λ, α∨⟩ ≤ 0 for all α ∈ ∆+. (1)

⟨λ, α∨⟩ < 0 for all α ∈ ∆+. (2)

For v ∈ −P+, Borel-Weil-Bott theorem says Γ(X,L(v)) = H0(X,L(v)) = L−(v)

and pv : OX ⊗CL
−(v) → L(v) is surjective. Since H omOX

(L(v),OX) = L(−v) and

HomC(L
−(v),C) = L+(−v), we have L(−v) ↪→ OX ⊗CL

+(−v). Apply L(v)⊗OX
(·),

we have iv : OX ↪→ L(v)⊗C L
+(−v). Since L(v) is a line bundle, ker(pv) is a direct

summand of OX ⊗C L
−(v) as an OX-module locally. Therefore, im(iv) is a direct

summand of L(v)⊗C L
+(−v) as an OX-module locally.

Let λ ∈ L and M be a Dλ-module. Apply M⊗OX
(·), we get

pv : M⊗C L
−(v) ↠ M⊗OX

L(v),

iv : M ↪→ M⊗OX
L(v)⊗C L

+(−v).

Proposition 2 ( [HTT] Proposition 11.4.1). (i) If λ satisfies (2), then ker(pv) is

a direct summand of M⊗C L
−(v) as a sheaf of abelian groups.

(ii) If λ satisfies (1), then im(iv) is a direct summand of M⊗OX
L(v)⊗C L

+(−v)

as a sheaf of abelian groups.

Proof. Let

L−(v) = L1 ⊃ L2 ⊃ · · · ⊃ Lr = 0

be a filtration of B-modules of L−(v) satisfying that Li/Li+1 is the character µi of

B, µ1 = v, and µi < µj only if i < j. Then we obtain corresponding filtrations

OX ⊗C L
−(v) = V1 ⊃ V2 ⊃ · · · ⊃ Vr = 0,

M⊗C L
−(v) = V1 ⊃ V2 ⊃ · · · ⊃ Vr

= 0,

and

M⊗OX
L(v)⊗C L

+(−v) = Wr ⊃ Wr−1 ⊃ · · · ⊃ W1
= 0.
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The corresponding composition factors are

V i
/V i+1 ∼= M⊗OX

L(µi), W i+1
/W i ∼= M⊗OX

L(v − µi).

Since M⊗OX
L(µ) is a Dλ+µ-module, the action of z on it is χλ+µ. So we have

r−1∏
i=1

(z − χλ+µi
)(M⊗C L

−(v)) = 0

and
r−1∏
i=1

(z − χλ+v−µi
)(M⊗OX

L(v)⊗C L
+(−v)) = 0.

Seen as sheaves of abelian groups, M ⊗C L
−(v) and M ⊗OX

L(v) ⊗C L
+(−v) are

equipped with locally finite z-actions and thus have decompositions into χ-primary

parts:

M⊗C L
−(v) =

⊕
χ

(M⊗C L
−(v))χ,

M⊗OX
L(v)⊗C L

+(−v) =
⊕
χ

(M⊗OX
L(v)⊗C L

+(−v))χ.

The morphisms pv and iv are V1 → V1
/V2 and W2 → Wr, respectively. It suffices

to prove that

(i) If λ satisfies (2), then ker(pv) = (M⊗C L
−(v))χλ+v

. That is, χλ+µi
= χλ+v ⇔

i = 1.

(ii) If λ satisfies (1), then im(iv) = (M⊗OX
L(v)⊗CL

+(−v))χλ
. That is, χλ+v−µi

=

χλ ⇔ i = 1.

Suppose λ satisfies (2). If χλ+µi
= χλ+v, then there is a w ∈ W such that w(λ+µi) =

λ + v. That is, (w(λ) − λ) + (w(µi) − v) = 0. Since ⟨λ, α⟩ < 0 for all α ∈ ∆+,

w(λ) − λ ≥ 0 and the equality holds if and only if w = id. Since w(µi) is a weight

of L−(v), w(µi) ≥ v. So w = id and thus µi = v. That is, i = 1.

Suppose λ satisfies (1). If χλ+v−µi
= χλ, then there is a w ∈ W such that

w(λ) = λ + v − µi. That is, (w(λ) − λ) + (µi − v) = 0. Since ⟨λ, α⟩ ≤ 0 for all

α ∈ ∆+, w(λ) ≥ λ. Also, µi ≥ v. So µi = v and thus i = 1.
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Theorem 1 ( [HTT] Theorem 11.6.1). Let Y be a smooth variety and K be a linear

algebraic group action on Y . Suppose there are only finitely many K-orbits in Y .

Then Modc(DY , K) ∼= Modrh(DY , K). Moreover, the simple objects in Modc(DY , K)

is parametrized by Υ(Y,K), the set of pairs (O,L), where O ⊂ Y is an irreducible

K-orbit and L is a K-equivariant local system on Oan.

Proof. We use induction on the number of K-orbits of Y . Suppose Y is a ho-

mogeneous K-space. Then Y ∼= K/K ′ for some K ′ ≤ K. Consider morphisms

σ : K × Y → Y the natural action, p2 : K × Y → Y the second projection,

l : K → SpecC, π : K → Y the quotient map, j : Spec(C) → K, j(x) = K ′ and

i : K → K × Y , i(k) := (k−1, kK ′). Then for any M ∈ Modc(DY , K), we have

π∗M = (p2 ◦ i)∗M = i∗p∗2M ∼= i∗σ∗M = (σ ◦ i)∗M

= (j ◦ l)∗M = l∗j∗M = OX ⊗C (j∗M).

j∗M is a finite dimensional C-vector space, so π∗M ∈ Modrh(DK). Since π is

smooth, M ∈ Modrh(DY ).

Now consider the general case. Let O be a closed K-orbit of Y and Y ′ = Y −O.

Suppose i : O ↪→ Y and j :↪→ Y . Then we have the distinguish triagle∫
i
i†M M

∫
j
j†M .

+1

We have i†M ∈ Db
c(DO) and j†M ∈ Db

c(DY ′). By induction hypothesis, i†M ∈

Db
rh(DO) and j†M ∈ Db

rh(DY ′). We conclude that
∫
i
i†M,

∫
j
j†M ∈ Db

rh(DY ) and

hence M ∈ Modrh(DY ).

By Riemann-Hilbert correspondence, Modrh(DY , K) ∼= Perv(CY , K), which is

parametrized by Υ(Y,K).

In particular, B has only finite orbits in X. We conclude that simple objects

in Modf (g, χ−ρ, B) are parametrized by Υ(X,B).

0.1 Highest Weight Module

Definition 1. Let λ ∈ h∗ and M be a g-module. If there exists 0 ̸= m ∈ M such

that m ∈Mλ, nm = 0, and M = U(g)m, then M is called a highest weight module

3



with highest weight λ. m is called a highest weight vector.

In this case, M = U(n−)m and M =
⊕

µ≤λMµ. Mλ = Cm. Since M is

generated by m, M is the quotiend U(g)/N as a U(g)-module. The relation contains

at least n and h− λ(h) for all h ∈ h.

Definition 2. The Verma module is defined as

M(λ) := U(g)/(U(g)n+
∑
h∈h

U(g)(h− λ(h)1)).

M(λ) is the unique maximal highest weight module. If M be a highest weight

module, there is a unique surjective homomorphism f : M(λ) → M such that

f(1̄) = m.

Lemma 1 ( [HTT] Lemma 12.1.3). M(λ) is a free U(n−)-module. In particular, we

compute that

ch(M(λ)) =
∑
µ

dim(M(λ)µ)e
µ =

∑
β≤0

dim(U(n−)β)e
λ+β

=eλ
∏

β∈∆+

(1 + e−β + e−2β + · · · )

=
eλ∏

β∈∆+(1− e−β)
.

Proof. Let I = (U(g)n +
∑

h∈h U(g)(h − λ(h)1)). We want to prove that U(g) =

U(n−)⊕ I. By PBW theorem, we have a canonical isomorphism

U(n−)⊗ U(h)⊗ U(n) ∼= U(g).

So we have∑
h∈h

U(g)(h− λ(h)1)) =
∑
h∈h

U(n−)U(h)U(n)(h− λ(h)1))

=
∑
h∈h

U(n−)U(h)(C+U(n)n)(h− λ(h)1))

⊂U(n−)

(∑
h∈h

U(h)(h− λ(h)1))

)
+ U(g)n.
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So I = U(n−)
(∑

h∈h U(h)(h− λ(h)1))
)
+U(g)n. Finally we have the isomorphism

U(g) =U(n−)U(h)U(n)

=U(n−)U(h)(C⊕U(n)n)

=U(n−)U(h)⊕ U(g)n

=U(n−)

(
C⊕

∑
h∈h

U(h)(h− λ(h)1))

)
⊕ U(g)n

=U(n−)⊕ I.

Lemma 2 ( [HTT] Lemma 12.1.4). There is a unique maximal proper U(g)-submodule

N ⊂M(λ).

Proof. Any proper U(g)-submodule of M(λ) is a weight module whose weights < λ.

So the sum of them is also a proper U(g)-submodule.

Define L(λ) =M(λ)/N . L(λ) is the minimal highest weight module.

Problem 1. Compute ch(L(λ)).

Example 1. If λ ∈ ∆+, then L(λ) = L+(λ). Weyl’s character formula says

ch(L(λ)) =
∑

w∈W (−1)l(w)ww(λ+ρ)−ρ∏
β∈∆+(1− e−β)

=
∑
w∈W

(−1)l(w) ch(M(w(λ+ ρ)− ρ)).

Lemma 3 ( [HTT] Lemma 12.1.6). For z ∈ z, zm = χλ+ρ(z)m.

Proof. We decompose z into u+ v where z ∈ U(h) and v ∈ n−U(g)+U(g)n. Then

zm = um = λ(u)m = χλ+ρ(z)m.

Proposition 3 ( [HTT] Proposition 12.1.7). Let M be a highest weight module

with highest weight λ. The M has a decomposition series with finite length and

each composition factor of it has the form L(µ) where µ ≤ λ and µ+ ρ ∈ W (λ+ ρ).
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Proof. If M is simple then we are done. If M is not simple, then we take a nonzero

proper submodule N ⊂M . Let µ be a maximal weight of N and 0 ̸= n ∈ Nµ, then

U(g)m ⊂ N is a highest weight module with highest weight µ. χµ+ρ(z)n = zn =

χλ+ρ(z)n for all z ∈ z. So χµ+ρ = χλ+ρ. We have µ < λ and µ + ρ ∈ W (λ + ρ).

Replace M by N and repeat the process. We can repeat only finitely many times

and obtain a simple U(g)-module N1, which is a highest weight module with highest

weight µ1. N1
∼= L(µ1). Replace M by M/N1 and repeat the process. We obtain a

sequence

0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ,

the composition factors of which have the form L(µ) for some µ ≤ λ and µ + ρ ∈

W (λ+ ρ). Since |W (λ+ ρ)| <∞ and L(µ) can occur no more than dim(Mµ) times,

the sequence is finite.

Fix a equivlence class Λ = W (λ + ρ)− ρ. Let aµλ the the multiplicity of L(µ)

appearing in the deconposition series of M(λ). We have aµλ ̸= 0 only if µ ∼ λ and

µ ≤ λ. aλλ = 1. Let (bµλ) be the inverse matrix of (aµλ). Then bµλ ∈ Z and

ch(M(λ)) =
∑
µ∈Λ

aµλ ch(L(µ)).

ch(L(λ)) =
∑
µ∈Λ

bµλ ch(M(µ)).

It suffices to compute bµλ.

0.2 Kazhdan-Lusztig Conjecture

The problem is answered when Λ = W (−ρ)−ρ. In this case, Λ ⊂ P . We are consid-

ering objects M(−w(ρ)−ρ), L(−wρ−ρ) ∈ Modf (g, χρ, B) = Modrh(DX , B). Every

object in Modf (g, χρ, B) has a composition series of finite length, which is proved

similarly as in the proof above. We consider the Grothdieck groupK(Modf (g, χρ, B)).

We have

[L(−wρ− ρ)] =
∑
y∈W

byw[M(−yρ− ρ)].

[M(−wρ− ρ)] =
∑
y∈W

ayw[L(−yρ− ρ)].
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We want to compute byw.

Definition 3. The Hecke algebra H(W ) is the Z[q1, q−1] algebra which is freely

generated by {Tw | w ∈ W} as a Z[q1, q−1]-module with multiplicative relations

TyTw = Tyw, if l(yw) = l(y) + l(w).

(Ts + 1)(Ts − q) = 0, if s ∈ W.

Proposition 4 ( [HTT] Proposition 12.2.3). There exists a unique family {Py,w(q)}

of polynomials in Z[q] satisfying the following conditions:

Py,w(q) = 0 if y ̸≤ w,

Pw,w(q) = 1,

deg(Py,w(q)) ≤
l(w)− l(y)− 1

2
if y < w,∑

y≤w

Py,w(q)Ty = ql(w)
∑
y≤w

Py,w(q
−1)T−1y−1 .

Conjecture 1 (Kazhdan-Lusztig).

by,w = (−1)l(w)−l(y)Py,w(1).

Definition 4. For each w ∈ W we define

Xw = BwB/B.

Here w is seen as an element in W = NG(H)/H. The Schubert variety is defined as

Xw.

Proposition 5 ( [HTT] Theorem 9.9.4, 9.9.5). X is the disjoint union of {Xw | w ∈

W}. Each Xw is isomorphic to Cl(w). Xw =
⨿

y≤wXw.

We denote by IC(CXw) the intersection complex on Xw and set

Cπ
Xw

= IC(CXw)[− dim(Xw)].

We’ll show that the Kazhdan-Lusztig conjecture is reduced the theorem below.
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Theorem 2 (Kazhdan-Lusztig, [HTT] Theorem 12.2.5). For any y, w ∈ W , we have∑
i

dim(H i(Cπ
Xw

)yB)q
i/2 = Py,w(q).

In particular, We have H i(Cπ
Xw

)yB = 0 for all odd i and∑
j

(−1)j dim(Hj(Cπ
Xw

)yB) = Py,w(1).

Let Mw = DX ⊗U(g) M(−w(ρ)− ρ), Lw = DX ⊗U(g) L(−w(ρ)− ρ), and

Nw =

∫
iw

OXw = (iw)∗(DX←Xw ⊗DXw
OXw).

Nw ∈ Modc(DX , B) = Modrh(DX , B).

Lemma 4 ( [HTT] Lemma 12.3.1). Let w ∈ W . Then

(i) ch(Γ(X,Nw)) = ch(M(−w(ρ)−ρ)). In particular, [Mw] = [Nw] inK(Modrh(DX , B)).

(ii) The only DX submodule of Nw whose support is contained in Xw −Xw is 0.

Proof. Define two subalgebras of g:

n1 =
⊕

α∈∆+∩w(∆+)

g−α, n2 =
⊕

α∈∆+∩−w(∆+)

gα.

Let the corresponding unipotent subgroup of G be N1 and N2 respectively. Define

a morphism φ : N1 ×N2 → X by

φ(n1, n2) = n1n2wB/B.

Then φ is an open embedding. φ({e} × N2) = Xw. Let V = im(φ), we have the

commutative diagram

N1 ×N2 V X

N2 = {e} ×N2 Xw

φ

iw

So

Γ(X,Nw) =Γ
(
X, (iw)∗

(
DX←Xw ⊗DXw

OXw

))
=Γ(Xw, DX←Xw ⊗DXw

OXw)

=Γ(Xw, DV←Xw ⊗DXw
OXw)

∼=Γ(N2, DN1×N2←N2 ⊗DN2
ON2).
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DN1×N2←N2
∼=
(
DN1×{e} ⊗ON1×{e} C

)
⊗C

(
Ω⊗−1N1×{e} ⊗ON1×{e} C

)
⊗C ⊗CΓ(N2,N2).

First, DN1 = U(n1)⊗C OX , so DN1×e ⊗ON1×{e} C ∼= U(n1). Second,

Ω⊗−1N1×{e} ⊗ON1×{e} C ∼= ∧dim(n1)(n1 ⊗C OX)⊗OX
C = ∧dim(n1)n1.

Finally, the exponential map gives the isomorphism n2 ∼= N2. Therefore, Γ(N2,N2) ∼=

Γ(n2,On2) = S(n∗2).

ch(Γ(X,Nw)) = ch(U(n1)) ch(∧dim(n1)n1) ch(S(n∗2)).

We compute that

ch(U(n1)) =
∏

α∈∆+∩w(∆+)

(1 + e−α + e−2α + · · · ) =
∏

α∈∆+∩w(∆+)

1

1− e−α
,

ch(∧dim(n1)) = e
∑

α∈∆+∩w(∆+)−α = e−w(ρ)−ρ,

and

ch(S(n∗2)) =
∏

α∈∆+∩−w(∆+)

(1 + e−α + e−2α + · · · ) =
∏

α∈∆+∩−w(∆+)

1

1− e−α
.

So

ch(Γ(X,Nw)) =
e−w(ρ)−ρ∏

α∈∆+(1− e−α)
= ch(M(−w(ρ)− ρ)).

Set Z = X − V and j : V → X be the open embedding, we have a distinguished

traingle

RΓZ(Nw) Nw j∗(Nw) .
+1

By definition, Nw → j∗(Nw) is an isomorphism, so RΓZ(Nw) = 0. So ΓZ(Nw).

Hence the only DX submodule of Nw whose support is contained in Z is 0. Since

Xw −Xw ⊂ Z, the assertion follows.

Let L(Xw,OXw) be the minimal extension of theDXw-moduleXw. L(Xw,OXw) ∈

Modrh(DX , B).

Proposition 6 ( [HTT] Lemma 12.3.2). Let w ∈ W . Then we have

(i)

Lw = L(Xw,OXw).
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(ii)

Mw = D(Nw).

Proof. Since Xan
w is simply connected, simple objects in Modrh(DX , B) is given

by {L(Xw,OXw) | y ∈ W}. On the other hand, simple objects in Modf (g, B, χ−ρ)

is given by {L(−w(ρ) − ρ)}. So for each w ∈ W , there is a y ∈ W such that

Lw = L(Xy,OXy). For this y, L(Xy,OXy) is a composition factor of Mw and hence

one of Nw. Since Nw is supported on Xw =
⨿

w′≤wXw′ , y ≤ w. The induction on

Bruhat order gives the equality.

Since {L(Xw,OXw) | y ∈ W} are self dual, for all M ∈ Modrh(DX , B), the

composition factors of M and those of D(M) coincide. In particular, we get

ch(D(Nw)) = ch(Nw) = ch(M(−w(ρ)− ρ)).

U(g)Γ(X,D(Nw))−w(ρ)−ρ is a highest weight module with highest weight −w(ρ)−ρ).

Thus we have an exact sequence

M(−w(ρ)− ρ) → Γ(X,D(Nw)) → N → 0.

Tensoring DX over U(g) and we get

Mw → D(Nw) → N → 0.

Taking dual and we get

0 → D(N ) → Nw → D(Mw)

Lw isn’t in the set of composition factors of D(N ), so the support of D(N ) is in

Xw − Xw. We get D(N ) = 0, N = 0, and N = 0. So we have a surjective

homomorphism M(−w(ρ) − ρ) → Γ(X,D(Nw)). The injectivity follows from that

ch(Nw) = ch(M(−w(ρ)− ρ)).

Corollary 1 ( [HTT] Corollary 12.3.3). The Riemann-Hilbert correspondence gives

DRX(Mw) = CXw [dim(Xw)]

and

DRX(Lw) = Cπ
Xw

[dim(Xw)].
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To prove the conjecture, it suffices to prove that

[Lw] =
∑
y≤w

(−1)l(w)−l(y)Py,w(1)[Mw]

inK(Modrh(DX , B). We define a Z-module homomorphism φ : K(Modrh(DX , B) →

Z[W ] given by

φ([M]) =
∑
y∈W

(∑
i

(−1)i dim(H i(DRX(M))yB)

)
y.

Form the corollary above, we have φ([Mw]) = (−1)l(w)m, so φ is an isomorphism.

Assume the Kazhdan-Lusztig theorem and we get

φ([Lw]) =
∑
y∈W

(∑
i

(−1)i dim(H i(DRX(Lw))yB)

)
y

=
∑
y∈W

(∑
i

(−1)i dim(H i(Cπ
Xw

[dim(Xw)]))yB)

)
y

=(−1)l(w)
∑
y∈W

Py,w(1)y

=(−1)l(w)−l(y)Py,w(1)φ([Mw]).

0.3 Sketch of the Proof of Kazhdan-Lusztig The-

orem

Let ∆G be the diagonal group of G×G and act diagonally on X ×X. ∆G- orbits

of X ×X has a natural bijection to {Xw} given by

Zw := ∆G(eB,wB) ↔ Xw

Let pk : X×X → X, ik : X → X×X(k = 1, 2) be given by p1(a, b) = a, p2(a, b) = b,

i1(b) = (eB, b), i2(a) = (a, eB).

Proposition 7 ( [HTT] Proposition 13.1.2). ik(k = 1, 2) induce equivlences of cat-

egories:

i∗k : Modc(DX×X ,∆G) ∼= Modc(DX , B).
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SinceX×X has only finite ∆G-orbits, Modc(DX×X ,∆G) = Modrh(DX×X ,∆G).

For w ∈ W , consider the embedding jw : Zw → X ×X and set

Ñw =

∫
jw

OZw , M̃w = D(Ñw), L̃w = L(Zw,OZw).

They are in Modc(DX×X ,∆G). Moreover,

i∗1(Ñw) = Nw, i∗1(M̃w) = Mw, , i∗1(L̃w) = Lw,

i∗2(Ñw) = Nw−1 , i∗2(M̃w) = Mw−1 , i∗2(L̃w) = Lw−1 .

Proposition 8 ( [HTT] Proposition 13.1.5). Let p13 : X × X × X → X × X and

r : X ×X ×X → X ×X ×X ×X be given by p13(a, b, c) = (a, c) and r(a, b, c) =

(a, b, b, c). Then K(Modc(DX×X ,∆G)) has a ring structure given by

[M̃] · [Ñ ] =
∑
k

(−1)kHk

(∫
p13

r∗(M̃⊠ Ñ )

)

and K(Modc(DX×X ,∆G)) is isomorphic to Z[W ] by the correspondence M̃w ↔

(−1)l(w)w.

We should consider the categories of Hodge modules ( [HTT] 8.3) to relate the

objects and the Hecke algebra H(W ). We need the categories SH(n), SH(n)p,

and MHM(Y ). An object in MHM(Y ) is a tuple (M, F,K,W ), where M ∈

Modrh(DY ), F is a good filtration of M, K ∈ Perv(Y )/Q such that DRY (M) =

C⊗QK, and W is an increasing filtration of the tuple (M, F,K).

ConsiderR = K(MHM(pt)) = K(SHMp) ( [HTT] (m12), p.224). R =
⊕

n∈ZRn

where Rn = K(SH(n)p). The unit is QH . The morphism qn 7→ [QH [−n]] gives R a

Z[q, q−1]-algebra structure q ∈ R2.

Consider the category K(MHM(X ×X,∆G)). It has a ring structure

[V1] · [V1] = (−1)dim(X)
∑
j

(−1)j[Hj(p13!r
⋆(V1 ⊠ V2))]

( [HTT] Equation 13.2.7.)

The tensor product

MHM(pt)×MHM(X ×X,∆G) →MHM(X ×X,∆G)
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gives K(MHM(X ×X,∆G)) a R-algebra structure.

For w ∈ W we set

NH

w =(jw)⋆(QH
Zw

[dim(Zw)]), MH

w = (jw)!(QH
Zw

[dim(Zw)]),

LH

w =(jw)!⋆(QH
Zw

[dim(Zw)]) = ICH
Zw

∈MHM(X ×X,∆G).

The underlying D-modules are Nw,Mw,Lw, respectively. In [HTT] they defined a

R-algebra isomorphism

F : K(MHM(X ×X,∆G)) → R⊗Z[g,g−1] H(W )

by F ([MH

w ]) = (−1)l(w)Tw ( [HTT] Theorem 13.2.8) and for each w ∈ W a R-

module homomorphism Fw : K(MHM(X × X,∆G)) → R given by F (m) =∑
w∈W (−1)l(w)Fw(m)Tw ( [HTT] Equation 13.2.26). The morphisms {Fw} satisfying

that ∑
k

(−1)k[Hk(j⋆w (V))] = Fw([V ])[QH
Zw

[dim(Zw)]]

( [HTT] Equation 13.2.25). Next, they defined

C ′w = (−1)l(w)F ([LH

w ]) =
∑
y≤w

P ′y,wTy (P ′y,w ∈ R)

( [HTT] Equation 13.2.34). Put m = [[LH

w ]] in [HTT] Equation 13.2.26 and get

(−1)l(w)−l(y)
∑
k

(−1)k[Hk(j⋆w (LH

w ))] = P ′y,w[Q
H
Zw

[dim(Zw)]]

( [HTT] Equation 13.2.38). Comparing the weight and relations [HTT] Equation 13.2.35,

13.2.36, 13.2.37 of {P ′y,w}, they proved P ′y,w = Py,w(q) and thus C ′w = Cw :=∑
y≤w Py,w(q)Ty.

Proposition 9 ( [HTT] Proposition 13.2.9). If y ≤ w, Hk(j⋆w (LH

w )) has pure weight

dim(Zw) + k.

With this proposition, they can write Hk(j⋆w (LH

w )) = Nk⊗QH
Zy
[dim(Zy)] where

Zy ∈ SH(k + l(w)− l(y))p. [HTT] Equation 13.2.38 gives∑
k

(−1)l(w)+l(y)−k[Nk] = Py,w := cy,w,jq
j.
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Since q ∈ R2, we have [Nk] = 0 if k + l(w) − l(y) is odd and [Nk] = cy,w,jq
j if

k + l(w)− l(y) = 2j. Thus dim(Hk(j⋆w (LH

w ))) = cy,w,j if k + l(w)− l(y) = 2j and 0

if k + l(w)− l(y) = 2j is odd. Kazhdan-Lusztig theorem follows.
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