COMPLEX ANALYSIS - NTU 2014 FINAL EXAM

There are four problems, each problem deserves 25 points.

1. Define the gamma function $\Gamma(s)$ for Re s > 0 and prove its analytic continuation to $s \in \mathbb{C}$ and functional equation $\Gamma(s)\Gamma(1-s) = \pi/\sin \pi s$. Find its zeros and poles as well as the corresponding residues. Hint: Prove first that

$$\int_0^\infty \frac{v^{a-1}}{1+v} \, dv = \frac{\pi}{\sin \pi a}$$

2. (a) Define the Riemann zeta function $\zeta(s)$ for Res > 1 and discuss its analytic continuation to $s \in \mathbb{C}$ with the only simple pole at s = 1. (b) Show that $\zeta(s) \neq 0$ for Res > 1, and all zeros of $\zeta(s)$ for Res < 0 are precisely s = -2n, $n \in \mathbb{N}$.

(Hint: On way to do it is to consider $\xi(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s)$ for Res > 1 and prove its functional equations $\xi(s) = \xi(1-s)$ thorough the one for $\vartheta(t) := \sum_{n=-\infty}^{\infty} e^{-\pi n^2 t}$ where t > 0.)

3. (a) Prove the Schwarz Lemma for $f : \mathbb{D} \to \mathbb{D}$ with f(0) = 0 and use it to determine the group Aut \mathbb{D} . (b) Assuming the Schwarz–Christoffel formula from \mathbb{H} to a polygon domain *P*. Deduce the formula for a conformal map $f : \mathbb{D} \to P$ by way of an explicit conformal map $g : \mathbb{D} \to \mathbb{H}$.

4. (a) Show that $(\wp')^2 = 4\wp^3 - g_2\wp - g_3$ for some $g_2, g_3 \in \mathbb{C}$. (b) Let $\Omega \subset \mathbb{C}$ be a simply connected domain not containing any root of $4x^3 - g_2x - g_3$. Show that

$$I(w):=\int_{w_0}^w rac{ds}{\sqrt{4s^3-g_2s-g_3}},\qquad w_0,w\in\Omega$$

defines a inverse of $\wp(z + a)$ for some *a*.

(Bonus) Write down something you have well prepared but not shown above.

A course by Chin-Lung Wang. Date: January 8, pm 12:30-3:20.