COMPLEX ANALYSIS - NTU 2010
 CHIN-LUNG WANG
 APRIL 27, PM 1:00-3:25

There are 7 problems, each deserves 15 points. Give your works in details. No partial credit will be assigned to non substantial solutions.

1. State and prove Cauchy's theorem for a triangle and then for a circle.
2. Prove that

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\frac{\sqrt{2 \pi}}{4} .
$$

3. Prove that

$$
\int_{0}^{2 \pi} \frac{d \theta}{(a+\cos \theta)^{2}}=\frac{2 \pi a}{\left(a^{2}-1\right)^{3 / 2}}
$$

whenever $a>1$.
4. Show that if $a>0$, then

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+a^{2}} d x=\frac{\pi}{2 a} \log a .
$$

5. Let $\Omega \subset \mathbb{C}$ be a connected bounded open set containing 0 , and ϕ : $\Omega \rightarrow \Omega$ be holomorphic such that $\phi(0)=0$ and $\phi^{\prime}(0)=1$. Show that ϕ is a linear function on the whole Ω.
6. Determine the number of roots of the equation

$$
z^{6}+6 z+10=0
$$

in each quadrant of the complex plane. Determine also the number of zeros inside each annulus $k<|z|<k+1$ with $k \in \mathbb{Z}_{\geq 0}$.
7. Deduce from Hadamard's theorem that if F is entire of growth order $\rho \notin \mathbb{Z}$, then F assumes every value $w \in \mathbb{C}$ infinitely many times.

